import topology.algebra.ring import ring_theory.subring import tactic.linarith import power_bounded import Huber_ring.basic import for_mathlib.topological_rings /-! # Tate rings A Tate ring is a Huber ring that has a topologically nilpotent unit. Topologically nilpotent units are also called pseudo-uniformizers. -/ universe u variables {R : Type u} [comm_ring R] [topological_space R] open filter function /--A unit of a topological ring is called a pseudo-uniformizer if it is topologically nilpotent.-/ def is_pseudo_uniformizer (ϖ : units R) : Prop := is_topologically_nilpotent (ϖ : R) variable (R) /--A pseudo-uniformizer of a topological ring is a topologially nilpotent unit.-/ def pseudo_uniformizer := {ϖ : units R // is_topologically_nilpotent (ϖ : R)} variable {R} namespace pseudo_uniformizer /-- The coercion from pseudo-uniformizers to the unit group. -/ instance : has_coe (pseudo_uniformizer R) (units R) := ⟨subtype.val⟩ /--The unit underlying a pseudo-uniformizer.-/ abbreviation unit (ϖ : pseudo_uniformizer R) : units R := ϖ /--A pseudo-uniformizer is topologically nilpotent (by definition).-/ lemma is_topologically_nilpotent (ϖ : pseudo_uniformizer R) : is_topologically_nilpotent (ϖ : R) := ϖ.property variables [topological_ring R] /--A pseudo-uniformizer is power bounded.-/ lemma power_bounded (ϖ : pseudo_uniformizer R) : is_power_bounded (ϖ : R) := begin intros U U_nhds, rcases half_nhds U_nhds with ⟨U', ⟨U'_nhds, U'_prod⟩⟩, rcases ϖ.is_topologically_nilpotent U' U'_nhds with ⟨N, H⟩, let V : set R := (λ u, u*ϖ^(N+1)) '' U', have V_nhds : V ∈ (nhds (0 : R)), { dsimp [V], have inv : left_inverse (λ (u : R), u * (↑ϖ.unit⁻¹)^((N + 1))) (λ (u : R), u * ϖ^(N + 1)) ∧ right_inverse (λ (u : R), u * (↑ϖ.unit⁻¹)^(N + 1)) (λ (u : R), u * ϖ^(N + 1)), by split ; intro ; simp [mul_assoc, (mul_pow _ _ _).symm], erw set.image_eq_preimage_of_inverse inv.1 inv.2, have : tendsto (λ (u : R), u * ↑ϖ.1⁻¹ ^ (N + 1)) (nhds 0) (nhds 0), { conv {congr, skip, skip, rw ←(zero_mul (↑ϖ.1⁻¹ ^ (N + 1) : R))}, exact tendsto_id.mul tendsto_const_nhds }, exact this U'_nhds }, use [V, V_nhds], rintros _ ⟨u, u_in, rfl⟩ b ⟨n, rfl⟩, rw [mul_assoc, ← pow_add], apply U'_prod _ _ u_in (H _ _), linarith end /-- The coercion from pseudo-uniformizers to the power bounded subring. -/ instance coe_to_power_bounded_subring : has_coe (pseudo_uniformizer R) (power_bounded_subring R) := ⟨λ ϖ, ⟨_, ϖ.power_bounded⟩⟩ end pseudo_uniformizer /--A Tate ring is a Huber ring that has a pseudo uniformizer.-/ class Tate_ring (R : Type u) [Huber_ring R] : Prop := (has_pseudo_uniformizer : nonempty (pseudo_uniformizer R))