From mathcomp Require Import all_ssreflect all_fingroup all_algebra all_solvable. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Open Scope ring_scope. Import GRing.Theory. Lemma mulmxP (K : fieldType) (m n : nat) (A B : 'M[K]_(m, n)) : reflect (forall u : 'rV__, u *m A = u *m B) (A == B). Proof. apply: (iffP eqP) => [-> //|eqAB]. apply: (@row_full_inj _ _ _ _ 1%:M); first by rewrite row_full_unit unitmx1. by apply/row_matrixP => i; rewrite !row_mul eqAB. Qed. Section lfunP. Variable (F : fieldType). Context {uT vT : vectType F}. Local Notation m := (\dim {:uT}). Local Notation n := (\dim {:vT}). Lemma span_lfunP (U : seq uT) (phi psi : 'Hom(uT,vT)) : {in <>%VS, phi =1 psi} <-> {in U, phi =1 psi}. Proof. split=> eq_phi_psi u uU; first by rewrite eq_phi_psi ?memv_span. rewrite [u](@coord_span _ _ _ (in_tuple U))// !linear_sum/=. by apply: eq_bigr=> i _; rewrite !linearZ/= eq_phi_psi// ?mem_nth. Qed. Lemma fullv_lfunP (U : seq uT) (phi psi : 'Hom(uT,vT)) : <>%VS = fullv -> phi = psi <-> {in U, phi =1 psi}. Proof. by move=> Uf; split=> [->//|/span_lfunP]; rewrite Uf=> /(_ _ (memvf _))-/lfunP. Qed. End lfunP. Module passmx. Section passmx. Variable (F : fieldType). Section vecmx. Context {vT : vectType F}. Local Notation n := (\dim {:vT}). Variables (e : n.-tuple vT). Definition rowmxof (v : vT) := \row_i coord e i v. Lemma rowmxof_linear : linear rowmxof. Proof. by move=> x v1 v2; apply/rowP=> i; rewrite !mxE linearP. Qed. Canonical rowmxof_is_linear := Linear rowmxof_linear. Lemma coord_rowof i v : coord e i v = rowmxof v 0 i. Proof. by rewrite !mxE. Qed. Definition vecof (v : 'rV_n) := \sum_i v 0 i *: e`_i. Lemma vecof_delta i : vecof (delta_mx 0 i) = e`_i. Proof. rewrite /vecof (bigD1 i)//= mxE !eqxx scale1r big1 ?addr0// => j neq_ji. by rewrite mxE (negPf neq_ji) andbF scale0r. Qed. Lemma vecof_linear : linear vecof. Proof. move=> x v1 v2; rewrite linear_sum -big_split/=. by apply: eq_bigr => i _/=; rewrite !mxE scalerDl scalerA. Qed. Canonical vecof_is_linear := Linear vecof_linear. Variable e_basis : basis_of {:vT} e. Lemma rowmxofK : cancel rowmxof vecof. Proof. move=> v; rewrite [v in RHS](coord_basis e_basis) ?memvf//. by apply: eq_bigr => i; rewrite !mxE. Qed. Lemma vecofK : cancel vecof rowmxof. Proof. move=> v; apply/rowP=> i; rewrite !(lfunE, mxE). by rewrite coord_sum_free ?(basis_free e_basis). Qed. Lemma rowmxofE (i : 'I_n) : rowmxof e`_i = delta_mx 0 i. Proof. apply/rowP=> k; rewrite !mxE. by rewrite eqxx coord_free ?(basis_free e_basis)// eq_sym. Qed. Lemma coord_vecof i v : coord e i (vecof v) = v 0 i. Proof. by rewrite coord_rowof vecofK. Qed. Lemma rowmxof_eq0 v : (rowmxof v == 0) = (v == 0). Proof. by rewrite -(inj_eq (can_inj vecofK)) rowmxofK linear0. Qed. Lemma vecof_eq0 v : (vecof v == 0) = (v == 0). Proof. by rewrite -(inj_eq (can_inj rowmxofK)) vecofK linear0. Qed. End vecmx. Section hommx. Context {uT vT : vectType F}. Local Notation m := (\dim {:uT}). Local Notation n := (\dim {:vT}). Variables (e : m.-tuple uT) (f : n.