/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import topology.separation import topology.continuous_function.basic /-! # Sober spaces A quasi-sober space is a topological space where every irreducible closed subset has a generic point. A sober space is a quasi-sober space where every irreducible closed subset has a *unique* generic point. This is if and only if the space is T0, and thus sober spaces can be stated via `[quasi_sober α] [t0_space α]`. ## Main definition * `is_generic_point` : `x` is the generic point of `S` if `S` is the closure of `x`. * `quasi_sober` : A space is quasi-sober if every irreducible closed subset has a generic point. -/ open set variables {α β : Type*} [topological_space α] [topological_space β] section generic_point /-- `x` is a generic point of `S` if `S` is the closure of `x`. -/ def is_generic_point (x : α) (S : set α) : Prop := closure ({x} : set α) = S lemma is_generic_point_def {x : α} {S : set α} : is_generic_point x S ↔ closure ({x} : set α) = S := iff.rfl lemma is_generic_point.def {x : α} {S : set α} (h : is_generic_point x S) : closure ({x} : set α) = S := h lemma is_generic_point_closure {x : α} : is_generic_point x (closure ({x} : set α)) := refl _ variables {x y : α} {S U Z : set α} lemma is_generic_point_iff_specializes : is_generic_point x S ↔ ∀ y, x ⤳ y ↔ y ∈ S := by simp only [specializes_iff_mem_closure, is_generic_point, set.ext_iff] namespace is_generic_point lemma specializes_iff_mem (h : is_generic_point x S) : x ⤳ y ↔ y ∈ S := is_generic_point_iff_specializes.1 h y lemma specializes (h : is_generic_point x S) (h' : y ∈ S) : x ⤳ y := h.specializes_iff_mem.2 h' lemma mem (h : is_generic_point x S) : x ∈ S := h.specializes_iff_mem.1 specializes_rfl protected lemma is_closed (h : is_generic_point x S) : is_closed S := h.def ▸ is_closed_closure protected lemma is_irreducible (h : is_generic_point x S) : is_irreducible S := h.def ▸ is_irreducible_singleton.closure /-- In a T₀ space, each set has at most one generic point. -/ protected lemma eq [t0_space α] (h : is_generic_point x S) (h' : is_generic_point y S) : x = y := ((h.specializes h'.mem).antisymm (h'.specializes h.mem)).eq lemma mem_open_set_iff (h : is_generic_point x S) (hU : is_open U) : x ∈ U ↔ (S ∩ U).nonempty := ⟨λ h', ⟨x, h.mem, h'⟩, λ ⟨y, hyS, hyU⟩, (h.specializes hyS).mem_open hU hyU⟩ lemma disjoint_iff (h : is_generic_point x S) (hU : is_open U) : disjoint S U ↔ x ∉ U := by rw [h.mem_open_set_iff hU, ← not_disjoint_iff_nonempty_inter, not_not] lemma mem_closed_set_iff (h : is_generic_point x S) (hZ : is_closed Z) : x ∈ Z ↔ S ⊆ Z := by rw [← h.def, hZ.closure_subset_iff, singleton_subset_iff] protected lemma image (h : is_generic_point x S) {f : α → β} (hf : continuous f) : is_generic_point (f x) (closure (f '' S)) := begin rw [is_generic_point_def, ← h.def, ← image_singleton], exact subset.antisymm (closure_mono (image_subset _ subset_closure)) (closure_minimal (image_closure_subset_closure_image hf) is_closed_closure) end end is_generic_point lemma is_generic_point_iff_forall_closed (hS : is_closed S) (hxS : x ∈ S) : is_generic_point x S ↔ ∀ Z : set α, is_closed Z → x ∈ Z → S ⊆ Z := have closure {x} ⊆ S, from closure_minimal (singleton_subset_iff.2 hxS) hS, by simp_rw [is_generic_point, subset_antisymm_iff, this, true_and, closure, subset_sInter_iff, mem_set_of_eq, and_imp, singleton_subset_iff] end generic_point section sober /-- A space is sober if every irreducible closed subset has a generic point. -/ @[mk_iff] class quasi_sober (α : Type*) [topological_space α] : Prop := (sober : ∀ {S : set α} (hS₁ : is_irreducible S) (hS₂ : is_closed S), ∃ x, is_generic_point x S) /-- A generic point of the closure of an irreducible space. -/ noncomputable def is_irreducible.generic_point [quasi_sober α] {S : set α} (hS : is_irreducible S) : α := (quasi_sober.sober hS.closure is_closed_closure).some lemma is_irreducible.generic_point_spec [quasi_sober α] {S : set α} (hS : is_irreducible S) : is_generic_point hS.generic_point (closure S) := (quasi_sober.sober hS.closure is_closed_closure).some_spec @[simp] lemma is_irreducible.generic_point_closure_eq [quasi_sober α] {S : set α} (hS : is_irreducible S) : closure ({hS.generic_point} : set α) = closure S := hS.generic_point_spec variable (α) /-- A generic