(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path. From mathcomp Require Import choice fintype div tuple finfun bigop ssralg. From mathcomp Require Import finalg zmodp matrix vector poly. (******************************************************************************) (* Finite dimensional free algebras, usually known as F-algebras. *) (* FalgType K == the interface type for F-algebras over K; it simply *) (* joins the unitAlgType K and vectType K interfaces. *) (* [FalgType K of aT] == an FalgType K structure for a type aT that has both *) (* unitAlgType K and vectType K canonical structures. *) (* [FalgType K of aT for vT] == an FalgType K structure for a type aT with a *) (* unitAlgType K canonical structure, given a structure *) (* vT : vectType K whose lmodType K projection matches *) (* the canonical lmodType for aT. *) (* FalgUnitRingType T == a default unitRingType structure for a type T with *) (* both algType and vectType structures. *) (* Any aT with an FalgType structure inherits all the Vector, Ring and *) (* Algebra operations, and supports the following additional operations: *) (* \dim_A M == (\dim M %/ dim A)%N -- free module dimension. *) (* amull u == the linear function v |-> u * v, for u, v : aT. *) (* amulr u == the linear function v |-> v * u, for u, v : aT. *) (* 1, f * g, f ^+ n == the identity function, the composite g \o f, the nth *) (* iterate of f, for 1, f, g in 'End(aT). This is just *) (* the usual F-algebra structure on 'End(aT). It is NOT *) (* canonical by default, but can be activated by the *) (* line Import FalgLfun. Beware also that (f^-1)%VF is *) (* the linear function inverse, not the ring inverse of *) (* f (though they do coincide when f is injective). *) (* 1%VS == the line generated by 1 : aT. *) (* (U * V)%VS == the smallest subspace of aT that contains all *) (* products u * v for u in U, v in V. *) (* (U ^+ n)%VS == (U * U * ... * U), n-times. U ^+ 0 = 1%VS *) (* 'C[u]%VS == the centraliser subspace of the vector u. *) (* 'C_U[v]%VS := (U :&: 'C[v])%VS. *) (* 'C(V)%VS == the centraliser subspace of the subspace V. *) (* 'C_U(V)%VS := (U :&: 'C(V))%VS. *) (* 'Z(V)%VS == the center subspace of the subspace V. *) (* agenv U == the smallest subalgebra containing U ^+ n for all n. *) (* <>%VS == agenv (U + <[v]>) (adjoin v to U). *) (* <>%VS == agenv (U + <>) (adjoin vs to U). *) (* {aspace aT} == a subType of {vspace aT} consisting of sub-algebras *) (* of aT (see below); for A : {aspace aT}, subvs_of A *) (* has a canonical FalgType K structure. *) (* is_aspace U <=> the characteristic predicate of {aspace aT} stating *) (* that U is closed under product and contains an *) (* identity element, := has_algid U && (U * U <= U)%VS. *) (* algid A == the identity element of A : {aspace aT}, which need *) (* not be equal to 1 (indeed, in a Wedderburn *) (* decomposition it is not even a unit in aT). *) (* is_algid U e <-> e : aT is an identity element for the subspace U: *) (* e in U, e != 0 & e * u = u * e = u for all u in U. *) (* has_algid U <=> there is an e such that is_algid U e. *) (* [aspace of U] == a clone of an existing {aspace aT} structure on *) (* U : {vspace aT} (more instances of {aspace aT} will *) (* be defined in extFieldType). *) (* [aspace of U for A] == a clone of A : {aspace aT} for U : {vspace aT}. *) (* 1%AS == the canonical sub-algebra 1%VS. *) (* {:aT}%AS == the canonical full algebra. *) (* <>%AS == the canonical algebra for agenv U; note that this is *) (* unrelated to <>%VS, the subspace spanned by vs. *) (* <>%AS == the canonical algebra for <>%VS. *) (* <>%AS == the canonical algebra for <>%VS. *) (* ahom_in U f <=> f : 'Hom(aT, rT) is a multiplicative homomorphism *) (* inside U, and in addition f 1 = 1 (even if U doesn't *) (* contain 1). Note that f @: U need not be a *) (* subalgebra when U is, as f could annilate U. *) (* 'AHom(aT, rT) == the type of algebra homomorphisms from aT to rT, *) (* where aT and rT ARE FalgType structures. Elements of *) (* 'AHom(aT, rT) coerce to 'End(aT, rT) and aT -> rT. *) (* --> Caveat: aT and rT must denote actual FalgType structures, not their *) (* projections on Type. *) (* 'AEnd(aT) == algebra endomorphisms of aT (:= 'AHom(aT, aT)). *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope aspace_scope. Declare Scope lrfun_scope. Local Open Scope ring_scope. Reserved Notation "{ 'aspace' T }" (at level 0, format "{ 'aspace' T }"). Reserved Notation "<< U & vs >>" (at level 0, format "<< U & vs >>"). Reserved Notation "<< U ; x >>" (at level 0, format "<< U ; x >>"). Reserved Notation "''AHom' ( T , rT )" (at level 8, format "''AHom' ( T , rT )"). Reserved Notation "''AEnd' ( T )" (at level 8, format "''AEnd' ( T )"). Notation "\dim_ E V" := (divn (\dim V) (\dim E)) (at level 10, E at level 2, V at level 8, format "\dim_ E V") : nat_scope. Import GRing.Theory. (* Finite dimensional algebra *) Module Falgebra. (* Supply a default unitRing mixin for the default unitAlgType base type. *) Section DefaultBase. Variables (K : fieldType) (A : algType K). Lemma BaseMixin : Vector.mixin_of A -> GRing.UnitRing.mixin_of A. Proof. move=> vAm; pose vA := VectType K A vAm. pose am u := linfun (u \o* idfun : vA -> vA). have amE u v : am u v = v * u by rewrite lfunE. pose uam := [pred u | lker (am u) == 0%VS]. pose vam := [fun u => if u \in uam then (am u)^-1%VF 1 else u]. have vamKl: {in uam, left_inverse 1 vam *%R}. by move=> u Uu; rewrite /= Uu -amE lker0_lfunVK. exists uam vam => // [u Uu | u v [_ uv1] | u /negbTE/= -> //]. by apply/(lker0P Uu); rewrite !amE -mulrA vamKl // mul1r mulr1. by apply/lker0P=> w1 w2 /(congr1 (am v)); rewrite !amE -!mulrA uv1 !mulr1. Qed. Definition BaseType T := fun c vAm & phant_id c (GRing.UnitRing.Class (BaseMixin vAm)) => fun (vT : vectType K) & phant vT & phant_id (Vector.mixin (Vector.class vT)) vAm => @GRing.UnitRing.Pack T c. End DefaultBase. Section ClassDef. Variable R : ringType. Implicit Type phR : phant R. Set Primitive Projections. Record class_of A := Class { base1 : GRing.UnitAlgebra.class_of R A; mixin : Vector.mixin_of (GRing.Lmodule.Pack _ base1) }. Unset Primitive Projections. Local Coercion base1 : class_of >-> GRing.UnitAlgebra.class_of. Definition base2 A c := @Vector.Class _ _ (@base1 A c) (mixin c). Local Coercion base2 : class_of >-> Vector.class_of. Structure type (phR : phant R) := Pack {sort; _ : class_of sort}. Local Coercion sort : type >-> Sortclass. Variables (phR : phant R) (T : Type) (cT : type phR). Definition class := let: Pack _ c := cT return class_of cT in c. Definition pack := fun bT b & phant_id (@GRing.UnitAlgebra.class R phR bT) (b : GRing.UnitAlgebra.class_of R T) => fun mT m & phant_id (@Vector.class R phR mT) (@Vector.Class R T b m) => Pack (Phant R) (@Class T b m). Definition eqType := @Equality.Pack cT class. Definition choiceType := @Choice.Pack cT class. Definition zmodType := @GRing.Zmodule.Pack cT class. Definition lmodType := @GRing.Lmodule.Pack R phR cT class. Definition ringType := @GRing.Ring.Pack cT class. Definition unitRingType := @GRing.UnitRing.Pack cT class. Definition lalgType := @GRing.Lalgebra.Pack R phR cT class. Definition algType := @GRing.Algebra.Pack R phR cT class. Definition unitAlgType := @GRing.UnitAlgebra.Pack R phR cT class. Definition vectType := @Vector.Pack R phR cT class. Definition vect_ringType := @GRing.Ring.Pack vectType class. Definition vect_unitRingType := @GRing.UnitRing.Pack vectType class. Definition vect_lalgType := @GRing.Lalgebra.Pack R phR vectType class. Definition vect_algType := @GRing.Algebra.Pack R phR vectType class. Definition vect_unitAlgType := @GRing.UnitAlgebra.Pack R phR vectType class. End ClassDef. Module Exports. Coercion base1 : class_of >-> GRing.UnitAlgebra.class_of. Coercion base2 : class_of >-> Vector.class_of. Coercion sort : type >-> Sortclass. Bind Scope ring_scope with sort. Coercion eqType : type >-> Equality.type. Canonical eqType. Coercion choiceType : type >-> Choice.type. Canonical choiceType. Coercion zmodType : type >-> GRing.Zmodule.type. Canonical zmodType. Coercion lmodType : type>-> GRing.Lmodule.type. Canonical lmodType. Coercion ringType : type >-> GRing.Ring.type. Canonical ringType. Coercion unitRingType : type >-> GRing.UnitRing.type. Canonical unitRingType. Coercion lalgType : type >-> GRing.Lalgebra.type. Canonical lalgType. Coercion algType : type >-> GRing.Algebra.type. Canonical algType. Coercion unitAlgType : type >-> GRing.UnitAlgebra.type. Canonical unitAlgType. Coercion vectType : type >-> Vector.type. Canonical vectType. Canonical vect_ringType. Canonical vect_unitRingType. Canonical vect_lalgType. Canonical vect_algType. Canonical vect_unitAlgType. Notation FalgType R := (type (Phant R)). Notation "[ 'FalgType' R 'of' A ]" := (@pack _ (Phant R) A _ _ id _ _ id) (at level 0, format "[ 'FalgType' R 'of' A ]") : form_scope. Notation "[ 'FalgType' R 'of' A 'for' vT ]" := (@pack _ (Phant R) A _ _ id vT _ idfun) (at level 0, format "[ 'FalgType' R 'of' A 'for' vT ]") : form_scope. Notation FalgUnitRingType T := (@BaseType _ _ T _ _ id _ (Phant T) id). End Exports. End Falgebra. Export Falgebra.Exports. Notation "1" := (vline 1) : vspace_scope. Canonical matrix_FalgType (K : fieldType) n := [FalgType K of 'M[K]_n.+1]. Canonical regular_FalgType (R : comUnitRingType) := [FalgType R of R^o]. Lemma regular_fullv (K : fieldType) : (fullv = 1 :> {vspace K^o})%VS. Proof. by apply/esym/eqP; rewrite eqEdim subvf dim_vline oner_eq0 dimvf. Qed. Section Proper. Variables (R : ringType) (aT : FalgType R). Import Vector.InternalTheory. Lemma FalgType_proper : Vector.dim aT > 0. Proof. rewrite lt0n; apply: contraNneq (oner_neq0 aT) => aT0. by apply/eqP/v2r_inj; do 2!move: (v2r _); rewrite aT0 => u v; rewrite !thinmx0. Qed. End Proper. Module FalgLfun. Section FalgLfun. Variable (R : comRingType) (aT : FalgType R). Implicit Types f g : 'End(aT). Canonical Falg_fun_ringType := lfun_ringType (FalgType_proper aT). Canonical Falg_fun_lalgType := lfun_lalgType (FalgType_proper aT). Canonical Falg_fun_algType := lfun_algType (FalgType_proper aT). Lemma lfun_mulE f g u : (f * g) u = g (f u). Proof. exact: lfunE. Qed. Lemma lfun_compE f g : (g \o f)%VF = f * g. Proof. by []. Qed. End FalgLfun. Section InvLfun. Variable (K : fieldType) (aT : FalgType K). Implicit Types f g : 'End(aT). Definition lfun_invr f := if lker f == 0%VS then f^-1%VF else f. Lemma lfun_mulVr f : lker f == 0%VS -> f^-1%VF * f = 1. Proof. exact: lker0_compfV. Qed. Lemma lfun_mulrV f : lker f == 0%VS -> f * f^-1%VF = 1. Proof. exact: lker0_compVf. Qed. Fact lfun_mulRVr f : lker f == 0%VS -> lfun_invr f * f = 1. Proof. by move=> Uf; rewrite /lfun_invr Uf lfun_mulVr. Qed. Fact lfun_mulrRV f : lker f == 0%VS -> f * lfun_invr f = 1. Proof. by move=> Uf; rewrite /lfun_invr Uf lfun_mulrV. Qed. Fact lfun_unitrP f g : g * f = 1 /\ f * g = 1 -> lker f == 0%VS. Proof. case=> _ fK; apply/lker0P; apply: can_inj (g) _ => u. by rewrite -lfun_mulE fK lfunE. Qed. Lemma lfun_invr_out f : lker f != 0%VS -> lfun_invr f = f. Proof. by rewrite /lfun_invr => /negPf->. Qed. Definition lfun_unitRingMixin := UnitRingMixin lfun_mulRVr lfun_mulrRV lfun_unitrP lfun_invr_out. Canonical lfun_unitRingType := UnitRingType 'End(aT) lfun_unitRingMixin. Canonical lfun_unitAlgType := [unitAlgType K of 'End(aT)]. Canonical