(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice. From mathcomp Require Import fintype finfun bigop finset fingroup. (******************************************************************************) (* This file contains the definitions of: *) (* *) (* {morphism D >-> rT} == *) (* the structure type of functions that are group morphisms mapping a *) (* domain set D : {set aT} to a type rT; rT must have a finGroupType *) (* structure, and D is usually a group (most of the theory expects this). *) (* mfun == the coercion projecting {morphism D >-> rT} to aT -> rT *) (* *) (* Basic examples: *) (* idm D == the identity morphism with domain D, or more precisely *) (* the identity function, but with a canonical *) (* {morphism G -> gT} structure. *) (* trivm D == the trivial morphism with domain D. *) (* If f has a {morphism D >-> rT} structure *) (* 'dom f == D, the domain of f. *) (* f @* A == the image of A by f, where f is defined. *) (* := f @: (D :&: A) *) (* f @*^-1 R == the pre-image of R by f, where f is defined. *) (* := D :&: f @^-1: R *) (* 'ker f == the kernel of f. *) (* := f @*^-1 1 *) (* 'ker_G f == the kernel of f restricted to G. *) (* := G :&: 'ker f (this is a pure notation) *) (* 'injm f <=> f injective on D. *) (* <-> ker f \subset 1 (this is a pure notation) *) (* invm injf == the inverse morphism of f, with domain f @* D, when f *) (* is injective (injf : 'injm f). *) (* restrm f sDom == the restriction of f to a subset A of D, given *) (* (sDom : A \subset D); restrm f sDom is transparently *) (* identical to f; the restrmP and domP lemmas provide *) (* opaque restrictions. *) (* *) (* G \isog H <=> G and H are isomorphic as groups. *) (* H \homg G <=> H is a homomorphic image of G. *) (* isom G H f <=> f maps G isomorphically to H, provided D contains G. *) (* := f @: G^# == H^# *) (* *) (* If, moreover, g : {morphism G >-> gT} with G : {group aT}, *) (* factm sKer sDom == the (natural) factor morphism mapping f @* G to g @* G *) (* with sDom : G \subset D, sKer : 'ker f \subset 'ker g. *) (* ifactm injf g == the (natural) factor morphism mapping f @* G to g @* G *) (* when f is injective (injf : 'injm f); here g must *) (* denote an actual morphism structure, not its function *) (* projection. *) (* *) (* If g has a {morphism G >-> aT} structure for any G : {group gT}, then *) (* f \o g has a canonical {morphism g @*^-1 D >-> rT} structure. *) (* *) (* Finally, for an arbitrary function f : aT -> rT *) (* morphic D f <=> f preserves group multiplication in D, i.e., *) (* f (x * y) = (f x) * (f y) for all x, y in D. *) (* morphm fM == a function identical to f, but with a canonical *) (* {morphism D >-> rT} structure, given fM : morphic D f. *) (* misom D C f <=> f is a morphism that maps D isomorphically to C. *) (* := morphic D f && isom D C f *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GroupScope. Reserved Notation "x \isog y" (at level 70). Section MorphismStructure. Variables aT rT : finGroupType. Structure morphism (D : {set aT}) : Type := Morphism { mfun :> aT -> FinGroup.sort rT; _ : {in D &, {morph mfun : x y / x * y}} }. (* We give the 'lightest' possible specification to define morphisms: local *) (* congruence, in D, with the group law of aT. We then provide the properties *) (* for the 'textbook' notion of morphism, when the required structures are *) (* available (e.g. its domain is a group). *) Definition morphism_for D of phant rT := morphism D. Definition clone_morphism D f := let: Morphism _ fM := f return {type of @Morphism D for f} -> morphism_for