section \Operations on Expressions\ theory Floatarith_Expression imports "HOL-Decision_Procs.Approximation" Affine_Arithmetic_Auxiliarities Executable_Euclidean_Space begin text \Much of this could move to the distribution...\ subsection \Approximating Expression*s*\ unbundle floatarith_notation text \\label{sec:affineexpr}\ primrec interpret_floatariths :: "floatarith list \ real list \ real list" where "interpret_floatariths [] vs = []" | "interpret_floatariths (a#bs) vs = interpret_floatarith a vs#interpret_floatariths bs vs" lemma length_interpret_floatariths[simp]: "length (interpret_floatariths fas xs) = length fas" by (induction fas) auto lemma interpret_floatariths_nth[simp]: "interpret_floatariths fas xs ! n = interpret_floatarith (fas ! n) xs" if "n < length fas" using that by (induction fas arbitrary: n) (auto simp: nth_Cons split: nat.splits) abbreviation "einterpret \ \fas vs. eucl_of_list (interpret_floatariths fas vs)" subsection \Syntax\ syntax interpret_floatarith::"floatarith \ real list \ real" instantiation floatarith :: "{plus, minus, uminus, times, inverse, zero, one}" begin definition "- f = Minus f" lemma interpret_floatarith_uminus[simp]: "interpret_floatarith (- f) xs = - interpret_floatarith f xs" by (auto simp: uminus_floatarith_def) definition "f + g = Add f g" lemma interpret_floatarith_plus[simp]: "interpret_floatarith (f + g) xs = interpret_floatarith f xs + interpret_floatarith g xs" by (auto simp: plus_floatarith_def) definition "f - g = Add f (Minus g)" lemma interpret_floatarith_minus[simp]: "interpret_floatarith (f - g) xs = interpret_floatarith f xs - interpret_floatarith g xs" by (auto simp: minus_floatarith_def) definition "inverse f = Inverse f" lemma interpret_floatarith_inverse[simp]: "interpret_floatarith (inverse f) xs = inverse (interpret_floatarith f xs)" by (auto simp: inverse_floatarith_def) definition "f * g = Mult f g" lemma interpret_floatarith_times[simp]: "interpret_floatarith (f * g) xs = interpret_floatarith f xs * interpret_floatarith g xs" by (auto simp: times_floatarith_def) definition "f div g = f * Inverse g" lemma interpret_floatarith_divide[simp]: "interpret_floatarith (f div g) xs = interpret_floatarith f xs / interpret_floatarith g xs" by (auto simp: divide_floatarith_def inverse_eq_divide) definition "1 = Num 1" lemma interpret_floatarith_one[simp]: "interpret_floatarith 1 xs = 1" by (auto simp: one_floatarith_def) definition "0 = Num 0" lemma interpret_floatarith_zero[simp]: "interpret_floatarith 0 xs = 0" by (auto simp: zero_floatarith_def) instance proof qed end subsection \Derived symbols\ definition "R\<^sub>e r = (case quotient_of r of (n, d) \ Num (of_int n) / Num (of_int d))" declare [[coercion R\<^sub>e ]] lemma interpret_R\<^sub>e[simp]: "interpret_floatarith (R\<^sub>e x) xs = real_of_rat x" by (auto simp: R\<^sub>e_def of_rat_divide dest!: quotient_of_div split: prod.splits) definition "Sin x = Cos ((Pi * (Num (Float 1 (-1)))) - x)" lemma interpret_floatarith_Sin[simp]: "interpret_floatarith (Sin x) vs = sin (interpret_floatarith x vs)" by (auto simp: Sin_def approximation_preproc_floatarith(11)) definition "Half x = Mult (Num (Float 1 (-1))) x" lemma interpret_Half[simp]: "interpret_floatarith (Half x) xs = interpret_floatarith x xs / 2" by (auto simp: Half_def) definition "Tan x = (Sin x) / (Cos x)" lemma interpret_floatarith_Tan[simp]: "interpret_floatarith (Tan x) vs = tan (interpret_floatarith x vs)" by (auto simp: Tan_def approximation_preproc_floatarith(12) inverse_eq_divide) primrec Sum\<^sub>e where "Sum\<^sub>e f [] = 0" | "Sum\<^sub>e f (x#xs) = f x + Sum\<^sub>e f xs" lemma interpret_floatarith_Sum\<^sub>e[simp]: "interpret_floatarith (Sum\<^sub>e f x) vs = (\i\x. interpret_floatarith (f i) vs)" by (induction x) auto definition Norm where "Norm is = Sqrt (Sum\<^sub>e (\i. i * i) is)" lemma interpret_floatarith_norm[simp]: assumes [simp]: "length x = DIM('a)" shows "interpret_floatarith (Norm x) vs = norm (einterpret x vs::'a::executable_euclidean_space)" apply (auto simp: Norm_def norm_eq_sqrt_inner) apply (subst euclidean_inner[where 'a='a]) apply (auto simp: power2_eq_square[symmetric] ) apply (subst sum_list_Basis_list[symmetric]) apply (rule sum_list_nth_eqI) by (auto simp: in_set_zip eucl_of_list_inner) notation floatarith.Power (infixr "^\<^sub>e" 80) subsection \Constant Folding\ fun dest_Num_fa where "dest_Num_fa (floatarith.Num x) = Some x" | "dest_Num_fa _ = None" fun_cases dest_Num_fa_None: "dest_Num_fa fa = None" and dest_Num_fa_Some: "dest_Num_fa fa = Some x" fun fold_const_fa where "fold_const_fa (Add fa1 fa2) = (let (ffa1, ffa2) = (fold_const_fa fa1, fold_const_fa fa2) in case (dest_Num_fa ffa1, dest_Num_fa (ffa2)) of (Some a, Some b) \ Num (a + b) | (Some a, None) \ (if a = 0 then ffa2 else Add (Num a) ffa2) | (None, Some a) \ (if a = 0 then ffa1 else Add ffa1 (Num a)) | (None, None) \ Add ffa1 ffa2)" | "fold_const_fa (Minus a) = (case (fold_const_fa a) of (Num x) \ Num (-x) | x \ Minus x)" | "fold_const_fa (Mult fa1 fa2) = (let (ffa1, ffa2) = (fold_const_fa fa1, fold_const_fa fa2) in case (dest_Num_fa ffa1, dest_Num_fa (ffa2)) of (Some a, Some b) \ Num (a * b) | (Some a, None) \ (if a = 0 then Num 0 else if a = 1 then ffa2 else Mult (Num a) ffa2) | (None, Some a) \ (if a = 0 then Num 0 else if a = 1 then ffa1 else Mult ffa1 (Num a)) | (None, None) \ Mult ffa1 ffa2)" | "fold_const_fa (Inverse a) = Inverse (fold_const_fa a)" | "fold_const_fa (Abs a) = (case (fold_const_fa a) of (Num x) \ Num (abs x) | x \ Abs x)" | "fold_const_fa (Max a b) = (case (fold_const_fa a, fold_const_fa b) of (Num x, Num y) \ Num (max x y) | (x, y) \ Max x y)" | "fold_const_fa (Min a b) = (case (fold_const_fa a, fold_const_fa b) of (Num x, Num y) \ Num (min x y) | (x, y) \ Min x y)" | "fold_const_fa (Floor a) = (case (fold_const_fa a) of (Num x) \ Num (floor_fl x) | x \ Floor x)" | "fold_const_fa (Power a b) = (case (fold_const_fa a) of (Num x) \ Num (x ^ b) | x \ Power x b)" | "fold_const_fa (Cos a) = Cos (fold_const_fa a)" | "fold_const_fa (Arctan a) = Arctan (fold_const_fa a)" | "fold_const_fa (Sqrt a) = Sqrt (fold_const_fa a)" | "fold_const_fa (Exp a) = Exp (fold_const_fa a)" | "fold_const_fa (Ln a) = Ln (fold_const_fa a)" | "fold_const_fa (Powr a b) = Powr (fold_const_fa a) (fold_const_fa b)" | "fold_const_fa Pi = Pi" | "fold_const_fa (Var v) = Var v" | "fold_const_fa (Num x) = Num x" fun_cases fold_const_fa_Num: "fold_const_fa fa = Num y" and fold_const_fa_Add: "fold_const_fa fa = Add x y" and fold_const_fa_Minus: "fold_const_fa fa = Minus y" lemma fold_const_fa[simp]: "interpret_floatarith (fold_const_fa fa) xs = interpret_floatarith fa xs" by (induction fa) (auto split!: prod.splits floatarith.splits option.splits elim!: dest_Num_fa_None dest_Num_fa_Some simp: max_def min_def floor_fl_def) subsection \Free Variables\ primrec max_Var_floatarith where\ \TODO: include bound in predicate\ "max_Var_floatarith (Add a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_floatarith (Mult a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_floatarith (Inverse a) = max_Var_floatarith a" | "max_Var_floatarith (Minus a) = max_Var_floatarith a" | "max_Var_floatarith (Num a) = 0" | "max_Var_floatarith (Var i) = Suc i" | "max_Var_floatarith (Cos a) = max_Var_floatarith a" | "max_Var_floatarith (floatarith.Arctan a) = max_Var_floatarith a" | "max_Var_floatarith (Abs a) = max_Var_floatarith a" | "max_Var_floatarith (floatarith.Max a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_floatarith (floatarith.Min a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_floatarith (floatarith.Pi) = 0" | "max_Var_floatarith (Sqrt a) = max_Var_floatarith a" | "max_Var_floatarith (Exp a) = max_Var_floatarith a" | "max_Var_floatarith (Powr a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_floatarith (floatarith.Ln a) = max_Var_floatarith a" | "max_Var_floatarith (Power a n) = max_Var_floatarith a" | "max_Var_floatarith (Floor a) = max_Var_floatarith a" primrec max_Var_floatariths where "max_Var_floatariths [] = 0" | "max_Var_floatariths (x#xs) = max (max_Var_floatarith x) (max_Var_floatariths xs)" primrec max_Var_form where "max_Var_form (Conj a b) = max (max_Var_form a) (max_Var_form b)" | "max_Var_form (Disj a b) = max (max_Var_form a) (max_Var_form b)" | "max_Var_form (Less a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_form (LessEqual a b) = max (max_Var_floatarith a) (max_Var_floatarith b)" | "max_Var_form (Bound a b c d) = linorder_class.Max {max_Var_floatarith a,max_Var_floatarith b, max_Var_floatarith c, max_Var_form d}" | "max_Var_form (AtLeastAtMost a b c) = linorder_class.Max {max_Var_floatarith a,max_Var_floatarith b, max_Var_floatarith c}" | "max_Var_form (Assign a b c) = linorder_class.Max {max_Var_floatarith a,max_Var_floatarith b, max_Var_form c}" lemma interpret_floatarith_eq_take_max_VarI: assumes "take (max_Var_floatarith ra) ys = take (max_Var_floatarith ra) zs" shows "interpret_floatarith ra ys = interpret_floatarith ra zs" using