point of a sober irreducible space. -/ noncomputable def generic_point [quasi_sober α] [irreducible_space α] : α := (irreducible_space.is_irreducible_univ α).generic_point lemma generic_point_spec [quasi_sober α] [irreducible_space α] : is_generic_point (generic_point α) ⊤ := by simpa using (irreducible_space.is_irreducible_univ α).generic_point_spec @[simp] lemma generic_point_closure [quasi_sober α] [irreducible_space α] : closure ({generic_point α} : set α) = ⊤ := generic_point_spec α variable {α} lemma generic_point_specializes [quasi_sober α] [irreducible_space α] (x : α) : generic_point α ⤳ x := (is_irreducible.generic_point_spec _).specializes (by simp) local attribute [instance, priority 10] specialization_order /-- The closed irreducible subsets of a sober space bijects with the points of the space. -/ noncomputable def irreducible_set_equiv_points [quasi_sober α] [t0_space α] : { s : set α | is_irreducible s ∧ is_closed s } ≃o α := { to_fun := λ s, s.prop.1.generic_point, inv_fun := λ x, ⟨closure ({x} : set α), is_irreducible_singleton.closure, is_closed_closure⟩, left_inv := λ s, subtype.eq $ eq.trans (s.prop.1.generic_point_spec) $ closure_eq_iff_is_closed.mpr s.2.2, right_inv := λ x, is_irreducible_singleton.closure.generic_point_spec.eq (by { convert is_generic_point_closure using 1, rw closure_closure }), map_rel_iff' := λ s t, by { change _ ⤳ _ ↔ _, rw specializes_iff_closure_subset, simp [s.prop.2.closure_eq, t.prop.2.closure_eq, ← subtype.coe_le_coe] } } lemma closed_embedding.quasi_sober {f : α → β} (hf : closed_embedding f) [quasi_sober β] : quasi_sober α := begin constructor, intros S hS hS', have hS'' := hS.image f hf.continuous.continuous_on, obtain ⟨x, hx⟩ := quasi_sober.sober hS'' (hf.is_closed_map _ hS'), obtain ⟨y, hy, rfl⟩ := hx.mem, use y, change _ = _ at hx, apply set.image_injective.mpr hf.inj, rw [← hx, ← hf.closure_image_eq, set.image_singleton] end lemma open_embedding.quasi_sober {f : α → β} (hf : open_embedding f) [quasi_sober β] : quasi_sober α := begin constructor, intros S hS hS', have hS'' := hS.image f hf.continuous.continuous_on, obtain ⟨x, hx⟩ := quasi_sober.sober hS''.closure is_closed_closure, obtain ⟨T, hT, rfl⟩ := hf.to_inducing.is_closed_iff.mp hS', rw set.image_preimage_eq_inter_range at hx hS'', have hxT : x ∈ T, { rw ← hT.closure_eq, exact closure_mono (set.inter_subset_left _ _) hx.mem }, have hxU : x ∈ set.range f, { rw hx.mem_open_set_iff hf.open_range, refine set.nonempty.mono _ hS''.1, simpa using subset_closure }, rcases hxU with ⟨y, rfl⟩, use y, change _ = _, rw [hf.to_embedding.closure_eq_preimage_closure_image, set.image_singleton, (show _ = _, from hx)], apply set.image_injective.mpr hf.inj, ext z, simp only [set.image_preimage_eq_inter_range, set.mem_inter_eq, and.congr_left_iff], exact λ hy, ⟨λ h, hT.closure_eq ▸ closure_mono (set.inter_subset_left _ _) h, λ h, subset_closure ⟨h, hy⟩⟩ end /-- A space is quasi sober if it can be covered by open quasi sober subsets. -/ lemma quasi_sober_of_open_cover (S : set (set α)) (hS : ∀ s : S, is_open (s : set α)) [hS' : ∀ s : S, quasi_sober s] (hS'' : ⋃₀ S = ⊤) : quasi_sober α := begin rw quasi_sober_iff, intros t h h', obtain ⟨x, hx⟩ := h.1, obtain ⟨U, hU, hU'⟩ : x ∈ ⋃₀S := by { rw hS'', trivial }, haveI : quasi_sober U := hS' ⟨U, hU⟩, have H : is_preirreducible (coe ⁻¹' t : set U) := h.2.preimage (hS ⟨U, hU⟩).open_embedding_subtype_coe, replace H : is_irreducible (coe ⁻¹' t : set U) := ⟨⟨⟨x, hU'⟩, by simpa using hx⟩, H⟩, use H.generic_point, have := continuous_subtype_coe.closure_preimage_subset _ H.generic_point_spec.mem, rw h'.closure_eq at this, apply le_antisymm, { apply h'.closure_subset_iff.mpr, simpa using this }, rw [← set.image_singleton, ← closure_closure], have := closure_mono (image_closure_subset_closure_image (@continuous_subtype_coe α _ U)), refine set.subset.trans _ this, rw H.generic_point_spec.def, refine (subset_closure_inter_of_is_preirreducible_of_is_open h.2 (hS ⟨U, hU⟩) ⟨x, hx, hU'⟩).trans (closure_mono _), rw ← subtype.image_preimage_coe, exact set.image_subset _ subset_closure, end @[priority 100] instance t2_space.quasi_sober [t2_space α] : quasi_sober α := begin constructor, rintro S h -, obtain ⟨x, rfl⟩ := (is_irreducible_iff_singleton S).mp h, exact ⟨x, closure_singleton⟩ end end sober