D (Phant rT) in fun k => k fM. Variables (D A : {set aT}) (R : {set rT}) (x : aT) (y : rT) (f : aT -> rT). Variant morphim_spec : Prop := MorphimSpec z & z \in D & z \in A & y = f z. Lemma morphimP : reflect morphim_spec (y \in f @: (D :&: A)). Proof. apply: (iffP imsetP) => [] [z]; first by case/setIP; exists z. by exists z; first apply/setIP. Qed. Lemma morphpreP : reflect (x \in D /\ f x \in R) (x \in D :&: f @^-1: R). Proof. by rewrite !inE; apply: andP. Qed. End MorphismStructure. Notation "{ 'morphism' D >-> T }" := (morphism_for D (Phant T)) (at level 0, format "{ 'morphism' D >-> T }") : type_scope. Notation "[ 'morphism' D 'of' f ]" := (@clone_morphism _ _ D _ (fun fM => @Morphism _ _ D f fM)) (at level 0, format "[ 'morphism' D 'of' f ]") : form_scope. Notation "[ 'morphism' 'of' f ]" := (clone_morphism (@Morphism _ _ _ f)) (at level 0, format "[ 'morphism' 'of' f ]") : form_scope. Arguments morphimP {aT rT D A y f}. Arguments morphpreP {aT rT D R x f}. (* Domain, image, preimage, kernel, using phantom types to infer the domain. *) Section MorphismOps1. Variables (aT rT : finGroupType) (D : {set aT}) (f : {morphism D >-> rT}). Lemma morphM : {in D &, {morph f : x y / x * y}}. Proof. by case f. Qed. Notation morPhantom := (phantom (aT -> rT)). Definition MorPhantom := Phantom (aT -> rT). Definition dom of morPhantom f := D. Definition morphim of morPhantom f := fun A => f @: (D :&: A). Definition morphpre of morPhantom f := fun R : {set rT} => D :&: f @^-1: R. Definition ker mph := morphpre mph 1. End MorphismOps1. Arguments morphim _ _ _%g _ _ _%g. Arguments morphpre _ _ _%g _ _ _%g. Notation "''dom' f" := (dom (MorPhantom f)) (at level 10, f at level 8, format "''dom' f") : group_scope. Notation "''ker' f" := (ker (MorPhantom f)) (at level 10, f at level 8, format "''ker' f") : group_scope. Notation "''ker_' H f" := (H :&: 'ker f) (at level 10, H at level 2, f at level 8, format "''ker_' H f") : group_scope. Notation "f @* A" := (morphim (MorPhantom f) A) (at level 24, format "f @* A") : group_scope. Notation "f @*^-1 R" := (morphpre (MorPhantom f) R) (at level 24, format "f @*^-1 R") : group_scope. Notation "''injm' f" := (pred_of_set ('ker f) \subset pred_of_set 1) (at level 10, f at level 8, format "''injm' f") : group_scope. Section MorphismTheory. Variables aT rT : finGroupType. Implicit Types A B : {set aT}. Implicit Types G H : {group aT}. Implicit Types R S : {set rT}. Implicit Types M : {group rT}. (* Most properties of morphims hold only when the domain is a group. *) Variables (D : {group aT}) (f : {morphism D >-> rT}). Lemma morph1 : f 1 = 1. Proof. by apply: (mulgI (f 1)); rewrite -morphM ?mulg1. Qed. Lemma morph_prod I r (P : pred I) F : (forall i, P i -> F i \in D) -> f (\prod_(i <- r | P i) F i) = \prod_( i <- r | P i) f (F i). Proof. move=> D_F; elim/(big_load (fun x => x \in D)): _. elim/big_rec2: _ => [|i _ x Pi [Dx <-]]; first by rewrite morph1. by rewrite groupM ?morphM // D_F. Qed. Lemma morphV : {in D, {morph f : x / x^-1}}. Proof. move=> x Dx; apply: (mulgI (f x)). by rewrite -morphM ?groupV // !mulgV morph1. Qed. Lemma morphJ : {in D &, {morph f : x y / x ^ y}}. Proof. by move=> * /=; rewrite !morphM ?morphV // ?groupM ?groupV. Qed. Lemma morphX n : {in D, {morph f : x / x ^+ n}}. Proof. by elim: n => [|n IHn] x Dx; rewrite ?morph1 // !expgS morphM ?(groupX, IHn). Qed. Lemma morphR : {in D &, {morph f : x y / [~ x, y]}}. Proof. by move=> * /=; rewrite morphM ?