From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field. From Abel Require Import various cyclotomic_ext. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GRing.Theory. Local Open Scope ring_scope. Local Notation "p ^^ f" := (map_poly f p) (at level 30, f at level 30, format "p ^^ f"). Lemma classic_fieldExtFor (F0 : fieldType) (L : fieldExtType F0) (p : {poly L}) : p != 0 -> classically { L' : fieldExtType F0 & { rs : seq L' & { iota : 'AHom(L, L') | <>%VS = fullv & p ^^ iota %= \prod_(r <- rs) ('X - r%:P) }}}. Proof. have [n] := ubnP (size p); elim: n => [|n IHn]// in F0 L p *. rewrite ltnS => sp_lt p_neq0. apply: classic_bind (@classic_EM (irreducible_poly p)) => -[]; last first. have [|p_gt1] := leqP (size p) 1. rewrite leq_eqVlt ltnS leqn0 size_poly_eq0 (negPf p_neq0) orbF. move=> /size_poly1P[c cN0 ->] _. apply/classicW; exists L, [::], (id_ahom _). by rewrite Fadjoin_nil/= lim1g. by rewrite big_nil map_polyC/= lfunE/= polyC_eqp1. move=> NNred_p; have: classically (exists q : {poly L}, [/\ size q != 1%N, (size q < size p)%N & q %| p]). apply/classicP => Nexq; apply: NNred_p. split => // q sq_neq1 dvdqp; apply: contraTT isT => eq_qp. case: Nexq; exists q; split => //. by rewrite ltn_neqAle dvdp_size_eqp// eq_qp/= dvdp_leq. apply: classic_bind => -[q [qN1 sq qp]]. have qN0 : q != 0 by apply: contraTneq qp => ->; rewrite dvd0p. have sqn : (size q < n)%N by rewrite (leq_trans sq). apply: classic_bind (IHn _ _ _ sqn qN0) => -[L1 [rs1 [iota1 rs1_full qE]]]. have /dvdpP [r pE]:= qp. have rN0 : r != 0 by apply: contra_eq_neq pE => ->; rewrite mul0r. have r1N0 : r ^^ iota1 != 0 by rewrite map_poly_eq0. have srn : (size (r ^^ iota1) < n)%N. rewrite size_map_poly. have /(congr1 (fun p : {poly _} => size p)) := pE. rewrite size_mul// [size q]polySpred// addnS/=. move=> /(canLR (@addnK _))<-; rewrite (leq_trans _ sp_lt)//. rewrite ltn_subrL size_poly_gt0 p_neq0 andbT. by rewrite ltn_predRL// ltn_neqAle eq_sym qN1 ?size_poly_gt0/=. apply: classic_bind (IHn _ _ _ srn r1N0) => -[L2 [rs2 [iota2 rs2_full rE]]]. apply/classicW; exists L2, (map iota2 rs1 ++ rs2), (iota2 \o iota1)%AF. by rewrite adjoin_cat limg_comp -aimg_adjoin_seq rs1_full rs2_full. rewrite big_cat/= big_map (eq_map_poly (comp_lfunE _ _)) map_poly_comp pE. rewrite !rmorphM/= mulrC (eqp_trans (eqp_mull _ rE))// eqp_mulr//. have := qE; rewrite -(eqp_map [rmorphism of iota2]) => /eqp_trans->//=. rewrite (big_morph _ (rmorphM _) (rmorph1 _))/=. under eq_bigr do rewrite rmorphB/= -/iota map_polyX map_polyC/=. by rewrite eqpxx. move=> /irredp_FAdjoin[L1 df [r1 r1_root r1_full]]. pose L01 := [fieldExtType F0 of baseFieldType L1]. pose r01 : L01 := r1. pose inL01 : L -> L01 := in_alg L1. have iota_morph : lrmorphism inL01. split; [split; [exact: rmorphB|split; [exact: rmorphM|]]|]. by rewrite /inL01 rmorph1. by move=> k a; rewrite /inL01 -mulr_algl