/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Relator for functions, pairs, sums, and lists. -/ import logic.basic namespace relator universes u₁ u₂ v₁ v₂ /- TODO(johoelzl): * should we introduce relators of datatypes as recursive function or as inductive predicate? For now we stick to the recursor approach. * relation lift for datatypes, Π, Σ, set, and subtype types * proof composition and identity laws * implement method to derive relators from datatype -/ section variables {α : Sort u₁} {β : Sort u₂} {γ : Sort v₁} {δ : Sort v₂} variables (R : α → β → Prop) (S : γ → δ → Prop) def lift_fun (f : α → γ) (g : β → δ) : Prop := ∀⦃a b⦄, R a b → S (f a) (g b) infixr ⇒ := lift_fun end section variables {α : Type u₁} {β : Type u₂} (R : α → β → Prop) def right_total : Prop := ∀ b, ∃ a, R a b def left_total : Prop := ∀ a, ∃ b, R a b def bi_total : Prop := left_total R ∧ right_total R def left_unique : Prop := ∀ ⦃a b c⦄, R a c → R b c → a = b def right_unique : Prop := ∀ ⦃a b c⦄, R a b → R a c → b = c def bi_unique : Prop := left_unique R ∧ right_unique R variable {R} lemma right_total.rel_forall (h : right_total R) : ((R ⇒ implies) ⇒ implies) (λp, ∀i, p i) (λq, ∀i, q i) := assume p q Hrel H b, exists.elim (h b) (assume a Rab, Hrel Rab (H _)) lemma left_total.rel_exists (h : left_total R) : ((R ⇒ implies) ⇒ implies) (λp, ∃i, p i) (λq, ∃i, q i) := assume p q Hrel ⟨a, pa⟩, (h a).imp $ λ b Rab, Hrel Rab pa lemma bi_total.rel_forall (h : bi_total R) : ((R ⇒ iff) ⇒ iff) (λp, ∀i, p i) (λq, ∀i, q i) := assume p q Hrel, ⟨assume H b, exists.elim (h.right b) (assume a Rab, (Hrel Rab).mp (H _)), assume H a, exists.elim (h.left a) (assume b Rab, (Hrel Rab).mpr (H _))⟩ lemma bi_total.rel_exists (h : bi_total R) : ((R ⇒ iff) ⇒ iff) (λp, ∃i, p i) (λq, ∃i, q i) := assume p q Hrel, ⟨assume ⟨a, pa⟩, (h.left a).imp $ λ b Rab, (Hrel Rab).1 pa, assume ⟨b, qb⟩, (h.right b).imp $ λ a Rab, (Hrel Rab).2 qb⟩ lemma left_unique_of_rel_eq {eq' : β → β → Prop} (he : (R ⇒ (R ⇒ iff)) eq eq') : left_unique R := λ a b c (ac : R a c) (bc : R b c), (he ac bc).mpr ((he bc bc).mp rfl) end lemma rel_imp : (iff ⇒ (iff ⇒ iff)) implies implies := assume p q h r s l, imp_congr h l lemma rel_not : (iff ⇒ iff) not not := assume p q h, not_congr h lemma bi_total_eq {α : Type u₁} : relator.bi_total (@eq α) := { left := λ a, ⟨a, rfl⟩, right := λ a, ⟨a, rfl⟩ } variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables {r : α → β → Prop} {p : β → γ → Prop} {q : γ → δ → Prop} lemma left_unique.flip (h : left_unique r) : right_unique (flip r) := λ a b c h₁ h₂, h h₁ h₂ lemma rel_and : ((↔) ⇒ (↔) ⇒ (↔)) (∧) (∧) := assume a b h₁ c d h₂, and_congr h₁ h₂ lemma rel_or : ((↔) ⇒ (↔) ⇒ (↔)) (∨) (∨) := assume a b h₁ c d h₂, or_congr h₁ h₂ lemma rel_iff : ((↔) ⇒ (↔) ⇒ (↔)) (↔) (↔) := assume a b h₁ c d h₂, iff_congr h₁ h₂ lemma rel_eq {r : α → β → Prop} (hr : bi_unique r) : (r ⇒ r ⇒ (↔)) (=) (=) := λ a b h₁ c d h₂, ⟨λ h, hr.right h₁ $ h.symm ▸ h₂, λ h, hr.left h₁ $ h.symm ▸ h₂⟩ end relator