assms by (induct ra) (auto dest!: take_max_eqD simp: take_Suc_eq split: if_split_asm) lemma interpret_floatariths_eq_take_max_VarI: assumes "take (max_Var_floatariths ea) ys = take (max_Var_floatariths ea) zs" shows "interpret_floatariths ea ys = interpret_floatariths ea zs" using assms apply (induction ea) subgoal by simp subgoal by (clarsimp) (metis interpret_floatarith_eq_take_max_VarI take_map take_max_eqD) done lemma Max_Image_distrib: includes no_floatarith_notation assumes "finite X" "X \ {}" shows "Max ((\x. max (f1 x) (f2 x)) ` X) = max (Max (f1 ` X)) (Max (f2 ` X))" apply (rule Max_eqI) subgoal using assms by simp subgoal for y using assms by (force intro: max.coboundedI1 max.coboundedI2 Max_ge) subgoal proof - have "Max (f1 ` X) \ f1 ` X" using assms by auto then obtain x1 where x1: "x1 \ X" "Max (f1 ` X) = f1 x1" by auto have "Max (f2 ` X) \ f2 ` X" using assms by auto then obtain x2 where x2: "x2 \ X" "Max (f2 ` X) = f2 x2" by auto show ?thesis apply (rule image_eqI[where x="if f1 x1 \ f2 x2 then x2 else x1"]) using x1 x2 assms apply (auto simp: max_def) apply (metis Max_ge dual_order.trans finite_imageI image_eqI assms(1)) apply (metis Max_ge dual_order.trans finite_imageI image_eqI assms(1)) done qed done lemma max_Var_floatarith_simps[simp]: "max_Var_floatarith (a / b) = max (max_Var_floatarith a) (max_Var_floatarith b)" "max_Var_floatarith (a * b) = max (max_Var_floatarith a) (max_Var_floatarith b)" "max_Var_floatarith (a + b) = max (max_Var_floatarith a) (max_Var_floatarith b)" "max_Var_floatarith (a - b) = max (max_Var_floatarith a) (max_Var_floatarith b)" "max_Var_floatarith (- b) = (max_Var_floatarith b)" by (auto simp: divide_floatarith_def times_floatarith_def plus_floatarith_def minus_floatarith_def uminus_floatarith_def) lemma max_Var_floatariths_Max: "max_Var_floatariths xs = (if set xs = {} then 0 else linorder_class.Max (max_Var_floatarith ` set xs))" by (induct xs) auto lemma max_Var_floatariths_map_plus[simp]: "max_Var_floatariths (map (\i. fa1 i + fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) lemma max_Var_floatariths_map_times[simp]: "max_Var_floatariths (map (\i. fa1 i * fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) lemma max_Var_floatariths_map_divide[simp]: "max_Var_floatariths (map (\i. fa1 i / fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) lemma max_Var_floatariths_map_uminus[simp]: "max_Var_floatariths (map (\i. - fa1 i) xs) = max_Var_floatariths (map fa1 xs)" by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) lemma max_Var_floatariths_map_const[simp]: "max_Var_floatariths (map (\i. fa) xs) = (if xs = [] then 0 else max_Var_floatarith fa)" by (auto simp: max_Var_floatariths_Max image_image image_constant_conv) lemma max_Var_floatariths_map_minus[simp]: "max_Var_floatariths (map (\i. fa1 i - fa2 i) xs) = max (max_Var_floatariths (map fa1 xs)) (max_Var_floatariths (map fa2 xs))" by (auto simp: max_Var_floatariths_Max image_image Max_Image_distrib) primrec fresh_floatarith where "fresh_floatarith (Var y) x \ (x \ y)" | "fresh_floatarith (Num a) x \ True" | "fresh_floatarith Pi x \ True" | "fresh_floatarith (Cos a) x \ fresh_floatarith a x" | "fresh_floatarith (Abs a) x \ fresh_floatarith a x" | "fresh_floatarith (Arctan a) x \ fresh_floatarith a x" | "fresh_floatarith (Sqrt a) x \ fresh_floatarith a x" | "fresh_floatarith (Exp a) x \ fresh_floatarith a x" | "fresh_floatarith (Floor a) x \ fresh_floatarith a x" | "fresh_floatarith (Power a n) x \ fresh_floatarith a x" | "fresh_floatarith (Minus a) x \ fresh_floatarith a x" | "fresh_floatarith (Ln a) x \ fresh_floatarith a x" | "fresh_floatarith (Inverse a) x \ fresh_floatarith a x" | "fresh_floatarith (Add a b) x \ fresh_floatarith a x \ fresh_floatarith b x" | "fresh_floatarith (Mult a b) x \ fresh_floatarith a x \ fresh_floatarith b x" | "fresh_floatarith (Max a b) x \ fresh_floatarith a x \ fresh_floatarith b x" | "fresh_floatarith (Min a b) x \ fresh_floatarith a x \ fresh_floatarith b x" | "fresh_floatarith (Powr a b) x \ fresh_floatarith a x \ fresh_floatarith b x" lemma fresh_floatarith_subst: fixes v::float assumes "fresh_floatarith e x" assumes "x < length vs" shows "interpret_floatarith e (vs[x:=v]) = interpret_floatarith e vs" using assms by (induction e) (auto simp: map_update) lemma fresh_floatarith_max_Var: assumes "max_Var_floatarith ea \ i" shows "fresh_floatarith ea i" using assms by (induction ea) auto primrec fresh_floatariths where "fresh_floatariths [] x \ True" | "fresh_floatariths (a#as) x \ fresh_floatarith a x \ fresh_floatariths as x" lemma fresh_floatariths_max_Var: assumes "max_Var_floatariths ea \ i" shows "fresh_floatariths ea i" using assms by (induction ea) (auto simp: fresh_floatarith_max_Var) lemma interpret_floatariths_take_eqI: assumes "take n ys = take n zs" assumes "max_Var_floatariths ea \ n" shows "interpret_floatariths ea ys = interpret_floatariths ea zs" by (rule interpret_floatariths_eq_take_max_VarI) (rule take_greater_eqI[OF assms]) lemma interpret_floatarith_fresh_eqI: assumes "\i. fresh_floatarith ea i \ (i < length ys \ i < length zs \ ys ! i = zs ! i)" shows "interpret_floatarith ea ys = interpret_floatarith ea zs" using assms by (induction ea) force+ lemma interpret_floatariths_fresh_eqI: assumes "\i. fresh_floatariths ea i \ (i < length ys \ i < length zs \ ys ! i = zs ! i)" shows "interpret_floatariths ea ys = interpret_floatariths ea zs" using assms apply (induction ea) subgoal by (force simp: interpret_floatarith_fresh_eqI intro: interpret_floatarith_fresh_eqI) subgoal for e ea apply clarsimp apply (auto simp: list_eq_iff_nth_eq) using interpret_floatarith_fresh_eqI by blast done lemma interpret_floatarith_max_Var_cong: assumes "\i. i < max_Var_floatarith f \ xs ! i = ys ! i" shows "interpret_floatarith f ys = interpret_floatarith f xs" using assms by (induction f) auto lemma interpret_floatarith_fresh_cong: assumes "\i. \fresh_floatarith f i \ xs ! i = ys ! i" shows "interpret_floatarith f ys = interpret_floatarith f xs" using assms by (induction f) auto lemma max_Var_floatarith_le_max_Var_floatariths: "fa \ set fas \ max_Var_floatarith fa \ max_Var_floatariths fas" by (induction fas) (auto simp: nth_Cons max_def split: nat.splits) lemma max_Var_floatarith_le_max_Var_floatariths_nth: "n < length fas \ max_Var_floatarith (fas ! n) \ max_Var_floatariths fas" by (rule max_Var_floatarith_le_max_Var_floatariths) auto lemma max_Var_floatariths_leI: assumes "\i. i < length xs \ max_Var_floatarith (xs ! i) \ F" shows "max_Var_floatariths xs \ F" using assms by (auto simp: max_Var_floatariths_Max in_set_conv_nth) lemma fresh_floatariths_map_Var[simp]: "fresh_floatariths (map floatarith.Var xs) i \ i \ set xs" by (induction xs) auto lemma max_Var_floatarith_fold_const_fa: "max_Var_floatarith (fold_const_fa fa) \ max_Var_floatarith fa" by (induction fa) (auto simp: fold_const_fa.simps split!: option.splits floatarith.splits) lemma max_Var_floatariths_fold_const_fa: "max_Var_floatariths (map fold_const_fa xs) \ max_Var_floatariths xs" by (auto simp: intro!: max_Var_floatariths_leI max_Var_floatarith_le_max_Var_floatariths_nth max_Var_floatarith_fold_const_fa[THEN order_trans]) lemma interpret_form_max_Var_cong: assumes "\i. i < max_Var_form f \ xs ! i = ys ! i" shows "interpret_form f xs = interpret_form f ys" using assms by (induction f) (auto simp: interpret_floatarith_max_Var_cong[where xs=xs and ys=ys]) lemma max_Var_floatariths_lessI: "i < max_Var_floatarith (fas ! j) \ j < length fas \ i < max_Var_floatariths fas" by (metis leD le_trans less_le max_Var_floatarith_le_max_Var_floatariths nth_mem) lemma interpret_floatariths_max_Var_cong: assumes "\i. i < max_Var_floatariths f \ xs ! i = ys ! i" shows "interpret_floatariths f ys = interpret_floatariths f xs" by (auto intro!: nth_equalityI interpret_floatarith_max_Var_cong assms max_Var_floatariths_lessI) lemma max_Var_floatarithimage_Var[simp]: "max_Var_floatarith ` Var ` X = Suc ` X" by force lemma max_Var_floatariths_map_Var[simp]: "max_Var_floatariths (map Var xs) = (if xs = [] then 0 else Suc (linorder_class.Max (set xs)))" by (auto simp: max_Var_floatariths_Max hom_Max_commute split: if_splits) lemma Max_atLeastLessThan_nat[simp]: "a < b \ linorder_class.Max {a..Derivatives\ lemma isDERIV_Power_iff: "isDERIV j (Power fa n) xs = (if n = 0 then True else isDERIV j fa xs)" by (cases n) auto lemma isDERIV_max_Var_floatarithI: assumes "isDERIV n f ys" assumes "\i. i < max_Var_floatarith f \ xs ! i = ys ! i" shows "isDERIV n f xs" using assms proof (induction f) case (Power f n) then show ?case by (cases n) auto qed (auto simp: max_def interpret_floatarith_max_Var_cong[of _ xs ys] split: if_splits) definition isFDERIV where "isFDERIV n xs fas vs \ (\ij length fas = n \ length xs = n" lemma isFDERIV_I: "(\i j. i < n \ j < n \ isDERIV (xs ! i) (fas ! j) vs) \ length fas = n \ length xs = n \ isFDERIV n xs fas vs" by (auto simp: isFDERIV_def) lemma isFDERIV_isDERIV_D: "isFDERIV n xs fas vs \ i < n \ j < n \ isDERIV (xs ! i) (fas ! j) vs" by (auto simp: isFDERIV_def) lemma isFDERIV_lengthD: "length fas = n" "length xs = n" if "isFDERIV n xs fas vs" using that by (auto simp: isFDERIV_def) lemma isFDERIV_uptD: "isFDERIV n [0.. i < n \ j < n \ isDERIV i (fas ! j) vs" by (auto simp: isFDERIV_def) lemma isFDERIV_max_Var_congI: "isFDERIV n xs fas ws" if f: "isFDERIV n xs fas vs" and c: "(\i. i < max_Var_floatariths fas \ vs ! i = ws ! i)" using c f by (auto simp: isFDERIV_def max_Var_floatariths_lessI intro!: isFDERIV_I isDERIV_max_Var_floatarithI[OF isFDERIV_isDERIV_D[OF f]]) lemma isFDERIV_max_Var_cong: "isFDERIV n xs fas ws \ isFDERIV n xs fas vs" if c: "(\i. i < max_Var_floatariths fas \ vs ! i = ws ! i)" using c by (auto intro: isFDERIV_max_Var_congI) lemma isDERIV_max_VarI: "i \ max_Var_floatarith fa \ isDERIV j fa xs \ isDERIV i fa xs" by (induction fa) (auto simp: isDERIV_Power_iff) lemmas max_Var_floatarith_le_max_Var_floatariths_nthI = max_Var_floatarith_le_max_Var_floatariths_nth[THEN order_trans] lemma isFDERIV_appendD1: assumes "isFDERIV (J + K) [0.. J" shows "isFDERIV J [0.. length xs" shows "map ((!) (xs @ ys)) [a.. 0" shows "map ((!) (x # ys)) [a.. (map ((!) fas) [0..i j. i < J + K \ j < K \ isDERIV i (rs ! j) xs" assumes "length es = J" assumes "length rs = K" assumes "max_Var_floatariths es \ J" shows "isFDERIV (J + K) [0..R (A o\<^sub>L B) = i *\<^sub>R A o\<^sub>L B" and scaleR_blinfun_compose_right: "i *\<^sub>R (A o\<^sub>L B) = A o\<^sub>L i *\<^sub>R B" by (auto intro!: blinfun_eqI simp: blinfun.bilinear_simps) lemma matrix_blinfun_compose: fixes A B::"(real ^ 'n) \\<^sub>L (real ^ 'n)" shows "matrix (A o\<^sub>L B) = (matrix A) ** (matrix B)" by transfer (auto simp: matrix_compose linear_linear) lemma matrix_add_rdistrib: "((B + C) ** A) = (B ** A) + (C ** A)" by (vector matrix_matrix_mult_def sum.distrib[symmetric] field_simps) lemma matrix_scaleR_right: "r *\<^sub>R (a::'a::real_algebra_1^'n^'m) ** b = r *\<^sub>R (a ** b)" by (vector matrix_matrix_mult_def algebra_simps scaleR_sum_right) lemma matrix_scaleR_left: "(a::'a::real_algebra_1^'n^'m) ** r *\<^sub>R b = r *\<^sub>R (a ** b)" by (vector matrix_matrix_mult_def algebra_simps scaleR_sum_right) lemma bounded_bilinear_matrix_matrix_mult[bounded_bilinear]: "bounded_bilinear ((**):: ('a::{euclidean_space, real_normed_algebra_1}^'n^'m) \ ('a::{euclidean_space, real_normed_algebra_1}^'p^'n) \ ('a::{euclidean_space, real_normed_algebra_1}^'p^'m))" unfolding bilinear_conv_bounded_bilinear[symmetric] unfolding bilinear_def apply safe by unfold_locales (auto simp: matrix_add_ldistrib matrix_add_rdistrib matrix_scaleR_right matrix_scaleR_left) lemma norm_axis: "norm (axis ia 1::'a::{real_normed_algebra_1}^'n) = 1" by (auto simp: axis_def norm_vec_def L2_set_def if_distrib if_distribR sum.delta cong: if_cong) lemma abs_vec_nth_blinfun_apply_lemma: fixes x::"(real^'n) \\<^sub>L (real^'m)" shows "abs (vec_nth (blinfun_apply x (axis ia 1)) i) \ norm x" apply (rule component_le_norm_cart[THEN order_trans]) apply (rule norm_blinfun[THEN order_trans]) by (auto simp: norm_axis) lemma bounded_linear_matrix_blinfun_apply: "bounded_linear (\x::(real^'n) \\<^sub>L (real^'m). matrix (blinfun_apply x))" apply standard subgoal by (vector blinfun.bilinear_simps matrix_def) subgoal by (vector blinfun.bilinear_simps matrix_def) apply (rule exI[where x="real (CARD('n) * CARD('m))"]) apply (auto simp: matrix_def) apply (subst norm_vec_def) apply (rule L2_set_le_sum[THEN order_trans]) apply simp apply auto apply (rule sum_mono[THEN order_trans]) apply (subst norm_vec_def) apply (rule L2_set_le_sum) apply simp apply (rule sum_mono[THEN order_trans]) apply (rule sum_mono) apply simp apply (rule abs_vec_nth_blinfun_apply_lemma) apply (simp add: abs_vec_nth_blinfun_apply_lemma) done lemma matrix_has_derivative: shows "((\x::(real^'n)\\<^sub>L(real^'n). matrix (blinfun_apply x)) has_derivative (\h. matrix (blinfun_apply h))) (at x)" apply (auto simp: has_derivative_at2) unfolding linear_linear subgoal by (rule bounded_linear_matrix_blinfun_apply) subgoal by (auto simp: blinfun.bilinear_simps matrix_def) vector done lemma matrix_comp_has_derivative[derivative_intros]: fixes f::"'a::real_normed_vector \ ((real^'n)\\<^sub>L(real^'n))" assumes "(f has_derivative f') (at x within S)" shows "((\x. matrix (blinfun_apply (f x))) has_derivative (\x. matrix (f' x))) (at x within S)" using has_derivative_compose[OF assms matrix_has_derivative] by auto fun inner_floatariths where "inner_floatariths [] _ = Num 0" | "inner_floatariths _ [] = Num 0" | "inner_floatariths (x#xs) (y#ys) = Add (Mult x y) (inner_floatariths xs ys)" lemma interpret_floatarith_inner_eq: assumes "length xs = length ys" shows "interpret_floatarith (inner_floatariths xs ys) vs = (\i y" using assms by (subst euclidean_inner) (auto simp: interpret_floatarith_inner_eq sum_Basis_sum_nth_Basis_list eucl_of_list_inner index_nth_id intro!: euclidean_eqI[where 'a='a] sum.cong) lemma max_Var_floatarith_inner_floatariths[simp]: assumes "length f = length g" shows "max_Var_floatarith (inner_floatariths f g) = max (max_Var_floatariths f) (max_Var_floatariths g)" using assms by (induction f g rule: list_induct2) auto definition FDERIV_floatarith where "FDERIV_floatarith fa xs d = inner_floatariths (map (\x. fold_const_fa (DERIV_floatarith x fa)) xs) d" \ \TODO: specialize to \FDERIV_floatarith fa [0.. and do the rest with @{term subst_floatarith}? TODO: introduce approximation on type @{typ "real^'i^'j"} and use @{term jacobian}?\ lemma interpret_floatariths_map: "interpret_floatariths (map f xs) vs = map (\x. interpret_floatarith (f x) vs) xs" by (induct xs) (auto simp: ) lemma max_Var_floatarith_DERIV_floatarith: "max_Var_floatarith (DERIV_floatarith x fa) \ max_Var_floatarith fa" by (induction x fa rule: DERIV_floatarith.induct) (auto) lemma max_Var_floatarith_FDERIV_floatarith: "length xs = length d \ max_Var_floatarith (FDERIV_floatarith fa xs d) \ max (max_Var_floatarith fa) (max_Var_floatariths d)" unfolding FDERIV_floatarith_def by (auto simp: max_Var_floatariths_Max intro!: max_Var_floatarith_DERIV_floatarith[THEN order_trans] max_Var_floatarith_fold_const_fa[THEN order_trans]) definition FDERIV_floatariths where "FDERIV_floatariths fas xs d = map (\fa. FDERIV_floatarith fa xs d) fas" lemma max_Var_floatarith_FDERIV_floatariths: "length xs = length d \ max_Var_floatariths (FDERIV_floatariths fa xs d) \ max (max_Var_floatariths fa) (max_Var_floatariths d)" by (auto simp: FDERIV_floatariths_def max_Var_floatariths_Max intro!: max_Var_floatarith_FDERIV_floatarith[THEN order_trans]) (auto simp: max_def) lemma length_FDERIV_floatariths[simp]: "length (FDERIV_floatariths fas xs ds) = length fas" by (auto simp: FDERIV_floatariths_def) lemma FDERIV_floatariths_nth[simp]: "i < length fas \ FDERIV_floatariths fas xs ds ! i = FDERIV_floatarith (fas ! i) xs ds" by (auto simp: FDERIV_floatariths_def) definition "FDERIV_n_floatariths fas xs ds n = ((\x. FDERIV_floatariths x xs ds)^^n) fas" lemma FDERIV_n_floatariths_Suc[simp]: "FDERIV_n_floatariths fa xs ds 0 = fa" "FDERIV_n_floatariths fa xs ds (Suc n) = FDERIV_floatariths (FDERIV_n_floatariths fa xs ds n) xs ds" by (auto simp: FDERIV_n_floatariths_def) lemma length_FDERIV_n_floatariths[simp]: "length (FDERIV_n_floatariths fa xs ds n) = length fa" by (induction n) (auto simp: FDERIV_n_floatariths_def) lemma max_Var_floatarith_FDERIV_n_floatariths: "length xs = length d \ max_Var_floatariths (FDERIV_n_floatariths fa xs d n) \ max (max_Var_floatariths fa) (max_Var_floatariths d)" by (induction n) (auto intro!: max_Var_floatarith_FDERIV_floatariths[THEN order_trans] simp: FDERIV_n_floatariths_def) lemma interpret_floatarith_FDERIV_floatarith_cong: assumes rq: "\i. i < max_Var_floatarith f \ rs ! i = qs ! i" assumes [simp]: "length ds = length xs" "length es = length xs" assumes "interpret_floatariths ds qs = interpret_floatariths es rs" shows "interpret_floatarith (FDERIV_floatarith f xs ds) qs = interpret_floatarith (FDERIV_floatarith f xs es) rs" apply (auto simp: FDERIV_floatarith_def interpret_floatarith_inner_eq) apply (rule sum.cong[OF refl]) subgoal premises prems for i proof - have "interpret_floatarith (DERIV_floatarith (xs ! i) f) qs = interpret_floatarith (DERIV_floatarith (xs ! i) f) rs" apply (rule interpret_floatarith_max_Var_cong) apply (auto simp: intro!: rq) by (metis leD le_trans max_Var_floatarith_DERIV_floatarith nat_less_le) moreover have "interpret_floatarith (ds ! i) qs = interpret_floatarith (es ! i) rs" using assms by (metis \i \ {.. interpret_floatariths_nth lessThan_iff) ultimately show ?thesis by auto qed done theorem matrix_vector_mult_eq_list_of_eucl_nth: "(M::real^'n::enum^'m::enum) *v v = (\ijR Basis_list ! i)" using eucl_of_list_matrix_vector_mult_eq_sum_nth_Basis_list[of "list_of_eucl M" "list_of_eucl v", where 'n='n and 'm = 'm] by auto definition "mmult_fa l m n AS BS = concat (map (\i. map (\k. inner_floatariths (map (\j. AS ! (i * m + j)) [0..j. BS ! (j * n + k)) [0.. max (max_Var_floatariths A) (max_Var_floatariths B)" apply (auto simp: mmult_fa_def concat_map_map_index intro!: max_Var_floatariths_leI) apply (rule max.coboundedI1) apply (auto intro!: max_Var_floatarith_le_max_Var_floatariths_nth max.coboundedI2) apply (cases "F = 0") apply simp_all done lemma isDERIV_inner_iff: assumes "length xs = length ys" shows "isDERIV i (inner_floatariths xs ys) vs \ (\k < length xs. isDERIV i (xs ! k) vs) \ (\k < length ys. isDERIV i (ys ! k) vs)" using assms by (induction xs ys rule: list_induct2) (auto simp: nth_Cons split: nat.splits) lemma isDERIV_Power: "isDERIV x (fa) vs \ isDERIV x (fa ^\<^sub>e n) vs" by (induction n) (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) lemma isDERIV_mmult_fa_nth: assumes "\j. j < D * E \ isDERIV i (A ! j) xs" assumes "\j. j < E * F \ isDERIV i (B ! j) xs" assumes [simp]: "length A = D * E" "length B = E * F" "j < D * F" shows "isDERIV i (mmult_fa D E F A B ! j) xs" using assms apply (cases "F = 0") apply (auto simp: mmult_fa_def concat_map_map_index isDERIV_inner_iff ac_simps) apply (metis add.commute assms(5) in_square_lemma less_square_imp_div_less mult.commute) done definition "mvmult_fa n m AS B = map (\i. inner_floatariths (map (\j. AS ! (i * m + j)) [0..j. B ! j) [0.. max (max_Var_floatariths A) (max_Var_floatariths B)" apply (auto simp: mvmult_fa_def concat_map_map_index intro!: max_Var_floatariths_leI) apply (rule max.coboundedI1) by (auto intro!: max_Var_floatarith_le_max_Var_floatariths_nth max.coboundedI2) lemma isDERIV_mvmult_fa_nth: assumes "\j. j < D * E \ isDERIV i (A ! j) xs" assumes "\j. j < E \ isDERIV i (B ! j) xs" assumes [simp]: "length A = D * E" "length B = E" "j < D" shows "isDERIV i (mvmult_fa D E A B ! j) xs" using assms apply (auto simp: mvmult_fa_def concat_map_map_index isDERIV_inner_iff ac_simps) by (metis assms(5) in_square_lemma semiring_normalization_rules(24) semiring_normalization_rules(7)) lemma max_Var_floatariths_mapI: assumes "\x. x \ set xs \ max_Var_floatarith (f x) \ m" shows "max_Var_floatariths (map f xs) \ m" using assms by (force intro!: max_Var_floatariths_leI simp: in_set_conv_nth) lemma max_Var_floatariths_list_updateI: assumes "max_Var_floatariths xs \ m" assumes "max_Var_floatarith v \ m" assumes "i < length xs" shows "max_Var_floatariths (xs[i := v]) \ m" using assms apply (auto simp: nth_list_update intro!: max_Var_floatariths_leI ) using max_Var_floatarith_le_max_Var_floatariths_nthI by blast lemma max_Var_floatariths_replicateI: assumes "max_Var_floatarith v \ m" shows "max_Var_floatariths (replicate n v) \ m" using assms by (auto intro!: max_Var_floatariths_leI ) definition "FDERIV_n_floatarith fa xs ds n = ((\x. FDERIV_floatarith x xs ds)^^n) fa" lemma FDERIV_n_floatariths_nth: "i < length fas \ FDERIV_n_floatariths fas xs ds n ! i = FDERIV_n_floatarith (fas ! i) xs ds n" by (induction n) (auto simp: FDERIV_n_floatarith_def FDERIV_floatariths_nth) lemma einterpret_fold_const_fa[simp]: "(einterpret (map (\i. fold_const_fa (fa i)) xs) vs::'a::executable_euclidean_space) = einterpret (map fa xs) vs" if "length xs = DIM('a)" using that by (auto intro!: euclidean_eqI[where 'a='a] simp: algebra_simps eucl_of_list_inner) lemma einterpret_plus[simp]: shows "(einterpret (map (\i. fa1 i + fa2 i) [0..i. fa1 * fa2 i) [0..R einterpret (map fa2 [0.. (Basis_list ! n)" proof - have "interpret_floatarith (mvmult_fa D E xs ys ! n) vs = einterpret (mvmult_fa D E xs ys) vs \ (Basis_list ! n::'n rvec)" using assms by (auto simp: eucl_of_list_inner) also from einterpret_mvmult_fa[OF assms(1,2), of xs ys vs] have "einterpret (mvmult_fa D E xs ys) vs = (einterpret xs vs::((real, 'm) vec, 'n) vec) *v einterpret ys vs" using assms by simp finally show ?thesis by simp qed lemmas [simp del] = fold_const_fa.simps lemma take_eq_map_nth: "n < length xs \ take n xs = map ((!) xs) [0..Definition of Approximating Function using Affine Arithmetic\ lemma interpret_Floatreal: "interpret_floatarith (floatarith.Num f) vs = (real_of_float f)" by simp ML \ (* Make a congruence rule out of a defining equation for the interpretation th is one defining equation of f, i.e. th is "f (Cp ?t1 ... ?tn) = P(f ?t1, .., f ?tn)" Cp is a constructor pattern and P is a pattern The result is: [|?A1 = f ?t1 ; .. ; ?An= f ?tn |] ==> P (?A1, .., ?An) = f (Cp ?t1 .. ?tn) + the a list of names of the A1 .. An, Those are fresh in the ctxt *) fun mk_congeq ctxt fs th = let val Const (fN, _) = th |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb |> fst; val ((_, [th']), ctxt') = Variable.import true [th] ctxt; val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of th')); fun add_fterms (t as t1 $ t2) = if exists (fn f => Term.could_unify (t |> strip_comb |> fst, f)) fs then insert (op aconv) t else add_fterms t1 #> add_fterms t2 | add_fterms (t as Abs _) = if exists_Const (fn (c, _) => c = fN) t then K [t] else K [] | add_fterms _ = I; val fterms = add_fterms rhs []; val (xs, ctxt'') = Variable.variant_fixes (replicate (length fterms) "x") ctxt'; val tys = map fastype_of fterms; val vs = map Free (xs ~~ tys); val env = fterms ~~ vs; (*FIXME*) fun replace_fterms (t as t1 $ t2) = (case AList.lookup (op aconv) env t of SOME v => v | NONE => replace_fterms t1 $ replace_fterms t2) | replace_fterms t = (case AList.lookup (op aconv) env t of SOME v => v | NONE => t); fun mk_def (Abs (x, xT, t), v) = HOLogic.mk_Trueprop (HOLogic.all_const xT $ Abs (x, xT, HOLogic.mk_eq (v $ Bound 0, t))) | mk_def (t, v) = HOLogic.mk_Trueprop (HOLogic.mk_eq (v, t)); fun tryext x = (x RS @{lemma "(\x. f x = g x) \ f = g" by blast} handle THM _ => x); val cong = (Goal.prove ctxt'' [] (map mk_def env) (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, replace_fterms rhs))) (fn {context = goal_ctxt, prems} => Local_Defs.unfold0_tac goal_ctxt (map tryext prems) THEN resolve_tac goal_ctxt [th'] 1)) RS sym; val (cong' :: vars') = Variable.export ctxt'' ctxt (cong :: map (Drule.mk_term o Thm.cterm_of ctxt'') vs); val vs' = map (fst o fst o Term.dest_Var o Thm.term_of o Drule.dest_term) vars'; in (vs', cong') end; fun mk_congs ctxt eqs = let val fs = fold_rev (fn eq => insert (op =) (eq |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb |> fst)) eqs []; val tys = fold_rev (fn f => fold (insert (op =)) (f |> fastype_of |> binder_types |> tl)) fs []; val (vs, ctxt') = Variable.variant_fixes (replicate (length tys) "vs") ctxt; val subst = the o AList.lookup (op =) (map2 (fn T => fn v => (T, Thm.cterm_of ctxt' (Free (v, T)))) tys vs); fun prep_eq eq = let val (_, _ :: vs) = eq |> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |> strip_comb; val subst = map_filter (fn Var v => SOME (v, subst (#2 v)) | _ => NONE) vs; in Thm.instantiate (TVars.empty, Vars.make subst) eq end; val (ps, congs) = map_split (mk_congeq ctxt' fs o prep_eq) eqs; val bds = AList.make (K ([], [])) tys; in (ps ~~ Variable.export ctxt' ctxt congs, bds) end \ ML \ fun interpret_floatariths_congs ctxt = mk_congs ctxt @{thms interpret_floatarith.simps interpret_floatariths.simps} |> fst |> map snd \ ML \ fun preproc_form_conv ctxt = Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps (Named_Theorems.get ctxt @{named_theorems approximation_preproc}))\ ML \fun reify_floatariths_tac ctxt i = CONVERSION (preproc_form_conv ctxt) i THEN REPEAT_ALL_NEW (fn i => resolve_tac ctxt (interpret_floatariths_congs ctxt) i) i\ method_setup reify_floatariths = \ Scan.succeed (fn ctxt => SIMPLE_METHOD' (reify_floatariths_tac ctxt)) \ "reification of floatariths expression" schematic_goal reify_example: "[xs!i * xs!j, xs!i + xs!j powr (sin (xs!0)), xs!k + (2 / 3 * xs!i * xs!j)] = interpret_floatariths ?fas xs" by (reify_floatariths) ML \fun interpret_floatariths_step_tac ctxt i = resolve_tac ctxt (interpret_floatariths_congs ctxt) i\ method_setup reify_floatariths_step = \ Scan.succeed (fn ctxt => SIMPLE_METHOD' (interpret_floatariths_step_tac ctxt)) \ "reification of floatariths expression (step)" lemma eucl_of_list_interpret_floatariths_cong: fixes y::"'a::executable_euclidean_space" assumes "\b. b \ Basis \ interpret_floatarith (fa (index Basis_list b)) vs = y \ b" assumes "length xs = DIM('a)" shows "eucl_of_list (interpret_floatariths (map fa [0.. D" shows "interpret_floatarith (subst_floatarith s fa) vs = interpret_floatarith fa (map (\i. interpret_floatarith (s i) vs) [0.. max_Var_floatarith fa" shows "max_Var_floatarith (subst_floatarith ((!) xs) fa) \ max_Var_floatariths xs" using assms by (induction fa) (auto intro!: max_Var_floatarith_le_max_Var_floatariths_nth) lemma max_Var_floatariths_subst_floatarith_le[THEN order_trans]: assumes "length xs \ max_Var_floatariths fas" shows "max_Var_floatariths (map (subst_floatarith ((!) xs)) fas) \ max_Var_floatariths xs" using assms by (induction fas) (auto simp: max_Var_floatarith_subst_floatarith_le) fun continuous_on_floatarith :: "floatarith \ bool" where "continuous_on_floatarith (Add a b) = (continuous_on_floatarith a \ continuous_on_floatarith b)" | "continuous_on_floatarith (Mult