(groupV, groupJ) // morphJ ?morphV. Qed. (* Morphic image, preimage properties w.r.t. set-theoretic operations. *) Lemma morphimE A : f @* A = f @: (D :&: A). Proof. by []. Qed. Lemma morphpreE R : f @*^-1 R = D :&: f @^-1: R. Proof. by []. Qed. Lemma kerE : 'ker f = f @*^-1 1. Proof. by []. Qed. Lemma morphimEsub A : A \subset D -> f @* A = f @: A. Proof. by move=> sAD; rewrite /morphim (setIidPr sAD). Qed. Lemma morphimEdom : f @* D = f @: D. Proof. exact: morphimEsub. Qed. Lemma morphimIdom A : f @* (D :&: A) = f @* A. Proof. by rewrite /morphim setIA setIid. Qed. Lemma morphpreIdom R : D :&: f @*^-1 R = f @*^-1 R. Proof. by rewrite /morphim setIA setIid. Qed. Lemma morphpreIim R : f @*^-1 (f @* D :&: R) = f @*^-1 R. Proof. apply/setP=> x; rewrite morphimEdom !inE. by case Dx: (x \in D); rewrite // imset_f. Qed. Lemma morphimIim A : f @* D :&: f @* A = f @* A. Proof. by apply/setIidPr; rewrite imsetS // setIid subsetIl. Qed. Lemma mem_morphim A x : x \in D -> x \in A -> f x \in f @* A. Proof. by move=> Dx Ax; apply/morphimP; exists x. Qed. Lemma mem_morphpre R x : x \in D -> f x \in R -> x \in f @*^-1 R. Proof. by move=> Dx Rfx; apply/morphpreP. Qed. Lemma morphimS A B : A \subset B -> f @* A \subset f @* B. Proof. by move=> sAB; rewrite imsetS ?setIS. Qed. Lemma morphim_sub A : f @* A \subset f @* D. Proof. by rewrite imsetS // setIid subsetIl. Qed. Lemma leq_morphim A : #|f @* A| <= #|A|. Proof. by apply: (leq_trans (leq_imset_card _ _)); rewrite subset_leq_card ?subsetIr. Qed. Lemma morphpreS R S : R \subset S -> f @*^-1 R \subset f @*^-1 S. Proof. by move=> sRS; rewrite setIS ?preimsetS. Qed. Lemma morphpre_sub R : f @*^-1 R \subset D. Proof. exact: subsetIl. Qed. Lemma morphim_setIpre A R : f @* (A :&: f @*^-1 R) = f @* A :&: R. Proof. apply/setP=> fa; apply/morphimP/setIP=> [[a Da] | [/morphimP[a Da Aa ->] Rfa]]. by rewrite !inE Da /= => /andP[Aa Rfa] ->; rewrite mem_morphim. by exists a; rewrite // !inE Aa Da. Qed. Lemma morphim0 : f @* set0 = set0. Proof. by rewrite morphimE setI0 imset0. Qed. Lemma morphim_eq0 A : A \subset D -> (f @* A == set0) = (A == set0). Proof. by rewrite imset_eq0 => /setIidPr->. Qed. Lemma morphim_set1 x : x \in D -> f @* [set x] = [set f x]. Proof. by rewrite /morphim -sub1set => /setIidPr->; apply: imset_set1. Qed. Lemma morphim1 : f @* 1 = 1. Proof. by rewrite morphim_set1 ?morph1. Qed. Lemma morphimV A : f @* A^-1 = (f @* A)^-1. Proof. wlog suffices: A / f @* A^-1 \subset (f @* A)^-1. by move=> IH; apply/eqP; rewrite eqEsubset IH -invSg invgK -{1}(invgK A) IH. apply/subsetP=> _ /morphimP[x Dx Ax' ->]; rewrite !inE in Ax' *. by rewrite -morphV // imset_f // inE groupV Dx. Qed. Lemma morphpreV R : f @*^-1 R^-1 = (f @*^-1 R)^-1. Proof. apply/setP=> x; rewrite !inE groupV; case Dx: (x \in D) => //=. by rewrite morphV. Qed. Lemma morphimMl A B : A \subset D -> f @* (A * B) = f @* A * f @* B. Proof. move=> sAD; rewrite /morphim setIC -group_modl // (setIidPr sAD). apply/setP=> fxy; apply/idP/idP. case/imsetP=> _ /imset2P[x y Ax /setIP[Dy By] ->] ->{fxy}. by rewrite morphM // (subsetP sAD, imset2_f) // imset_f // inE By. case/imset2P=> _ _ /imsetP[x Ax ->] /morphimP[y Dy By ->] ->{fxy}. by rewrite -morphM // (subsetP sAD, imset_f) // mem_mulg // inE By. Qed. Lemma morphimMr A B : B \subset D -> f @* (A * B) = f @* A * f @* B. Proof. move=> sBD; apply: invg_inj. by rewrite invMg -!morphimV invMg morphimMl // -invGid invSg. Qed. Lemma morphpreMl R S : R \subset f @* D -> f @*^-1 (R * S) = f @*^-1 R * f @*^-1 S. Proof. move=> sRfD; apply/setP=> x; rewrite !inE. apply/andP/imset2P=> [[Dx] | [y z]]; last first. rewrite !inE => /andP[Dy Rfy] /andP[Dz Rfz] ->. by rewrite ?