rmorphM/= mulr_algl. pose iota1 : 'AHom(L, L01) := AHom (linfun_is_ahom (LRMorphism iota_morph)). have inL01E : inL01 =1 iota1 by move=> x; rewrite lfunE. have r01_root : root (p ^^ iota1) r01 by rewrite -(eq_map_poly inL01E). have r01_full : <>%VS = fullv. apply/eqP; rewrite eqEsubv subvf/=; apply/subvP => v _. have : (v : L1) \in <<1; r1>>%VS by rewrite r1_full memvf. move/Fadjoin_polyP => [pr pr1 ->]. suff [qr ->] : exists2 qr, pr = qr & qr \is a polyOver (limg iota1). exact: mempx_Fadjoin. have /polyOver1P[qr ->] := pr1; exists (map_poly iota1 qr). by apply/eq_map_poly => w; rewrite lfunE. by apply/polyOverP => i; rewrite coef_map/= memv_img ?memvf. have /dvdpP[q pE] : ('X - r01%:P) %| (p ^^ iota1) by rewrite dvdp_XsubCl. have qN0 : q != 0. by apply: contra_eq_neq pE => ->; rewrite mul0r map_poly_eq0//. have sq : (size q < n)%N. have /(congr1 (fun p : {poly _} => size p)) := pE. rewrite size_map_poly size_mul ?polyXsubC_eq0//. by rewrite size_XsubC addn2//= => <-. apply: classic_bind (IHn _ _ _ sq qN0) => -[L2 [rs2 [iota12 rs2_full qE]]]. apply/classicW. exists L2, (iota12 r01 :: rs2), (iota12 \o iota1)%AF. by rewrite adjoin_cons limg_comp -aimg_adjoin r01_full rs2_full. rewrite big_cons/= (eq_map_poly (comp_lfunE _ _)) map_poly_comp pE. by rewrite rmorphM/= mulrC rmorphB/= map_polyX map_polyC/= eqp_mull. Qed. Lemma classic_cycloExt (F0 : fieldType) (L : fieldExtType F0) n : (n%:R != 0 :> F0) -> classically { L' : fieldExtType F0 & { w : L' & { iota : 'AHom(L, L') | <>%VS = fullv & n.-primitive_root w }}}. Proof. case: n => [|[_|[two_neq0|n']]]//; first by rewrite eqxx. - apply/classicW; exists L, 1, (id_ahom _); rewrite ?prim_root1//. by rewrite lim1g (Fadjoin_idP _)// rpred1. - apply/classicW; exists L, (- 1), (id_ahom _) => /=. by rewrite lim1g (Fadjoin_idP _)// rpredN1. by rewrite prim2_rootN1// -(rmorph_nat [rmorphism of in_alg L]) fmorph_eq0. set n := n'.+3 => nF0neq0. have poly_XnsubC_neq0 : 'X^n - 1 != 0 :> {poly L}. by rewrite -size_poly_eq0 size_XnsubC. apply: classic_bind (classic_fieldExtFor (poly_XnsubC_neq0)). case=> [L' [rs [iota rs_full]]]. rewrite rmorphB rmorph1/= map_polyXn. rewrite eqp_monic ?monic_XnsubC ?monic_prod_XsubC// => /eqP Xnsub1E. have rs_uniq : uniq rs. rewrite -separable_prod_XsubC -Xnsub1E separable_Xn_sub_1//. have: in_alg L' n%:R != 0 by rewrite fmorph_eq0. by rewrite raddfMn/= -(@in_algE _ L') rmorph1. have rs_ge : (n <= size rs)%N. have /(congr1 (fun p : {poly _} => size p)) := Xnsub1E. rewrite size_XnsubC// size_prod_seq; last first. by move=> i _; rewrite polyXsubC_eq0. under eq_bigr do rewrite size_XsubC. rewrite big_tnth sum_nat_const card_ord subSn ?leq_pmulr//. by rewrite muln2 -addnn addnK => -[->]. have rsUroots : all n.