-tuple vT). Definition mxof (h : 'Hom(uT, vT)) := lin1_mx (rowmxof f \o h \o vecof e). Lemma mxof_linear : linear mxof. Proof. move=> x h1 h2; apply/matrixP=> i j; do !rewrite ?lfunE/= ?mxE. by rewrite linearP. Qed. Canonical mxof_is_linear := Linear mxof_linear. Definition funmx (M : 'M[F]_(m, n)) u := vecof f (rowmxof e u *m M). Lemma funmx_is_linear M : linear (funmx M). Proof. by rewrite /funmx => x u v; rewrite linearP mulmxDl -scalemxAl linearP. Qed. Canonical funmx_linear M := Linear (funmx_is_linear M). Definition hommx M : 'Hom(uT, vT) := linfun (funmx M). Lemma hommx_linear : linear hommx. Proof. rewrite /hommx; move=> x A B; apply/lfunP=> u; do !rewrite lfunE/=. by rewrite /funmx mulmxDr -scalemxAr linearP. Qed. Canonical hommx_is_linear := Linear hommx_linear. Hypothesis e_basis: basis_of {:uT} e. Hypothesis f_basis: basis_of {:vT} f. Lemma mxofK : cancel mxof hommx. Proof. by move=> h; apply/lfunP=> u; rewrite lfunE/= /funmx mul_rV_lin1/= !rowmxofK. Qed. Lemma hommxK : cancel hommx mxof. Proof. move=> M; apply/matrixP => i j; rewrite !mxE/= lfunE/=. by rewrite /funmx vecofK// -rowE coord_vecof// mxE. Qed. Lemma mul_mxof phi u : u *m mxof phi = rowmxof f (phi (vecof e u)). Proof. by rewrite mul_rV_lin1/=. Qed. Lemma hommxE M u : hommx M u = vecof f (rowmxof e u *m M). Proof. by rewrite -[M in RHS]hommxK mul_mxof !rowmxofK//. Qed. Lemma rowmxof_mul M u : rowmxof e u *m M = rowmxof f (hommx M u). Proof. by rewrite hommxE vecofK. Qed. Lemma hom_vecof (phi : 'Hom(uT, vT)) u : phi (vecof e u) = vecof f (u *m mxof phi). Proof. by rewrite mul_mxof rowmxofK. Qed. Lemma rowmxof_app (phi : 'Hom(uT, vT)) u : rowmxof f (phi u) = rowmxof e u *m mxof phi. Proof. by rewrite mul_mxof !rowmxofK. Qed. Lemma vecof_mul M u : vecof f (u *m M) = hommx M (vecof e u). Proof. by rewrite hommxE vecofK. Qed. Lemma mxof_eq0 phi : (mxof phi == 0) = (phi == 0). Proof. by rewrite -(inj_eq (can_inj hommxK)) mxofK linear0. Qed. Lemma hommx_eq0 M : (hommx M == 0) = (M == 0). Proof. by rewrite -(inj_eq (can_inj mxofK)) hommxK linear0. Qed. End hommx. Section hommx_comp. Context {uT vT wT : vectType F}. Local Notation m := (\dim {:uT}). Local Notation n := (\dim {:vT}). Local Notation p := (\dim {:wT}). Variables (e : m.-tuple uT) (f : n.-tuple vT) (g : p.-tuple wT). Hypothesis e_basis: basis_of {:uT} e. Hypothesis f_basis: basis_of {:vT} f. Hypothesis g_basis: basis_of {:wT} g. Lemma mxof_comp (phi : 'Hom(uT, vT)) (psi : 'Hom(vT, wT)) : mxof e g (psi \o phi)%VF = mxof e f phi *m mxof f g psi. Proof. apply/matrixP => i k; rewrite !(mxE, comp_lfunE, lfunE) /=. rewrite [phi _](coord_basis f_basis) ?memvf// 2!linear_sum/=. by apply: eq_bigr => j _ /=; rewrite !mxE !linearZ/= !vecof_delta. Qed. Lemma hommx_mul (A : 'M_(m,n)) (B : 'M_(n, p)) : hommx e g (A *m B) = (hommx f g B \o hommx e f A)%VF. Proof. by apply: (can_inj (mxofK e_basis g_basis)); rewrite mxof_comp !hommxK. Qed. End hommx_comp. Section vsms. Context {vT : vectType F}. Local Notation n := (\dim {:vT}). Variables (e : n.-tuple vT). Definition msof (V : {vspace vT}) : 'M_n := mxof e e (projv V). (* alternative *) (* (\sum_(v <- vbasis V) <>)%MS. *) Definition vsof (M : 'M[F]_n) := limg (hommx e e M). (* alternative *) (* <<[seq vecof e (row i M) | i : 'I_n]>>%VS. *) Lemma mxof1 : free e -> mxof e e \1 = 1%:M. Proof. by move=> eF; apply/matrixP=> i j; rewrite !mxE vecof_delta lfunE coord_free. Qed. Hypothesis e_basis: basis_of {:vT} e. Lemma hommx1 : hommx e e 1%:M = \1%VF. Proof. by rewrite -mxof1 ?