/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import tactic.basic import logic.is_empty /-! # Types with a unique term In this file we define a typeclass `unique`, which expresses that a type has a unique term. In other words, a type that is `inhabited` and a `subsingleton`. ## Main declaration * `unique`: a typeclass that expresses that a type has a unique term. ## Main statements * `unique.mk'`: an inhabited subsingleton type is `unique`. This can not be an instance because it would lead to loops in typeclass inference. * `function.surjective.unique`: if the domain of a surjective function is `unique`, then its codomain is `unique` as well. * `function.injective.subsingleton`: if the codomain of an injective function is `subsingleton`, then its domain is `subsingleton` as well. * `function.injective.unique`: if the codomain of an injective function is `subsingleton` and its domain is `inhabited`, then its domain is `unique`. ## Implementation details The typeclass `unique α` is implemented as a type, rather than a `Prop`-valued predicate, for good definitional properties of the default term. -/ universes u v w variables {α : Sort u} {β : Sort v} {γ : Sort w} /-- `unique α` expresses that `α` is a type with a unique term `default`. This is implemented as a type, rather than a `Prop`-valued predicate, for good definitional properties of the default term. -/ @[ext] structure unique (α : Sort u) extends inhabited α := (uniq : ∀ a : α, a = default) attribute [class] unique lemma unique_iff_exists_unique (α : Sort u) : nonempty (unique α) ↔ ∃! a : α, true := ⟨λ ⟨u⟩, ⟨u.default, trivial, λ a _, u.uniq a⟩, λ ⟨a,_,h⟩, ⟨⟨⟨a⟩, λ _, h _ trivial⟩⟩⟩ lemma unique_subtype_iff_exists_unique {α} (p : α → Prop) : nonempty (unique (subtype p)) ↔ ∃! a, p a := ⟨λ ⟨u⟩, ⟨u.default.1, u.default.2, λ a h, congr_arg subtype.val (u.uniq ⟨a,h⟩)⟩, λ ⟨a,ha,he⟩, ⟨⟨⟨⟨a,ha⟩⟩, λ ⟨b,hb⟩, by { congr, exact he b hb }⟩⟩⟩ /-- Given an explicit `a : α` with `[subsingleton α]`, we can construct a `[unique α]` instance. This is a def because the typeclass search cannot arbitrarily invent the `a : α` term. Nevertheless, these instances are all equivalent by `unique.subsingleton.unique`. See note [reducible non-instances]. -/ @[reducible] def unique_of_subsingleton {α : Sort*} [subsingleton α] (a : α) : unique α := { default := a, uniq := λ _, subsingleton.elim _ _ } instance punit.unique : unique punit.{u} := { default := punit.star, uniq := λ x, punit_eq x _ } @[simp] lemma punit.default_eq_star : (default : punit) = punit.star := rfl /-- Every provable proposition is unique, as all proofs are equal. -/ def unique_prop {p : Prop} (h : p) : unique p := { default := h, uniq := λ x, rfl } instance : unique true := unique_prop trivial lemma fin.eq_zero : ∀ n : fin 1, n = 0 | ⟨n, hn⟩ := fin.eq_of_veq (nat.eq_zero_of_le_zero (nat.le_of_lt_succ hn)) instance {n : ℕ} : inhabited (fin n.succ) := ⟨0⟩ instance inhabited_fin_one_add (n : ℕ) : inhabited (fin (1 + n)) := ⟨⟨0, nat.zero_lt_one_add n⟩⟩ @[simp] lemma fin.default_eq_zero (n : ℕ) : (default : fin n.succ) = 0 := rfl instance fin.unique : unique (fin 1) := { uniq := fin.eq_zero, .. fin.inhabited } namespace unique open function section variables [unique α] @[priority 100] -- see Note [lower instance priority] instance : inhabited α := to_inhabited ‹unique α› lemma eq_default (a : α) : a = default := uniq _ a lemma default_eq (a : α) : default = a := (uniq _ a).symm @[priority 100] -- see Note [lower instance priority] instance : subsingleton α := subsingleton_of_forall_eq _ eq_default lemma forall_iff {p : α → Prop} : (∀ a, p a) ↔ p default := ⟨λ h, h _, λ h x, by rwa [unique.eq_default x]⟩ lemma exists_iff {p : α → Prop} : Exists p ↔ p default := ⟨λ ⟨a, ha⟩, eq_default a ▸ ha, exists.intro default⟩ end @[ext] protected lemma subsingleton_unique' : ∀ (h₁ h₂ : unique α), h₁ = h₂ | ⟨⟨x⟩, h⟩ ⟨⟨y⟩, _⟩ := by congr; rw [h x, h y] instance subsingleton_unique : subsingleton (unique α) := ⟨unique.subsingleton_unique'⟩ /-- Construct `unique` from `inhabited` and `subsingleton`. Making this an instance would create a loop in the class inheritance graph. -/ @[reducible] def mk' (α : Sort u) [h₁ : inhabited α] [subsingleton α] : unique α := { uniq := λ x, subsingleton.elim _ _, .. h₁ } end unique lemma unique_iff_subsingleton_and_nonempty (α : Sort u) : nonempty (unique α) ↔ subsingleton α ∧ nonempty α := ⟨λ ⟨u⟩, by split; exactI infer_instance, λ ⟨hs, hn⟩, ⟨by { resetI, inhabit α, exact unique.mk' α }⟩⟩ @[simp] lemma pi.default_def {β : α → Sort v} [Π a, inhabited (β a)] : @default (Π a, β a) _ = λ a : α, @default (β a) _ := rfl lemma pi.default_apply {β : α → Sort v} [Π a, inhabited (β a)] (a : α) : @default (Π a, β a) _ a = default := rfl instance pi.unique {β : α → Sort v} [Π a, unique (β a)] : unique (Π a, β a) := { uniq := λ f, funext $ λ x, unique.eq_default _, .. pi.inhabited α } /-- There is a unique function on an empty domain. -/ instance pi.unique_of_is_empty [is_empty α] (β : α → Sort v) : unique (Π a, β a) := { default := is_empty_elim, uniq := λ f, funext is_empty_elim } lemma eq_const_of_unique [unique α] (f : α → β) : f = function.const α (f default) := by { ext x, rw subsingleton.elim x default } lemma heq_const_of_unique [unique α] {β : α → Sort v} (f : Π a, β a) : f == function.const α (f default) := function.hfunext rfl $ λ i _ _, by rw subsingleton.elim i default namespace function variable {f : α → β} /-- If the codomain of an injective function is a subsingleton, then the domain is a subsingleton as well. -/ protected lemma injective.subsingleton (hf : injective f) [subsingleton β] : subsingleton α := ⟨λ x y, hf $ subsingleton.elim _ _⟩ /-- If the domain of a surjective function is a subsingleton, then the codomain is a subsingleton as well. -/ protected lemma surjective.subsingleton [subsingleton α] (hf : surjective f) : subsingleton β := ⟨hf.forall₂.2 $ λ x y, congr_arg f $ subsingleton.elim x y⟩ /-- If the domain of a surjective function is a singleton, then the codomain is a singleton as well. -/ protected def surjective.unique (hf : surjective f) [unique α] : unique β := @unique.mk' _ ⟨f default⟩ hf.subsingleton /-- If `α` is inhabited and admits an injective map to a subsingleton type, then `α` is `unique`. -/ protected def injective.unique [inhabited α] [subsingleton β] (hf : injective f) : unique α := @unique.mk' _ _ hf.subsingleton /-- If a constant function is surjective, then the codomain is a singleton. -/ def surjective.unique_of_surjective_const (α : Type*) {β : Type*} (b : β) (h : function.surjective (function.const α b)) : unique β := @unique_of_subsingleton _ (subsingleton_of_forall_eq b $ h.forall.mpr (λ _, rfl)) b end function lemma unique.bijective {A B} [unique A] [unique B] {f : A → B} : function.bijective f := begin rw function.bijective_iff_has_inverse, refine ⟨default, _, _⟩; intro x; simp end namespace option /-- `option α` is a `subsingleton` if and only if `α` is empty. -/ lemma subsingleton_iff_is_empty {α} : subsingleton (option α) ↔ is_empty α := ⟨λ h, ⟨λ x, option.no_confusion $ @subsingleton.elim _ h x none⟩, λ h, ⟨λ x y, option.cases_on x (option.cases_on y rfl (λ x, h.elim x)) (λ x, h.elim x)⟩⟩ instance {α} [is_empty α] : unique (option α) := @unique.mk' _ _ (subsingleton_iff_is_empty.2 ‹_›) end option section subtype instance unique.subtype_eq (y : α) : unique {x // x = y} := { default := ⟨y, rfl⟩, uniq := λ ⟨x, hx⟩, by simpa using hx } instance unique.subtype_eq' (y : α) : unique {x // y = x} := { default := ⟨y, rfl⟩, uniq := λ ⟨x, hx⟩, by simpa using hx.symm } end subtype