(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat div seq. From mathcomp Require Import fintype bigop finset fingroup morphism perm. From mathcomp Require Import automorphism quotient. (******************************************************************************) (* Group action: orbits, stabilisers, transitivity. *) (* is_action D to == the function to : T -> aT -> T defines an action *) (* of D : {set aT} on T. *) (* action D T == structure for a function defining an action of D. *) (* act_dom to == the domain D of to : action D rT. *) (* {action: aT &-> T} == structure for a total action. *) (* := action [set: aT] T *) (* TotalAction to1 toM == the constructor for total actions; to1 and toM *) (* are the proofs of the action identities for 1 and *) (* a * b, respectively. *) (* is_groupAction R to == to is a group action on range R: for all a in D, *) (* the permutation induced by to a is in Aut R. Thus *) (* the action of D must be trivial outside R. *) (* groupAction D R == the structure for group actions of D on R. This *) (* is a telescope on action D rT. *) (* gact_range to == the range R of to : groupAction D R. *) (* GroupAction toAut == constructs a groupAction for action to from *) (* toAut : actm to @* D \subset Aut R (actm to is *) (* the morphism to {perm rT} associated to 'to'). *) (* orbit to A x == the orbit of x under the action of A via to. *) (* orbit_transversal to A S == a transversal of the partition orbit to A @: S *) (* of S, provided A acts on S via to. *) (* amove to A x y == the set of a in A whose action sends x to y. *) (* 'C_A[x | to] == the stabiliser of x : rT in A :&: D. *) (* 'C_A(S | to) == the pointwise stabiliser of S : {set rT} in D :&: A. *) (* 'N_A(S | to) == the global stabiliser of S : {set rT} in D :&: A. *) (* 'Fix_(S | to)[a] == the set of fixpoints of a in S. *) (* 'Fix_(S | to)(A) == the set of fixpoints of A in S. *) (* In the first three _A can be omitted and defaults to the domain D of to; *) (* in the last two S can be omitted and defaults to [set: T], so 'Fix_to[a] *) (* is the set of all fixpoints of a. *) (* The domain restriction ensures that stabilisers have a canonical group *) (* structure, but note that 'Fix sets are generally not groups. Indeed, we *) (* provide alternative definitions when to is a group action on R: *) (* 'C_(G | to)(A) == the centraliser in R :&: G of the group action of *) (* D :&: A via to *) (* 'C_(G | to)[a] == the centraliser in R :&: G of a \in D, via to. *) (* These sets are groups when G is; G can be omitted: 'C(|to)(A) is the *) (* centraliser in R of the action of D :&: A via to. *) (* [acts A, on S | to] == A \subset D acts on the set S via to. *) (* {acts A, on S | to} == A acts on the set S (Prop statement). *) (* {acts A, on group G | to} == [acts A, on S | to] /\ G \subset R, i.e., *) (* A \subset D acts on G \subset R, via *) (* to : groupAction D R. *) (* [transitive A, on S | to] == A acts transitively on S. *) (* [faithful A, on S | to] == A acts faithfully on S. *) (* acts_irreducibly to A G == A acts irreducibly via the groupAction to *) (* on the nontrivial group G, i.e., A does *) (* not act on any nontrivial subgroup of G. *) (* Important caveat: the definitions of orbit, amove, 'Fix_(S | to)(A), *) (* transitive and faithful assume that A is a subset of the domain D. As most *) (* of the permutation actions we consider are total this is usually harmless. *) (* (Note that the theory of partial actions is only partially developed.) *) (* In all of the above, to is expected to be the actual action structure, *) (* not merely the function. There is a special scope %act for actions, and *) (* constructions and notations for many classical actions: *) (* 'P == natural action of a permutation group via aperm. *) (* 'J == internal group action (conjugation) via conjg (_ ^ _). *) (* 'R == regular group action (right translation) via mulg (_ * _). *) (* (However, to limit ambiguity, _ * _ is NOT a canonical action.) *) (* to^* == the action induced by to on {set rT} via to^* (== setact to). *) (* 'Js == the internal action on subsets via _ :^ _, equivalent to 'J^*. *) (* 'Rs == the regular action on subsets via rcoset, equivalent to 'R^*. *) (* 'JG == the conjugation action on {group rT} via (_ :^ _)%G. *) (* to / H == the action induced by to on coset_of H via qact to H, and *) (* restricted to (qact_dom to H) == 'N(rcosets H 'N(H) | to^* ). *) (* 'Q == the action induced to cosets by conjugation; the domain is *) (* qact_dom 'J H, which is provably equal to 'N(H). *) (* to %% A == the action of coset_of A via modact to A, with domain D / A *) (* and support restricted to 'C(D :&: A | to). *) (* to \ sAD == the action of A via ract to sAD == to, if sAD : A \subset D. *) (* [Aut G] == the permutation action restricted to Aut G, via autact G. *) (* <[nRA]> == the action of A on R via actby nRA == to in A and on R, and *) (* the trivial action elsewhere; here nRA : [acts A, on R | to] *) (* or nRA : {acts A, on group R | to}. *) (* to^? == the action induced by to on sT : @subType rT P, via subact to *) (* with domain subact_dom P to == 'N([set x | P x] | to). *) (* <> == the action of phi : D >-> {perm rT}, via mact phi. *) (* to \o f == the composite action (with domain f @*^-1 D) of the action to *) (* with f : {morphism G >-> aT}, via comp_act to f. Here f must *) (* be the actual morphism object (e.g., coset_morphism H), not *) (* the underlying function (e.g., coset H). *) (* The explicit application of an action to is usually written (to%act x a), *) (* but %act can be omitted if to is an abstract action or a set action to^*. *) (* Note that this form will simplify and expose the acting function. *) (* There is a %gact scope for group actions; the notations above are *) (* recognised in %gact when they denote canonical group actions. *) (* Actions can be used to define morphisms: *) (* actperm to == the morphism D >-> {perm rT} induced by to. *) (* actm to a == if a \in D the function on D induced by the action to, else *) (* the identity function. If to is a group action with range R *) (* then actm to a is canonically a morphism on R. *) (* We also define here the restriction operation on permutations (the domain *) (* of this operations is a stabiliser), and local automorphism groups: *) (* restr_perm S p == if p acts on S, the permutation with support in S that *) (* coincides with p on S; else the identity. Note that *) (* restr_perm is a permutation group morphism that maps *) (* Aut G to Aut S when S is a subgroup of G. *) (* Aut_in A G == the local permutation group 'N_A(G | 'P) / 'C_A(G | 'P) *) (* Usually A is an automorphism group, and then Aut_in A G *) (* is isomorphic to a subgroup of Aut G, specifically *) (* restr_perm @* A. *) (* Finally, gproduct.v will provide a semi-direct group construction that *) (* maps an external group action to an internal one; the theory of morphisms *) (* between such products makes use of the following definition: *) (* morph_act to to' f fA <=> the action of to' on the images of f and fA is *) (* the image of the action of to, i.e., for all x and a we *) (* have f (to x a) = to' (f x) (fA a). Note that there is *) (* no mention of the domains of to and to'; if needed, this *) (* predicate should be restricted via the {in ...} notation *) (* and domain conditions should be added. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope action_scope. Declare Scope groupAction_scope. Import GroupScope. Section ActionDef. Variables (aT : finGroupType) (D : {set aT}) (rT : Type). Implicit Types a b : aT. Implicit Type x : rT. Definition act_morph to x := forall a b, to x (a * b) = to (to x a) b. Definition is_action to := left_injective to /\ forall x, {in D &, act_morph to x}. Record action := Action {act :> rT -> aT -> rT; _ : is_action act}. Definition clone_action to := let: Action _ toP := to return {type of Action for to} -> action in fun k => k toP. End ActionDef. (* Need to close the Section here to avoid re-declaring all Argument Scopes *) Delimit Scope action_scope with act. Bind Scope action_scope with action. Arguments act_morph {aT rT%type} to x%g. Arguments is_action {aT} D%g {rT} to. Arguments act {aT D%g rT%type} to%act x%g a%g : rename. Arguments clone_action [aT D%g rT%type to%act] _. Notation "{ 'action' aT &-> T }" := (action [set: aT] T) (at level 0, format "{ 'action' aT &-> T }") : type_scope. Notation "[ 'action' 'of' to ]" := (clone_action (@Action _ _ _ to)) (at level 0, format "[ 'action' 'of' to ]") : form_scope. Definition act_dom aT D rT of @action aT D rT := D. Section TotalAction. Variables (aT : finGroupType) (rT : Type) (to : rT -> aT -> rT). Hypotheses (to1 : to^~ 1 =1 id) (toM : forall x, act_morph to x). Lemma is_total_action : is_action setT to. Proof. split=> [a | x a b _ _] /=; last by rewrite toM. by apply: can_inj (to^~ a^-1) _ => x; rewrite -toM ?mulgV. Qed. Definition TotalAction := Action is_total_action. End TotalAction. Section ActionDefs. Variables (aT aT' : finGroupType) (D : {set aT}) (D' : {set aT'}). Definition morph_act rT rT' (to : action D rT) (to' : action D' rT') f fA := forall x a, f (to x a) = to' (f x) (fA a). Variable rT : finType. (* Most definitions require a finType structure on rT *) Implicit Type to : action D rT. Implicit Type A : {set aT}. Implicit Type S : {set rT}. Definition actm to a := if a \in D then to^~ a else id. Definition setact to S a := [set to x a | x in S]. Definition orbit to A x := to x @: A. Definition amove to A x y := [set a in A | to x a == y]. Definition afix to A := [set x | A \subset [set a | to x a == x]]. Definition astab S to := D :&: [set a | S \subset [set x | to x a == x]]. Definition astabs S to := D :&: [set a | S \subset to^~ a @^-1: S]. Definition acts_on A S to := {in A, forall a x, (to x a \in S) = (x \in S)}. Definition atrans A S to := S \in orbit to A @: S. Definition faithful A S to := A :&: astab S to \subset [1]. End ActionDefs. Arguments setact {aT D%g rT} to%act S%g a%g. Arguments orbit {aT D%g rT} to%act A%g x%g. Arguments amove {aT D%g rT} to%act A%g x%g y%g. Arguments afix {aT D%g rT} to%act A%g. Arguments astab {aT D%g rT} S%g to%act. Arguments astabs {aT D%g rT} S%g to%act. Arguments acts_on {aT D%g rT} A%g S%g to%act. Arguments atrans {aT D%g rT} A%g S%g to%act. Arguments faithful {aT D%g rT} A%g S%g to%act. Notation "to ^*" := (setact to) (at level 2, format "to ^*") : fun_scope. Prenex Implicits orbit amove. Notation "''Fix_' to ( A )" := (afix to A) (at level 8, to at level 2, format "''Fix_' to ( A )") : group_scope. (* camlp4 grammar factoring *) Notation "''Fix_' ( to ) ( A )" := 'Fix_to(A) (at level 8, only parsing) : group_scope. Notation "''Fix_' ( S | to ) ( A )" := (S :&: 'Fix_to(A)) (at level 8, format "''Fix_' ( S | to ) ( A )") : group_scope. Notation "''Fix_' to [ a ]" := ('Fix_to([set a])) (at level 8, to at level 2, format "''Fix_' to [ a ]") : group_scope. Notation "''Fix_' ( S | to ) [ a ]" := (S :&: 'Fix_to[a]) (at level 8, format "''Fix_' ( S | to ) [ a ]") : group_scope. Notation "''C' ( S | to )" := (astab S to) (at level 8, format "''C' ( S | to )") : group_scope. Notation "''C_' A ( S | to )" := (A :&: 'C(S | to)) (at level 8, A at level 2, format "''C_' A ( S | to )") : group_scope. Notation "''C_' ( A ) ( S | to )" := 'C_A(S | to) (at level 8, only parsing) : group_scope. Notation "''C' [ x | to ]" := ('C([set x] | to)) (at level 8, format "''C' [ x | to ]") : group_scope. Notation "''C_' A [ x | to ]" := (A :&: 'C[x | to]) (at level 8, A at level 2, format "''C_' A [ x | to ]") : group_scope. Notation "''C_' ( A ) [ x | to ]" := 'C_A[x | to] (at level 8, only parsing) : group_scope. Notation "''N' ( S | to )" := (astabs S to) (at level 8, format "''N' ( S | to )") : group_scope. Notation "''N_' A ( S | to )" := (A :&: 'N(S | to)) (at level 8, A at level 2, format "''N_' A ( S | to )") : group_scope. Notation "[ 'acts' A , 'on' S | to ]" := (A \subset pred_of_set 'N(S | to)) (at level 0, format "[ 'acts' A , 'on' S | to ]") : form_scope. Notation "{ 'acts' A , 'on' S | to }" := (acts_on A S to) (at level 0, format "{ 'acts' A , 