a b) = (continuous_on_floatarith a \ continuous_on_floatarith b)" | "continuous_on_floatarith (Minus a) = continuous_on_floatarith a" | "continuous_on_floatarith (Inverse a) = False" | "continuous_on_floatarith (Cos a) = continuous_on_floatarith a" | "continuous_on_floatarith (Arctan a) = continuous_on_floatarith a" | "continuous_on_floatarith (Min a b) = (continuous_on_floatarith a \ continuous_on_floatarith b)" | "continuous_on_floatarith (Max a b) = (continuous_on_floatarith a \ continuous_on_floatarith b)" | "continuous_on_floatarith (Abs a) = continuous_on_floatarith a" | "continuous_on_floatarith Pi = True" | "continuous_on_floatarith (Sqrt a) = False" | "continuous_on_floatarith (Exp a) = continuous_on_floatarith a" | "continuous_on_floatarith (Powr a b) = False" | "continuous_on_floatarith (Ln a) = False" | "continuous_on_floatarith (Floor a) = False" | "continuous_on_floatarith (Power a n) = (if n = 0 then True else continuous_on_floatarith a)" | "continuous_on_floatarith (Num f) = True" | "continuous_on_floatarith (Var n) = True" definition "Maxs\<^sub>e xs = fold (\a b. floatarith.Max a b) xs" definition "norm2\<^sub>e n = Maxs\<^sub>e (map (\j. Norm (map (\i. Var (Suc j * n + i)) [0..r l = Num (float_of l)" lemma interpret_floatarith_Norm: "interpret_floatarith (Norm xs) vs = L2_set (\i. interpret_floatarith (xs ! i) vs) {0..r U) vs = real_of_float (float_of U)" by (auto simp: N\<^sub>r_def) fun list_updates where "list_updates [] _ xs = xs" | "list_updates _ [] xs = xs" | "list_updates (i#is) (u#us) xs = list_updates is us (xs[i:=u])" lemma list_updates_nth_notmem: assumes "length xs = length ys" assumes "i \ set xs" shows "list_updates xs ys vs ! i = vs ! i" using assms by (induction xs ys arbitrary: i vs rule: list_induct2) auto lemma list_updates_nth_less: assumes "length xs = length ys" "distinct xs" assumes "i < length vs" shows "list_updates xs ys vs ! i = (if i \ set xs then ys ! (index xs i) else vs ! i)" using assms by (induction xs ys arbitrary: i vs rule: list_induct2) (auto simp: list_updates_nth_notmem) lemma length_list_updates[simp]: "length (list_updates xs ys vs) = length vs" by (induction xs ys vs rule: list_updates.induct) simp_all lemma list_updates_nth_ge[simp]: "x \ length vs \ length xs = length ys \ list_updates xs ys vs ! x = vs ! x" apply (induction xs ys vs rule: list_updates.induct) apply (auto simp: nth_list_update) by (metis list_update_beyond nth_list_update_neq) lemma list_updates_nth: assumes [simp]: "length xs = length ys" "distinct xs" shows "list_updates xs ys vs ! i = (if i < length vs \ i \ set xs then ys ! index xs i else vs ! i)" by (auto simp: list_updates_nth_less list_updates_nth_notmem) lemma list_of_eucl_coord_update: assumes [simp]: "length xs = DIM('a::executable_euclidean_space)" assumes [simp]: "distinct xs" assumes [simp]: "i \ Basis" assumes [simp]: "\n. n \ set xs \ n < length vs" shows "list_updates xs (list_of_eucl (x + (p - x \ i) *\<^sub>R i::'a)) vs = (list_updates xs (list_of_eucl x) vs)[xs ! index Basis_list i := p]" apply (auto intro!: nth_equalityI simp: list_updates_nth nth_list_update) apply (simp add: algebra_simps inner_Basis index_nth_id) apply (auto simp add: algebra_simps inner_Basis index_nth_id) done definition "eucl_of_env is vs = eucl_of_list (map (nth vs) is)" lemma list_updates_list_of_eucl_of_env[simp]: assumes [simp]: "length xs = DIM('a::executable_euclidean_space)" "distinct xs" shows "list_updates xs (list_of_eucl (eucl_of_env xs vs::'a)) vs = vs" by (auto intro!: nth_equalityI simp: list_updates_nth nth_list_update eucl_of_env_def) lemma nth_nth_eucl_of_env_inner: "b \ Basis \ length is = DIM('a) \ vs ! (is ! index Basis_list b) = eucl_of_env is vs \ b" for b::"'a::executable_euclidean_space" by (auto simp: eucl_of_env_def eucl_of_list_inner) lemma list_updates_idem[simp]: assumes "(\i. i \ set X0 \ i < length vs)" shows "(list_updates X0 (map ((!) vs) X0) vs) = vs" using assms by (induction X0) auto lemma pairwise_orthogonal_Basis[intro, simp]: "pairwise orthogonal Basis" by (auto simp: pairwise_alt orthogonal_def inner_Basis) primrec freshs_floatarith where "freshs_floatarith (Var y) x \ (y \ set x)" | "freshs_floatarith (Num a) x \ True" | "freshs_floatarith Pi x \ True" | "freshs_floatarith (Cos a) x \ freshs_floatarith a x" | "freshs_floatarith (Abs a) x \ freshs_floatarith a x" | "freshs_floatarith (Arctan a) x \ freshs_floatarith a x" | "freshs_floatarith (Sqrt a) x \ freshs_floatarith a x" | "freshs_floatarith (Exp a) x \ freshs_floatarith a x" | "freshs_floatarith (Floor a) x \ freshs_floatarith a x" | "freshs_floatarith (Power a n) x \ freshs_floatarith a x" | "freshs_floatarith (Minus a) x \ freshs_floatarith a x" | "freshs_floatarith (Ln a) x \ freshs_floatarith a x" | "freshs_floatarith (Inverse a) x \ freshs_floatarith a x" | "freshs_floatarith (Add a b) x \ freshs_floatarith a x \ freshs_floatarith b x" | "freshs_floatarith (Mult a b) x \ freshs_floatarith a x \ freshs_floatarith b x" | "freshs_floatarith (floatarith.Max a b) x \ freshs_floatarith a x \ freshs_floatarith b x" | "freshs_floatarith (floatarith.Min a b) x \ freshs_floatarith a x \ freshs_floatarith b x" | "freshs_floatarith (Powr a b) x \ freshs_floatarith a x \ freshs_floatarith b x" lemma freshs_floatarith[simp]: assumes "freshs_floatarith fa ds" "length ds = length xs" shows "interpret_floatarith fa (list_updates ds xs vs) = interpret_floatarith fa vs" using assms by (induction fa) (auto simp: list_updates_nth_notmem) lemma freshs_floatarith_max_Var_floatarithI: assumes "\x. x \ set xs \ max_Var_floatarith f \ x" shows "freshs_floatarith f xs" using assms Suc_n_not_le_n by (induction f; force) definition "freshs_floatariths fas xs = (\fa\set fas. freshs_floatarith fa xs)" lemma freshs_floatariths_max_Var_floatarithsI: assumes "\x. x \ set xs \ max_Var_floatariths f \ x" shows "freshs_floatariths f xs" using assms le_trans max_Var_floatarith_le_max_Var_floatariths by (force simp: freshs_floatariths_def intro!: freshs_floatarith_max_Var_floatarithI) lemma freshs_floatariths_freshs_floatarithI: assumes "\fa. fa \ set fas \ freshs_floatarith fa xs" shows "freshs_floatariths fas xs" by (auto simp: freshs_floatariths_def assms) lemma fresh_floatariths_fresh_floatarithI: assumes "freshs_floatariths fas xs" assumes "fa \ set fas" shows "freshs_floatarith fa xs" using assms by (auto simp: freshs_floatariths_def) lemma fresh_floatariths_fresh_floatarith[simp]: "fresh_floatariths (fas) i \ fa \ set fas \ fresh_floatarith fa i" by (induction fas) auto lemma interpret_floatariths_fresh_cong: assumes "\i. \fresh_floatariths f i \ xs ! i = ys ! i" shows "interpret_floatariths f ys = interpret_floatariths f xs" by (auto intro!: nth_equalityI assms interpret_floatarith_fresh_cong simp: ) fun subterms :: "floatarith \ floatarith set" where "subterms (Add a b) = insert (Add a b) (subterms a \ subterms b)" | "subterms (Mult a b) = insert (Mult a b) (subterms a \ subterms b)" | "subterms (Min a b) = insert (Min a b) (subterms a \ subterms b)" | "subterms (floatarith.Max a b) = insert (floatarith.Max a b) (subterms a \ subterms b)" | "subterms (Powr a b) = insert (Powr a b) (subterms a \ subterms b)" | "subterms (Inverse a) = insert (Inverse a) (subterms a)" | "subterms (Cos a) = insert (Cos a) (subterms a)" | "subterms (Arctan a) = insert (Arctan a) (subterms a)" | "subterms (Abs a) = insert (Abs a) (subterms a)" | "subterms (Sqrt a) = insert (Sqrt a) (subterms a)" | "subterms (Exp a) = insert (Exp a) (subterms a)" | "subterms (Ln a) = insert (Ln a) (subterms a)" | "subterms (Power a n) = insert (Power a n) (subterms a)" | "subterms (Floor a) = insert (Floor a) (subterms a)" | "subterms (Minus a) = insert (Minus a) (subterms a)" | "subterms Pi = {Pi}" | "subterms (Var v) = {Var v}" | "subterms (Num n) = {Num n}" lemma subterms_self[simp]: "fa2 \ subterms fa2" by (induction fa2) auto lemma interpret_floatarith_FDERIV_floatarith_eucl_of_env:\ \TODO: cleanup, reduce to DERIV?!