Falg_fun_FalgType := [FalgType K of 'End(aT)]. Lemma lfun_invE f : lker f == 0%VS -> f^-1%VF = f^-1. Proof. by rewrite /f^-1 /= /lfun_invr => ->. Qed. End InvLfun. End FalgLfun. Section FalgebraTheory. Variables (K : fieldType) (aT : FalgType K). Implicit Types (u v : aT) (U V W : {vspace aT}). Import FalgLfun. Definition amull u : 'End(aT) := linfun (u \*o @idfun aT). Definition amulr u : 'End(aT) := linfun (u \o* @idfun aT). Lemma amull_inj : injective amull. Proof. by move=> u v /lfunP/(_ 1); rewrite !lfunE /= !mulr1. Qed. Lemma amulr_inj : injective amulr. Proof. by move=> u v /lfunP/(_ 1); rewrite !lfunE /= !mul1r. Qed. Fact amull_is_linear : linear amull. Proof. move=> a u v; apply/lfunP => w. by rewrite !lfunE /= scale_lfunE !lfunE /= mulrDl scalerAl. Qed. Canonical amull_additive := Eval hnf in Additive amull_is_linear. Canonical amull_linear := Eval hnf in AddLinear amull_is_linear. (* amull is a converse ring morphism *) Lemma amull1 : amull 1 = \1%VF. Proof. by apply/lfunP => z; rewrite id_lfunE lfunE /= mul1r. Qed. Lemma amullM u v : (amull (u * v) = amull v * amull u)%VF. Proof. by apply/lfunP => w; rewrite comp_lfunE !lfunE /= mulrA. Qed. Lemma amulr_is_lrmorphism : lrmorphism amulr. Proof. split=> [|a u]; last by apply/lfunP=> w; rewrite scale_lfunE !lfunE /= scalerAr. split=> [u v|]; first by apply/lfunP => w; do 3!rewrite !lfunE /= ?mulrBr. split=> [u v|]; last by apply/lfunP=> w; rewrite id_lfunE !lfunE /= mulr1. by apply/lfunP=> w; rewrite comp_lfunE !lfunE /= mulrA. Qed. Canonical amulr_additive := Eval hnf in Additive amulr_is_lrmorphism. Canonical amulr_linear := Eval hnf in AddLinear amulr_is_lrmorphism. Canonical amulr_rmorphism := Eval hnf in AddRMorphism amulr_is_lrmorphism. Canonical amulr_lrmorphism := Eval hnf in LRMorphism amulr_is_lrmorphism. Lemma lker0_amull u : u \is a GRing.unit -> lker (amull u) == 0%VS. Proof. by move=> Uu; apply/lker0P=> v w; rewrite !lfunE; apply: mulrI. Qed. Lemma lker0_amulr u : u \is a GRing.unit -> lker (amulr u) == 0%VS. Proof. by move=> Uu; apply/lker0P=> v w; rewrite !lfunE; apply: mulIr. Qed. Lemma lfun1_poly (p : {poly aT}) : map_poly \1%VF p = p. Proof. by apply: map_poly_id => u _; apply: id_lfunE. Qed. Fact prodv_key : unit. Proof. by []. Qed. Definition prodv := locked_with prodv_key (fun U V => <>%VS). Canonical prodv_unlockable := [unlockable fun prodv]. Local Notation "A * B" := (prodv A B) : vspace_scope. Lemma memv_mul U V : {in U & V, forall u v, u * v \in (U * V)%VS}. Proof. move=> u v /coord_vbasis-> /coord_vbasis->. rewrite mulr_suml; apply: memv_suml => i _. rewrite mulr_sumr; apply: memv_suml => j _. rewrite -scalerAl -scalerAr !memvZ // [prodv]unlock memv_span //. by apply/allpairsP; exists ((vbasis U)`_i, (vbasis V)`_j); rewrite !memt_nth. Qed. Lemma prodvP {U V W} : reflect {in U & V, forall u v, u * v \in W} (U * V <= W)%VS. Proof. apply: (iffP idP) => [sUVW u v Uu Vv | sUVW]. by rewrite (subvP sUVW) ?memv_mul. rewrite [prodv]unlock; apply/span_subvP=> _ /allpairsP[[u v] /= [Uu Vv ->]]. by rewrite sUVW ?vbasis_mem. Qed. Lemma prodv_line u v : (<[u]> * <[v]> = <[u * v]>)%VS. Proof. apply: subv_anti; rewrite -memvE memv_mul ?memv_line // andbT. apply/prodvP=> _ _ /vlineP[a ->] /vlineP[b ->]. by rewrite -scalerAr -scalerAl !memvZ ?memv_line. Qed. Lemma dimv1: \dim (1%VS : {vspace aT}) = 1%N. Proof. by rewrite dim_vline oner_neq0. Qed. Lemma dim_prodv U V : \dim (U * V) <= \dim U * \dim V. Proof. by rewrite unlock (leq_trans (dim_span _)) ?size_tuple. Qed. Lemma vspace1_neq0 : (1 != 0 :> {vspace aT})%VS. Proof. by rewrite -dimv_eq0 dimv1. Qed. Lemma vbasis1 : exists2 k, k != 0 & vbasis 1 = [:: k%:A] :> seq aT. Proof. move: (vbasis 1) (@vbasisP K aT 1); rewrite dim_vline oner_neq0. case/tupleP=> x X0; rewrite {X0}tuple0 => defX; have Xx := mem_head x nil. have /vlineP[k def_x] := basis_mem defX Xx; exists k; last by rewrite def_x. by have:= basis_not0 defX Xx; rewrite def_x scaler_eq0 oner_eq0 orbF. Qed. Lemma prod0v : left_zero 0%VS prodv. Proof. move=> U; apply/eqP; rewrite -dimv_eq0 -leqn0 (leq_trans (dim_prodv 0 U)) //. by rewrite dimv0. Qed. Lemma prodv0 : right_zero 0%VS prodv. Proof. move=> U; apply/eqP; rewrite -dimv_eq0 -leqn0 (leq_trans (dim_prodv U 0)) //. by rewrite dimv0 muln0. Qed. Canonical prodv_muloid := Monoid.MulLaw prod0v prodv0. Lemma prod1v : left_id 1%VS prodv. Proof. move=> U; apply/subv_anti/andP; split. by apply/prodvP=> _ u /vlineP[a ->] Uu; rewrite mulr_algl memvZ. by apply/subvP=> u Uu; rewrite -[u]mul1r memv_mul ?memv_line. Qed. Lemma prodv1 : right_id 1%VS prodv. Proof. move=> U; apply/subv_anti/andP; split. by apply/prodvP=> u _ Uu /vlineP[a ->]; rewrite mulr_algr memvZ. by apply/subvP=> u Uu; rewrite -[u]mulr1 memv_mul ?memv_line. Qed. Lemma prodvS U1 U2 V1 V2 : (U1 <= U2 -> V1 <= V2 -> U1 * V1 <= U2 * V2)%VS. Proof. move/subvP=> sU12 /subvP sV12; apply/prodvP=> u v Uu Vv. by rewrite memv_mul ?sU12 ?sV12. Qed. Lemma prodvSl U1 U2 V : (U1 <= U2 -> U1 * V <= U2 * V)%VS. Proof. by move/prodvS->. Qed. Lemma prodvSr U V1 V2 : (V1 <= V2 -> U * V1 <= U * V2)%VS. Proof. exact: prodvS. Qed. Lemma prodvDl : left_distributive prodv addv. Proof. move=> U1 U2 V; apply/esym/subv_anti/andP; split. by rewrite subv_add 2?prodvS ?addvSl ?addvSr. apply/prodvP=> _ v /memv_addP[u1 Uu1 [u2 Uu2 ->]] Vv. by rewrite mulrDl memv_add ?memv_mul. Qed. Lemma prodvDr : right_distributive prodv addv. Proof. move=> U V1 V2; apply/esym/subv_anti/andP; split. by rewrite subv_add 2?prodvS ?addvSl ?addvSr. apply/prodvP=> u _ Uu /memv_addP[v1 Vv1 [v2 Vv2 ->]]. by rewrite mulrDr memv_add ?memv_mul. Qed. Canonical addv_addoid := Monoid.AddLaw prodvDl prodvDr. Lemma prodvA : associative prodv. Proof. move=> U V W; rewrite -(span_basis (vbasisP U)) span_def !big_distrl /=. apply: eq_bigr => u _; rewrite -(span_basis (vbasisP W)) span_def !big_distrr. apply: eq_bigr => w _; rewrite -(span_basis (vbasisP V)) span_def /=. rewrite !