'on' S | to }") : type_scope. Notation "[ 'transitive' A , 'on' S | to ]" := (atrans A S to) (at level 0, format "[ 'transitive' A , 'on' S | to ]") : form_scope. Notation "[ 'faithful' A , 'on' S | to ]" := (faithful A S to) (at level 0, format "[ 'faithful' A , 'on' S | to ]") : form_scope. Section RawAction. (* Lemmas that do not require the group structure on the action domain. *) (* Some lemmas like actMin would be actually be valid for arbitrary rT, *) (* e.g., for actions on a function type, but would be difficult to use *) (* as a view due to the confusion between parameters and assumptions. *) Variables (aT : finGroupType) (D : {set aT}) (rT : finType) (to : action D rT). Implicit Types (a : aT) (x y : rT) (A B : {set aT}) (S T : {set rT}). Lemma act_inj : left_injective to. Proof. by case: to => ? []. Qed. Arguments act_inj : clear implicits. Lemma actMin x : {in D &, act_morph to x}. Proof. by case: to => ? []. Qed. Lemma actmEfun a : a \in D -> actm to a = to^~ a. Proof. by rewrite /actm => ->. Qed. Lemma actmE a : a \in D -> actm to a =1 to^~ a. Proof. by move=> Da; rewrite actmEfun. Qed. Lemma setactE S a : to^* S a = [set to x a | x in S]. Proof. by []. Qed. Lemma mem_setact S a x : x \in S -> to x a \in to^* S a. Proof. exact: imset_f. Qed. Lemma card_setact S a : #|to^* S a| = #|S|. Proof. by apply: card_imset; apply: act_inj. Qed. Lemma setact_is_action : is_action D to^*. Proof. split=> [a R S eqRS | a b Da Db S]; last first. by rewrite /setact /= -imset_comp; apply: eq_imset => x; apply: actMin. apply/setP=> x; apply/idP/idP=> /(mem_setact a). by rewrite eqRS => /imsetP[y Sy /act_inj->]. by rewrite -eqRS => /imsetP[y Sy /act_inj->]. Qed. Canonical set_action := Action setact_is_action. Lemma orbitE A x : orbit to A x = to x @: A. Proof. by []. Qed. Lemma orbitP A x y : reflect (exists2 a, a \in A & to x a = y) (y \in orbit to A x). Proof. by apply: (iffP imsetP) => [] [a]; exists a. Qed. Lemma mem_orbit A x a : a \in A -> to x a \in orbit to A x. Proof. exact: imset_f. Qed. Lemma afixP A x : reflect (forall a, a \in A -> to x a = x) (x \in 'Fix_to(A)). Proof. rewrite inE; apply: (iffP subsetP) => [xfix a /xfix | xfix a Aa]. by rewrite inE => /eqP. by rewrite inE xfix. Qed. Lemma afixS A B : A \subset B -> 'Fix_to(B) \subset 'Fix_to(A). Proof. by move=> sAB; apply/subsetP=> u /[!inE]; apply: subset_trans. Qed. Lemma afixU A B : 'Fix_to(A :|: B) = 'Fix_to(A) :&: 'Fix_to(B). Proof. by apply/setP=> x; rewrite !inE subUset. Qed. Lemma afix1P a x : reflect (to x a = x) (x \in 'Fix_to[a]). Proof. by rewrite inE sub1set inE; apply: eqP. Qed. Lemma astabIdom S : 'C_D(S | to) = 'C(S | to). Proof. by rewrite setIA setIid. Qed. Lemma astab_dom S : {subset 'C(S | to) <= D}. Proof. by move=> a /setIP[]. Qed. Lemma astab_act S a x : a \in 'C(S | to) -> x \in S -> to x a = x. Proof. rewrite 2!inE => /andP[_ cSa] Sx; apply/eqP. by have /[1!inE] := subsetP cSa x Sx. Qed. Lemma astabS S1 S2 : S1 \subset S2 -> 'C(S2 | to) \subset 'C(S1 | to). Proof. by move=> sS12; apply/subsetP=> x /[!inE] /andP[->]; apply: subset_trans. Qed. Lemma astabsIdom S : 'N_D(S | to) = 'N(S | to). Proof. by rewrite setIA setIid. Qed. Lemma astabs_dom S : {subset 'N(S | to) <= D}. Proof. by move=> a /setIdP[]. Qed. Lemma astabs_act S a x : a \in 'N(S | to) -> (to x a \in S) = (x \in S). Proof. rewrite 2!inE subEproper properEcard => /andP[_]. rewrite (card_preimset _ (act_inj _)) ltnn andbF orbF => /eqP{2}->. by rewrite inE. Qed. Lemma astab_sub S : 'C(S | to) \subset 'N(S | to). Proof. apply/subsetP=> a cSa; rewrite !inE (astab_dom cSa). by apply/subsetP=> x Sx; rewrite inE (astab_act cSa). Qed. Lemma astabsC S : 'N(~: S | to) = 'N(S | to). Proof. apply/setP=> a; apply/idP/idP=> nSa; rewrite !inE (astabs_dom nSa). by rewrite -setCS -preimsetC; apply/subsetP=> x; rewrite inE astabs_act. by rewrite preimsetC setCS; apply/subsetP=> x; rewrite inE astabs_act. Qed. Lemma astabsI S T : 'N(S | to) :&: 'N(T | to) \subset 'N(S :&: T | to). Proof. apply/subsetP=> a; rewrite !inE -!andbA preimsetI => /and4P[-> nSa _ nTa] /=. by rewrite setISS. Qed. Lemma astabs_setact S a : a \in 'N(S | to) -> to^* S a = S. Proof. move=> nSa; apply/eqP; rewrite eqEcard card_setact leqnn andbT. by apply/subsetP=> _ /imsetP[x Sx ->]; rewrite astabs_act. Qed. Lemma astab1_set S : 'C[S | set_action] = 'N(S | to). Proof. apply/setP=> a; apply/idP/idP=> nSa. case/setIdP: nSa => Da; rewrite !inE Da sub1set inE => /eqP defS. by apply/subsetP=> x Sx; rewrite inE -defS mem_setact. by rewrite !inE (astabs_dom nSa) sub1set inE /= astabs_setact. Qed. Lemma astabs_set1 x : 'N([set x] | to) = 'C[x | to]. Proof. apply/eqP; rewrite eqEsubset astab_sub andbC setIS //. by apply/subsetP=> a; rewrite ?(inE,sub1set). Qed. Lemma acts_dom A S : [acts A, on S | to] -> A \subset D. Proof. by move=> nSA; rewrite (subset_trans nSA) ?subsetIl. Qed. Lemma acts_act A S : [acts A, on S | to] -> {acts A, on S | to}. Proof. by move=> nAS a Aa x; rewrite astabs_act ?(subsetP nAS). Qed. Lemma astabCin A S : A \subset D -> (A \subset 'C(S | to)) = (S \subset 'Fix_to(A)). Proof. move=> sAD; apply/subsetP/subsetP=> [sAC x xS | sSF a aA]. by apply/afixP=> a aA; apply: astab_act (sAC _ aA) xS. rewrite !inE (subsetP sAD _ aA); apply/subsetP=> x xS. by move/afixP/(_ _ aA): (sSF _ xS) => /[1!inE] ->. Qed. Section ActsSetop. Variables (A : {set aT}) (S T : {set rT}). Hypotheses (AactS : [acts A, on S | to]) (AactT : [acts A, on T | to]). Lemma astabU : 'C(S :|: T | to) = 'C(S | to) :&: 'C(T | to). Proof. by apply/setP=> a; rewrite !inE subUset; case: (a \in D). Qed. Lemma astabsU : 'N(S | to) :&: 'N(T | to) \subset 'N(S :|: T | to). Proof. by rewrite -(astabsC S) -(astabsC T) -(astabsC (S :|: T)) setCU astabsI. Qed. Lemma astabsD : 'N(S | to) :&: 'N(T | to) \subset 'N(S :\: T| to). Proof. by rewrite setDE -(astabsC T) astabsI. Qed. Lemma actsI : [acts A, on S :&: T | to]. Proof. by apply: subset_trans (astabsI S T); rewrite subsetI AactS. Qed. Lemma actsU : [acts A, on S :|: T | to]. Proof. by apply: subset_trans astabsU; rewrite subsetI AactS. Qed. Lemma actsD : [acts A, on S :\: T | to]. Proof. by apply: subset_trans astabsD; rewrite subsetI AactS. Qed. End ActsSetop. Lemma acts_in_orbit A S x y : [acts A, on S | to] -> y \in orbit to A x -> x \in S -> y \in S. Proof. by move=> nSA/imsetP[a Aa ->{y}] Sx; rewrite (astabs_act _ (subsetP nSA a Aa)). Qed. Lemma subset_faithful A B S : B \subset A -> [faithful A, on S | to] -> [faithful B, on S | to]. Proof. by move=> sAB; apply: subset_trans; apply: setSI. Qed. Section Reindex. Variables (vT : Type) (idx : vT) (op : Monoid.com_law idx) (S : {set rT}). Lemma reindex_astabs a F : a \in 'N(S | to) -> \big[op/idx]_(i in S) F i = \big[op/idx]_(i in S) F (to i a). Proof. move=> nSa; rewrite (reindex_inj (act_inj a)); apply: eq_bigl => x. exact: astabs_act. Qed. Lemma reindex_acts A a F : [acts A, on S | to] -> a \in A -> \big[op/idx]_(i in S) F i = \big[op/idx]_(i in S) F (to i a). Proof. by move=> nSA /(subsetP nSA); apply: reindex_astabs. Qed. End Reindex. End RawAction. Arguments act_inj {aT D rT} to a [x1 x2] : rename. Notation "to ^*" := (set_action to) : action_scope. Arguments orbitP {aT D rT to A x y}. Arguments afixP {aT D rT to A x}. Arguments afix1P {aT D rT to a x}. Arguments reindex_astabs [aT D rT] to [vT idx op S] a [F]. Arguments reindex_acts [aT D rT] to [vT idx op S A a F]. Section PartialAction. (* Lemmas that require a (partial) group domain. *) Variables (aT : finGroupType) (D : {group aT}) (rT : finType). Variable to : action D rT. Implicit Types a : aT. Implicit Types x y : rT. Implicit Types A B : {set aT}. Implicit Types G H : {group aT}. Implicit Types S : {set rT}. Lemma act1 x : to x 1 = x. Proof. by apply: (act_inj to 1); rewrite -actMin ?mulg1. Qed. Lemma actKin : {in D, right_loop invg to}. Proof. by move=> a Da /= x; rewrite -actMin ?groupV // mulgV act1. Qed. Lemma actKVin : {in D, rev_right_loop invg to}. Proof. by move=> a Da /= x; rewrite -{2}(invgK a) actKin ?groupV. Qed. Lemma setactVin S a : a \in D -> to^* S a^-1 = to^~ a @^-1: S. Proof. by move=> Da; apply: can2_imset_pre; [apply: actKVin | apply: actKin]. Qed. Lemma actXin x a i : a \in D -> to x (a ^+ i) = iter i (to^~ a) x. Proof. move=> Da; elim: i => /= [|i <-]; first by rewrite act1. by rewrite expgSr actMin ?groupX. Qed. Lemma afix1 : 'Fix_to(1) = setT. Proof. by apply/setP=> x; rewrite !inE sub1set inE act1 eqxx. Qed. Lemma afixD1 G : 'Fix_to(G^#) = 'Fix_to(G). Proof. by rewrite -{2}(setD1K (group1 G)) afixU afix1 setTI. Qed. Lemma orbit_refl G x : x \in orbit to G x. Proof. by rewrite -{1}[x]act1 mem_orbit. Qed. Local Notation orbit_rel A := (fun x y => x \in orbit to A y). Lemma contra_orbit G x y : x \notin orbit to G y -> x != y. Proof. by apply: contraNneq => ->; apply: orbit_refl. Qed. Lemma orbit_in_sym G : G \subset D -> symmetric (orbit_rel G). Proof. move=> sGD; apply: symmetric_from_pre => x y /imsetP[a Ga]. by move/(canLR (actKin (subsetP sGD a Ga))) <-; rewrite mem_orbit ?groupV. Qed. Lemma orbit_in_trans G : G \subset D -> transitive (orbit_rel G). Proof. move=> sGD _ _ z /imsetP[a Ga ->] /imsetP[b Gb ->]. by rewrite -actMin ?mem_orbit ?groupM // (subsetP sGD). Qed. Lemma orbit_in_eqP G x y : G \subset D -> reflect (orbit to G x = orbit to G y) (x \in orbit to G y). Proof. move=> sGD; apply: (iffP idP) => [yGx|<-]; last exact: orbit_refl. by apply/setP=> z; apply/idP/idP=> /orbit_in_trans-> //; rewrite orbit_in_sym. Qed. Lemma orbit_in_transl G x y z : G \subset D -> y \in orbit to G x -> (y \in orbit to G z) = (x \in orbit to G z). Proof. by move=> sGD Gxy; rewrite !(orbit_in_sym sGD _ z) (orbit_in_eqP y x sGD Gxy). Qed. Lemma orbit_act_in x a G : G \subset D -> a \in G -> orbit to G (to x a) = orbit to G x. Proof. by move=> sGD /mem_orbit/orbit_in_eqP->. Qed. Lemma orbit_actr_in x a G y : G \subset D -> a \in G -> (to y a \in orbit to G x) = (y \in orbit to G x). Proof. by move=> sGD /mem_orbit/orbit_in_transl->. Qed. Lemma orbit_inv_in A x y : A \subset D -> (y \in orbit to A^-1 x) = (x \in orbit to A y). Proof. move/subsetP=> sAD; apply/imsetP/imsetP=> [] [a Aa ->]. by exists a^-1; rewrite -?mem_invg ?actKin // -groupV sAD -?mem_invg. by exists a^-1; rewrite ?memV_invg ?actKin // sAD. Qed. Lemma orbit_lcoset_in A a x : A \subset D -> a \in D -> orbit to (a *: A) x = orbit to A (to x a). Proof. move/subsetP=> sAD Da; apply/setP=> y; apply/imsetP/imsetP=> [] [b Ab ->{y}]. by exists (a^-1 * b); rewrite -?actMin ?mulKVg // ?sAD -?mem_lcoset. by exists (a * b); rewrite ?mem_mulg ?set11 ?actMin // sAD. Qed. Lemma orbit_rcoset_in A a x y : A \subset D -> a \in D -> (to y a \in orbit to (A :* a) x) = (y \in orbit to A x). Proof. move=> sAD Da; rewrite -orbit_inv_in ?mul_subG ?sub1set // invMg. by rewrite invg_set1 orbit_lcoset_in ?inv_subG ?groupV ?actKin ?orbit_inv_in. Qed. Lemma orbit_conjsg_in A a x y : A \subset D -> a \in D -> (to y a \in orbit to (A :^ a) (to x a)) = (y \in orbit to A x). Proof. move=> sAD Da; rewrite conjsgE. by rewrite orbit_lcoset_in ?groupV ?mul_subG ?sub1set ?actKin ?orbit_rcoset_in. Qed. Lemma orbit1P G x : reflect (orbit to G x = [set x]) (x \in 'Fix_to(G)). Proof. apply: (iffP afixP) => [xfix | xfix a Ga]. apply/eqP; rewrite eq_sym eqEsubset sub1set -{1}[x]act1 imset_f //=. by apply/subsetP=> y; case/imsetP=> a Ga ->; rewrite inE xfix. by apply/set1P; rewrite -xfix imset_f. Qed. Lemma card_orbit1 G x : #|orbit to G x| = 1%N -> orbit to G x = [set x]. Proof. move=> orb1; apply/eqP; rewrite eq_sym eqEcard {}orb1 cards1. by rewrite sub1set orbit_refl. Qed. Lemma orbit_partition G S : [acts G, on S | to] -> partition (orbit to G @: S) S. Proof. move=> actsGS; have sGD := acts_dom actsGS. have eqiG: {in S & &, equivalence_rel [rel x y | y \in orbit to G x]}. by move=> x y z * /=; rewrite orbit_refl; split=> // /orbit_in_eqP->. congr (partition _ _): (equivalence_partitionP eqiG). apply: eq_in_imset => x Sx; apply/setP=> y. by rewrite inE /= andb_idl // => /acts_in_orbit->. Qed. Definition orbit_transversal A S := transversal (orbit to A @: S) S. Lemma orbit_transversalP G S (P := orbit to G @: S) (X := orbit_transversal G S) : [acts G, on S | to] -> [/\ is_transversal X P S, X \subset S, {in X &, forall x y, (y \in orbit to G x) = (x == y)} & forall x, x \in S -> exists2 a, a \in G & to x a \in X]. Proof. move/orbit_partition; rewrite -/P => partP. have [/eqP defS tiP _] := and3P partP. have trXP: is_transversal X P S := transversalP partP. have sXS: X \subset S := transversal_sub trXP. split=> // [x y Xx Xy /= | x Sx]. have Sx := subsetP sXS x Xx. rewrite -(inj_in_eq (pblock_inj trXP)) // eq_pblock ?defS //. by rewrite (def_pblock tiP (imset_f _ Sx)) ?orbit_refl. have /imsetP[y Xy defxG]: orbit to G x \in pblock P @: X. by rewrite (pblock_transversal trXP) ?imset_f. suffices /orbitP[a Ga def_y]: y \in orbit to G x by exists a; rewrite ?def_y. by rewrite defxG mem_pblock defS (subsetP sXS). Qed. Lemma group_set_astab S : group_set 'C(S | to). Proof. apply/group_setP; split=> [|a b cSa cSb]. by rewrite !inE group1; apply/subsetP=> x _; rewrite inE act1. rewrite !inE groupM ?