\ assumes iD: "\i. i < DIM('a) \ isDERIV (xs ! i) fa vs" assumes ds_fresh: "freshs_floatarith fa ds" assumes [simp]: "length xs = DIM ('a)" "length ds = DIM ('a)" "\i. i \ set xs \ i < length vs" "distinct xs" "\i. i \ set ds \ i < length vs" "distinct ds" shows "((\x::'a::executable_euclidean_space. (interpret_floatarith fa (list_updates xs (list_of_eucl x) vs))) has_derivative (\d. interpret_floatarith (FDERIV_floatarith fa xs (map Var ds)) (list_updates ds (list_of_eucl d) vs) ) ) (at (eucl_of_env xs vs))" using iD ds_fresh proof (induction fa) case (Add fa1 fa2) then show ?case by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) next case (Minus fa) then show ?case by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) next case (Mult fa1 fa2) then show ?case by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) next case (Inverse fa) then show ?case by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] power2_eq_square) next case (Cos fa) then show ?case by (auto intro!: derivative_eq_intros ext simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map add.commute minus_sin_cos_eq simp flip: mult_minus_left list_of_eucl_coord_update cos_pi_minus) next case (Arctan fa) then show ?case by (auto intro!: derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) next case (Abs fa) then show ?case by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Max fa1 fa2) then show ?case by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Min fa1 fa2) then show ?case by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case Pi then show ?case by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Sqrt fa) then show ?case by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Exp fa) then show ?case by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Powr fa1 fa2) then show ?case by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps divide_simps list_of_eucl_coord_update[symmetric] ) next case (Ln fa) then show ?case by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Power fa x2a) then show ?case apply (cases x2a) apply (auto intro!: DIM_positive derivative_eq_intros simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric]) apply (auto intro!: ext simp: ) by (simp add: semiring_normalization_rules(27)) next case (Floor fa) then show ?case by (force intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) next case (Var x) then show ?case apply (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] if_distrib) apply (subst list_updates_nth) apply (auto intro!: derivative_eq_intros ext split: if_splits cong: if_cong simp: if_distribR eucl_of_list_if) apply (subst inner_commute) apply (rule arg_cong[where f="\b. a \ b" for a]) apply (auto intro!: euclidean_eqI[where 'a='a] simp: eucl_of_list_inner list_updates_nth index_nth_id) done next case (Num x) then show ?case by (auto intro!: derivative_eq_intros DIM_positive simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths interpret_floatariths_map algebra_simps list_of_eucl_coord_update[symmetric] ) qed lemma interpret_floatarith_FDERIV_floatarith_append: assumes iD: "\i j. i < DIM('a) \ isDERIV i (fa) (list_of_eucl x @ params)" assumes m: "max_Var_floatarith fa \ DIM('a) + length params" shows "((\x::'a::executable_euclidean_space. interpret_floatarith fa (list_of_eucl x @ params)) has_derivative (\d. interpret_floatarith (FDERIV_floatarith fa [0.. ia < DIM('a) + length params" for ia using less_le_trans m by blast have "((\xa::'a. interpret_floatarith fa (list_updates [0..d. interpret_floatarith (FDERIV_floatarith fa [0.. isDERIV i (fa) (list_of_eucl x)" assumes m: "max_Var_floatarith fa \ DIM('a)" shows "((\x::'a::executable_euclidean_space. interpret_floatarith fa (list_of_eucl x)) has_derivative (\d. interpret_floatarith (FDERIV_floatarith fa [0..i j. i < DIM('a) \ isDERIV i fa (list_of_eucl x @ params)" assumes m: "max_Var_floatarith fa \ DIM('a::executable_euclidean_space) + length params" shows "\i < DIM('a). \\<^sub>F (x::'a) in at x. isDERIV i fa (list_of_eucl x @ params)" using iD m proof (induction fa) case (Inverse fa) then have "\i\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" by auto moreover have iD: "i < DIM('a) \ isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) \ 0" for i using Inverse.prems(1)[OF ] by force+ from Inverse have m: "max_Var_floatarith fa \ DIM('a) + length params" by simp from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] have "isCont (\x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp then have "\\<^sub>F x in at x. interpret_floatarith fa (list_of_eucl x @ params) \ 0" using iD(2) tendsto_imp_eventually_ne by (auto simp: isCont_def) ultimately show ?case by (auto elim: eventually_elim2) next case (Sqrt fa) then have "\i\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" by auto moreover have iD: "i < DIM('a) \ isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) > 0" for i using Sqrt.prems(1)[OF ] by force+ from Sqrt have m: "max_Var_floatarith fa \ DIM('a) + length params" by simp from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] have "isCont (\x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp then have "\\<^sub>F x in at x. interpret_floatarith fa (list_of_eucl x @ params) > 0" using iD(2) order_tendstoD by (auto simp: isCont_def) ultimately show ?case by (auto elim: eventually_elim2) next case (Powr fa1 fa2) then have "\i\<^sub>F x in at x. isDERIV i fa1 (list_of_eucl x @ params)" "\i\<^sub>F x in at x. isDERIV i fa2 (list_of_eucl x @ params)" by auto moreover have iD: "i < DIM('a) \ isDERIV i fa1 (list_of_eucl x @ params)" "interpret_floatarith fa1 (list_of_eucl x @ params) > 0" for i using Powr.prems(1) by force+ from Powr have m: "max_Var_floatarith fa1 \ DIM('a) + length params" by simp from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] have "isCont (\x. interpret_floatarith fa1 (list_of_eucl x @ params)) x" by simp then have "\\<^sub>F x in at x. interpret_floatarith fa1 (list_of_eucl x @ params) > 0" using iD(2) order_tendstoD by (auto simp: isCont_def) ultimately show ?case apply safe subgoal for i apply (safe dest!: spec[of _ i]) subgoal premises prems using prems(1,3,4) by eventually_elim auto done done next case (Ln fa) then have "\i\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" by auto moreover have iD: "i < DIM('a) \ isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) > 0" for i using Ln.prems(1)[OF ] by force+ from Ln have m: "max_Var_floatarith fa \ DIM('a) + length params" by simp from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] have "isCont (\x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp then have "\\<^sub>F x in at x. interpret_floatarith fa (list_of_eucl x @ params) > 0" using iD(2) order_tendstoD by (auto simp: isCont_def) ultimately show ?case by (auto elim: eventually_elim2) next case (Power fa m) then show ?case by (cases m) auto next case (Floor fa) then have "\i\<^sub>F x in at x. isDERIV i fa (list_of_eucl x @ params)" by auto moreover have iD: "i < DIM('a) \ isDERIV i fa (list_of_eucl x @ params)" "interpret_floatarith fa (list_of_eucl x @ params) \ \" for i using Floor.prems(1)[OF ] by force+ from Floor have m: "max_Var_floatarith fa \ DIM('a) + length params" by simp from has_derivative_continuous[OF interpret_floatarith_FDERIV_floatarith_append, OF iD(1) m] have cont: "isCont (\x. interpret_floatarith fa (list_of_eucl x @ params)) x" by simp let ?i = "\x. interpret_floatarith fa (list_of_eucl x @ params)" have "\\<^sub>F y in at x. ?i y > floor (?i x)" "\\<^sub>F y in at x. ?i y < ceiling (?i x)" using cont by (auto simp: isCont_def eventually_floor_less eventually_less_ceiling iD(2)) then have "\\<^sub>F x in at x. ?i x \ \" apply eventually_elim apply (auto simp: Ints_def) by linarith ultimately show ?case by (auto elim: eventually_elim2) qed (fastforce intro: DIM_positive elim: eventually_elim2)+ lemma eventually_isFDERIV: assumes iD: "isFDERIV DIM('a) [0.. DIM('a::executable_euclidean_space) + length params" shows "\\<^sub>F (x::'a) in at x. isFDERIV DIM('a) [0.. DIM('a::executable_euclidean_space) + length params" shows "\\<^sub>F (x::'a) in at x. isFDERIV DIM('a) [0..auto simp: isFDERIV_def\) lemma interpret_floatarith_FDERIV_floatariths_eucl_of_env: assumes iD: "isFDERIV DIM('a) xs fas vs" assumes fresh: "freshs_floatariths (fas) ds" assumes [simp]: "length ds = DIM ('a)" "\i. i \ set xs \ i < length vs" "distinct xs" "\i. i \ set ds \ i < length vs" "distinct ds" shows "((\x::'a::executable_euclidean_space. eucl_of_list (interpret_floatariths fas (list_updates xs (list_of_eucl x) vs))::'a) has_derivative (\d. eucl_of_list (interpret_floatariths (FDERIV_floatariths fas xs (map Var ds)) (list_updates ds (list_of_eucl d) vs)))) (at (eucl_of_env xs vs))" by (subst has_derivative_componentwise_within) (auto simp add: eucl_of_list_inner isFDERIV_lengthD[OF iD] intro!: interpret_floatarith_FDERIV_floatarith_eucl_of_env iD[THEN isFDERIV_isDERIV_D] fresh_floatariths_fresh_floatarithI fresh) lemma interpret_floatarith_FDERIV_floatariths_append: assumes iD: "isFDERIV DIM('a) [0.. DIM('a) + length ramsch" assumes [simp]: "length fas = DIM('a)" shows "((\x::'a::executable_euclidean_space. eucl_of_list (interpret_floatariths fas (list_of_eucl x@ramsch))::'a) has_derivative (\d. eucl_of_list (interpret_floatariths (FDERIV_floatariths fas [0.. ia < DIM('a) + length ramsch" for ia using m by simp have m_nth': "ia < max_Var_floatarith (fas ! j) \ ia < DIM('a) + length ramsch" if "j < DIM('a)" for j ia using m_nth max_Var_floatariths_lessI that by auto have "((\xa::'a. eucl_of_list (interpret_floatariths fas (list_updates [0..d. eucl_of_list (interpret_floatariths (FDERIV_floatariths fas [0.. DIM('a)" assumes [simp]: "length fas = DIM('a)" shows "((\x::'a::executable_euclidean_space. eucl_of_list (interpret_floatariths fas (list_of_eucl x))::'a) has_derivative (\d. eucl_of_list (interpret_floatariths (FDERIV_floatariths fas [0.. 