(big_distrl, big_distrr) /=; apply: eq_bigr => v _. by rewrite !prodv_line mulrA. Qed. Canonical prodv_monoid := Monoid.Law prodvA prod1v prodv1. Definition expv U n := iterop n.+1.-1 prodv U 1%VS. Local Notation "A ^+ n" := (expv A n) : vspace_scope. Lemma expv0 U : (U ^+ 0 = 1)%VS. Proof. by []. Qed. Lemma expv1 U : (U ^+ 1 = U)%VS. Proof. by []. Qed. Lemma expv2 U : (U ^+ 2 = U * U)%VS. Proof. by []. Qed. Lemma expvSl U n : (U ^+ n.+1 = U * U ^+ n)%VS. Proof. by case: n => //; rewrite prodv1. Qed. Lemma expv0n n : (0 ^+ n = if n is _.+1 then 0 else 1)%VS. Proof. by case: n => // n; rewrite expvSl prod0v. Qed. Lemma expv1n n : (1 ^+ n = 1)%VS. Proof. by elim: n => // n IHn; rewrite expvSl IHn prodv1. Qed. Lemma expvD U m n : (U ^+ (m + n) = U ^+ m * U ^+ n)%VS. Proof. by elim: m => [|m IHm]; rewrite ?prod1v // !expvSl IHm prodvA. Qed. Lemma expvSr U n : (U ^+ n.+1 = U ^+ n * U)%VS. Proof. by rewrite -addn1 expvD. Qed. Lemma expvM U m n : (U ^+ (m * n) = U ^+ m ^+ n)%VS. Proof. by elim: n => [|n IHn]; rewrite ?muln0 // mulnS expvD IHn expvSl. Qed. Lemma expvS U V n : (U <= V -> U ^+ n <= V ^+ n)%VS. Proof. move=> sUV; elim: n => [|n IHn]; first by rewrite !expv0 subvv. by rewrite !expvSl prodvS. Qed. Lemma expv_line u n : (<[u]> ^+ n = <[u ^+ n]>)%VS. Proof. elim: n => [|n IH]; first by rewrite expr0 expv0. by rewrite exprS expvSl IH prodv_line. Qed. (* Centralisers and centers. *) Definition centraliser1_vspace u := lker (amulr u - amull u). Local Notation "'C [ u ]" := (centraliser1_vspace u) : vspace_scope. Definition centraliser_vspace V := (\bigcap_i 'C[tnth (vbasis V) i])%VS. Local Notation "'C ( V )" := (centraliser_vspace V) : vspace_scope. Definition center_vspace V := (V :&: 'C(V))%VS. Local Notation "'Z ( V )" := (center_vspace V) : vspace_scope. Lemma cent1vP u v : reflect (u * v = v * u) (u \in 'C[v]%VS). Proof. by rewrite (sameP eqlfunP eqP) !lfunE /=; apply: eqP. Qed. Lemma cent1v1 u : 1 \in 'C[u]%VS. Proof. by apply/cent1vP; rewrite commr1. Qed. Lemma cent1v_id u : u \in 'C[u]%VS. Proof. exact/cent1vP. Qed. Lemma cent1vX u n : u ^+ n \in 'C[u]%VS. Proof. exact/cent1vP/esym/commrX. Qed. Lemma cent1vC u v : (u \in 'C[v])%VS = (v \in 'C[u])%VS. Proof. exact/cent1vP/cent1vP. Qed. Lemma centvP u V : reflect {in V, forall v, u * v = v * u} (u \in 'C(V))%VS. Proof. apply: (iffP subv_bigcapP) => [cVu y /coord_vbasis-> | cVu i _]. apply/esym/cent1vP/rpred_sum=> i _; apply: rpredZ. by rewrite -tnth_nth cent1vC memvE cVu. exact/cent1vP/cVu/vbasis_mem/mem_tnth. Qed. Lemma centvsP U V : reflect {in U & V, commutative *%R} (U <= 'C(V))%VS. Proof. by apply: (iffP subvP) => [cUV u v | cUV u] /cUV-/centvP; apply. Qed. Lemma subv_cent1 U v : (U <= 'C[v])%VS = (v \in 'C(U)%VS). Proof. by apply/subvP/centvP=> cUv u Uu; apply/cent1vP; rewrite 1?cent1vC cUv. Qed. Lemma centv1 V : 1 \in 'C(V)%VS. Proof. by apply/centvP=> v _; rewrite commr1. Qed. Lemma centvX V u n : u \in 'C(V)%VS -> u ^+ n \in 'C(V)%VS. Proof. by move/centvP=> cVu; apply/centvP=> v /cVu/esym/commrX->. Qed. Lemma centvC U V : (U <= 'C(V))%VS = (V <= 'C(U))%VS. Proof. by apply/centvsP/centvsP=> cUV u v UVu /cUV->. Qed. Lemma centerv_sub V : ('Z(V) <= V)%VS. Proof. exact: capvSl. Qed. Lemma cent_centerv V : (V <= 'C('Z(V)))%VS. Proof. by rewrite centvC capvSr. Qed. (* Building the predicate that checks is a vspace has a unit *) Definition is_algid e U := [/\ e \in U, e != 0 & {in U, forall u, e * u = u /\ u * e = u}]. Fact algid_decidable U : decidable (exists e, is_algid e U). Proof. have [-> | nzU] := eqVneq U 0%VS. by right=> [[e []]]; rewrite memv0 => ->. pose X := vbasis U; pose feq f1 f2 := [tuple of map f1 X ++ map f2 X]. have feqL f i: tnth (feq _ f _) (lshift _ i) = f X`_i. set v := f _; rewrite (tnth_nth v) /= nth_cat size_map size_tuple. by rewrite ltn_ord (nth_map 0) ?size_tuple. have feqR f i: tnth (feq _ _ f) (rshift _ i) = f X`_i. set v := f _; rewrite (tnth_nth v) /= nth_cat size_map size_tuple. by rewrite ltnNge leq_addr addKn /= (nth_map 0) ?size_tuple. apply: decP (vsolve_eq (feq _ amulr amull) (feq _ id id) U) _. apply: (iffP (vsolve_eqP _ _ _)) => [[e Ue id_e] | [e [Ue _ id_e]]]. suffices idUe: {in U, forall u, e * u = u /\ u * e = u}. exists e; split=> //; apply: contraNneq nzU => e0; rewrite -subv0. by apply/subvP=> u /idUe[<- _]; rewrite e0 mul0r mem0v. move=> u /coord_vbasis->; rewrite mulr_sumr mulr_suml. split; apply/eq_bigr=> i _; rewrite -(scalerAr, scalerAl); congr (_ *: _). by have:= id_e (lshift _ i); rewrite !feqL lfunE. by have:= id_e (rshift _ i); rewrite !feqR lfunE. have{id_e} /all_and2[ideX idXe]:= id_e _ (vbasis_mem (mem_tnth _ X)). exists e => // k; rewrite -[k]splitK. by case: (split k) => i; rewrite !