(* Title: Aodv_Predicates.thy License: BSD 2-Clause. See LICENSE. Author: Timothy Bourke, Inria *) section "Invariant assumptions and properties" theory Aodv_Predicates imports Aodv begin text \Definitions for expression assumptions on incoming messages and properties of outgoing messages.\ abbreviation not_Pkt :: "msg \ bool" where "not_Pkt m \ case m of Pkt _ _ _ \ False | _ \ True" definition msg_sender :: "msg \ ip" where "msg_sender m \ case m of Rreq _ _ _ _ _ _ _ ipc \ ipc | Rrep _ _ _ _ ipc \ ipc | Rerr _ ipc \ ipc | Pkt _ _ ipc \ ipc" lemma msg_sender_simps [simp]: "\hops rreqid dip dsn dsk oip osn sip. msg_sender (Rreq hops rreqid dip dsn dsk oip osn sip) = sip" "\hops dip dsn oip sip. msg_sender (Rrep hops dip dsn oip sip) = sip" "\dests sip. msg_sender (Rerr dests sip) = sip" "\d dip sip. msg_sender (Pkt d dip sip) = sip" unfolding msg_sender_def by simp_all definition msg_zhops :: "msg \ bool" where "msg_zhops m \ case m of Rreq hopsc _ dipc _ _ oipc _ sipc \ hopsc = 0 \ oipc = sipc | Rrep hopsc dipc _ _ sipc \ hopsc = 0 \ dipc = sipc | _ \ True" lemma msg_zhops_simps [simp]: "\hops rreqid dip dsn dsk oip osn sip. msg_zhops (Rreq hops rreqid dip dsn dsk oip osn sip) = (hops = 0 \ oip = sip)" "\hops dip dsn oip sip. msg_zhops (Rrep hops dip dsn oip sip) = (hops = 0 \ dip = sip)" "\dests sip. msg_zhops (Rerr dests sip) = True" "\d dip. msg_zhops (Newpkt d dip) = True" "\d dip sip. msg_zhops (Pkt d dip sip) = True" unfolding msg_zhops_def by simp_all definition rreq_rrep_sn :: "msg \ bool" where "rreq_rrep_sn m \ case m of Rreq _ _ _ _ _ _ osnc _ \ osnc \ 1 | Rrep _ _ dsnc _ _ \ dsnc \ 1 | _ \ True" lemma rreq_rrep_sn_simps [simp]: "\hops rreqid dip dsn dsk oip osn sip. rreq_rrep_sn (Rreq hops rreqid dip dsn dsk oip osn sip) = (osn \ 1)" "\hops dip dsn oip sip. rreq_rrep_sn (Rrep hops dip dsn oip sip) = (dsn \ 1)" "\dests sip. rreq_rrep_sn (Rerr dests sip) = True" "\d dip. rreq_rrep_sn (Newpkt d dip) = True" "\d dip sip. rreq_rrep_sn (Pkt d dip sip) = True" unfolding rreq_rrep_sn_def by simp_all definition rreq_rrep_fresh :: "rt \ msg \ bool" where "rreq_rrep_fresh crt m \ case m of Rreq hopsc _ _ _ _ oipc osnc ipcc \ (ipcc \ oipc \ oipc\kD(crt) \ (sqn crt oipc > osnc \ (sqn crt oipc = osnc \ the (dhops crt oipc) \ hopsc \ the (flag crt oipc) = val))) | Rrep hopsc dipc dsnc _ ipcc \ (ipcc \ dipc \ dipc\kD(crt) \ sqn crt dipc = dsnc \ the (dhops crt dipc) = hopsc \ the (flag crt dipc) = val) | _ \ True" lemma rreq_rrep_fresh [simp]: "\hops rreqid dip dsn dsk oip osn sip. rreq_rrep_fresh crt (Rreq hops rreqid dip dsn dsk oip osn sip) = (sip \ oip \ oip\kD(crt) \ (sqn crt oip > osn \ (sqn crt oip = osn \ the (dhops crt oip) \ hops \ the (flag crt oip) = val)))" "\hops dip dsn oip sip. rreq_rrep_fresh crt (Rrep hops dip dsn oip sip) = (sip \ dip \ dip\kD(crt) \ sqn crt dip = dsn \ the (dhops crt dip) = hops \ the (flag crt dip) = val)" "\dests sip. rreq_rrep_fresh crt (Rerr dests sip) = True" "\d dip. rreq_rrep_fresh crt (Newpkt d dip) = True" "\d dip sip. rreq_rrep_fresh crt (Pkt d dip sip) = True" unfolding rreq_rrep_fresh_def by simp_all definition rerr_invalid :: "rt \ msg \ bool" where "rerr_invalid crt m \ case m of Rerr destsc _ \ (\ripc\dom(destsc). (ripc\iD(crt) \ the (destsc ripc) = sqn crt ripc)) | _ \ True" lemma rerr_invalid [simp]: "\hops rreqid dip dsn dsk oip osn sip. rerr_invalid crt (Rreq hops rreqid dip dsn dsk oip osn sip) = True" "\hops dip dsn oip sip. rerr_invalid crt (Rrep hops dip dsn oip sip) = True" "\dests sip. rerr_invalid crt (Rerr dests sip) = (\rip\dom(dests). rip\iD(crt) \ the (dests rip) = sqn crt rip)" "\d dip. rerr_invalid crt (Newpkt d dip) = True" "\d dip sip. rerr_invalid crt (Pkt d dip sip) = True" unfolding rerr_invalid_def by simp_all definition initmissing :: "(nat \ state option) \ 'a \ (nat \ state) \ 'a" where "initmissing \ = (\i. case (fst \) i of None \ aodv_init i | Some s \ s, snd \)" lemma not_in_net_ips_fst_init_missing [simp]: assumes "i \ net_ips \" shows "fst (initmissing (netgmap fst \)) i = aodv_init i" using assms unfolding initmissing_def by simp lemma fst_initmissing_netgmap_pair_fst [simp]: "fst (initmissing (netgmap (\(p, q). (fst (id p), snd (id p), q)) s)) = fst (initmissing (netgmap fst s))" unfolding initmissing_def by auto text \We introduce a streamlined alternative to @{term initmissing} with @{term netgmap} to simplify invariant statements and thus facilitate their comprehension and presentation.\ lemma fst_initmissing_netgmap_default_aodv_init_netlift: "fst (initmissing (netgmap fst s)) = default aodv_init (netlift fst s)" unfolding initmissing_def default_def by (simp add: fst_netgmap_netlift del: One_nat_def) definition netglobal :: "((nat \ state) \ bool) \ ((state \ 'b) \ 'c) net_state \ bool" where "netglobal P \ (\s. P (default aodv_init (netlift fst s)))" end