(basis_free e_basis)// mxofK. Qed. Lemma msofK : cancel msof vsof. Proof. by rewrite /msof /vsof; move=> V; rewrite mxofK// limg_proj. Qed. Lemma mem_vecof u (V : {vspace vT}) : (vecof e u \in V) = (u <= msof V)%MS. Proof. apply/idP/submxP=> [|[v ->{u}]]; last by rewrite -hom_vecof// memv_proj. rewrite -[V in X in X -> _]msofK => /memv_imgP[v _]. by move=> /(canRL (vecofK _)) ->//; rewrite -rowmxof_mul//; eexists. Qed. Lemma rowmxof_sub u M : (rowmxof e u <= M)%MS = (u \in vsof M). Proof. apply/submxP/memv_imgP => [[v /(canRL (rowmxofK _)) ->//]|[v _ ->]]{u}. by exists (vecof e v); rewrite ?memvf// -vecof_mul. by exists (rowmxof e v); rewrite -rowmxof_mul. Qed. Lemma vsof_sub M V : (vsof M <= V)%VS = (M <= msof V)%MS. Proof. apply/subvP/rV_subP => [MsubV _/submxP[u ->]|VsubM _/memv_imgP[u _ ->]]. by rewrite -mem_vecof MsubV// -rowmxof_sub vecofK// submxMl. by rewrite -[V]msofK -rowmxof_sub VsubM// -rowmxof_mul// submxMl. Qed. Lemma msof_sub V M : (msof V <= M)%MS = (V <= vsof M)%VS. Proof. apply/rV_subP/subvP => [VsubM v vV|MsubV _/submxP[u ->]]. by rewrite -rowmxof_sub VsubM// -mem_vecof rowmxofK. by rewrite mul_mxof rowmxof_sub MsubV// memv_proj. Qed. Lemma vsofK M : (msof (vsof M) == M)%MS. Proof. by rewrite msof_sub -vsof_sub subvv. Qed. Lemma sub_msof : {mono msof : V V' / (V <= V')%VS >-> (V <= V')%MS}. Proof. by move=> V V'; rewrite msof_sub msofK. Qed. Lemma sub_vsof : {mono vsof : M M' / (M <= M')%MS >-> (M <= M')%VS}. Proof. by move=> M M'; rewrite vsof_sub (eqmxP (vsofK _)). Qed. Lemma msof0 : msof 0 = 0. Proof. apply/eqP; rewrite -submx0; apply/rV_subP => v. by rewrite -mem_vecof memv0 vecof_eq0// => /eqP->; rewrite sub0mx. Qed. Lemma vsof0 : vsof 0 = 0%VS. Proof. by apply/vspaceP=> v; rewrite memv0 -rowmxof_sub submx0 rowmxof_eq0. Qed. Lemma msof_eq0 V : (msof V == 0) = (V == 0%VS). Proof. by rewrite -(inj_eq (can_inj msofK)) msof0. Qed. Lemma vsof_eq0 M : (vsof M == 0%VS) = (M == 0). Proof. rewrite (sameP eqP eqmx0P) -!(eqmxP (vsofK M)) (sameP eqmx0P eqP) -msof0. by rewrite (inj_eq (can_inj msofK)). Qed. End vsms. Section eigen. Context {uT : vectType F}. Definition leigenspace (phi : 'End(uT)) a := lker (phi - a *: \1%VF). Definition leigenvalue phi a := leigenspace phi a != 0%VS. Local Notation m := (\dim {:uT}). Variables (e : m.-tuple uT). Hypothesis e_basis: basis_of {:uT} e. Let e_free := basis_free e_basis. Lemma lker_ker phi : lker phi = vsof e (kermx (mxof e e phi)). Proof. apply/vspaceP => v; rewrite memv_ker -rowmxof_sub// (sameP sub_kermxP eqP). by rewrite -rowmxof_app// rowmxof_eq0. Qed. Lemma limgE phi : limg phi = vsof e (mxof e e phi). Proof. apply/vspaceP => v; rewrite -rowmxof_sub//. apply/memv_imgP/submxP => [[u _ ->]|[u /(canRL (rowmxofK _)) ->//]]. by exists (rowmxof e u); rewrite -rowmxof_app. by exists (vecof e u); rewrite ?memvf// -hom_vecof. Qed. Lemma leigenspaceE f a : leigenspace f a = vsof e (eigenspace (mxof e e f) a). Proof. by rewrite /leigenspace /eigenspace lker_ker linearB linearZ/= mxof1// scalemx1. Qed. End eigen. End passmx. End passmx.