-unity_root rs. apply/allP => r rrs; apply/eqP; rewrite Xnsub1E. by rewrite (big_rem _ rrs)/= hornerM hornerXsubC subrr mul0r. have /has_prim_root/(_ _ _)/hasP[]// := rsUroots. move=> w wrs wprim; apply/classicW; exists L', w, iota => //. symmetry; rewrite -rs_full; have /eq_adjoin-> : rs =i w :: rs. by move=> r'; rewrite in_cons; case: eqVneq => // -> /=. set K := limg iota => {wrs rs_uniq Xnsub1E rs_full rs_ge}. elim: rs rsUroots => [|r' rs IHrs /andP[r'Uroots rsUroots]]. by rewrite adjoin_seq1. have r'K : r' \in <>%VS. have /unity_rootP/(prim_rootP wprim)[i ->] := r'Uroots. by rewrite rpredX// memv_adjoin. by rewrite !adjoin_cons (Fadjoin_idP r'K) -adjoin_cons IHrs. Qed. Lemma SplittingFieldExt (F0 : fieldType) (L : splittingFieldType F0) (p : {poly F0}) (M : fieldExtType F0) (iota : 'AHom(L, M)) : splittingFieldFor (iota @: fullv) (p ^^ in_alg M) fullv -> SplittingField.axiom M. Proof. case=> rs pE rsf; have [_/polyOver1P[q ->] [rsq qE rsqf]] := splittingPoly L. exists ((p * q) ^^ in_alg M); first by apply/polyOver1P; exists (p * q). exists (map iota rsq ++ rs); last first. by rewrite adjoin_cat -(aimg1 iota) -aimg_adjoin_seq rsqf rsf. rewrite big_cat/= rmorphM/= big_map mulrC. rewrite (eqp_trans (eqp_mull _ pE))// eqp_mulr//. have := qE; rewrite -(eqp_map [rmorphism of iota])/=. rewrite (big_morph _ (rmorphM _) (rmorph1 _))/=. under eq_bigr do rewrite rmorphB/= map_polyX map_polyC/=. by rewrite -map_poly_comp (eq_map_poly (rmorph_alg _)). Qed. Lemma classic_cycloSplitting (F0 : fieldType) (L : splittingFieldType F0) n : (n%:R != 0 :> F0) -> classically { L' : splittingFieldType F0 & { w : L' & { iota : 'AHom(L, L') | <>%VS = fullv & n.-primitive_root w }}}. Proof. move=> /(@classic_cycloExt _ L). apply/classic_bind => -[M [w [iota wfull wprim]]]; apply/classicW. suff splitM : SplittingField.axiom M. by exists (SplittingFieldType F0 M splitM), w, iota. apply: (@SplittingFieldExt _ L ('Phi_n ^^ intr) _ iota). rewrite -map_poly_comp (eq_map_poly (rmorph_int _)) -wfull. by rewrite (Phi_cyclotomic wprim); apply: splitting_Fadjoin_cyclotomic. Qed. Lemma classic_baseCycloExt (F : fieldType) (n : nat) : (n%:R != 0 :> F) -> classically { L' : splittingFieldType F & { w : L' & <<1; w>>%VS = fullv & n.-primitive_root w }}. Proof. move=> nN0; suff: classically { L' : fieldExtType F & { w : L' & <<1; w>>%VS = fullv & n.-primitive_root w }}. apply/classic_bind => -[L [w wfull wprim]]; apply/classicW. have splitL : SplittingField.axiom L. exists (cyclotomic w n); rewrite ?cyclotomic_over// -wfull. exact: splitting_Fadjoin_cyclotomic. by exists (SplittingFieldType F L splitL), w. pose Fo := [splittingFieldType F of F^o]. apply: classic_bind (@classic_cycloExt _ Fo n nN0). case=> [L [w [iota wfull wprim]]]; apply/classicW. exists L, w => //; apply/eqP; rewrite eqEsubv subvf/= -wfull. apply/subvP => x /Fadjoin_polyP[/= p pover ->]. apply/mempx_Fadjoin/polyOverP => i /=. have /memv_imgP[u _ ->] := polyOverP pover i. by rewrite -(aimg1 iota) memv_img// -regular_fullv memvf. Qed.