(@astab_dom _ _ _ to S) //; apply/subsetP=> x Sx. by rewrite inE actMin ?(@astab_dom _ _ _ to S) ?(astab_act _ Sx). Qed. Canonical astab_group S := group (group_set_astab S). Lemma afix_gen_in A : A \subset D -> 'Fix_to(<>) = 'Fix_to(A). Proof. move=> sAD; apply/eqP; rewrite eqEsubset afixS ?sub_gen //=. by rewrite -astabCin gen_subG ?astabCin. Qed. Lemma afix_cycle_in a : a \in D -> 'Fix_to(<[a]>) = 'Fix_to[a]. Proof. by move=> Da; rewrite afix_gen_in ?sub1set. Qed. Lemma afixYin A B : A \subset D -> B \subset D -> 'Fix_to(A <*> B) = 'Fix_to(A) :&: 'Fix_to(B). Proof. by move=> sAD sBD; rewrite afix_gen_in ?afixU // subUset sAD. Qed. Lemma afixMin G H : G \subset D -> H \subset D -> 'Fix_to(G * H) = 'Fix_to(G) :&: 'Fix_to(H). Proof. by move=> sGD sHD; rewrite -afix_gen_in ?mul_subG // genM_join afixYin. Qed. Lemma sub_astab1_in A x : A \subset D -> (A \subset 'C[x | to]) = (x \in 'Fix_to(A)). Proof. by move=> sAD; rewrite astabCin ?sub1set. Qed. Lemma group_set_astabs S : group_set 'N(S | to). Proof. apply/group_setP; split=> [|a b cSa cSb]. by rewrite !inE group1; apply/subsetP=> x Sx; rewrite inE act1. rewrite !inE groupM ?(@astabs_dom _ _ _ to S) //; apply/subsetP=> x Sx. by rewrite inE actMin ?(@astabs_dom _ _ _ to S) ?astabs_act. Qed. Canonical astabs_group S := group (group_set_astabs S). Lemma astab_norm S : 'N(S | to) \subset 'N('C(S | to)). Proof. apply/subsetP=> a nSa; rewrite inE sub_conjg; apply/subsetP=> b cSb. have [Da Db] := (astabs_dom nSa, astab_dom cSb). rewrite mem_conjgV !inE groupJ //; apply/subsetP=> x Sx. rewrite inE !actMin ?groupM ?groupV //. by rewrite (astab_act cSb) ?actKVin ?astabs_act ?groupV. Qed. Lemma astab_normal S : 'C(S | to) <| 'N(S | to). Proof. by rewrite /normal astab_sub astab_norm. Qed. Lemma acts_sub_orbit G S x : [acts G, on S | to] -> (orbit to G x \subset S) = (x \in S). Proof. move/acts_act=> GactS. apply/subsetP/idP=> [| Sx y]; first by apply; apply: orbit_refl. by case/orbitP=> a Ga <-{y}; rewrite GactS. Qed. Lemma acts_orbit G x : G \subset D -> [acts G, on orbit to G x | to]. Proof. move/subsetP=> sGD; apply/subsetP=> a Ga; rewrite !inE sGD //. apply/subsetP=> _ /imsetP[b Gb ->]. by rewrite inE -actMin ?sGD // imset_f ?groupM. Qed. Lemma acts_subnorm_fix A : [acts 'N_D(A), on 'Fix_to(D :&: A) | to]. Proof. apply/subsetP=> a nAa; have [Da _] := setIP nAa; rewrite !inE Da. apply/subsetP=> x Cx /[1!inE]; apply/afixP=> b DAb. have [Db _]:= setIP DAb; rewrite -actMin // conjgCV actMin ?groupJ ?groupV //. by rewrite /= (afixP Cx) // memJ_norm // groupV (subsetP (normsGI _ _) _ nAa). Qed. Lemma atrans_orbit G x : [transitive G, on orbit to G x | to]. Proof. by apply: imset_f; apply: orbit_refl. Qed. Section OrbitStabilizer. Variables (G : {group aT}) (x : rT). Hypothesis sGD : G \subset D. Let ssGD := subsetP sGD. Lemma amove_act a : a \in G -> amove to G x (to x a) = 'C_G[x | to] :* a. Proof. move=> Ga; apply/setP=> b; have Da := ssGD Ga. rewrite mem_rcoset !(inE, sub1set) !groupMr ?groupV //. by case Gb: (b \in G); rewrite //= actMin ?groupV ?ssGD ?(canF_eq (actKVin Da)). Qed. Lemma amove_orbit : amove to G x @: orbit to G x = rcosets 'C_G[x | to] G. Proof. apply/setP => Ha; apply/imsetP/rcosetsP=> [[y] | [a Ga ->]]. by case/imsetP=> b Gb -> ->{Ha y}; exists b => //; rewrite amove_act. by rewrite -amove_act //; exists (to x a); first apply: mem_orbit. Qed. Lemma amoveK : {in orbit to G x, cancel (amove to G x) (fun Ca => to x (repr Ca))}. Proof. move=> _ /orbitP[a Ga <-]; rewrite amove_act //= -[G :&: _]/(gval _). case: repr_rcosetP => b; rewrite !(inE, sub1set)=> /and3P[Gb _ xbx]. by rewrite actMin ?ssGD ?(eqP xbx). Qed. Lemma orbit_stabilizer : orbit to G x = [set to x (repr Ca) | Ca in rcosets 'C_G[x | to] G]. Proof. rewrite -amove_orbit -imset_comp /=; apply/setP=> z. by apply/idP/imsetP=> [xGz | [y xGy ->]]; first exists z; rewrite /= ?amoveK. Qed. Lemma act_reprK : {in rcosets 'C_G[x | to] G, cancel (to x \o repr) (amove to G x)}. Proof. move=> _ /rcosetsP[a Ga ->] /=; rewrite amove_act ?rcoset_repr //. rewrite -[G :&: _]/(gval _); case: repr_rcosetP => b /setIP[Gb _]. exact: groupM. Qed. End OrbitStabilizer. Lemma card_orbit_in G x : G \subset D -> #|orbit to G x| = #|G : 'C_G[x | to]|. Proof. move=> sGD; rewrite orbit_stabilizer 1?card_in_imset //. exact: can_in_inj (act_reprK _). Qed. Lemma card_orbit_in_stab G x : G \subset D -> (#|orbit to G x| * #|'C_G[x | to]|)%N = #|G|. Proof. by move=> sGD; rewrite mulnC card_orbit_in ?Lagrange ?subsetIl. Qed. Lemma acts_sum_card_orbit G S : [acts G, on S | to] -> \sum_(T in orbit to G @: S) #|T| = #|S|. Proof. by move/orbit_partition/card_partition. Qed. Lemma astab_setact_in S a : a \in D -> 'C(to^* S a | to) = 'C(S | to) :^ a. Proof. move=> Da; apply/setP=> b; rewrite mem_conjg !inE -mem_conjg conjGid //. apply: andb_id2l => Db; rewrite sub_imset_pre; apply: eq_subset_r => x. by rewrite !inE !actMin ?groupM ?groupV // invgK (canF_eq (actKVin Da)). Qed. Lemma astab1_act_in x a : a \in D -> 'C[to x a | to] = 'C[x | to] :^ a. Proof. by move=> Da; rewrite -astab_setact_in // /setact imset_set1. Qed. Theorem Frobenius_Cauchy G S : [acts G, on S | to] -> \sum_(a in G) #|'Fix_(S | to)[a]| = (#|orbit to G @: S| * #|G|)%N. Proof. move=> GactS; have sGD := acts_dom GactS. transitivity (\sum_(a in G) \sum_(x in 'Fix_(S | to)[a]) 1%N). by apply: eq_bigr => a _; rewrite -sum1_card. rewrite (exchange_big_dep (mem S)) /= => [|a x _]; last by case/setIP. rewrite (set_partition_big _ (orbit_partition GactS)) -sum_nat_const /=. apply: eq_bigr => _ /imsetP[x Sx ->]. rewrite -(card_orbit_in_stab x sGD) -sum_nat_const. apply: eq_bigr => y; rewrite orbit_in_sym // => /imsetP[a Ga defx]. rewrite defx astab1_act_in ?(subsetP sGD) //. rewrite -{2}(conjGid Ga) -conjIg cardJg -sum1_card setIA (setIidPl sGD). by apply: eq_bigl => b; rewrite !(sub1set, inE) -(acts_act GactS Ga) -defx Sx. Qed. Lemma atrans_dvd_index_in G S : G \subset D -> [transitive G, on S | to] -> #|S| %| #|G : 'C_G(S | to)|. Proof. move=> sGD /imsetP[x Sx {1}->]; rewrite card_orbit_in //. by rewrite indexgS // setIS // astabS // sub1set. Qed. Lemma atrans_dvd_in G S : G \subset D -> [transitive G, on S | to] -> #|S| %| #|G|. Proof. move=> sGD transG; apply: dvdn_trans (atrans_dvd_index_in sGD transG) _. exact: dvdn_indexg. Qed. Lemma atransPin G S : G \subset D -> [transitive G, on S | to] -> forall x, x \in S -> orbit to G x = S. Proof. by move=> sGD /imsetP[y _ ->] x; apply/orbit_in_eqP. Qed. Lemma atransP2in G S : G \subset D -> [transitive G, on S | to] -> {in S &, forall x y, exists2 a, a \in G & y = to x a}. Proof. by move=> sGD transG x y /(atransPin sGD transG) <- /imsetP. Qed. Lemma atrans_acts_in G S : G \subset D -> [transitive G, on S | to] -> [acts G, on S | to]. Proof. move=> sGD transG; apply/subsetP=> a Ga; rewrite !inE (subsetP sGD) //. by apply/subsetP=> x /(atransPin sGD transG) <-; rewrite inE imset_f. Qed. Lemma subgroup_transitivePin G H S x : x \in S -> H \subset G -> G \subset D -> [transitive G, on S | to] -> reflect ('C_G[x | to] * H = G) [transitive H, on S | to]. Proof. move=> Sx sHG sGD trG; have sHD := subset_trans sHG sGD. apply: (iffP idP) => [trH | defG]. rewrite group_modr //; apply/setIidPl/subsetP=> a Ga. have Sxa: to x a \in S by rewrite (acts_act (atrans_acts_in sGD trG)). have [b Hb xab]:= atransP2in sHD trH Sxa Sx. have Da := subsetP sGD a Ga; have Db := subsetP sHD b Hb. rewrite -(mulgK b a) mem_mulg ?groupV // !inE groupM //= sub1set inE. by rewrite actMin -?xab. apply/imsetP; exists x => //; apply/setP=> y; rewrite -(atransPin sGD trG Sx). apply/imsetP/imsetP=> [] [a]; last by exists a; first apply: (subsetP sHG). rewrite -defG => /imset2P[c b /setIP[_ cxc] Hb ->] ->. exists b; rewrite ?actMin ?(astab_dom cxc) ?(subsetP sHD) //. by rewrite (astab_act cxc) ?inE. Qed. End PartialAction. Arguments orbit_transversal {aT D%g rT} to%act A%g S%g. Arguments orbit_in_eqP {aT D rT to G x y}. Arguments orbit1P {aT D rT to G x}. Arguments contra_orbit [aT D rT] to G [x y]. Notation "''C' ( S | to )" := (astab_group to S) : Group_scope. Notation "''C_' A ( S | to )" := (setI_group A 'C(S | to)) : Group_scope. Notation "''C_' ( A ) ( S | to )" := (setI_group A 'C(S | to)) (only parsing) : Group_scope. Notation "''C' [ x | to ]" := (astab_group to [set x%g]) : Group_scope. Notation "''C_' A [ x | to ]" := (setI_group A 'C[x | to]) : Group_scope. Notation "''C_' ( A ) [ x | to ]" := (setI_group A 'C[x | to]) (only parsing) : Group_scope. Notation "''N' ( S | to )" := (astabs_group to S) : Group_scope. Notation "''N_' A ( S | to )" := (setI_group A 'N(S | to)) : Group_scope. Section TotalActions. (* These lemmas are only established for total actions (domain = [set: rT]) *) Variable (aT : finGroupType) (rT : finType). Variable to : {action aT &-> rT}. Implicit Types (a b : aT) (x y z : rT) (A B : {set aT}) (G H : {group aT}). Implicit Type S : {set rT}. Lemma actM x a b : to x (a * b) = to (to x a) b. Proof. by rewrite actMin ?inE. Qed. Lemma actK : right_loop invg to. Proof. by move=> a; apply: actKin; rewrite inE. Qed. Lemma actKV : rev_right_loop invg to. Proof. by move=> a; apply: actKVin; rewrite inE. Qed. Lemma actX x a n : to x (a ^+ n) = iter n (to^~ a) x. Proof. by elim: n => [|n /= <-]; rewrite ?act1 // -actM expgSr. Qed. Lemma actCJ a b x : to (to x a) b = to (to x b) (a ^ b). Proof. by rewrite !actM actK. Qed. Lemma actCJV a b x : to (to x a) b = to (to x (b ^ a^-1)) a. Proof. by rewrite (actCJ _ a) conjgKV. Qed. Lemma orbit_sym G x y : (x \in orbit to G y) = (y \in orbit to G x). Proof. exact/orbit_in_sym/subsetT. Qed. Lemma orbit_trans G x y z : x \in orbit to G y -> y \in orbit to G z -> x \in orbit to G z. Proof. exact/orbit_in_trans/subsetT. Qed. Lemma orbit_eqP G x y : reflect (orbit to G x = orbit to G y) (x \in orbit to G y). Proof. exact/orbit_in_eqP/subsetT. Qed. Lemma orbit_transl G x y z : y \in orbit to G x -> (y \in orbit to G z) = (x \in orbit to G z). Proof. exact/orbit_in_transl/subsetT. Qed. Lemma orbit_act G a x: a \in G -> orbit to G (to x a) = orbit to G x. Proof. exact/orbit_act_in/subsetT. Qed. Lemma orbit_actr G a x y : a \in G -> (to y a \in orbit to G x) = (y \in orbit to G x). Proof. by move/mem_orbit/orbit_transl; apply. Qed. Lemma orbit_eq_mem G x y : (orbit to G x == orbit to G y) = (x \in orbit to G y). Proof. exact: sameP eqP (orbit_eqP G x y). Qed. Lemma orbit_inv A x y : (y \in orbit to A^-1 x) = (x \in orbit to A y). Proof. by rewrite orbit_inv_in ?subsetT. Qed. Lemma orbit_lcoset A a x : orbit to (a *: A) x = orbit to A (to x a). Proof. by rewrite orbit_lcoset_in ?subsetT ?inE. Qed. Lemma orbit_rcoset A a x y : (to y a \in orbit to (A :* a) x) = (y \in orbit to A x). Proof. by rewrite orbit_rcoset_in ?subsetT ?inE. Qed. Lemma orbit_conjsg A a x y : (to y a \in orbit to (A :^ a) (to x a)) = (y \in orbit to A x). Proof. by rewrite orbit_conjsg_in ?subsetT ?inE. Qed. Lemma astabP S a : reflect (forall x, x \in S -> to x a = x) (a \in 'C(S | to)). Proof. apply: (iffP idP) => [cSa x|cSa]; first exact: astab_act. by rewrite !inE; apply/subsetP=> x Sx; rewrite inE cSa. Qed. Lemma astab1P x a : reflect (to x a = x) (a \in 'C[x | to]). Proof. by rewrite !inE sub1set inE; apply: eqP. Qed. Lemma