(feqL, feqR) lfunE /= -tnth_nth. Qed. Definition has_algid : pred {vspace aT} := algid_decidable. Lemma has_algidP {U} : reflect (exists e, is_algid e U) (has_algid U). Proof. exact: sumboolP. Qed. Lemma has_algid1 U : 1 \in U -> has_algid U. Proof. move=> U1; apply/has_algidP; exists 1; split; rewrite ?oner_eq0 // => u _. by rewrite mulr1 mul1r. Qed. Definition is_aspace U := has_algid U && (U * U <= U)%VS. Structure aspace := ASpace {asval :> {vspace aT}; _ : is_aspace asval}. Definition aspace_of of phant aT := aspace. Local Notation "{ 'aspace' T }" := (aspace_of (Phant T)) : type_scope. Canonical aspace_subType := Eval hnf in [subType for asval]. Definition aspace_eqMixin := [eqMixin of aspace by <:]. Canonical aspace_eqType := Eval hnf in EqType aspace aspace_eqMixin. Definition aspace_choiceMixin := [choiceMixin of aspace by <:]. Canonical aspace_choiceType := Eval hnf in ChoiceType aspace aspace_choiceMixin. Canonical aspace_of_subType := Eval hnf in [subType of {aspace aT}]. Canonical aspace_of_eqType := Eval hnf in [eqType of {aspace aT}]. Canonical aspace_of_choiceType := Eval hnf in [choiceType of {aspace aT}]. Definition clone_aspace U (A : {aspace aT}) := fun algU & phant_id algU (valP A) => @ASpace U algU : {aspace aT}. Fact aspace1_subproof : is_aspace 1. Proof. by rewrite /is_aspace prod1v -memvE has_algid1 memv_line. Qed. Canonical aspace1 : {aspace aT} := ASpace aspace1_subproof. Lemma aspacef_subproof : is_aspace fullv. Proof. by rewrite /is_aspace subvf has_algid1 ?memvf. Qed. Canonical aspacef : {aspace aT} := ASpace aspacef_subproof. Lemma polyOver1P p : reflect (exists q, p = map_poly (in_alg aT) q) (p \is a polyOver 1%VS). Proof. apply: (iffP idP) => [/allP/=Qp | [q ->]]; last first. by apply/polyOverP=> j; rewrite coef_map rpredZ ?memv_line. exists (map_poly (coord [tuple 1] 0) p). rewrite -map_poly_comp map_poly_id // => _ /Qp/vlineP[a ->] /=. by rewrite linearZ /= (coord_free 0) ?mulr1 // seq1_free ?oner_eq0. Qed. End FalgebraTheory. Delimit Scope aspace_scope with AS. Bind Scope aspace_scope with aspace. Bind Scope aspace_scope with aspace_of. Arguments asval {K aT} a%AS. Arguments clone_aspace [K aT U%VS A%AS algU] _. Notation "{ 'aspace' T }" := (aspace_of (Phant T)) : type_scope. Notation "A * B" := (prodv A B) : vspace_scope. Notation "A ^+ n" := (expv A n) : vspace_scope. Notation "'C [ u ]" := (centraliser1_vspace u) : vspace_scope. Notation "'C_ U [ v ]" := (capv U 'C[v]) : vspace_scope. Notation "'C_ ( U ) [ v ]" := (capv U 'C[v]) (only parsing) : vspace_scope. Notation "'C ( V )" := (centraliser_vspace V) : vspace_scope. Notation "'C_ U ( V )" := (capv U 'C(V)) : vspace_scope. Notation "'C_ ( U ) ( V )" := (capv U 'C(V)) (only parsing) : vspace_scope. Notation "'Z ( V )" := (center_vspace V) : vspace_scope. Notation "1" := (aspace1 _) : aspace_scope. Notation "{ : aT }" := (aspacef aT) : aspace_scope. Notation "[ 'aspace' 'of' U ]" := (@clone_aspace _ _ U _ _ id) (at level 0, format "[ 'aspace' 'of' U ]") : form_scope. Notation "[ 'aspace' 'of' U 'for' A ]" := (@clone_aspace _ _ U A _ idfun) (at level 0, format "[ 'aspace' 'of' U 'for' A ]") : form_scope. Arguments prodvP {K aT U V W}. Arguments cent1vP {K aT u v}. Arguments centvP {K aT u V}. Arguments centvsP {K aT U V}. Arguments has_algidP {K aT U}. Arguments polyOver1P {K aT p}. Section AspaceTheory. Variables (K : fieldType) (aT : FalgType K). Implicit Types (u v e : aT) (U V : {vspace aT}) (A B : {aspace aT}). Import FalgLfun. Lemma algid_subproof U : {e | e \in U & has_algid U ==> (U <= lker (amull e - 1) :&: lker (amulr e - 1))%VS}. Proof. apply: sig2W; case: has_algidP => [[e]|]; last by exists 0; rewrite ?mem0v. case=> Ae _ idAe; exists e => //; apply/subvP=> u /idAe[eu_u ue_u]. by rewrite memv_cap !memv_ker !lfun_simp /= eu_u ue_u subrr eqxx. Qed. Definition algid U := s2val (algid_subproof U). Lemma memv_algid U : algid U \in U. Proof. by rewrite /algid; case: algid_subproof. Qed. Lemma algidl A : {in A, left_id (algid A) *%R}. Proof. rewrite /algid; case: algid_subproof => e _ /=; have /andP[-> _] := valP A. move/subvP=> idAe u /idAe/memv_capP[]. by rewrite memv_ker !lfun_simp /= subr_eq0 => /eqP. Qed. Lemma algidr A : {in A, right_id (algid A) *%R}. Proof. rewrite /algid; case: algid_subproof => e _ /=; have /andP[-> _] := valP A. move/subvP=> idAe u /idAe/memv_capP[_]. by rewrite memv_ker !lfun_simp /= subr_eq0 => /eqP. Qed. Lemma unitr_algid1 A u : u \in A -> u \is a GRing.unit -> algid A = 1. Proof. by move=> Eu /mulrI; apply; rewrite mulr1 algidr. Qed. Lemma algid_eq1 A : (algid A == 1) = (1 \in A). Proof. by apply/eqP/idP=> [<- | /algidr <-]; rewrite ?memv_algid ?mul1r. Qed. Lemma algid_neq0 A : algid A != 0. Proof. have /andP[/has_algidP[u [Au nz_u _]] _] := valP A. by apply: contraNneq nz_u => e0; rewrite -(algidr Au) e0 mulr0. Qed. Lemma dim_algid A : \dim <[algid A]> = 1%N. Proof. by rewrite dim_vline algid_neq0. Qed. Lemma adim_gt0 A : (0 < \dim A)%N. Proof. by rewrite -(dim_algid A) dimvS // -memvE ?memv_algid. Qed. Lemma not_asubv0 A : ~~ (A <= 0)%VS. Proof. by rewrite subv0 -dimv_eq0 -lt0n adim_gt0. Qed. Lemma adim1P {A} : reflect (A = <[algid A]>%VS :> {vspace aT}) (\dim A == 1%N). Proof. rewrite eqn_leq adim_gt0 -(memv_algid A) andbC -(dim_algid A) -eqEdim eq_sym. exact: eqP. Qed. Lemma asubv A : (A * A <= A)%VS. Proof. by have /andP[] := valP A. Qed. Lemma memvM A : {in A &, forall u v, u * v \in A}. Proof. exact/prodvP/asubv. Qed. Lemma prodv_id A : (A * A)%VS = A. Proof. apply/eqP; rewrite eqEsubv asubv; apply/subvP=> u Au. by rewrite -(algidl Au) memv_mul // memv_algid. Qed. Lemma prodv_sub U V A : (U <= A -> V <= A -> U * V <= A)%VS. Proof. by move=> sUA sVA; rewrite -prodv_id prodvS. Qed. Lemma expv_id A n : (A ^+ n.