'b::linorder_topology" shows "continuous_on A f \ continuous_on A g \ continuous_on A (\x. min (f x) (g x))" by (auto simp: continuous_on_def intro!: tendsto_min) lemmas [continuous_intros] = continuous_on_max lemma continuous_on_if_const[continuous_intros]: "continuous_on s f \ continuous_on s g \ continuous_on s (\x. if p then f x else g x)" by (cases p) auto lemma continuous_on_floatarith: assumes "continuous_on_floatarith fa" "length xs = DIM('a)" "distinct xs" shows "continuous_on UNIV (\x. interpret_floatarith fa (list_updates xs (list_of_eucl (x::'a::executable_euclidean_space)) vs))" using assms by (induction fa) (auto intro!: continuous_intros split: if_splits simp: list_updates_nth list_of_eucl_nth_if) fun open_form :: "form \ bool" where "open_form (Bound x a b f) = False" | "open_form (Assign x a f) = False" | "open_form (Less a b) \ continuous_on_floatarith a \ continuous_on_floatarith b" | "open_form (LessEqual a b) = False" | "open_form (AtLeastAtMost x a b) = False" | "open_form (Conj f g) \ open_form f \ open_form g" | "open_form (Disj f g) \ open_form f \ open_form g" lemma open_form: assumes "open_form f" "length xs = DIM('a::executable_euclidean_space)" "distinct xs" shows "open (Collect (\x::'a. interpret_form f (list_updates xs (list_of_eucl x) vs)))" using assms by (induction f) (auto intro!: open_Collect_less continuous_on_floatarith open_Collect_conj open_Collect_disj) primrec isnFDERIV where "isnFDERIV N fas xs ds vs 0 = True" | "isnFDERIV N fas xs ds vs (Suc n) \ isFDERIV N xs (FDERIV_n_floatariths fas xs (map Var ds) n) vs \ isnFDERIV N fas xs ds vs n" lemma one_add_square_eq_0: "1 + (x)\<^sup>2 \ (0::real)" by (sos "((R<1 + (([~1] * A=0) + (R<1 * (R<1 * [x]^2)))))") lemma isDERIV_fold_const_fa[intro]: assumes "isDERIV x fa vs" shows "isDERIV x (fold_const_fa fa) vs" using assms apply (induction fa) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal for fa n by (cases n) (auto simp: fold_const_fa.simps split: floatarith.splits nat.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) (subst (asm) fold_const_fa[symmetric], force)+ subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) subgoal by (auto simp: fold_const_fa.simps split: floatarith.splits) done lemma isDERIV_fold_const_fa_minus[intro!]: assumes "isDERIV x (fold_const_fa fa) vs" shows "isDERIV x (fold_const_fa (Minus fa)) vs" using assms by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits) lemma isDERIV_fold_const_fa_plus[intro!]: assumes "isDERIV x (fold_const_fa fa) vs" assumes "isDERIV x (fold_const_fa fb) vs" shows "isDERIV x (fold_const_fa (Add fa fb)) vs" using assms by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) lemma isDERIV_fold_const_fa_mult[intro!]: assumes "isDERIV x (fold_const_fa fa) vs" assumes "isDERIV x (fold_const_fa fb) vs" shows "isDERIV x (fold_const_fa (Mult fa fb)) vs" using assms by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) lemma isDERIV_fold_const_fa_power[intro!]: assumes "isDERIV x (fold_const_fa fa) vs" shows "isDERIV x (fold_const_fa (fa ^\<^sub>e n)) vs" apply (cases n, simp add: fold_const_fa.simps split: floatarith.splits) using assms by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) lemma isDERIV_fold_const_fa_inverse[intro!]: assumes "isDERIV x (fold_const_fa fa) vs" assumes "interpret_floatarith fa vs \ 0" shows "isDERIV x (fold_const_fa (Inverse fa)) vs" using assms by (simp add: fold_const_fa.simps) lemma add_square_ne_zero[simp]: "(y::'a::linordered_idom) > 0 \ y + x\<^sup>2 \ 0" by auto (metis less_add_same_cancel2 power2_less_0) lemma isDERIV_FDERIV_floatarith: assumes "isDERIV x fa vs" "\i. i < length ds \ isDERIV x (ds ! i) vs" assumes [simp]: "length xs = length ds" shows "isDERIV x (FDERIV_floatarith fa xs ds) vs" using assms apply (induction fa) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal for fa n by (cases n) (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) subgoal by (auto simp: FDERIV_floatarith_def isDERIV_inner_iff) done lemma isDERIV_FDERIV_floatariths: assumes "isFDERIV N xs fas vs" "isFDERIV N xs ds vs" and [simp]: "length fas = length ds" shows "isFDERIV N xs (FDERIV_floatariths fas xs ds) vs" using assms by (auto simp: isFDERIV_def FDERIV_floatariths_def intro!: isDERIV_FDERIV_floatarith) lemma isFDERIV_imp_isFDERIV_FDERIV_n: assumes "length fas = length ds" shows "isFDERIV N xs fas vs \ isFDERIV N xs ds vs \ isFDERIV N xs (FDERIV_n_floatariths fas xs ds n) vs" using assms by (induction n) (auto intro!: isDERIV_FDERIV_floatariths) lemma isFDERIV_map_Var: assumes [simp]: "length ds = N" "length xs = N" shows "isFDERIV N xs (map Var ds) vs" by (auto simp: isFDERIV_def) theorem isFDERIV_imp_isnFDERIV: assumes "isFDERIV N xs fas vs" and [simp]: "length fas = N" "length xs = N" "length ds = N" shows "isnFDERIV N fas xs ds vs n" using assms by (induction n) (auto intro!: isFDERIV_imp_isFDERIV_FDERIV_n isFDERIV_map_Var) lemma eventually_isnFDERIV: assumes iD: "isnFDERIV DIM('a) fas [0.. 2 * DIM('a::executable_euclidean_space)" shows "\\<^sub>F (x::'a) in at x. isnFDERIV DIM('a) fas [0..\<^sub>F x in at x. isnFDERIV DIM('a) fas [0.. DIM('a) + length (list_of_eucl d)" by (auto intro!: max_Var_floatarith_FDERIV_n_floatariths[THEN order_trans] m[THEN order_trans]) from eventually_isFDERIV[OF 2 this] 1 show ?case by eventually_elim simp qed simp lemma isFDERIV_open: assumes "max_Var_floatariths fas \ DIM('a)" shows "open {x::'a. isFDERIV DIM('a::executable_euclidean_space) [0..x. DERIV_floatarith x fa) xs) vs \ (einterpret ds vs::'a)" by (auto simp: FDERIV_floatarith_def interpret_floatarith_inner_floatariths) lemma interpret_floatariths_FDERIV_floatariths_cong: assumes [simp]: "length d1s = DIM('a::executable_euclidean_space)" "length d2s = DIM('a)" "length fas1 = length fas2" assumes fresh1: "freshs_floatariths fas1 d1s" assumes fresh2: "freshs_floatariths fas2 d2s" assumes eq1: "\i. i < length fas1 \ interpret_floatariths (map (\x. DERIV_floatarith x (fas1 ! i)) [0..x. DERIV_floatarith x (fas2 ! i)) [0..i. i < DIM('a) \ xs1 ! (d1s ! i) = xs2 ! (d2s ! i)" shows "interpret_floatariths (FDERIV_floatariths fas1 [0..x. x = n \ s x = n" shows "subst_floatarith (\x. Var (s x)) (DERIV_floatarith n fa) = DERIV_floatarith n (subst_floatarith (\x. Var (s x)) fa)" using assms proof (induction fa) case (Power fa n) then show ?case by (cases n) auto qed force+ lemma subst_floatarith_inner_floatariths[simp]: assumes "length fs = length gs" shows "subst_floatarith s (inner_floatariths fs gs) = inner_floatariths (map (subst_floatarith s) fs) (map (subst_floatarith s) gs)" using assms by (induction rule: list_induct2) auto fun_cases subst_floatarith_Num: "subst_floatarith s fa = Num y" and subst_floatarith_Add: "subst_floatarith s fa = Add x y" and subst_floatarith_Minus: "subst_floatarith s fa = Minus y" lemma Num_eq_subst_Var[simp]: "Num x = subst_floatarith (\x. Var (s x)) fa \ fa = Num x" by (cases fa) auto lemma Add_eq_subst_VarE: assumes "Add fa1 fa2 = subst_floatarith (\x. Var (s x)) fa" obtains a1 a2 where "fa = Add a1 a2" "fa1 = subst_floatarith (\x. Var (s x)) a1" "fa2 = subst_floatarith (\x. Var (s x)) a2" using assms by (cases fa) auto lemma subst_floatarith_eq_self[simp]: "subst_floatarith s f = f" if "max_Var_floatarith f = 0" using that by (induction f) auto lemma fold_const_fa_unique: "False" if "(\x. f = Num x)" using that[of 0] that[of 1] by auto lemma zero_unique: False if "(\x::float. x = 0)" using that[of 0] that[of 1] by auto lemma fold_const_fa_Mult_eq_NumE: assumes "fold_const_fa (Mult a b) = Num x" obtains y z where "fold_const_fa a = Num y" "fold_const_fa b = Num z" "x = y * z" | y where "fold_const_fa a = Num 0" "x = 0" | y where "fold_const_fa b = Num 0" "x = 0" using assms by atomize_elim (auto simp: fold_const_fa.simps split!: option.splits if_splits elim!: dest_Num_fa_Some dest_Num_fa_None) lemma fold_const_fa_Add_eq_NumE: assumes "fold_const_fa (Add a b) = Num x" obtains y z where "fold_const_fa a = Num y" "fold_const_fa b = Num z" "x = y + z" using assms by atomize_elim (auto simp: fold_const_fa.simps split!: option.splits if_splits elim!: dest_Num_fa_Some dest_Num_fa_None) lemma subst_floatarith_Var_fold_const_fa[symmetric]: "fold_const_fa (subst_floatarith (\x. Var (s x)) fa) = subst_floatarith (\x. Var (s x)) (fold_const_fa fa)" proof (induction fa) case (Add fa1 fa2) then show ?case apply (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits if_splits elim!: dest_Num_fa_Some) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) done next case (Mult fa1 fa2) then show ?case apply (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits if_splits elim!: dest_Num_fa_Some) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) apply (metis Num_eq_subst_Var dest_Num_fa.simps(1) option.simps(3)) done next case (Min) then show ?case by (auto simp: fold_const_fa.simps split: floatarith.splits) next case (Max) then show ?case by (auto simp: fold_const_fa.simps split: floatarith.splits) qed (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits if_splits elim!: dest_Num_fa_Some) lemma