sub_astab1 A x : (A \subset 'C[x | to]) = (x \in 'Fix_to(A)). Proof. by rewrite sub_astab1_in ?subsetT. Qed. Lemma astabC A S : (A \subset 'C(S | to)) = (S \subset 'Fix_to(A)). Proof. by rewrite astabCin ?subsetT. Qed. Lemma afix_cycle a : 'Fix_to(<[a]>) = 'Fix_to[a]. Proof. by rewrite afix_cycle_in ?inE. Qed. Lemma afix_gen A : 'Fix_to(<>) = 'Fix_to(A). Proof. by rewrite afix_gen_in ?subsetT. Qed. Lemma afixM G H : 'Fix_to(G * H) = 'Fix_to(G) :&: 'Fix_to(H). Proof. by rewrite afixMin ?subsetT. Qed. Lemma astabsP S a : reflect (forall x, (to x a \in S) = (x \in S)) (a \in 'N(S | to)). Proof. apply: (iffP idP) => [nSa x|nSa]; first exact: astabs_act. by rewrite !inE; apply/subsetP=> x; rewrite inE nSa. Qed. Lemma card_orbit G x : #|orbit to G x| = #|G : 'C_G[x | to]|. Proof. by rewrite card_orbit_in ?subsetT. Qed. Lemma dvdn_orbit G x : #|orbit to G x| %| #|G|. Proof. by rewrite card_orbit dvdn_indexg. Qed. Lemma card_orbit_stab G x : (#|orbit to G x| * #|'C_G[x | to]|)%N = #|G|. Proof. by rewrite mulnC card_orbit Lagrange ?subsetIl. Qed. Lemma actsP A S : reflect {acts A, on S | to} [acts A, on S | to]. Proof. apply: (iffP idP) => [nSA x|nSA]; first exact: acts_act. by apply/subsetP=> a Aa /[!inE]; apply/subsetP=> x; rewrite inE nSA. Qed. Arguments actsP {A S}. Lemma setact_orbit A x b : to^* (orbit to A x) b = orbit to (A :^ b) (to x b). Proof. apply/setP=> y; apply/idP/idP=> /imsetP[_ /imsetP[a Aa ->] ->{y}]. by rewrite actCJ mem_orbit ?memJ_conjg. by rewrite -actCJ mem_setact ?mem_orbit. Qed. Lemma astab_setact S a : 'C(to^* S a | to) = 'C(S | to) :^ a. Proof. apply/setP=> b; rewrite mem_conjg. apply/astabP/astabP=> stab x => [Sx|]. by rewrite conjgE invgK !actM stab ?actK //; apply/imsetP; exists x. by case/imsetP=> y Sy ->{x}; rewrite -actM conjgCV actM stab. Qed. Lemma astab1_act x a : 'C[to x a | to] = 'C[x | to] :^ a. Proof. by rewrite -astab_setact /setact imset_set1. Qed. Lemma atransP G S : [transitive G, on S | to] -> forall x, x \in S -> orbit to G x = S. Proof. by case/imsetP=> x _ -> y; apply/orbit_eqP. Qed. Lemma atransP2 G S : [transitive G, on S | to] -> {in S &, forall x y, exists2 a, a \in G & y = to x a}. Proof. by move=> GtrS x y /(atransP GtrS) <- /imsetP. Qed. Lemma atrans_acts G S : [transitive G, on S | to] -> [acts G, on S | to]. Proof. move=> GtrS; apply/subsetP=> a Ga; rewrite !inE. by apply/subsetP=> x /(atransP GtrS) <-; rewrite inE imset_f. Qed. Lemma atrans_supgroup G H S : G \subset H -> [transitive G, on S | to] -> [transitive H, on S | to] = [acts H, on S | to]. Proof. move=> sGH trG; apply/idP/idP=> [|actH]; first exact: atrans_acts. case/imsetP: trG => x Sx defS; apply/imsetP; exists x => //. by apply/eqP; rewrite eqEsubset acts_sub_orbit ?Sx // defS imsetS. Qed. Lemma atrans_acts_card G S : [transitive G, on S | to] = [acts G, on S | to] && (#|orbit to G @: S| == 1%N). Proof. apply/idP/andP=> [GtrS | [nSG]]. split; first exact: atrans_acts. rewrite ((_ @: S =P [set S]) _) ?cards1 // eqEsubset sub1set. apply/andP; split=> //; apply/subsetP=> _ /imsetP[x Sx ->]. by rewrite inE (atransP GtrS). rewrite eqn_leq andbC lt0n => /andP[/existsP[X /imsetP[x Sx X_Gx]]]. rewrite (cardD1 X) {X}X_Gx imset_f // ltnS leqn0 => /eqP GtrS. apply/imsetP; exists x => //; apply/eqP. rewrite eqEsubset acts_sub_orbit // Sx andbT. apply/subsetP=> y Sy; have:= card0_eq GtrS (orbit to G y). by rewrite !inE /= imset_f // andbT => /eqP <-; apply: orbit_refl. Qed. Lemma atrans_dvd G S : [transitive G, on S | to] -> #|S| %| #|G|. Proof. by case/imsetP=> x _ ->; apply: dvdn_orbit. Qed. (* This is Aschbacher (5.2) *) Lemma acts_fix_norm A B : A \subset 'N(B) -> [acts A, on 'Fix_to(B) | to]. Proof. move=> nAB; have:= acts_subnorm_fix to B; rewrite !setTI. exact: subset_trans. Qed. Lemma faithfulP A S : reflect (forall a, a \in A -> {in S, to^~ a =1 id} -> a = 1) [faithful A, on S | to]. Proof. apply: (iffP subsetP) => [Cto1 a Aa Ca | Cto1 a]. by apply/set1P; rewrite Cto1 // inE Aa; apply/astabP. by case/setIP=> Aa /astabP Ca; apply/set1P; apply: Cto1. Qed. (* This is the first part of Aschbacher (5.7) *) Lemma astab_trans_gcore G S u : [transitive G, on S | to] -> u \in S -> 'C(S | to) = gcore 'C[u | to] G. Proof. move=> transG Su; apply/eqP; rewrite eqEsubset. rewrite gcore_max ?astabS ?sub1set //=; last first. exact: subset_trans (atrans_acts transG) (astab_norm _ _). apply/subsetP=> x cSx; apply/astabP=> uy. case/(atransP2 transG Su) => y Gy ->{uy}. by apply/astab1P; rewrite astab1_act (bigcapP cSx). Qed. (* This is Aschbacher (5.20) *) Theorem subgroup_transitiveP G H S x : x \in S -> H \subset G -> [transitive G, on S | to] -> reflect ('C_G[x | to] * H = G) [transitive H, on S | to]. Proof. by move=> Sx sHG; apply: subgroup_transitivePin (subsetT G). Qed. (* This is Aschbacher (5.21) *) Lemma trans_subnorm_fixP x G H S : let C := 'C_G[x | to] in let T := 'Fix_(S | to)(H) in [transitive G, on S | to] -> x \in S -> H \subset C -> reflect ((H :^: G) ::&: C = H :^: C) [transitive 'N_G(H), on T | to]. Proof. move=> C T trGS Sx sHC; have actGS := acts_act (atrans_acts trGS). have:= sHC; rewrite subsetI sub_astab1 => /andP[sHG cHx]. have Tx: x \in T by rewrite inE Sx. apply: (iffP idP) => [trN | trC]. apply/setP=> Ha; apply/setIdP/imsetP=> [[]|[a Ca ->{Ha}]]; last first. by rewrite conj_subG //; case/setIP: Ca => Ga _; rewrite imset_f. case/imsetP=> a Ga ->{Ha}; rewrite subsetI !sub_conjg => /andP[_ sHCa]. have Txa: to x a^-1 \in T. by rewrite inE -sub_astab1 astab1_act actGS ?Sx ?groupV. have [b] := atransP2 trN Tx Txa; case/setIP=> Gb nHb cxba. exists (b * a); last by rewrite conjsgM (normP nHb). by rewrite inE groupM //; apply/astab1P; rewrite actM -cxba actKV. apply/imsetP; exists x => //; apply/setP=> y; apply/idP/idP=> [Ty|]. have [Sy cHy]:= setIP Ty; have [a Ga defy] := atransP2 trGS Sx Sy. have: H :^ a^-1 \in H :^: C. rewrite -trC inE subsetI imset_f 1?conj_subG ?groupV // sub_conjgV. by rewrite -astab1_act -defy sub_astab1. case/imsetP=> b /setIP[Gb /astab1P cxb] defHb. rewrite defy -{1}cxb -actM mem_orbit // inE groupM //. by apply/normP; rewrite conjsgM -defHb conjsgKV. case/imsetP=> a /setIP[Ga nHa] ->{y}. by rewrite inE actGS // Sx (acts_act (acts_fix_norm _) nHa). Qed. End TotalActions. Arguments astabP {aT rT to S a}. Arguments orbit_eqP {aT rT to G x y}. Arguments astab1P {aT rT to x a}. Arguments astabsP {aT rT to S a}. Arguments atransP {aT rT to G S}. Arguments actsP {aT rT to A S}. Arguments faithfulP {aT rT to A S}. Section Restrict. Variables (aT : finGroupType) (D : {set aT}) (rT : Type). Variables (to : action D rT) (A : {set aT}). Definition ract of A \subset D := act to. Variable sAD : A \subset D. Lemma ract_is_action : is_action A (ract sAD). Proof. rewrite /ract; case: to => f [injf fM]. by split=> // x; apply: (sub_in2 (subsetP sAD)). Qed. Canonical raction := Action ract_is_action. Lemma ractE : raction =1 to. Proof. by []. Qed. (* Other properties of raction need rT : finType; we defer them *) (* until after the definition of actperm. *) End Restrict. Notation "to \ sAD" := (raction to sAD) (at level 50) : action_scope. Section ActBy. Variables (aT : finGroupType) (D : {set aT}) (rT : finType). Definition actby_cond (A : {set aT}) R (to : action D rT) : Prop := [acts A, on R | to]. Definition actby A R to of actby_cond A R to := fun x a => if (x \in R) && (a \in A) then to x a else x. Variables (A : {group aT}) (R : {set rT}) (to : action D rT). Hypothesis nRA : actby_cond A R to. Lemma actby_is_action : is_action A (actby nRA). Proof. rewrite /actby; split=> [a x y | x a b Aa Ab /=]; last first. rewrite Aa Ab groupM // !andbT actMin ?(subsetP (acts_dom nRA)) //. by case Rx: (x \in R); rewrite ?(acts_act nRA) ?Rx. case Aa: (a \in A); rewrite ?andbF ?andbT //. case Rx: (x \in R); case Ry: (y \in R) => // eqxy; first exact: act_inj eqxy. by rewrite -eqxy (acts_act nRA Aa) Rx in Ry. by rewrite eqxy (acts_act nRA Aa) Ry in Rx. Qed. Canonical action_by := Action actby_is_action. Local Notation "<[nRA]>" := action_by : action_scope. Lemma actbyE x a : x \in R -> a \in A -> <[nRA]>%act x a = to x a. Proof. by rewrite /= /actby => -> ->. Qed. Lemma afix_actby B : 'Fix_<[nRA]>(B) = ~: R :|: 'Fix_to(A :&: B). Proof. apply/setP=> x; rewrite !inE /= /actby. case: (x \in R); last by apply/subsetP=> a _ /[!inE]. apply/subsetP/subsetP=> [cBx a | cABx a Ba] /[!inE]. by case/andP=> Aa /cBx; rewrite inE Aa. by case: ifP => //= Aa; have:= cABx a; rewrite !inE Aa => ->. Qed. Lemma astab_actby S : 'C(S | <[nRA]>) = 'C_A(R :&: S | to). Proof. apply/setP=> a; rewrite setIA (setIidPl (acts_dom nRA)) !inE. case Aa: (a \in A) => //=; apply/subsetP/subsetP=> cRSa x => [|Sx]. by case/setIP=> Rx /cRSa; rewrite !inE actbyE. by have:= cRSa x; rewrite !inE /= /actby Aa Sx; case: (x \in R) => //; apply. Qed. Lemma astabs_actby S : 'N(S | <[nRA]>) = 'N_A(R :&: S | to). Proof. apply/setP=> a; rewrite setIA (setIidPl (acts_dom nRA)) !inE. case Aa: (a \in A) => //=; apply/subsetP/subsetP=> nRSa x => [|Sx]. by case/setIP=> Rx /nRSa; rewrite !inE actbyE ?(acts_act nRA) ?Rx. have:= nRSa x; rewrite !inE /= /actby Aa Sx ?(acts_act nRA) //. by case: (x \in R) => //; apply. Qed. Lemma acts_actby (B : {set aT}) S : [acts B, on S | <[nRA]>] = (B \subset A) && [acts B, on R :&: S | to]. Proof. by rewrite astabs_actby subsetI. Qed. End ActBy. Notation "<[ nRA ] >" := (action_by nRA) : action_scope. Section SubAction. Variables (aT : finGroupType) (D : {group aT}). Variables (rT : finType) (sP : pred rT) (sT : subFinType sP) (to : action D rT). Implicit Type A : {set aT}. Implicit Type u : sT. Implicit Type S : {set sT}. Definition subact_dom := 'N([set x | sP x] | to). Canonical subact_dom_group := [group of subact_dom]. Implicit Type Na : {a | a \in subact_dom}. Lemma sub_act_proof u Na : sP (to (val u) (val Na)). Proof. by case: Na => a /= /(astabs_act (val u)); rewrite !inE valP. Qed. Definition subact u a := if insub a is Some Na then Sub _ (sub_act_proof u Na) else u. Lemma val_subact u a : val (subact u a) = if a \in subact_dom then to (val u) a else val u. Proof. by rewrite /subact -if_neg; case: insubP => [Na|] -> //=; rewrite SubK => ->. Qed. Lemma subact_is_action : is_action subact_dom subact. Proof. split=> [a u v eq_uv | u a b Na Nb]; apply: val_inj. move/(congr1 val): eq_uv; rewrite !val_subact. by case: (a \in _); first move/act_inj. have Da := astabs_dom Na; have Db := astabs_dom Nb. by rewrite !val_subact Na Nb groupM ?actMin. Qed. Canonical subaction := Action subact_is_action. Lemma astab_subact S : 'C(S | subaction) = subact_dom :&: 'C(val @: S | to). Proof. apply/setP=> a; rewrite inE in_setI; apply: andb_id2l => sDa. have [Da _] := setIP sDa; rewrite !inE Da. apply/subsetP/subsetP=> [cSa _ /imsetP[x Sx ->] | cSa x Sx] /[!inE]. by have:= cSa x Sx; rewrite inE -val_eqE val_subact sDa. by have:= cSa _ (imset_f val Sx); rewrite inE -val_eqE val_subact sDa. Qed. Lemma astabs_subact S : 'N(S | subaction) = subact_dom :&: 'N(val @: S | to). Proof. apply/setP=> a; rewrite inE in_setI; apply: andb_id2l => sDa. have [Da _] := setIP sDa; rewrite !inE Da. apply/subsetP/subsetP=> [nSa _ /imsetP[x Sx ->] | nSa x Sx] /[!inE]. by have /[1!inE]/(imset_f val) := nSa x Sx; rewrite val_subact sDa. have /[1!inE]/imsetP[y Sy def_y] := nSa _ (imset_f val Sx). by rewrite ((_ a =P y) _) // -val_eqE val_subact sDa def_y. Qed. Lemma afix_subact A : A \subset subact_dom -> 'Fix_subaction(A) = val @^-1: 'Fix_to(A). Proof. move/subsetP=> sAD; apply/setP=> u. rewrite !inE !