+1)%VS = A. Proof. by elim: n => // n IHn; rewrite !expvSl prodvA prodv_id -expvSl. Qed. Lemma limg_amulr U v : (amulr v @: U = U * <[v]>)%VS. Proof. rewrite -(span_basis (vbasisP U)) limg_span !span_def big_distrl /= big_map. by apply: eq_bigr => u; rewrite prodv_line lfunE. Qed. Lemma memv_cosetP {U v w} : reflect (exists2 u, u\in U & w = u * v) (w \in U * <[v]>)%VS. Proof. rewrite -limg_amulr. by apply: (iffP memv_imgP) => [] [u] Uu ->; exists u; rewrite ?lfunE. Qed. Lemma dim_cosetv_unit V u : u \is a GRing.unit -> \dim (V * <[u]>) = \dim V. Proof. by move/lker0_amulr/eqP=> Uu; rewrite -limg_amulr limg_dim_eq // Uu capv0. Qed. Lemma memvV A u : (u^-1 \in A) = (u \in A). Proof. suffices{u} invA: invr_closed A by apply/idP/idP=> /invA; rewrite ?invrK. move=> u Au; have [Uu | /invr_out-> //] := boolP (u \is a GRing.unit). rewrite memvE -(limg_ker0 _ _ (lker0_amulr Uu)) limg_line lfunE /= mulVr //. suff ->: (amulr u @: A)%VS = A by rewrite -memvE -algid_eq1 (unitr_algid1 Au). by apply/eqP; rewrite limg_amulr -dimv_leqif_eq ?prodv_sub ?dim_cosetv_unit. Qed. Fact aspace_cap_subproof A B : algid A \in B -> is_aspace (A :&: B). Proof. move=> BeA; apply/andP. split; [apply/has_algidP | by rewrite subv_cap !prodv_sub ?capvSl ?capvSr]. exists (algid A); rewrite /is_algid algid_neq0 memv_cap memv_algid. by split=> // u /memv_capP[Au _]; rewrite ?algidl ?algidr. Qed. Definition aspace_cap A B BeA := ASpace (@aspace_cap_subproof A B BeA). Fact centraliser1_is_aspace u : is_aspace 'C[u]. Proof. rewrite /is_aspace has_algid1 ?cent1v1 //=. apply/prodvP=> v w /cent1vP-cuv /cent1vP-cuw. by apply/cent1vP; rewrite -mulrA cuw !mulrA cuv. Qed. Canonical centraliser1_aspace u := ASpace (centraliser1_is_aspace u). Fact centraliser_is_aspace V : is_aspace 'C(V). Proof. rewrite /is_aspace has_algid1 ?centv1 //=. apply/prodvP=> u w /centvP-cVu /centvP-cVw. by apply/centvP=> v Vv; rewrite /= -mulrA cVw // !mulrA cVu. Qed. Canonical centraliser_aspace V := ASpace (centraliser_is_aspace V). Lemma centv_algid A : algid A \in 'C(A)%VS. Proof. by apply/centvP=> u Au; rewrite algidl ?algidr. Qed. Canonical center_aspace A := [aspace of 'Z(A) for aspace_cap (centv_algid A)]. Lemma algid_center A : algid 'Z(A) = algid A. Proof. rewrite -(algidl (subvP (centerv_sub A) _ (memv_algid _))) algidr //=. by rewrite memv_cap memv_algid centv_algid. Qed. Lemma Falgebra_FieldMixin : GRing.IntegralDomain.axiom aT -> GRing.Field.mixin_of aT. Proof. move=> domT u nz_u; apply/unitrP. have kerMu: lker (amulr u) == 0%VS. rewrite eqEsubv sub0v andbT; apply/subvP=> v; rewrite memv_ker lfunE /=. by move/eqP/domT; rewrite (negPf nz_u) orbF memv0. have /memv_imgP[v _ vu1]: 1 \in limg (amulr u); last rewrite lfunE /= in vu1. suffices /eqP->: limg (amulr u) == fullv by rewrite memvf. by rewrite -dimv_leqif_eq ?subvf ?limg_dim_eq // (eqP kerMu) capv0. exists v; split=> //; apply: (lker0P kerMu). by rewrite !lfunE /= -mulrA -vu1 mulr1 mul1r. Qed. Section SkewField. Hypothesis fieldT : GRing.Field.mixin_of aT. Lemma skew_field_algid1 A : algid A = 1. Proof. by rewrite (unitr_algid1 (memv_algid A)) ?fieldT ?algid_neq0. Qed. Lemma skew_field_module_semisimple A M : let sumA X := (\sum_(x <- X) A * <[x]>)%VS in (A * M <= M)%VS -> {X | [/\ sumA X = M, directv (sumA X) & 0 \notin X]}. Proof. move=> sumA sAM_M; pose X := Nil aT; pose k := (\dim (A * M) - \dim (sumA X))%N. have: (\dim (A * M) - \dim (sumA X) < k.+1)%N by []. have: [/\ (sumA X <= A * M)%VS, directv (sumA X) & 0 \notin X]. by rewrite /sumA directvE /= !big_nil sub0v dimv0. elim: {X k}k.+1 (X) => // k IHk X [sAX_AM dxAX nzX]; rewrite ltnS => leAXk. have [sM_AX | /subvPn/sig2W[y My notAXy]] := boolP (M <= sumA X)%VS. by exists X; split=> //; apply/eqP; rewrite eqEsubv (subv_trans sAX_AM). have nz_y: y != 0 by rewrite (memPnC notAXy) ?mem0v. pose AY := sumA (y :: X). have sAY_AM: (AY <= A * M)%VS by rewrite [AY]big_cons subv_add ?prodvSr. have dxAY: directv AY. rewrite directvE /= !big_cons [_ == _]directv_addE dxAX directvE eqxx /=. rewrite -/(sumA X) eqEsubv sub0v andbT -limg_amulr. apply/subvP=> _ /memv_capP[/memv_imgP[a Aa ->]]/[!lfunE]/= AXay. rewrite memv0 (mulIr_eq0 a (mulIr _)) ?fieldT //. apply: contraR notAXy => /fieldT-Ua; rewrite -[y](mulKr Ua) /sumA. by rewrite -big_distrr -(prodv_id A) /= -prodvA big_distrr memv_mul ?memvV. apply: (IHk (y :: X)); first by rewrite !inE eq_sym negb_or nz_y. rewrite -subSn ?dimvS // (directvP dxAY) /= big_cons -(directvP dxAX) /=. rewrite subnDA (leq_trans _ leAXk) ?leq_sub2r // leq_subLR -add1n leq_add2r. by rewrite dim_cosetv_unit ?fieldT ?adim_gt0. Qed. Lemma skew_field_module_dimS A M : (A * M <= M)%VS -> \dim A %| \dim M. Proof. case/skew_field_module_semisimple=> X [<- /directvP-> nzX] /=. rewrite big_seq prime.dvdn_sum // => x /(memPn nzX)nz_x. by rewrite dim_cosetv_unit ?fieldT. Qed. Lemma skew_field_dimS A B : (A <= B)%VS -> \dim A %| \dim B. Proof. by move=> sAB; rewrite skew_field_module_dimS ?prodv_sub. Qed. End SkewField. End AspaceTheory. (* Note that local centraliser might not be proper sub-algebras. *) Notation "'C [ u ]" := (centraliser1_aspace u) : aspace_scope. Notation "'C ( V )" := (centraliser_aspace V) : aspace_scope. Notation "'Z ( A )" := (center_aspace A) : aspace_scope. Arguments adim1P {K aT A}. Arguments memv_cosetP {K aT U v w}. Section Closure. Variables (K : fieldType) (aT : FalgType K). Implicit Types (u v : aT) (U V W : {vspace aT}). (* Subspaces of an F-algebra form a Kleene algebra *) Definition agenv U := (\sum_(i < \dim {:aT}) U ^+ i)%VS. Local Notation "<< U & vs >>" := (agenv (U + <>)) : vspace_scope. Local Notation "<< U ; x >>" := (agenv (U + <[x]>)) : vspace_scope. Lemma agenvEl U : agenv U = (1 + U * agenv U)%VS. Proof. pose f V := (1 + U * V)%VS; rewrite -/(f _); pose n := \dim {:aT}. have ->: agenv U = iter n f 0%VS. rewrite /agenv -/n; elim: n => [|n IHn]; first by rewrite big_ord0. rewrite big_ord_recl /= -{}IHn; congr (1 + _)%VS; rewrite big_distrr /=. by apply: eq_bigr => i; rewrite expvSl. have fS i j: i <= j -> (iter i f 0 <= iter j f 0)%VS. by elim: i j => [|i IHi] [|j] leij; rewrite ?sub0v //= addvS ?prodvSr ?IHi. suffices /(@trajectP _ f _ n.+1)[i le_i_n Dfi]: looping f 0%VS n.+1. by apply/eqP; rewrite eqEsubv -iterS fS // Dfi fS. apply: contraLR (dimvS (subvf (iter n.+1 f 0%VS))); rewrite -/n -ltnNge. rewrite -looping_uniq; elim: n.