subst_floatarith_eq_Num[simp]: "(subst_floatarith (\x. Var (s x)) fa = Num x) \ fa = Num x" by (induction fa) (auto simp: ) lemma fold_const_fa_subst_eq_Num0_iff[simp]: "fold_const_fa (subst_floatarith (\x. Var (s x)) fa) = Num x \ fold_const_fa fa = Num x" unfolding subst_floatarith_Var_fold_const_fa[symmetric] by simp lemma subst_floatarith_Var_FDERIV_floatarith: assumes len: "length xs = DIM('a::executable_euclidean_space)" and [simp]: "length ds = DIM('a)" assumes eq: "\x y. x \ set xs \ (y = x) = (s y = x)" shows "subst_floatarith (\x. Var (s x)) (FDERIV_floatarith fa xs ds) = (FDERIV_floatarith (subst_floatarith (\x. Var (s x)) fa) xs (map (subst_floatarith (\x. Var (s x))) ds))" proof - have [simp]: "\x. x \ set xs \ subst_floatarith (\x. Var (s x)) (DERIV_floatarith x fa1) = (DERIV_floatarith x (subst_floatarith (\x. Var (s x)) fa1))" for fa1 by (rule subst_floatarith_Var_DERIV_floatarith) (rule eq) have map_eq: "(map (\xa. if xa = s x then Num 1 else Num 0) xs) = (map (\xa. if xa = x then Num 1 else Num 0) xs)" for x apply (subst map_eq_conv) using eq[of x x] eq[of "s x"] by (auto simp: ) show ?thesis using len by (induction fa) (auto simp: FDERIV_floatarith_def o_def if_distrib subst_floatarith_Var_fold_const_fa fold_const_fa.simps(18) map_eq cong: map_cong if_cong) qed lemma subst_floatarith_Var_FDERIV_n_nth: assumes len: "length xs = DIM('a::executable_euclidean_space)" and [simp]: "length ds = DIM('a)" assumes eq: "\x y. x \ set xs \ (y = x) = (s y = x)" assumes [simp]: "i < length fas" shows "subst_floatarith (\x. Var (s x)) (FDERIV_n_floatariths fas xs ds n ! i) = (FDERIV_n_floatariths (map (subst_floatarith (\x. Var (s x))) fas) xs (map (subst_floatarith (\x. Var (s x))) ds) n ! i)" proof (induction n) case (Suc n) show ?case by (simp add: subst_floatarith_Var_FDERIV_floatarith[OF len _ eq] Suc.IH[symmetric]) qed simp lemma subst_floatarith_Var_max_Var_floatarith: assumes "\i. i < max_Var_floatarith fa \ s i = i" shows "subst_floatarith (\i. Var (s i)) fa = fa" using assms by (induction fa) auto lemma interpret_floatarith_subst_floatarith_idem: assumes mv: "max_Var_floatarith fa \ length vs" assumes idem: "\j. j < max_Var_floatarith fa \ vs ! s j = vs ! j" shows "interpret_floatarith (subst_floatarith (\i. Var (s i)) fa) vs = interpret_floatarith fa vs" using assms by (induction fa) auto lemma isDERIV_subst_Var_floatarith: assumes mv: "max_Var_floatarith fa \ length vs" assumes idem: "\j. j < max_Var_floatarith fa \ vs ! s j = vs ! j" assumes "\j. s j = i \ j = i" shows "isDERIV i (subst_floatarith (\i. Var (s i)) fa) vs = isDERIV i fa vs" using mv idem proof (induction fa) case (Power fa n) then show ?case by (cases n) auto qed (auto simp: interpret_floatarith_subst_floatarith_idem) lemma isFDERIV_subst_Var_floatarith: assumes mv: "max_Var_floatariths fas \ length vs" assumes idem: "\j. j < max_Var_floatariths fas \ vs ! (s j) = vs ! j" assumes "\i j. i \ set xs \ s j = i \ j = i" shows "isFDERIV n xs (map (subst_floatarith (\i. Var (s i))) fas) vs = isFDERIV n xs fas vs" proof - have mv: "\i. i < length fas \ max_Var_floatarith (fas ! i) \ length vs" apply (rule order_trans[OF _ mv]) by (intro max_Var_floatarith_le_max_Var_floatariths_nth) have idem: "\i j. i < length fas \ j < max_Var_floatarith (fas ! i) \ vs ! s j = vs ! j" using idem by (auto simp: dest!: max_Var_floatariths_lessI) show ?thesis unfolding isFDERIV_def using mv idem assms(3) by (auto simp: isDERIV_subst_Var_floatarith) qed lemma interpret_floatariths_append[simp]: "interpret_floatariths (xs @ ys) vs = interpret_floatariths xs vs @ interpret_floatariths ys vs" by (induction xs) auto lemma not_fresh_inner_floatariths: assumes "length xs = length ys" shows "\ fresh_floatarith (inner_floatariths xs ys) i \ \fresh_floatariths xs i \ \fresh_floatariths ys i" using assms by (induction xs ys rule: list_induct2) auto lemma fresh_inner_floatariths: assumes "length xs = length ys" shows "fresh_floatarith (inner_floatariths xs ys) i \ fresh_floatariths xs i \ fresh_floatariths ys i" using not_fresh_inner_floatariths assms by auto lemma not_fresh_floatariths_map: " \ fresh_floatariths (map f xs) i \ (\x \ set xs. \fresh_floatarith (f x) i)" by (induction xs) auto lemma fresh_floatariths_map: " fresh_floatariths (map f xs) i \ (\x \ set xs. fresh_floatarith (f x) i)" by (induction xs) auto lemma fresh_floatarith_fold_const_fa: "fresh_floatarith fa i \ fresh_floatarith (fold_const_fa fa) i" by (induction fa) (auto simp: fold_const_fa.simps split: floatarith.splits option.splits) lemma fresh_floatarith_fold_const_fa_Add[intro!]: assumes "fresh_floatarith (fold_const_fa a) i" "fresh_floatarith (fold_const_fa b) i" shows "fresh_floatarith (fold_const_fa (Add a b)) i" using assms by (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits) lemma fresh_floatarith_fold_const_fa_Mult[intro!]: assumes "fresh_floatarith (fold_const_fa a) i" "fresh_floatarith (fold_const_fa b) i" shows "fresh_floatarith (fold_const_fa (Mult a b)) i" using assms by (auto simp: fold_const_fa.simps split!: floatarith.splits option.splits) lemma fresh_floatarith_fold_const_fa_Minus[intro!]: assumes "fresh_floatarith (fold_const_fa b) i" shows "fresh_floatarith (fold_const_fa (Minus b)) i" using assms by (auto simp: fold_const_fa.simps split!: floatarith.splits) lemma fresh_FDERIV_floatarith: "fresh_floatarith ode_e i \ fresh_floatariths ds i \ length ds = DIM('a) \ fresh_floatarith (FDERIV_floatarith ode_e [0.. fresh_floatarith (FDERIV_floatarith ode_e [0.. length ds = DIM('a) \ \fresh_floatarith ode_e i \ \fresh_floatariths ds i" using fresh_FDERIV_floatarith by auto lemma not_fresh_FDERIV_floatariths: "\ fresh_floatariths (FDERIV_floatariths ode_e [0.. length ds = DIM('a) \ \fresh_floatariths ode_e i \ \fresh_floatariths ds i" by (induction ode_e) (auto simp: FDERIV_floatariths_def dest!: not_fresh_FDERIV_floatarith) lemma isDERIV_FDERIV_floatarith_linear: fixes x h::"'a::executable_euclidean_space" assumes "\k. k < DIM('a) \ isDERIV i (DERIV_floatarith k fa) xs" assumes "max_Var_floatarith fa \ DIM('a)" assumes [simp]: "length xs = DIM('a)" "length hs = DIM('a)" shows "isDERIV i (FDERIV_floatarith fa [0..i j k. i < DIM('a) \ j < DIM('a) \ k < DIM('a) \ isDERIV i (DERIV_floatarith k (fas ! j)) (xs)" assumes [simp]: "length fas = DIM('a::executable_euclidean_space)" assumes [simp]: "length xs = DIM('a)" "length hs = DIM('a)" assumes "max_Var_floatariths fas \ DIM('a)" shows "isFDERIV DIM('a) [0..ij length fas = n \ length xs = n)" lemma isFDERIV_approx: "bounded_by vs VS \ isFDERIV_approx prec n xs fas VS \ isFDERIV n xs fas vs" by (auto simp: isFDERIV_approx_def isFDERIV_def intro!: isDERIV_approx) primrec isnFDERIV_approx where "isnFDERIV_approx p N fas xs ds vs 0 = True" | "isnFDERIV_approx p N fas xs ds vs (Suc n) \ isFDERIV_approx p N xs (FDERIV_n_floatariths fas xs (map Var ds) n) vs \ isnFDERIV_approx p N fas xs ds vs n" lemma isnFDERIV_approx: "bounded_by vs VS \ isnFDERIV_approx prec N fas xs ds VS n \ isnFDERIV N fas xs ds vs n" by (induction n) (auto intro!: isFDERIV_approx) fun plain_floatarith::"nat \ floatarith \ bool" where "plain_floatarith N (floatarith.Add a b) \ plain_floatarith N a \ plain_floatarith N b" | "plain_floatarith N (floatarith.Mult a b) \ plain_floatarith N a \ plain_floatarith N b" | "plain_floatarith N (floatarith.Minus a) \ plain_floatarith N a" | "plain_floatarith N (floatarith.Pi) \ True" | "plain_floatarith N (floatarith.Num n) \ True" | "plain_floatarith N (floatarith.Var i) \ i < N" | "plain_floatarith N (floatarith.Max a b) \ plain_floatarith N a \ plain_floatarith N b" | "plain_floatarith N (floatarith.Min a b) \ plain_floatarith N a \ plain_floatarith N b" | "plain_floatarith N (floatarith.Power a n) \ plain_floatarith N a" | "plain_floatarith N (floatarith.Cos a) \ False" \ \TODO: should be plain!\ | "plain_floatarith N (floatarith.Arctan a) \ False" \ \TODO: should be plain!\ | "plain_floatarith N (floatarith.Abs a) \ plain_floatarith N a" | "plain_floatarith N (floatarith.Exp a) \ False" \ \TODO: should be plain!\ | "plain_floatarith N (floatarith.Sqrt a) \ False" \ \TODO: should be plain!\ | "plain_floatarith N (floatarith.Floor a) \ plain_floatarith N a" | "plain_floatarith N (floatarith.Powr a b) \ False" | "plain_floatarith N (floatarith.Inverse a) \ False" | "plain_floatarith N (floatarith.Ln a) \ False" lemma plain_floatarith_approx_not_None: assumes "plain_floatarith N fa" "N \ length XS" "\i. i < N \ XS ! i \ None" shows "approx p fa XS \ None" using assms by (induction fa) (auto simp: Let_def split_beta' prod_eq_iff approx.simps) definition "Rad_of w = w * (Pi / Num 180)" lemma interpret_Rad_of[simp]: "interpret_floatarith (Rad_of w) xs = rad_of (interpret_floatarith w xs)" by (auto simp: Rad_of_def rad_of_def) definition "Deg_of w = Num 180 * w / Pi" lemma interpret_Deg_of[simp]: "interpret_floatarith (Deg_of w) xs = deg_of (interpret_floatarith w xs)" by (auto simp: Deg_of_def deg_of_def inverse_eq_divide) unbundle no_floatarith_notation end