(sameP setIidPl eqP); congr (_ == A). apply/setP=> a /[!inE]; apply: andb_id2l => Aa. by rewrite -val_eqE val_subact sAD. Qed. End SubAction. Notation "to ^?" := (subaction _ to) (at level 2, format "to ^?") : action_scope. Section QuotientAction. Variables (aT : finGroupType) (D : {group aT}) (rT : finGroupType). Variables (to : action D rT) (H : {group rT}). Definition qact_dom := 'N(rcosets H 'N(H) | to^*). Canonical qact_dom_group := [group of qact_dom]. Local Notation subdom := (subact_dom (coset_range H) to^*). Fact qact_subdomE : subdom = qact_dom. Proof. by congr 'N(_|_); apply/setP=> Hx; rewrite !inE genGid. Qed. Lemma qact_proof : qact_dom \subset subdom. Proof. by rewrite qact_subdomE. Qed. Definition qact : coset_of H -> aT -> coset_of H := act (to^*^? \ qact_proof). Canonical quotient_action := [action of qact]. Lemma acts_qact_dom : [acts qact_dom, on 'N(H) | to]. Proof. apply/subsetP=> a nNa; rewrite !inE (astabs_dom nNa); apply/subsetP=> x Nx. have: H :* x \in rcosets H 'N(H) by rewrite -rcosetE imset_f. rewrite inE -(astabs_act _ nNa) => /rcosetsP[y Ny defHy]. have: to x a \in H :* y by rewrite -defHy (imset_f (to^~a)) ?rcoset_refl. by apply: subsetP; rewrite mul_subG ?sub1set ?normG. Qed. Lemma qactEcond x a : x \in 'N(H) -> quotient_action (coset H x) a = coset H (if a \in qact_dom then to x a else x). Proof. move=> Nx; apply: val_inj; rewrite val_subact //= qact_subdomE. have: H :* x \in rcosets H 'N(H) by rewrite -rcosetE imset_f. case nNa: (a \in _); rewrite // -(astabs_act _ nNa). rewrite !val_coset ?(acts_act acts_qact_dom nNa) //=. case/rcosetsP=> y Ny defHy; rewrite defHy; apply: rcoset_eqP. by rewrite rcoset_sym -defHy (imset_f (_^~_)) ?rcoset_refl. Qed. Lemma qactE x a : x \in 'N(H) -> a \in qact_dom -> quotient_action (coset H x) a = coset H (to x a). Proof. by move=> Nx nNa; rewrite qactEcond ?nNa. Qed. Lemma acts_quotient (A : {set aT}) (B : {set rT}) : A \subset 'N_qact_dom(B | to) -> [acts A, on B / H | quotient_action]. Proof. move=> nBA; apply: subset_trans {A}nBA _; apply/subsetP=> a /setIP[dHa nBa]. rewrite inE dHa inE; apply/subsetP=> _ /morphimP[x nHx Bx ->]. rewrite inE /= qactE //. by rewrite mem_morphim ?(acts_act acts_qact_dom) ?(astabs_act _ nBa). Qed. Lemma astabs_quotient (G : {group rT}) : H <| G -> 'N(G / H | quotient_action) = 'N_qact_dom(G | to). Proof. move=> nsHG; have [_ nHG] := andP nsHG. apply/eqP; rewrite eqEsubset acts_quotient // andbT. apply/subsetP=> a nGa; have dHa := astabs_dom nGa; have [Da _]:= setIdP dHa. rewrite inE dHa 2!inE Da; apply/subsetP=> x Gx; have nHx := subsetP nHG x Gx. rewrite -(quotientGK nsHG) 2!inE (acts_act acts_qact_dom) ?nHx //= inE. by rewrite -qactE // (astabs_act _ nGa) mem_morphim. Qed. End QuotientAction. Notation "to / H" := (quotient_action to H) : action_scope. Section ModAction. Variables (aT : finGroupType) (D : {group aT}) (rT : finType). Variable to : action D rT. Implicit Types (G : {group aT}) (S : {set rT}). Section GenericMod. Variable H : {group aT}. Local Notation dom := 'N_D(H). Local Notation range := 'Fix_to(D :&: H). Let acts_dom : {acts dom, on range | to} := acts_act (acts_subnorm_fix to H). Definition modact x (Ha : coset_of H) := if x \in range then to x (repr (D :&: Ha)) else x. Lemma modactEcond x a : a \in dom -> modact x (coset H a) = (if x \in range then to x a else x). Proof. case/setIP=> Da Na; case: ifP => Cx; rewrite /modact Cx //. rewrite val_coset // -group_modr ?sub1set //. case: (repr _) / (repr_rcosetP (D :&: H) a) => a' Ha'. by rewrite actMin ?(afixP Cx _ Ha') //; case/setIP: Ha'. Qed. Lemma modactE x a : a \in D -> a \in 'N(H) -> x \in range -> modact x (coset H a) = to x a. Proof. by move=> Da Na Rx; rewrite modactEcond ?Rx // inE Da. Qed. Lemma modact_is_action : is_action (D / H) modact. Proof. split=> [Ha x y | x Ha Hb]; last first. case/morphimP=> a Na Da ->{Ha}; case/morphimP=> b Nb Db ->{Hb}. rewrite -morphM //= !modactEcond // ?groupM ?(introT setIP _) //. by case: ifP => Cx; rewrite ?(acts_dom, Cx, actMin, introT setIP _). case: (set_0Vmem (D :&: Ha)) => [Da0 | [a /setIP[Da NHa]]]. by rewrite /modact Da0 repr_set0 !act1 !if_same. have Na := subsetP (coset_norm _) _ NHa. have NDa: a \in 'N_D(H) by rewrite inE Da. rewrite -(coset_mem NHa) !modactEcond //. do 2![case: ifP]=> Cy Cx // eqxy; first exact: act_inj eqxy. by rewrite -eqxy acts_dom ?Cx in Cy. by rewrite eqxy acts_dom ?Cy in Cx. Qed. Canonical mod_action := Action modact_is_action. Section Stabilizers. Variable S : {set rT}. Hypothesis cSH : H \subset 'C(S | to). Let fixSH : S \subset 'Fix_to(D :&: H). Proof. by rewrite -astabCin ?subsetIl // subIset ?cSH ?orbT. Qed. Lemma astabs_mod : 'N(S | mod_action) = 'N(S | to) / H. Proof. apply/setP=> Ha; apply/idP/morphimP=> [nSa | [a nHa nSa ->]]. case/morphimP: (astabs_dom nSa) => a nHa Da defHa. exists a => //; rewrite !inE Da; apply/subsetP=> x Sx; rewrite !inE. by have:= Sx; rewrite -(astabs_act x nSa) defHa /= modactE ?(subsetP fixSH). have Da := astabs_dom nSa; rewrite !inE mem_quotient //; apply/subsetP=> x Sx. by rewrite !inE /= modactE ?(astabs_act x nSa) ?(subsetP fixSH). Qed. Lemma astab_mod : 'C(S | mod_action) = 'C(S | to) / H. Proof. apply/setP=> Ha; apply/idP/morphimP=> [cSa | [a nHa cSa ->]]. case/morphimP: (astab_dom cSa) => a nHa Da defHa. exists a => //; rewrite !inE Da; apply/subsetP=> x Sx; rewrite !inE. by rewrite -{2}[x](astab_act cSa) // defHa /= modactE ?(subsetP fixSH). have Da := astab_dom cSa; rewrite !inE mem_quotient //; apply/subsetP=> x Sx. by rewrite !inE /= modactE ?(astab_act cSa) ?(subsetP fixSH). Qed. End Stabilizers. Lemma afix_mod G S : H \subset 'C(S | to) -> G \subset 'N_D(H) -> 'Fix_(S | mod_action)(G / H) = 'Fix_(S | to)(G). Proof. move=> cSH /subsetIP[sGD nHG]. apply/eqP; rewrite eqEsubset !subsetI !subsetIl /= -!astabCin ?quotientS //. have cfixH F: H \subset 'C(S :&: F | to). by rewrite (subset_trans cSH) // astabS ?subsetIl. rewrite andbC astab_mod ?quotientS //=; last by rewrite astabCin ?subsetIr. by rewrite -(quotientSGK nHG) //= -astab_mod // astabCin ?quotientS ?subsetIr. Qed. End GenericMod. Lemma modact_faithful G S : [faithful G / 'C_G(S | to), on S | mod_action 'C_G(S | to)]. Proof. rewrite /faithful astab_mod ?subsetIr //=. by rewrite -quotientIG ?subsetIr ?trivg_quotient. Qed. End ModAction. Notation "to %% H" := (mod_action to H) : action_scope. Section ActPerm. (* Morphism to permutations induced by an action. *) Variables (aT : finGroupType) (D : {set aT}) (rT : finType). Variable to : action D rT. Definition actperm a := perm (act_inj to a). Lemma actpermM : {in D &, {morph actperm : a b / a * b}}. Proof. by move=> a b Da Db; apply/permP=> x; rewrite permM !permE actMin. Qed. Canonical actperm_morphism := Morphism actpermM. Lemma actpermE a x : actperm a x = to x a. Proof. by rewrite permE. Qed. Lemma actpermK x a : aperm x (actperm a) = to x a. Proof. exact: actpermE. Qed. Lemma ker_actperm : 'ker actperm = 'C(setT | to). Proof. congr (_ :&: _); apply/setP=> a /[!inE]/=. apply/eqP/subsetP=> [a1 x _ | a1]; first by rewrite inE -actpermE a1 perm1. by apply/permP=> x; apply/eqP; have:= a1 x; rewrite !inE actpermE perm1 => ->. Qed. End ActPerm. Section RestrictActionTheory. Variables (aT : finGroupType) (D : {set aT}) (rT : finType). Variables (to : action D rT). Lemma faithful_isom (A : {group aT}) S (nSA : actby_cond A S to) : [faithful A, on S | to] -> isom A (actperm <[nSA]> @* A) (actperm <[nSA]>). Proof. by move=> ffulAS; apply/isomP; rewrite ker_actperm astab_actby setIT. Qed. Variables (A : {set aT}) (sAD : A \subset D). Lemma ractpermE : actperm (to \ sAD) =1 actperm to. Proof. by move=> a; apply/permP=> x; rewrite !permE. Qed. Lemma afix_ract B : 'Fix_(to \ sAD)(B) = 'Fix_to(B). Proof. by []. Qed. Lemma astab_ract S : 'C(S | to \ sAD) = 'C_A(S | to). Proof. by rewrite setIA (setIidPl sAD). Qed. Lemma astabs_ract S : 'N(S | to \ sAD) = 'N_A(S | to). Proof. by rewrite setIA (setIidPl sAD). Qed. Lemma acts_ract (B : {set aT}) S : [acts B, on S | to \ sAD] = (B \subset A) && [acts B, on S | to]. Proof. by rewrite astabs_ract subsetI. Qed. End RestrictActionTheory. Section MorphAct. (* Action induced by a morphism to permutations. *) Variables (aT : finGroupType) (D : {group aT}) (rT : finType). Variable phi : {morphism D >-> {perm rT}}. Definition mact x a := phi a x. Lemma mact_is_action : is_action D mact. Proof. split=> [a x y | x a b Da Db]; first exact: perm_inj. by rewrite /mact morphM //= permM. Qed. Canonical morph_action := Action mact_is_action. Lemma mactE x a : morph_action x a = phi a x. Proof. by []. Qed. Lemma injm_faithful : 'injm phi -> [faithful D, on setT | morph_action]. Proof. move/injmP=> phi_inj; apply/subsetP=> a /setIP[Da /astab_act a1]. apply/set1P/phi_inj => //; apply/permP=> x. by rewrite morph1 perm1 -mactE a1 ?inE. Qed. Lemma perm_mact a : actperm morph_action a = phi a. Proof. by apply/permP=> x; rewrite permE. Qed. End MorphAct. Notation "<< phi >>" := (morph_action phi) : action_scope. Section CompAct. Variables (gT aT : finGroupType) (rT : finType). Variables (D : {set aT}) (to : action D rT). Variables (B : {set gT}) (f : {morphism B >-> aT}). Definition comp_act x e := to x (f e). Lemma comp_is_action : is_action (f @*^-1 D) comp_act. Proof. split=> [e | x e1 e2]; first exact: act_inj. move=> /morphpreP[Be1 Dfe1] /morphpreP[Be2 Dfe2]. by rewrite /comp_act morphM ?actMin. Qed. Canonical comp_action := Action comp_is_action. Lemma comp_actE x e : comp_action x e = to x (f e). Proof. by []. Qed. Lemma afix_comp (A : {set gT}) : A \subset B -> 'Fix_comp_action(A) = 'Fix_to(f @* A). Proof. move=> sAB; apply/setP=> x; rewrite !inE /morphim (setIidPr sAB). apply/subsetP/subsetP; first by move=> + _ /imsetP[a + ->] => /[apply]/[!inE]. by move=> + a Aa => /(_ (f a)); rewrite !inE imset_f// => ->. Qed. Lemma astab_comp S : 'C(S | comp_action) = f @*^-1 'C(S | to). Proof. by apply/setP=> x; rewrite !inE -andbA. Qed. Lemma astabs_comp S : 'N(S | comp_action) = f @*^-1 'N(S | to). Proof. by apply/setP=> x; rewrite !inE -andbA. Qed. End CompAct. Notation "to \o f" := (comp_action to f) : action_scope. Section PermAction. (* Natural action of permutation groups. *) Variable rT : finType. Local Notation gT := {perm rT}. Implicit Types a b c : gT. Lemma aperm_is_action : is_action setT (@aperm rT). Proof. by apply: is_total_action => [x|x a b]; rewrite apermE (perm1, permM). Qed. Canonical perm_action := Action aperm_is_action. Lemma porbitE a : porbit a = orbit perm_action <[a]>%g. Proof. by []. Qed. Lemma perm_act1P a : reflect (forall x, aperm x a = x) (a == 1). Proof. apply: (iffP eqP) => [-> x | a1]; first exact: act1. by apply/permP=> x; rewrite -apermE a1 perm1. Qed. Lemma perm_faithful A : [faithful A, on setT | perm_action]. Proof. apply/subsetP=> a /setIP[Da crTa]. by apply/set1P; apply/permP=> x; rewrite -apermE perm1 (astabP crTa) ?inE. Qed. Lemma actperm_id p : actperm perm_action p = p. Proof. by apply/permP=> x; rewrite permE. Qed. End PermAction. Arguments perm_act1P {rT a}. Notation "'P" := (perm_action _) (at level 8) : action_scope. Section ActpermOrbits. Variables (aT : finGroupType) (D : {group aT}) (rT : finType). Variable to : action D rT. Lemma orbit_morphim_actperm (A : {set aT}) : A \subset D -> orbit 'P (actperm to @* A) =1 orbit to A. Proof. move=> sAD x; rewrite morphimEsub // /orbit -imset_comp. by apply: eq_imset => a //=; rewrite actpermK. Qed. Lemma porbit_actperm (a : aT) : a \in D -> porbit (actperm to a) =1 orbit to <[a]>. Proof. move=> Da x. by rewrite porbitE -orbit_morphim_actperm ?cycle_subG ?morphim_cycle. Qed. End ActpermOrbits. Section RestrictPerm. Variables (T : finType) (S : {set T}). Definition restr_perm := actperm (<[subxx 'N(S | 'P)]>). Canonical restr_perm_morphism := [morphism of restr_perm]. Lemma restr_perm_on p : perm_on S (restr_perm p). Proof. apply/subsetP=> x; apply: contraR => notSx. by rewrite permE /= /actby (negPf notSx). Qed. Lemma triv_restr_perm p : p \notin 'N(S | 'P) -> restr_perm p = 1. Proof. move=> not_nSp; apply/permP=> x. by rewrite !permE /= /actby (negPf not_nSp) andbF. Qed. Lemma restr_permE : {in 'N(S | 'P) & S, forall p, restr_perm p =1 p}. Proof. by move=> y x nSp Sx; rewrite /= actpermE actbyE. Qed. Lemma ker_restr_perm : 'ker restr_perm = 'C(S | 'P). Proof. by rewrite ker_actperm astab_actby setIT (setIidPr (astab_sub _ _)). Qed. Lemma im_restr_perm p : restr_perm p @: S = S. Proof. exact: im_perm_on (restr_perm_on p). Qed. Lemma restr_perm_commute s : commute (restr_perm s) s. Proof. have [sC|/triv_restr_perm->] := boolP (s \in 'N(S | 'P)); last first. exact: (commute_sym (commute1 _)). apply/permP => x; have /= xsS := astabsP sC x; rewrite !permM. have [xS|xNS] := boolP (x \in S); first by rewrite ?(restr_permE) ?xsS. by rewrite !