+1 => // i IHi; rewrite trajectSr rcons_uniq. rewrite {1}trajectSr mem_rcons inE negb_or eq_sym eqEdim fS ?leqW // -ltnNge. by rewrite -andbA => /and3P[lt_fi _ /IHi/leq_ltn_trans->]. Qed. Lemma agenvEr U : agenv U = (1 + agenv U * U)%VS. Proof. rewrite [lhs in lhs = _]agenvEl big_distrr big_distrl /=; congr (_ + _)%VS. by apply: eq_bigr => i _ /=; rewrite -expvSr -expvSl. Qed. Lemma agenv_modl U V : (U * V <= V -> agenv U * V <= V)%VS. Proof. rewrite big_distrl /= => idlU_V; apply/subv_sumP=> [[i _] /= _]. elim: i => [|i]; first by rewrite expv0 prod1v. by apply: subv_trans; rewrite expvSr -prodvA prodvSr. Qed. Lemma agenv_modr U V : (V * U <= V -> V * agenv U <= V)%VS. Proof. rewrite big_distrr /= => idrU_V; apply/subv_sumP=> [[i _] /= _]. elim: i => [|i]; first by rewrite expv0 prodv1. by apply: subv_trans; rewrite expvSl prodvA prodvSl. Qed. Fact agenv_is_aspace U : is_aspace (agenv U). Proof. rewrite /is_aspace has_algid1; last by rewrite memvE agenvEl addvSl. by rewrite agenv_modl // [V in (_ <= V)%VS]agenvEl addvSr. Qed. Canonical agenv_aspace U : {aspace aT} := ASpace (agenv_is_aspace U). Lemma agenvE U : agenv U = agenv_aspace U. Proof. by []. Qed. (* Kleene algebra properties *) Lemma agenvM U : (agenv U * agenv U)%VS = agenv U. Proof. exact: prodv_id. Qed. Lemma agenvX n U : (agenv U ^+ n.+1)%VS = agenv U. Proof. exact: expv_id. Qed. Lemma sub1_agenv U : (1 <= agenv U)%VS. Proof. by rewrite agenvEl addvSl. Qed. Lemma sub_agenv U : (U <= agenv U)%VS. Proof. by rewrite 2!agenvEl addvC prodvDr prodv1 -addvA addvSl. Qed. Lemma subX_agenv U n : (U ^+ n <= agenv U)%VS. Proof. by case: n => [|n]; rewrite ?sub1_agenv // -(agenvX n) expvS // sub_agenv. Qed. Lemma agenv_sub_modl U V : (1 <= V -> U * V <= V -> agenv U <= V)%VS. Proof. move=> s1V /agenv_modl; apply: subv_trans. by rewrite -[Us in (Us <= _)%VS]prodv1 prodvSr. Qed. Lemma agenv_sub_modr U V : (1 <= V -> V * U <= V -> agenv U <= V)%VS. Proof. move=> s1V /agenv_modr; apply: subv_trans. by rewrite -[Us in (Us <= _)%VS]prod1v prodvSl. Qed. Lemma agenv_id U : agenv (agenv U) = agenv U. Proof. apply/eqP; rewrite eqEsubv sub_agenv andbT. by rewrite agenv_sub_modl ?sub1_agenv ?agenvM. Qed. Lemma agenvS U V : (U <= V -> agenv U <= agenv V)%VS. Proof. move=> sUV; rewrite agenv_sub_modl ?sub1_agenv //. by rewrite -[Vs in (_ <= Vs)%VS]agenvM prodvSl ?(subv_trans sUV) ?sub_agenv. Qed. Lemma agenv_add_id U V : agenv (agenv U + V) = agenv (U + V). Proof. apply/eqP; rewrite eqEsubv andbC agenvS ?addvS ?sub_agenv //=. rewrite agenv_sub_modl ?sub1_agenv //. rewrite -[rhs in (_ <= rhs)%VS]agenvM prodvSl // subv_add agenvS ?addvSl //=. exact: subv_trans (addvSr U V) (sub_agenv _). Qed. Lemma subv_adjoin U x : (U <= <>)%VS. Proof. by rewrite (subv_trans (sub_agenv _)) ?agenvS ?addvSl. Qed. Lemma subv_adjoin_seq U xs : (U <= <>)%VS. Proof. by rewrite (subv_trans (sub_agenv _)) // ?agenvS ?addvSl. Qed. Lemma memv_adjoin U x : x \in <>%VS. Proof. by rewrite memvE (subv_trans (sub_agenv _)) ?agenvS ?addvSr. Qed. Lemma seqv_sub_adjoin U xs : {subset xs <= <>%VS}. Proof. by apply/span_subvP; rewrite (subv_trans (sub_agenv _)) ?agenvS ?addvSr. Qed. Lemma subvP_adjoin U x y : y \in U -> y \in <>%VS. Proof. exact/subvP/subv_adjoin. Qed. Lemma adjoin_nil V : <>%VS = agenv V. Proof. by rewrite span_nil addv0. Qed. Lemma adjoin_cons V x rs : <>%VS = << <> & rs>>%VS. Proof. by rewrite span_cons addvA agenv_add_id. Qed. Lemma adjoin_rcons V rs x : <>%VS = << <>%VS; x>>%VS. Proof. by rewrite -cats1 span_cat addvA span_seq1 agenv_add_id. Qed. Lemma adjoin_seq1 V x : <>%VS = <>%VS. Proof. by rewrite adjoin_cons adjoin_nil agenv_id. Qed. Lemma adjoinC V x y : << <>; y>>%VS = << <>; x>>%VS. Proof. by rewrite !agenv_add_id -!addvA (addvC <[x]>%VS). Qed. Lemma adjoinSl U V x : (U <= V -> <> <= <>)%VS. Proof. by move=> sUV; rewrite agenvS ?addvS. Qed. Lemma adjoin_seqSl U V rs : (U <= V -> <> <= <>)%VS. Proof. by move=> sUV; rewrite agenvS ?addvS. Qed. Lemma adjoin_seqSr U rs1 rs2 : {subset rs1 <= rs2} -> (<> <= <>)%VS. Proof. by move/sub_span=> s_rs12; rewrite agenvS ?addvS. Qed. End Closure. Notation "<< U >>" := (agenv_aspace U) : aspace_scope. Notation "<< U & vs >>" := (agenv (U + <>)) : vspace_scope. Notation "<< U ; x >>" := (agenv (U + <[x]>)) : vspace_scope. Notation "<< U & vs >>" := << U + <> >>%AS : aspace_scope. Notation "<< U ; x >>" := << U + <[x]> >>%AS : aspace_scope. Section SubFalgType. (* The FalgType structure of subvs_of A for A : {aspace aT}. *) (* We can't use the rpred-based mixin, because A need not contain 1. *) Variable (K : fieldType) (aT : FalgType K) (A : {aspace aT}). Definition subvs_one := Subvs (memv_algid A). Definition subvs_mul (u v : subvs_of A) := Subvs (subv_trans (memv_mul (subvsP u) (subvsP v)) (asubv _)). Fact subvs_mulA : associative subvs_mul. Proof. by move=> x y z; apply/val_inj/mulrA. Qed. Fact subvs_mu1l : left_id subvs_one subvs_mul. Proof. by move=> x; apply/val_inj/algidl/(valP x). Qed. Fact subvs_mul1 : right_id subvs_one subvs_mul. Proof. by move=> x; apply/val_inj/algidr/(valP x). Qed. Fact subvs_mulDl : left_distributive subvs_mul +%R. Proof. move=> x y z; apply/val_inj/mulrDl. Qed. Fact subvs_mulDr : right_distributive subvs_mul +%R. Proof. move=> x y z; apply/val_inj/mulrDr. Qed. Definition subvs_ringMixin := RingMixin subvs_mulA subvs_mu1l subvs_mul1 subvs_mulDl subvs_mulDr (algid_neq0 _). Canonical subvs_ringType := Eval hnf in RingType (subvs_of A) subvs_ringMixin. Lemma subvs_scaleAl k (x y : subvs_of A) : k *: (x * y) = (k *: x) * y. Proof. exact/val_inj/scalerAl. Qed. Canonical subvs_lalgType := Eval hnf in LalgType K (subvs_of A) subvs_scaleAl. Lemma subvs_scaleAr k (x y : subvs_of A) : k *: (x * y) = x * (k *: y). Proof. exact/val_inj/scalerAr. Qed. Canonical subvs_algType := Eval hnf in AlgType K (subvs_of A) subvs_scaleAr. Canonical subvs_unitRingType := Eval hnf in FalgUnitRingType (subvs_of A). Canonical subvs_unitAlgType := Eval hnf in [unitAlgType K of subvs_of A]. Canonical subvs_FalgType := Eval hnf in [FalgType K of subvs_of A]. Implicit Type w : subvs_of A. Lemma vsval_unitr w : vsval w \is a GRing.unit -> w \is a GRing.unit. Proof. case: w => /= u Au Uu; have Au1: u^-1 \in A by rewrite memvV. apply/unitrP; exists (Subvs Au1). by split; apply: val_inj; rewrite /= ?mulrV ?mulVr ?(unitr_algid1 Au). Qed. Lemma vsval_invr w : vsval w \is a GRing.unit -> val w^-1 = (val w)^-1. Proof. move=> Uu; have def_w: w / w * w = w by rewrite divrK ?vsval_unitr. by apply: (mulrI Uu); rewrite -[in u in u / _]def_w ?mulrK. Qed. End SubFalgType. Section AHom. Variable K : fieldType. Section Class_Def. Variables aT rT : FalgType K. Definition ahom_in (U : {vspace aT}) (f : 'Hom(aT, rT)) := all2rel (fun x y : aT => f (x * y) == f x * f y) (vbasis U) && (f 1 == 1). Lemma ahom_inP {f : 'Hom(aT, rT)} {U : {vspace aT}} : reflect ({in U &, {morph f : x y / x * y >-> x * y}} * (f 1 = 1)) (ahom_in U f). Proof. apply: (iffP andP) => [[/allrelP fM /eqP f1] | [fM f1]]; last first. rewrite f1; split=> //; apply/allrelP => x y Ax Ay. by rewrite fM // vbasis_mem. split=> // x y /coord_vbasis -> /coord_vbasis ->. rewrite !mulr_suml ![f _]linear_sum mulr_suml; apply: eq_bigr => i _ /=. rewrite !mulr_sumr linear_sum; apply: eq_bigr => j _ /=. rewrite !linearZ -!scalerAr -!scalerAl 2!linearZ /=; congr (_ *: (_ *: _)). by apply/eqP/fM; apply: memt_nth. Qed. Lemma ahomP {f : 'Hom(aT, rT)} : reflect (lrmorphism f) (ahom_in {:aT} f). Proof. apply: (iffP ahom_inP) => [[fM f1] | fRM_P]; last first. pose fRM := LRMorphism fRM_P. by split; [apply: in2W (rmorphM fRM) | apply: (rmorph1 fRM)]. split; last exact: linearZZ; split; first exact: linearB. by split=> // x y; rewrite fM ?memvf. Qed. Structure ahom := AHom {ahval :> 'Hom(aT, rT); _ : ahom_in {:aT} ahval}. Canonical ahom_subType := Eval hnf in [subType for ahval]. Definition ahom_eqMixin := [eqMixin of ahom by <:]. Canonical ahom_eqType := Eval hnf in EqType ahom ahom_eqMixin. Definition ahom_choiceMixin := [choiceMixin of ahom by <:]. Canonical ahom_choiceType := Eval hnf in ChoiceType ahom ahom_choiceMixin. Fact linfun_is_ahom (f : {lrmorphism aT -> rT}) : ahom_in {:aT} (linfun f). Proof. by apply/ahom_inP; split=> [x y|]; rewrite !lfunE ?rmorphM ?rmorph1. Qed. Canonical linfun_ahom f := AHom (linfun_is_ahom f). End Class_Def. Arguments ahom_in [aT rT]. Arguments ahom_inP {aT rT f U}. Arguments ahomP {aT rT f}. Section LRMorphism. Variables aT rT sT : FalgType K. Fact ahom_is_lrmorphism (f : ahom aT rT) : lrmorphism f. Proof. by apply/ahomP; case: f. Qed. Canonical ahom_rmorphism f := Eval hnf in AddRMorphism (ahom_is_lrmorphism f). Canonical ahom_lrmorphism f := Eval hnf in AddLRMorphism (ahom_is_lrmorphism f). Lemma ahomWin (f : ahom aT rT) U : ahom_in U f. Proof. by apply/ahom_inP; split; [apply: in2W (rmorphM _) | apply: rmorph1]. Qed. Lemma id_is_ahom (V : {vspace aT}) : ahom_in V \1. Proof. by apply/ahom_inP; split=> [x y|] /=; rewrite !id_lfunE. Qed. Canonical id_ahom := AHom (id_is_ahom (aspacef aT)). Lemma comp_is_ahom (V : {vspace aT}) (f : 'Hom(rT, sT)) (g : 'Hom(aT, rT)) : ahom_in {:rT} f -> ahom_in V g -> ahom_in V (f \o g). Proof. move=> /ahom_inP fM /ahom_inP gM; apply/ahom_inP. by split=> [x y Vx Vy|] /=; rewrite !comp_lfunE gM // fM ?memvf. Qed. Canonical comp_ahom (f : ahom rT sT) (g : ahom aT rT) := AHom (comp_is_ahom (valP f) (valP g)). Lemma aimgM (f : ahom aT rT) U V : (f @: (U * V) = f @: U * f @: V)%VS. Proof. apply/eqP; rewrite eqEsubv; apply/andP; split; last first. apply/prodvP=> _ _ /memv_imgP[u Hu ->] /memv_imgP[v Hv ->]. by rewrite -rmorphM memv_img // memv_mul. apply/subvP=> _ /memv_imgP[w UVw ->]; rewrite memv_preim (subvP _ w UVw) //. by apply/prodvP=> u v Uu Vv; rewrite -memv_preim rmorphM memv_mul // memv_img. Qed. Lemma aimg1 (f : ahom aT rT) : (f @: 1 = 1)%VS. Proof. by rewrite limg_line rmorph1. Qed. Lemma aimgX (f : ahom aT rT) U n : (f @: (U ^+ n) = f @: U ^+ n)%VS. Proof. elim: n => [|n IH]; first by rewrite !expv0 aimg1. by rewrite !expvSl aimgM IH. Qed. Lemma aimg_agen (f : ahom aT rT) U : (f @: agenv U)%VS = agenv (f @: U). Proof. apply/eqP; rewrite eqEsubv; apply/andP; split. by rewrite limg_sum; apply/subv_sumP => i _; rewrite aimgX subX_agenv. apply: agenv_sub_modl; first by rewrite -(aimg1 f) limgS // sub1_agenv. by rewrite -aimgM limgS // [rhs in (_ <= rhs)%VS]agenvEl addvSr. Qed. Lemma aimg_adjoin (f : ahom aT rT) U x : (f @: <> = <>)%VS. Proof. by rewrite aimg_agen limgD limg_line. Qed. Lemma aimg_adjoin_seq (f : ahom aT rT) U xs : (f @: <> = <>)%VS. Proof. by rewrite aimg_agen limgD limg_span. Qed. Fact ker_sub_ahom_is_aspace (f g : ahom aT rT) : is_aspace (lker (ahval f - ahval g)). Proof. rewrite /is_aspace has_algid1; last by apply/eqlfunP; rewrite !rmorph1. apply/prodvP=> a b /eqlfunP Dfa /eqlfunP Dfb. by apply/eqlfunP; rewrite !rmorphM /= Dfa Dfb. Qed. Canonical ker_sub_ahom_aspace f g := ASpace (ker_sub_ahom_is_aspace f g). End LRMorphism. Canonical fixedSpace_aspace aT (f : ahom aT aT) := [aspace of fixedSpace f]. End AHom. Arguments ahom_in [K aT rT]. Notation "''AHom' ( aT , rT )" := (ahom aT rT) : type_scope. Notation "''AEnd' ( aT )" := (ahom aT aT) : type_scope. Delimit Scope lrfun_scope with AF. Bind Scope lrfun_scope with ahom. Notation "\1" := (@id_ahom _ _) : lrfun_scope. Notation "f \o g" := (comp_ahom f g) : lrfun_scope.