(out_perm (restr_perm_on _)) ?xsS. Qed. End RestrictPerm. Section Symmetry. Variables (T : finType) (S : {set T}). Lemma SymE : Sym S = 'C(~: S | 'P). Proof. apply/setP => s; rewrite inE; apply/idP/astabP => [sS x|/= S_id]. by rewrite inE /= apermE => /out_perm->. by apply/subsetP => x; move=> /(contra_neqN (S_id _)); rewrite inE negbK. Qed. End Symmetry. Section AutIn. Variable gT : finGroupType. Definition Aut_in A (B : {set gT}) := 'N_A(B | 'P) / 'C_A(B | 'P). Variables G H : {group gT}. Hypothesis sHG: H \subset G. Lemma Aut_restr_perm a : a \in Aut G -> restr_perm H a \in Aut H. Proof. move=> AutGa. case nHa: (a \in 'N(H | 'P)); last by rewrite triv_restr_perm ?nHa ?group1. rewrite inE restr_perm_on; apply/morphicP=> x y Hx Hy /=. by rewrite !restr_permE ?groupM // -(autmE AutGa) morphM ?(subsetP sHG). Qed. Lemma restr_perm_Aut : restr_perm H @* Aut G \subset Aut H. Proof. by apply/subsetP=> a'; case/morphimP=> a _ AutGa ->{a'}; apply: Aut_restr_perm. Qed. Lemma Aut_in_isog : Aut_in (Aut G) H \isog restr_perm H @* Aut G. Proof. rewrite /Aut_in -ker_restr_perm kerE -morphpreIdom -morphimIdom -kerE /=. by rewrite setIA (setIC _ (Aut G)) first_isog_loc ?subsetIr. Qed. Lemma Aut_sub_fullP : reflect (forall h : {morphism H >-> gT}, 'injm h -> h @* H = H -> exists g : {morphism G >-> gT}, [/\ 'injm g, g @* G = G & {in H, g =1 h}]) (Aut_in (Aut G) H \isog Aut H). Proof. rewrite (isog_transl _ Aut_in_isog) /=; set rG := _ @* _. apply: (iffP idP) => [iso_rG h injh hH| AutHinG]. have: aut injh hH \in rG; last case/morphimP=> g nHg AutGg def_g. suffices ->: rG = Aut H by apply: Aut_aut. by apply/eqP; rewrite eqEcard restr_perm_Aut /= (card_isog iso_rG). exists (autm_morphism AutGg); rewrite injm_autm im_autm; split=> // x Hx. by rewrite -(autE injh hH Hx) def_g actpermE actbyE. suffices ->: rG = Aut H by apply: isog_refl. apply/eqP; rewrite eqEsubset restr_perm_Aut /=. apply/subsetP=> h AutHh; have hH := im_autm AutHh. have [g [injg gG eq_gh]] := AutHinG _ (injm_autm AutHh) hH. have [Ng AutGg]: aut injg gG \in 'N(H | 'P) /\ aut injg gG \in Aut G. rewrite Aut_aut !inE; split=> //; apply/subsetP=> x Hx. by rewrite inE /= /aperm autE ?(subsetP sHG) // -hH eq_gh ?mem_morphim. apply/morphimP; exists (aut injg gG) => //; apply: (eq_Aut AutHh) => [|x Hx]. by rewrite (subsetP restr_perm_Aut) // mem_morphim. by rewrite restr_permE //= /aperm autE ?eq_gh ?(subsetP sHG). Qed. End AutIn. Arguments Aut_in {gT} A%g B%g. Section InjmAutIn. Variables (gT rT : finGroupType) (D G H : {group gT}) (f : {morphism D >-> rT}). Hypotheses (injf : 'injm f) (sGD : G \subset D) (sHG : H \subset G). Let sHD := subset_trans sHG sGD. Local Notation fGisom := (Aut_isom injf sGD). Local Notation fHisom := (Aut_isom injf sHD). Local Notation inH := (restr_perm H). Local Notation infH := (restr_perm (f @* H)). Lemma astabs_Aut_isom a : a \in Aut G -> (fGisom a \in 'N(f @* H | 'P)) = (a \in 'N(H | 'P)). Proof. move=> AutGa; rewrite !inE sub_morphim_pre // subsetI sHD /= /aperm. rewrite !(sameP setIidPl eqP) !eqEsubset !subsetIl; apply: eq_subset_r => x. rewrite !inE; apply: andb_id2l => Hx; have Gx: x \in G := subsetP sHG x Hx. have Dax: a x \in D by rewrite (subsetP sGD) // Aut_closed. by rewrite Aut_isomE // -!sub1set -morphim_set1 // injmSK ?sub1set. Qed. Lemma isom_restr_perm a : a \in Aut G -> fHisom (inH a) = infH (fGisom a). Proof. move=> AutGa; case nHa: (a \in 'N(H | 'P)); last first. by rewrite !triv_restr_perm ?astabs_Aut_isom ?nHa ?morph1. apply: (eq_Aut (Aut_Aut_isom injf sHD _)) => [|fx Hfx /=]. by rewrite (Aut_restr_perm (morphimS f sHG)) ?Aut_Aut_isom. have [x Dx Hx def_fx] := morphimP Hfx; have Gx := subsetP sHG x Hx. rewrite {1}def_fx Aut_isomE ?(Aut_restr_perm sHG) //. by rewrite !restr_permE ?astabs_Aut_isom // def_fx Aut_isomE. Qed. Lemma restr_perm_isom : isom (inH @* Aut G) (infH @* Aut (f @* G)) fHisom. Proof. apply: sub_isom; rewrite ?restr_perm_Aut ?injm_Aut_isom //=. rewrite -(im_Aut_isom injf sGD) -!morphim_comp. apply: eq_in_morphim; last exact: isom_restr_perm. apply/setP=> a; rewrite 2!in_setI; apply: andb_id2r => AutGa. rewrite /= inE andbC inE (Aut_restr_perm sHG) //=. by symmetry; rewrite inE AutGa inE astabs_Aut_isom. Qed. Lemma injm_Aut_sub : Aut_in (Aut (f @* G)) (f @* H) \isog Aut_in (Aut G) H. Proof. do 2!rewrite isog_sym (isog_transl _ (Aut_in_isog _ _)). by rewrite isog_sym (isom_isog _ _ restr_perm_isom) // restr_perm_Aut. Qed. Lemma injm_Aut_full : (Aut_in (Aut (f @* G)) (f @* H) \isog Aut (f @* H)) = (Aut_in (Aut G) H \isog Aut H). Proof. by rewrite (isog_transl _ injm_Aut_sub) (isog_transr _ (injm_Aut injf sHD)). Qed. End InjmAutIn. Section GroupAction. Variables (aT rT : finGroupType) (D : {set aT}) (R : {set rT}). Local Notation actT := (action D rT). Definition is_groupAction (to : actT) := {in D, forall a, actperm to a \in Aut R}. Structure groupAction := GroupAction {gact :> actT; _ : is_groupAction gact}. Definition clone_groupAction to := let: GroupAction _ toA := to return {type of GroupAction for to} -> _ in fun k => k toA : groupAction. End GroupAction. Delimit Scope groupAction_scope with gact. Bind Scope groupAction_scope with groupAction. Arguments is_groupAction {aT rT D%g} R%g to%act. Arguments groupAction {aT rT} D%g R%g. Arguments gact {aT rT D%g R%g} to%gact : rename. Notation "[ 'groupAction' 'of' to ]" := (clone_groupAction (@GroupAction _ _ _ _ to)) (at level 0, format "[ 'groupAction' 'of' to ]") : form_scope. Section GroupActionDefs. Variables (aT rT : finGroupType) (D : {set aT}) (R : {set rT}). Implicit Type A : {set aT}. Implicit Type S : {set rT}. Implicit Type to : groupAction D R. Definition gact_range of groupAction D R := R. Definition gacent to A := 'Fix_(R | to)(D :&: A). Definition acts_on_group A S to := [acts A, on S | to] /\ S \subset R. Coercion actby_cond_group A S to : acts_on_group A S to -> actby_cond A S to := @proj1 _ _. Definition acts_irreducibly A S to := [min S of G | G :!=: 1 & [acts A, on G | to]]. End GroupActionDefs. Arguments gacent {aT rT D%g R%g} to%gact A%g. Arguments acts_on_group {aT rT D%g R%g} A%g S%g to%gact. Arguments acts_irreducibly {aT rT D%g R%g} A%g S%g to%gact. Notation "''C_' ( | to ) ( A )" := (gacent to A) (at level 8, format "''C_' ( | to ) ( A )") : group_scope. Notation "''C_' ( G | to ) ( A )" := (G :&: 'C_(|to)(A)) (at level 8, format "''C_' ( G | to ) ( A )") : group_scope. Notation "''C_' ( | to ) [ a ]" := 'C_(|to)([set a]) (at level 8, format "''C_' ( | to ) [ a ]") : group_scope. Notation "''C_' ( G | to ) [ a ]" := 'C_(G | to)([set a]) (at level 8, format "''C_' ( G | to ) [ a ]") : group_scope. Notation "{ 'acts' A , 'on' 'group' G | to }" := (acts_on_group A G to) (at level 0, format "{ 'acts' A , 'on' 'group' G | to }") : type_scope. Section RawGroupAction. Variables (aT rT : finGroupType) (D : {set aT}) (R : {set rT}). Variable to : groupAction D R. Lemma actperm_Aut : is_groupAction R to. Proof. by case: to. Qed. Lemma im_actperm_Aut : actperm to @* D \subset Aut R. Proof. by apply/subsetP=> _ /morphimP[a _ Da ->]; apply: actperm_Aut. Qed. Lemma gact_out x a : a \in D -> x \notin R -> to x a = x. Proof. by move=> Da Rx; rewrite -actpermE (out_Aut _ Rx) ?actperm_Aut. Qed. Lemma gactM : {in D, forall a, {in R &, {morph to^~ a : x y / x * y}}}. Proof. move=> a Da /= x y; rewrite -!(actpermE to); apply: morphicP x y. by rewrite Aut_morphic ?actperm_Aut. Qed. Lemma actmM a : {in R &, {morph actm to a : x y / x * y}}. Proof. by rewrite /actm; case: ifP => //; apply: gactM. Qed. Canonical act_morphism a := Morphism (actmM a). Lemma morphim_actm : {in D, forall a (S : {set rT}), S \subset R -> actm to a @* S = to^* S a}. Proof. by move=> a Da /= S sSR; rewrite /morphim /= actmEfun ?(setIidPr _). Qed. Variables (a : aT) (A B : {set aT}) (S : {set rT}). Lemma gacentIdom : 'C_(|to)(D :&: A) = 'C_(|to)(A). Proof. by rewrite /gacent setIA setIid. Qed. Lemma gacentIim : 'C_(R | to)(A) = 'C_(|to)(A). Proof. by rewrite setIA setIid. Qed. Lemma gacentS : A \subset B -> 'C_(|to)(B) \subset 'C_(|to)(A). Proof. by move=> sAB; rewrite !(setIS, afixS). Qed. Lemma gacentU : 'C_(|to)(A :|: B) = 'C_(|to)(A) :&: 'C_(|to)(B). Proof. by rewrite -setIIr -afixU -setIUr. Qed. Hypotheses (Da : a \in D) (sAD : A \subset D) (sSR : S \subset R). Lemma gacentE : 'C_(|to)(A) = 'Fix_(R | to)(A). Proof. by rewrite -{2}(setIidPr sAD). Qed. Lemma gacent1E : 'C_(|to)[a] = 'Fix_(R | to)[a]. Proof. by rewrite /gacent [D :&: _](setIidPr _) ?sub1set. Qed. Lemma subgacentE : 'C_(S | to)(A) = 'Fix_(S | to)(A). Proof. by rewrite gacentE setIA (setIidPl sSR). Qed. Lemma subgacent1E : 'C_(S | to)[a] = 'Fix_(S | to)[a]. Proof. by rewrite gacent1E setIA (setIidPl sSR). Qed. End RawGroupAction. Section GroupActionTheory. Variables aT rT : finGroupType. Variables (D : {group aT}) (R : {group rT}) (to : groupAction D R). Implicit Type A B : {set aT}. Implicit Types G H : {group aT}. Implicit Type S : {set rT}. Implicit Types M N : {group rT}. Lemma gact1 : {in D, forall a, to 1 a = 1}. Proof. by move=> a Da; rewrite /= -actmE ?morph1. Qed. Lemma gactV : {in D, forall a, {in R, {morph to^~ a : x / x^-1}}}. Proof. by move=> a Da /= x Rx; move; rewrite -!actmE ?morphV. Qed. Lemma gactX : {in D, forall a n, {in R, {morph to^~ a : x / x ^+ n}}}. Proof. by move=> a Da /= n x Rx; rewrite -!actmE // morphX. Qed. Lemma gactJ : {in D, forall a, {in R &, {morph to^~ a : x y / x ^ y}}}. Proof. by move=> a Da /= x Rx y Ry; rewrite -!actmE // morphJ. Qed. Lemma gactR : {in D, forall a, {in R &, {morph to^~ a : x y / [~ x, y]}}}. Proof. by move=> a Da /= x Rx y Ry; rewrite -!actmE // morphR. Qed. Lemma gact_stable : {acts D, on R | to}. Proof. apply: acts_act; apply/subsetP=> a Da; rewrite !inE Da. apply/subsetP=> x; rewrite inE; apply: contraLR => R'xa. by rewrite -(actKin to Da x) gact_out ?groupV. Qed. Lemma group_set_gacent A : group_set 'C_(|to)(A). Proof. apply/group_setP; split=> [|x y]. by rewrite !inE group1; apply/subsetP=> a /setIP[Da _]; rewrite inE gact1. case/setIP=> Rx /afixP cAx /setIP[Ry /afixP cAy]. rewrite inE groupM //; apply/afixP=> a Aa. by rewrite gactM ?cAx ?cAy //; case/setIP: Aa. Qed. Canonical gacent_group A := Group (group_set_gacent A). Lemma gacent1 : 'C_(|to)(1) = R. Proof. by rewrite /gacent (setIidPr (sub1G _)) afix1 setIT. Qed. Lemma gacent_gen A : A \subset D -> 'C_(|to)(<>) = 'C_(|to)(A). Proof. by move=> sAD; rewrite /gacent ![D :&: _](setIidPr _) ?gen_subG ?afix_gen_in. Qed. Lemma gacentD1 A : 'C_(|to)(A^#) = 'C_(|to)(A). Proof. rewrite -gacentIdom -gacent_gen ?subsetIl // setIDA genD1 ?group1 //. by rewrite gacent_gen ?subsetIl // gacentIdom. Qed. Lemma gacent_cycle a : a \in D -> 'C_(|to)(<[a]>) = 'C_(|to)[a]. Proof. by move=> Da; rewrite gacent_gen ?sub1set. Qed. Lemma gacentY A B : A \subset D -> B \subset D -> 'C_(|to)(A <*> B) = 'C_(|to)(A) :&: 'C_(|to)(B). Proof. by move=> sAD sBD; rewrite gacent_gen ?gacentU // subUset sAD. Qed. Lemma gacentM G H : G \subset D -> H \subset D -> 'C_(|to)(G * H) = 'C_(|to)(G) :&: 'C_(|to)(H). Proof. by move=> sGD sHB; rewrite -gacent_gen ?mul_subG // genM_join gacentY. Qed. Lemma astab1 : 'C(1 | to) = D. Proof. by apply/setP=> x; rewrite ?(inE, sub1set) andb_idr //; move/gact1=> ->. Qed. Lemma astab_range : 'C(R | to) = 'C(setT | to). Proof. apply/eqP; rewrite eqEsubset andbC astabS ?subsetT //=. apply/subsetP=> a cRa; have Da := astab_dom cRa; rewrite !inE Da. apply/subsetP=> x; rewrite -(setUCr R) !inE. by case/orP=> ?; [rewrite (astab_act cRa) | rewrite gact_out]. Qed. Lemma gacentC A S : A \subset D -> S \subset R -> (S \subset 'C_(|to)(A)) = (A \subset 'C(S | to)). Proof. by move=> sAD sSR; rewrite subsetI sSR astabCin // (setIidPr sAD). Qed. Lemma astab_gen S : S \subset R -> 'C(<> | to) = 'C(S | to). Proof. move=> sSR; apply/setP=> a; case Da: (a \in D); last by rewrite !inE Da. by rewrite -!sub1set -!gacentC ?sub1set ?gen_subG. Qed. Lemma astabM M N : M \subset R -> N \subset R -> 'C(M * N | to) = 'C(M | to) :&: 'C(N | to). Proof. move=> sMR sNR; rewrite -astabU -astab_gen ?mul_subG // genM_join. by rewrite astab_gen // subUset sMR. Qed. Lemma astabs1 : 'N(1 | to) = D. Proof. by rewrite astabs_set1 astab1. Qed. Lemma astabs_range : 'N(R | to) = D. Proof. apply/setIidPl; apply/subsetP=> a Da; rewrite inE. by apply/subsetP=> x Rx; rewrite inE gact_stable. Qed. Lemma astabsD1 S : 'N(S^# | to) = 'N(S | to). Proof. case S1: (1 \in S); last first. by rewrite (setDidPl _) // disjoint_sym disjoints_subset sub1set inE S1. apply/eqP; rewrite eqEsubset andbC -{1}astabsIdom -{1}astabs1 setIC astabsD /=. by rewrite -{2}(setD1K S1) -astabsIdom -{1}astabs1 astabsU. Qed. Lemma gacts_range A : A \subset D -> {acts A, on group R | to}. Proof. by move=> sAD; split; rewrite ?astabs_range. Qed. Lemma acts_subnorm_gacent A : A \subset D -> [acts 'N_D(A), on 'C_(| to)(A) | to]. Proof. move=> sAD; rewrite gacentE // actsI ?astabs_range ?subsetIl //. by rewrite -{2}(setIidPr sAD) acts_subnorm_fix. Qed. Lemma acts_subnorm_subgacent A B S : A \subset D -> [acts B, on S | to] -> [acts 'N_B(A), on 'C_(S | to)(A) | to]. Proof. move=> sAD actsB; rewrite actsI //; first by rewrite subIset ?actsB. by rewrite (subset_trans _ (acts_subnorm_gacent sAD)) ?setSI ?(acts_dom actsB). Qed. Lemma acts_gen A S : S \subset R -> [acts A, on S | to] -> [acts A, on <> | to]. Proof. move=> sSR actsA; apply: {A}subset_trans actsA _. apply/subsetP=> a nSa; have Da := astabs_dom nSa; rewrite !inE Da. apply: subset_trans (_ : <> \subset actm to a @*^-1 <>) _. rewrite gen_subG subsetI sSR; apply/subsetP=> x Sx. by rewrite inE /= actmE ?mem_gen // astabs_act. by apply/subsetP=> x /[!inE]; case/andP=> Rx; rewrite /= actmE. Qed. Lemma acts_joing A M N : M \subset R -> N \subset R -> [acts A, on M | to] -> [acts A, on N | to] -> [acts A, on M <*> N | to]. Proof. by move=> sMR sNR nMA nNA; rewrite acts_gen ?actsU // subUset sMR. Qed. Lemma injm_actm a : 'injm (actm to a). Proof. apply/injmP=> x y Rx Ry; rewrite /= /actm; case: ifP => Da //. exact: act_inj. Qed. Lemma im_actm a : actm to a @* R = R. Proof. apply/eqP; rewrite eqEcard (card_injm (injm_actm a)) // leqnn andbT. apply/subsetP=> _ /morphimP[x Rx _ ->] /=. by rewrite /actm; case: ifP => // Da; rewrite gact_stable. Qed. Lemma acts_char G M : G \subset D -> M \char R -> [acts G, on M | to]. Proof. move=> sGD /charP[sMR charM]. apply/subsetP=> a Ga; have Da := subsetP sGD a Ga; rewrite !inE Da. apply/subsetP=> x Mx; have Rx := subsetP sMR x Mx. by rewrite inE -(charM _ (injm_actm a) (im_actm a)) -actmE // mem_morphim. Qed. Lemma gacts_char G M : G \subset D -> M \char R -> {acts G, on group M | to}. Proof. by move=> sGD charM; split; rewrite (acts_char, char_sub). Qed. Section Restrict. Variables (A : {group aT}) (sAD : A \subset D). Lemma ract_is_groupAction : is_groupAction R (to \ sAD). Proof. by move=> a Aa /=; rewrite ractpermE actperm_Aut ?(subsetP sAD). Qed. Canonical ract_groupAction := GroupAction ract_is_groupAction. Lemma gacent_ract B : 'C_(|ract_groupAction)(B) = 'C_(|to)(A :&: B). Proof. by rewrite /gacent afix_ract setIA (setIidPr sAD). Qed. End Restrict. Section ActBy. Variables (A : {group aT}) (G : {group rT}) (nGAg : {acts A, on group G | to}). Lemma actby_is_groupAction : is_groupAction G <[nGAg]>. Proof. move=> a Aa; rewrite /= inE; apply/andP; split. apply/subsetP=> x; apply: contraR => Gx. by rewrite actpermE /= /actby (negbTE Gx). apply/morphicP=> x y Gx Gy; rewrite !actpermE /= /actby Aa groupM ?Gx ?Gy //=. by case nGAg; move/acts_dom; do 2!move/subsetP=> ?; rewrite gactM; auto. Qed. Canonical actby_groupAction := GroupAction actby_is_groupAction. Lemma gacent_actby B : 'C_(|actby_groupAction)(B) = 'C_(G | to)(A :&: B). Proof. rewrite /gacent afix_actby !setIA setIid setIUr setICr set0U. by have [nAG sGR] := nGAg; rewrite (setIidPr (acts_dom nAG)) (setIidPl sGR). Qed. End ActBy. Section Quotient. Variable H : {group rT}. Lemma acts_qact_dom_norm : {acts qact_dom to H, on 'N(H) | to}. Proof. move=> a HDa /= x; rewrite {2}(('N(H) =P to^~ a @^-1: 'N(H)) _) ?inE {x}//. rewrite eqEcard (card_preimset _ (act_inj _ _)) leqnn andbT. apply/subsetP=> x Nx; rewrite inE; move/(astabs_act (H :* x)): HDa. rewrite mem_rcosets mulSGid ?normG // Nx => /rcosetsP[y Ny defHy]. suffices: to x a \in H :* y by apply: subsetP; rewrite mul_subG ?sub1set ?normG. by rewrite -defHy; apply: imset_f; apply: rcoset_refl. Qed. Lemma qact_is_groupAction : is_groupAction (R / H) (to / H). Proof. move=> a HDa /=; have Da := astabs_dom HDa. rewrite inE; apply/andP; split. apply/subsetP=> Hx /=; case: (cosetP Hx) => x Nx ->{Hx}. apply: contraR => R'Hx; rewrite actpermE qactE // gact_out //. by apply: contra R'Hx; apply: mem_morphim. apply/morphicP=> Hx Hy; rewrite !actpermE. case/morphimP=> x Nx Gx ->{Hx}; case/morphimP=> y Ny Gy ->{Hy}. by rewrite -morphM ?qactE ?groupM ?gactM // morphM ?acts_qact_dom_norm. Qed. Canonical quotient_groupAction := GroupAction qact_is_groupAction. Lemma qact_domE : H \subset R -> qact_dom to H = 'N(H | to). Proof. move=> sHR; apply/setP=> a; apply/idP/idP=> nHa; have Da := astabs_dom nHa. rewrite !inE Da; apply/subsetP=> x Hx; rewrite inE -(rcoset1 H). have /rcosetsP[y Ny defHy]: to^~ a @: H \in rcosets H 'N(H). by rewrite (astabs_act _ nHa); apply/rcosetsP; exists 1; rewrite ?mulg1. by rewrite (rcoset_eqP (_ : 1 \in H :* y)) -defHy -1?(gact1 Da) mem_setact. rewrite !inE Da; apply/subsetP=> Hx /[1!inE] /rcosetsP[x Nx ->{Hx}]. apply/imsetP; exists (to x a). case Rx: (x \in R); last by rewrite gact_out ?Rx. rewrite inE; apply/subsetP=> _ /imsetP[y Hy ->]. rewrite -(actKVin to Da y) -gactJ // ?(subsetP sHR, astabs_act, groupV) //. by rewrite memJ_norm // astabs_act ?groupV. apply/eqP; rewrite rcosetE eqEcard. rewrite (card_imset _ (act_inj _ _)) !card_rcoset leqnn andbT. apply/subsetP=> _ /imsetP[y Hxy ->]; rewrite !mem_rcoset in Hxy *. have Rxy := subsetP sHR _ Hxy; rewrite -(mulgKV x y). case Rx: (x \in R); last by rewrite !gact_out ?mulgK // 1?groupMl ?Rx. by rewrite -gactV // -gactM 1?groupMr ?groupV // mulgK astabs_act. Qed. End Quotient. Section Mod. Variable H : {group aT}. Lemma modact_is_groupAction : is_groupAction 'C_(|to)(H) (to %% H). Proof. move=> Ha /morphimP[a Na Da ->]; have NDa: a \in 'N_D(H) by apply/setIP. rewrite inE; apply/andP; split. apply/subsetP=> x; rewrite 2!inE andbC actpermE /= modactEcond //. by apply: contraR; case: ifP => // E Rx; rewrite gact_out. apply/morphicP=> x y /setIP[Rx cHx] /setIP[Ry cHy]. rewrite /= !actpermE /= !modactE ?gactM //. suffices: x * y \in 'C_(|to)(H) by case/setIP. by rewrite groupM //; apply/setIP. Qed. Canonical mod_groupAction := GroupAction modact_is_groupAction. Lemma modgactE x a : H \subset 'C(R | to) -> a \in 'N_D(H) -> (to %% H)%act x (coset H a) = to x a. Proof. move=> cRH NDa /=; have [Da Na] := setIP NDa. have [Rx | notRx] := boolP (x \in R). by rewrite modactE //; apply/afixP=> b /setIP[_ /(subsetP cRH)/astab_act->]. rewrite gact_out //= /modact; case: ifP => // _; rewrite gact_out //. suffices: a \in D :&: coset H a by case/mem_repr/setIP. by rewrite inE Da val_coset // rcoset_refl. Qed. Lemma gacent_mod G M : H \subset 'C(M | to) -> G \subset 'N(H) -> 'C_(M | mod_groupAction)(G / H) = 'C_(M | to)(G). Proof. move=> cMH nHG; rewrite -gacentIdom gacentE ?subsetIl // setICA. have sHD: H \subset D by rewrite (subset_trans cMH) ?subsetIl. rewrite -quotientGI // afix_mod ?setIS // setICA -gacentIim (setIC R) -setIA. rewrite -gacentE ?subsetIl // gacentIdom setICA (setIidPr _) //. by rewrite gacentC // ?(subset_trans cMH) ?astabS ?subsetIl // setICA subsetIl. Qed. Lemma acts_irr_mod G M : H \subset 'C(M | to) -> G \subset 'N(H) -> acts_irreducibly G M to -> acts_irreducibly (G / H) M mod_groupAction. Proof. move=> cMH nHG /mingroupP[/andP[ntM nMG] minM]. apply/mingroupP; rewrite ntM astabs_mod ?quotientS //; split=> // L modL ntL. have cLH: H \subset 'C(L | to) by rewrite (subset_trans cMH) ?astabS //. apply: minM => //; case/andP: modL => ->; rewrite astabs_mod ?quotientSGK //. by rewrite (subset_trans cLH) ?astab_sub. Qed. End Mod. Lemma modact_coset_astab x a : a \in D -> (to %% 'C(R | to))%act x (coset _ a) = to x a. Proof. move=> Da; apply: modgactE => {x}//. rewrite !inE Da; apply/subsetP=> _ /imsetP[c Cc ->]. have Dc := astab_dom Cc; rewrite !inE groupJ //. apply/subsetP=> x Rx; rewrite inE conjgE !actMin ?groupM ?groupV //. by rewrite (astab_act Cc) ?actKVin // gact_stable ?groupV. Qed. Lemma acts_irr_mod_astab G M : acts_irreducibly G M to -> acts_irreducibly (G / 'C_G(M | to)) M (mod_groupAction _). Proof. move=> irrG; have /andP[_ nMG] := mingroupp irrG. apply: acts_irr_mod irrG; first exact: subsetIr. by rewrite normsI ?normG // (subset_trans nMG) // astab_norm. Qed. Section CompAct. Variables (gT : finGroupType) (G : {group gT}) (f : {morphism G >-> aT}). Lemma comp_is_groupAction : is_groupAction R (comp_action to f). Proof. move=> a /morphpreP[Ba Dfa]; apply: etrans (actperm_Aut to Dfa). by congr (_ \in Aut R); apply/permP=> x; rewrite !actpermE. Qed. Canonical comp_groupAction := GroupAction comp_is_groupAction. Lemma gacent_comp U : 'C_(|comp_groupAction)(U) = 'C_(|to)(f @* U). Proof. rewrite /gacent afix_comp ?subIset ?subxx //. by rewrite -(setIC U) (setIC D) morphim_setIpre. Qed. End CompAct. End GroupActionTheory. Notation "''C_' ( | to ) ( A )" := (gacent_group to A) : Group_scope. Notation "''C_' ( G | to ) ( A )" := (setI_group G 'C_(|to)(A)) : Group_scope. Notation "''C_' ( | to ) [ a ]" := (gacent_group to [set a%g]) : Group_scope. Notation "''C_' ( G | to ) [ a ]" := (setI_group G 'C_(|to)[a]) : Group_scope. Notation "to \ sAD" := (ract_groupAction to sAD) : groupAction_scope. Notation "<[ nGA ] >" := (actby_groupAction nGA) : groupAction_scope. Notation "to / H" := (quotient_groupAction to H) : groupAction_scope. Notation "to %% H" := (mod_groupAction to H) : groupAction_scope. Notation "to \o f" := (comp_groupAction to f) : groupAction_scope. (* Operator group isomorphism. *) Section MorphAction. Variables (aT1 aT2 : finGroupType) (rT1 rT2 : finType). Variables (D1 : {group aT1}) (D2 : {group aT2}). Variables (to1 : action D1 rT1) (to2 : action D2 rT2). Variables (A : {set aT1}) (R S : {set rT1}). Variables (h : rT1 -> rT2) (f : {morphism D1 >-> aT2}). Hypotheses (actsDR : {acts D1, on R | to1}) (injh : {in R &, injective h}). Hypothesis defD2 : f @* D1 = D2. Hypotheses (sSR : S \subset R) (sAD1 : A \subset D1). Hypothesis hfJ : {in S & D1, morph_act to1 to2 h f}. Lemma morph_astabs : f @* 'N(S | to1) = 'N(h @: S | to2). Proof. apply/setP=> fx; apply/morphimP/idP=> [[x D1x nSx ->] | nSx]. rewrite 2!inE -{1}defD2 mem_morphim //=; apply/subsetP=> _ /imsetP[u Su ->]. by rewrite inE -hfJ ?imset_f // (astabs_act _ nSx). have [|x D1x _ def_fx] := morphimP (_ : fx \in f @* D1). by rewrite defD2 (astabs_dom nSx). exists x => //; rewrite !inE D1x; apply/subsetP=> u Su. have /imsetP[u' Su' /injh def_u']: h (to1 u x) \in h @: S. by rewrite hfJ // -def_fx (astabs_act _ nSx) imset_f. by rewrite inE def_u' ?actsDR ?(subsetP sSR). Qed. Lemma morph_astab : f @* 'C(S | to1) = 'C(h @: S | to2). Proof. apply/setP=> fx; apply/morphimP/idP=> [[x D1x cSx ->] | cSx]. rewrite 2!inE -{1}defD2 mem_morphim //=; apply/subsetP=> _ /imsetP[u Su ->]. by rewrite inE -hfJ // (astab_act cSx). have [|x D1x _ def_fx] := morphimP (_ : fx \in f @* D1). by rewrite defD2 (astab_dom cSx). exists x => //; rewrite !inE D1x; apply/subsetP=> u Su. rewrite inE -(inj_in_eq injh) ?actsDR ?(subsetP sSR) ?hfJ //. by rewrite -def_fx (astab_act cSx) ?imset_f. Qed. Lemma morph_afix : h @: 'Fix_(S | to1)(A) = 'Fix_(h @: S | to2)(f @* A). Proof. apply/setP=> hu; apply/imsetP/setIP=> [[u /setIP[Su cAu] ->]|]. split; first by rewrite imset_f. by apply/afixP=> _ /morphimP[x D1x Ax ->]; rewrite -hfJ ?(afixP cAu). case=> /imsetP[u Su ->] /afixP c_hu_fA; exists u; rewrite // inE Su. apply/afixP=> x Ax; have Dx := subsetP sAD1 x Ax. by apply: injh; rewrite ?actsDR ?(subsetP sSR) ?hfJ // c_hu_fA ?mem_morphim. Qed. End MorphAction. Section MorphGroupAction. Variables (aT1 aT2 rT1 rT2 : finGroupType). Variables (D1 : {group aT1}) (D2 : {group aT2}). Variables (R1 : {group rT1}) (R2 : {group rT2}). Variables (to1 : groupAction D1 R1) (to2 : groupAction D2 R2). Variables (h : {morphism R1 >-> rT2}) (f : {morphism D1 >-> aT2}). Hypotheses (iso_h : isom R1 R2 h) (iso_f : isom D1 D2 f). Hypothesis hfJ : {in R1 & D1, morph_act to1 to2 h f}. Implicit Types (A : {set aT1}) (S : {set rT1}) (M : {group rT1}). Lemma morph_gastabs S : S \subset R1 -> f @* 'N(S | to1) = 'N(h @* S | to2). Proof. have [[_ defD2] [injh _]] := (isomP iso_f, isomP iso_h). move=> sSR1; rewrite (morphimEsub _ sSR1). apply: (morph_astabs (gact_stable to1) (injmP injh)) => // u x. by move/(subsetP sSR1); apply: hfJ. Qed. Lemma morph_gastab S : S \subset R1 -> f @* 'C(S | to1) = 'C(h @* S | to2). Proof. have [[_ defD2] [injh _]] := (isomP iso_f, isomP iso_h). move=> sSR1; rewrite (morphimEsub _ sSR1). apply: (morph_astab (gact_stable to1) (injmP injh)) => // u x. by move/(subsetP sSR1); apply: hfJ. Qed. Lemma morph_gacent A : A \subset D1 -> h @* 'C_(|to1)(A) = 'C_(|to2)(f @* A). Proof. have [[_ defD2] [injh defR2]] := (isomP iso_f, isomP iso_h). move=> sAD1; rewrite !gacentE //; last by rewrite -defD2 morphimS. rewrite morphimEsub ?subsetIl // -{1}defR2 morphimEdom. exact: (morph_afix (gact_stable to1) (injmP injh)). Qed. Lemma morph_gact_irr A M : A \subset D1 -> M \subset R1 -> acts_irreducibly (f @* A) (h @* M) to2 = acts_irreducibly A M to1. Proof. move=> sAD1 sMR1. have [[injf defD2] [injh defR2]] := (isomP iso_f, isomP iso_h). have h_eq1 := morphim_injm_eq1 injh. apply/mingroupP/mingroupP=> [] [/andP[ntM actAM] minM]. split=> [|U]; first by rewrite -h_eq1 // ntM -(injmSK injf) ?morph_gastabs. case/andP=> ntU acts_fAU sUM; have sUR1 := subset_trans sUM sMR1. apply: (injm_morphim_inj injh) => //; apply: minM; last exact: morphimS. by rewrite h_eq1 // ntU -morph_gastabs ?morphimS. split=> [|U]; first by rewrite h_eq1 // ntM -morph_gastabs ?morphimS. case/andP=> ntU acts_fAU sUhM. have sUhR1 := subset_trans sUhM (morphimS h sMR1). have sU'M: h @*^-1 U \subset M by rewrite sub_morphpre_injm. rewrite /= -(minM _ _ sU'M) ?morphpreK // -h_eq1 ?subsetIl // -(injmSK injf) //. by rewrite morph_gastabs ?(subset_trans sU'M) // morphpreK ?ntU. Qed. End MorphGroupAction. (* Conjugation and right translation actions. *) Section InternalActionDefs. Variable gT : finGroupType. Implicit Type A : {set gT}. Implicit Type G : {group gT}. (* This is not a Canonical action because it is seldom used, and it would *) (* cause too many spurious matches (any group product would be viewed as an *) (* action!). *) Definition mulgr_action := TotalAction (@mulg1 gT) (@mulgA gT). Canonical conjg_action := TotalAction (@conjg1 gT) (@conjgM gT). Lemma conjg_is_groupAction : is_groupAction setT conjg_action. Proof. move=> a _; rewrite inE; apply/andP; split; first by apply/subsetP=> x /[1!inE]. by apply/morphicP=> x y _ _; rewrite !actpermE /= conjMg. Qed. Canonical conjg_groupAction := GroupAction conjg_is_groupAction. Lemma rcoset_is_action : is_action setT (@rcoset gT). Proof. by apply: is_total_action => [A|A x y]; rewrite !rcosetE (mulg1, rcosetM). Qed. Canonical rcoset_action := Action rcoset_is_action. Canonical conjsg_action := TotalAction (@conjsg1 gT) (@conjsgM gT). Lemma conjG_is_action : is_action setT (@conjG_group gT). Proof. apply: is_total_action => [G | G x y]; apply: val_inj; rewrite /= ?act1 //. exact: actM. Qed. Definition conjG_action := Action conjG_is_action. End InternalActionDefs. Notation "'R" := (@mulgr_action _) (at level 8) : action_scope. Notation "'Rs" := (@rcoset_action _) (at level 8) : action_scope. Notation "'J" := (@conjg_action _) (at level 8) : action_scope. Notation "'J" := (@conjg_groupAction _) (at level 8) : groupAction_scope. Notation "'Js" := (@conjsg_action _) (at level 8) : action_scope. Notation "'JG" := (@conjG_action _) (at level 8) : action_scope. Notation "'Q" := ('J / _)%act (at level 8) : action_scope. Notation "'Q" := ('J / _)%gact (at level 8) : groupAction_scope. Section InternalGroupAction. Variable gT : finGroupType. Implicit Types A B : {set gT}. Implicit Types G H : {group gT}. Implicit Type x : gT. (* Various identities for actions on groups. *) Lemma orbitR G x : orbit 'R G x = x *: G. Proof. by rewrite -lcosetE. Qed. Lemma astab1R x : 'C[x | 'R] = 1. Proof. apply/trivgP/subsetP=> y cxy. by rewrite -(mulKg x y) [x * y](astab1P cxy) mulVg set11. Qed. Lemma astabR G : 'C(G | 'R) = 1. Proof. apply/trivgP/subsetP=> x cGx. by rewrite -(mul1g x) [1 * x](astabP cGx) group1. Qed. Lemma astabsR G : 'N(G | 'R) = G. Proof. apply/setP=> x; rewrite !inE -setactVin ?inE //=. by rewrite -groupV -{1 3}(mulg1 G) rcoset_sym -sub1set -mulGS -!rcosetE. Qed. Lemma atransR G : [transitive G, on G | 'R]. Proof. by rewrite /atrans -{1}(mul1g G) -orbitR imset_f. Qed. Lemma faithfulR G : [faithful G, on G | 'R]. Proof. by rewrite /faithful astabR subsetIr. Qed. Definition Cayley_repr G := actperm <[atrans_acts (atransR G)]>. Theorem Cayley_isom G : isom G (Cayley_repr G @* G) (Cayley_repr G). Proof. exact: faithful_isom (faithfulR G). Qed. Theorem Cayley_isog G : G \isog Cayley_repr G @* G. Proof. exact: isom_isog (Cayley_isom G). Qed. Lemma orbitJ G x : orbit 'J G x = x ^: G. Proof. by []. Qed. Lemma afixJ A : 'Fix_('J)(A) = 'C(A). Proof. apply/setP=> x; apply/afixP/centP=> cAx y Ay /=. by rewrite /commute conjgC cAx. by rewrite conjgE cAx ?mulKg. Qed. Lemma astabJ A : 'C(A |'J) = 'C(A). Proof. apply/setP=> x; apply/astabP/centP=> cAx y Ay /=. by apply: esym; rewrite conjgC cAx. by rewrite conjgE -cAx ?mulKg. Qed. Lemma astab1J x : 'C[x |'J] = 'C[x]. Proof. by rewrite astabJ cent_set1. Qed. Lemma astabsJ A : 'N(A | 'J) = 'N(A). Proof. by apply/setP=> x; rewrite -2!groupV !inE -conjg_preim -sub_conjg. Qed. Lemma setactJ A x : 'J^*%act A x = A :^ x. Proof. by []. Qed. Lemma gacentJ A : 'C_(|'J)(A) = 'C(A). Proof. by rewrite gacentE ?setTI ?subsetT ?afixJ. Qed. Lemma orbitRs G A : orbit 'Rs G A = rcosets A G. Proof. by []. Qed. Lemma sub_afixRs_norms G x A : (G :* x \in 'Fix_('Rs)(A)) = (A \subset G :^ x). Proof. rewrite inE /=; apply: eq_subset_r => a. rewrite inE rcosetE -(can2_eq (rcosetKV x) (rcosetK x)) -!rcosetM. rewrite eqEcard card_rcoset leqnn andbT mulgA (conjgCV x) mulgK. by rewrite -{2 3}(mulGid G) mulGS sub1set -mem_conjg. Qed. Lemma sub_afixRs_norm G x : (G :* x \in 'Fix_('Rs)(G)) = (x \in 'N(G)). Proof. by rewrite sub_afixRs_norms -groupV inE sub_conjgV. Qed. Lemma afixRs_rcosets A G : 'Fix_(rcosets G A | 'Rs)(G) = rcosets G 'N_A(G). Proof. apply/setP=> Gx; apply/setIP/rcosetsP=> [[/rcosetsP[x Ax ->]]|[x]]. by rewrite sub_afixRs_norm => Nx; exists x; rewrite // inE Ax. by case/setIP=> Ax Nx ->; rewrite -{1}rcosetE imset_f // sub_afixRs_norm. Qed. Lemma astab1Rs G : 'C[G : {set gT} | 'Rs] = G. Proof. apply/setP=> x. by apply/astab1P/idP=> /= [<- | Gx]; rewrite rcosetE ?rcoset_refl ?rcoset_id. Qed. Lemma actsRs_rcosets H G : [acts G, on rcosets H G | 'Rs]. Proof. by rewrite -orbitRs acts_orbit ?subsetT. Qed. Lemma transRs_rcosets H G : [transitive G, on rcosets H G | 'Rs]. Proof. by rewrite -orbitRs atrans_orbit. Qed. (* This is the second part of Aschbacher (5.7) *) Lemma astabRs_rcosets H G : 'C(rcosets H G | 'Rs) = gcore H G. Proof. have transGH := transRs_rcosets H G. by rewrite (astab_trans_gcore transGH (orbit_refl _ G _)) astab1Rs. Qed. Lemma orbitJs G A : orbit 'Js G A = A :^: G. Proof. by []. Qed. Lemma astab1Js A : 'C[A | 'Js] = 'N(A). Proof. by apply/setP=> x; apply/astab1P/normP. Qed. Lemma card_conjugates A G : #|A :^: G| = #|G : 'N_G(A)|. Proof. by rewrite card_orbit astab1Js. Qed. Lemma afixJG G A : (G \in 'Fix_('JG)(A)) = (A \subset 'N(G)). Proof. by apply/afixP/normsP=> nG x Ax; apply/eqP; move/eqP: (nG x Ax). Qed. Lemma astab1JG G : 'C[G | 'JG] = 'N(G). Proof. by apply/setP=> x; apply/astab1P/normP=> [/congr_group | /group_inj]. Qed. Lemma dom_qactJ H : qact_dom 'J H = 'N(H). Proof. by rewrite qact_domE ?subsetT ?astabsJ. Qed. Lemma qactJ H (Hy : coset_of H) x : 'Q%act Hy x = if x \in 'N(H) then Hy ^ coset H x else Hy. Proof. case: (cosetP Hy) => y Ny ->{Hy}. by rewrite qactEcond // dom_qactJ; case Nx: (x \in 'N(H)); rewrite ?morphJ. Qed. Lemma actsQ A B H : A \subset 'N(H) -> A \subset 'N(B) -> [acts A, on B / H | 'Q]. Proof. by move=> nHA nBA; rewrite acts_quotient // subsetI dom_qactJ nHA astabsJ. Qed. Lemma astabsQ G H : H <| G -> 'N(G / H | 'Q) = 'N(H) :&: 'N(G). Proof. by move=> nsHG; rewrite astabs_quotient // dom_qactJ astabsJ. Qed. Lemma astabQ H Abar : 'C(Abar |'Q) = coset H @*^-1 'C(Abar). Proof. apply/setP=> x; rewrite inE /= dom_qactJ morphpreE in_setI /=. apply: andb_id2l => Nx; rewrite !inE -sub1set centsC cent_set1. apply: eq_subset_r => {Abar} Hy; rewrite inE qactJ Nx (sameP eqP conjg_fixP). by rewrite (sameP cent1P eqP) (sameP commgP eqP). Qed. Lemma sub_astabQ A H Bbar : (A \subset 'C(Bbar | 'Q)) = (A \subset 'N(H)) && (A / H \subset 'C(Bbar)). Proof. rewrite astabQ -morphpreIdom subsetI; apply: andb_id2l => nHA. by rewrite -sub_quotient_pre. Qed. Lemma sub_astabQR A B H : A \subset 'N(H) -> B \subset 'N(H) -> (A \subset 'C(B / H | 'Q)) = ([~: A, B] \subset H). Proof. move=> nHA nHB; rewrite sub_astabQ nHA /= (sameP commG1P eqP). by rewrite eqEsubset sub1G andbT -quotientR // quotient_sub1 // comm_subG. Qed. Lemma astabQR A H : A \subset 'N(H) -> 'C(A / H | 'Q) = [set x in 'N(H) | [~: [set x], A] \subset H]. Proof. move=> nHA; apply/setP=> x; rewrite astabQ -morphpreIdom 2!inE -astabQ. by case nHx: (x \in _); rewrite //= -sub1set sub_astabQR ?sub1set. Qed. Lemma quotient_astabQ H Abar : 'C(Abar | 'Q) / H = 'C(Abar). Proof. by rewrite astabQ cosetpreK. Qed. Lemma conj_astabQ A H x : x \in 'N(H) -> 'C(A / H | 'Q) :^ x = 'C(A :^ x / H | 'Q). Proof. move=> nHx; apply/setP=> y; rewrite !astabQ mem_conjg !in_setI -mem_conjg. rewrite -normJ (normP nHx) quotientJ //; apply/andb_id2l => nHy. by rewrite !inE centJ morphJ ?groupV ?morphV // -mem_conjg. Qed. Section CardClass. Variable G : {group gT}. Lemma index_cent1 x : #|G : 'C_G[x]| = #|x ^: G|. Proof. by rewrite -astab1J -card_orbit. Qed. Lemma classes_partition : partition (classes G) G. Proof. by apply: orbit_partition; apply/actsP=> x Gx y; apply: groupJr. Qed. Lemma sum_card_class : \sum_(C in classes G) #|C| = #|G|. Proof. by apply: acts_sum_card_orbit; apply/actsP=> x Gx y; apply: groupJr. Qed. Lemma class_formula : \sum_(C in classes G) #|G : 'C_G[repr C]| = #|G|. Proof. rewrite -sum_card_class; apply: eq_bigr => _ /imsetP[x Gx ->]. have: x \in x ^: G by rewrite -{1}(conjg1 x) imset_f. by case/mem_repr/imsetP=> y Gy ->; rewrite index_cent1 classGidl. Qed. Lemma abelian_classP : reflect {in G, forall x, x ^: G = [set x]} (abelian G). Proof. rewrite /abelian -astabJ astabC. by apply: (iffP subsetP) => cGG x Gx; apply/orbit1P; apply: cGG. Qed. Lemma card_classes_abelian : abelian G = (#|classes G| == #|G|). Proof. have cGgt0 C: C \in classes G -> 1 <= #|C| ?= iff (#|C| == 1)%N. by case/imsetP=> x _ ->; rewrite eq_sym -index_cent1. rewrite -sum_card_class -sum1_card (leqif_sum cGgt0). apply/abelian_classP/forall_inP=> [cGG _ /imsetP[x Gx ->]| cGG x Gx]. by rewrite cGG ?cards1. apply/esym/eqP; rewrite eqEcard sub1set cards1 class_refl leq_eqVlt cGG //. exact: imset_f. Qed. End CardClass. End InternalGroupAction. Lemma gacentQ (gT : finGroupType) (H : {group gT}) (A : {set gT}) : 'C_(|'Q)(A) = 'C(A / H). Proof. apply/setP=> Hx; case: (cosetP Hx) => x Nx ->{Hx}. rewrite -sub_cent1 -astab1J astabC sub1set -(quotientInorm H A). have defD: qact_dom 'J H = 'N(H) by rewrite qact_domE ?subsetT ?astabsJ. rewrite !(inE, mem_quotient) //= defD setIC. apply/subsetP/subsetP=> [cAx _ /morphimP[a Na Aa ->] | cAx a Aa]. by move/cAx: Aa; rewrite !inE qactE ?defD ?morphJ. have [_ Na] := setIP Aa; move/implyP: (cAx (coset H a)); rewrite mem_morphim //. by rewrite !inE qactE ?defD ?morphJ. Qed. Section AutAct. Variable (gT : finGroupType) (G : {set gT}). Definition autact := act ('P \ subsetT (Aut G)). Canonical aut_action := [action of autact]. Lemma autactK a : actperm aut_action a = a. Proof. by apply/permP=> x; rewrite permE. Qed. Lemma autact_is_groupAction : is_groupAction G aut_action. Proof. by move=> a Aa /=; rewrite autactK. Qed. Canonical aut_groupAction := GroupAction autact_is_groupAction. End AutAct. Arguments autact {gT} G%g. Arguments aut_action {gT} G%g. Arguments aut_groupAction {gT} G%g. Notation "[ 'Aut' G ]" := (aut_action G) : action_scope. Notation "[ 'Aut' G ]" := (aut_groupAction G) : groupAction_scope.