(groupM, morphM, imset2_f). case/imset2P=> fy fz Rfy Rfz def_fx. have /morphimP[y Dy _ def_fy]: fy \in f @* D := subsetP sRfD fy Rfy. exists y (y^-1 * x); last by rewrite mulKVg. by rewrite !inE Dy -def_fy. by rewrite !inE groupM ?(morphM, morphV, groupV) // def_fx -def_fy mulKg. Qed. Lemma morphimJ A x : x \in D -> f @* (A :^ x) = f @* A :^ f x. Proof. move=> Dx; rewrite !conjsgE morphimMl ?(morphimMr, sub1set, groupV) //. by rewrite !(morphim_set1, groupV, morphV). Qed. Lemma morphpreJ R x : x \in D -> f @*^-1 (R :^ f x) = f @*^-1 R :^ x. Proof. move=> Dx; apply/setP=> y; rewrite conjIg !inE conjGid // !mem_conjg inE. by case Dy: (y \in D); rewrite // morphJ ?(morphV, groupV). Qed. Lemma morphim_class x A : x \in D -> A \subset D -> f @* (x ^: A) = f x ^: f @* A. Proof. move=> Dx sAD; rewrite !morphimEsub ?class_subG // /class -!imset_comp. by apply: eq_in_imset => y Ay /=; rewrite morphJ // (subsetP sAD). Qed. Lemma classes_morphim A : A \subset D -> classes (f @* A) = [set f @* xA | xA in classes A]. Proof. move=> sAD; rewrite morphimEsub // /classes -!imset_comp. apply: eq_in_imset => x /(subsetP sAD) Dx /=. by rewrite morphim_class ?morphimEsub. Qed. Lemma morphimT : f @* setT = f @* D. Proof. by rewrite -morphimIdom setIT. Qed. Lemma morphimU A B : f @* (A :|: B) = f @* A :|: f @* B. Proof. by rewrite -imsetU -setIUr. Qed. Lemma morphimI A B : f @* (A :&: B) \subset f @* A :&: f @* B. Proof. by rewrite subsetI // ?morphimS ?(subsetIl, subsetIr). Qed. Lemma morphpre0 : f @*^-1 set0 = set0. Proof. by rewrite morphpreE preimset0 setI0. Qed. Lemma morphpreT : f @*^-1 setT = D. Proof. by rewrite morphpreE preimsetT setIT. Qed. Lemma morphpreU R S : f @*^-1 (R :|: S) = f @*^-1 R :|: f @*^-1 S. Proof. by rewrite -setIUr -preimsetU. Qed. Lemma morphpreI R S : f @*^-1 (R :&: S) = f @*^-1 R :&: f @*^-1 S. Proof. by rewrite -setIIr -preimsetI. Qed. Lemma morphpreD R S : f @*^-1 (R :\: S) = f @*^-1 R :\: f @*^-1 S. Proof. by apply/setP=> x /[!inE]; case: (x \in D). Qed. (* kernel, domain properties *) Lemma kerP x : x \in D -> reflect (f x = 1) (x \in 'ker f). Proof. by move=> Dx; rewrite 2!inE Dx; apply: set1P. Qed. Lemma dom_ker : {subset 'ker f <= D}. Proof. by move=> x /morphpreP[]. Qed. Lemma mker x : x \in 'ker f -> f x = 1. Proof. by move=> Kx; apply/kerP=> //; apply: dom_ker. Qed. Lemma mkerl x y : x \in 'ker f -> y \in D -> f (x * y) = f y. Proof. by move=> Kx Dy; rewrite morphM // ?(dom_ker, mker Kx, mul1g). Qed. Lemma mkerr x y : x \in D -> y \in 'ker f -> f (x * y) = f x. Proof. by move=> Dx Ky; rewrite morphM // ?(dom_ker, mker Ky, mulg1). Qed. Lemma rcoset_kerP x y : x \in D -> y \in D -> reflect (f x = f y) (x \in 'ker f :* y). Proof. move=> Dx Dy; rewrite mem_rcoset !inE groupM ?morphM ?groupV //=. by rewrite morphV // -eq_mulgV1; apply: eqP. Qed. Lemma ker_rcoset x y : x \in D -> y \in D -> f x = f y -> exists2 z, z \in 'ker f & x = z * y. Proof. by move=> Dx Dy eqfxy; apply/rcosetP; apply/rcoset_kerP. Qed. Lemma ker_norm : D \subset 'N('ker f). Proof. apply/subsetP=> x Dx /[1!inE]; apply/subsetP=> _ /imsetP[y Ky ->]. by rewrite !inE groupJ ?morphJ // ?dom_ker //= mker ?conj1g. Qed. Lemma ker_normal : 'ker f <| D. Proof. by rewrite /(_ <| D) subsetIl ker_norm. Qed. Lemma morphimGI G A : 'ker f \subset G -> f @* (G :&: A) = f @* G :&: f @* A. Proof. move=> sKG; apply/eqP; rewrite eqEsubset morphimI setIC. apply/subsetP=> _ /setIP[/morphimP[x Dx Ax ->] /morphimP[z Dz Gz]]. case/ker_rcoset=> {Dz}// y Ky def_x. have{z Gz y Ky def_x} Gx: x \in G by rewrite def_x groupMl // (subsetP sKG). by rewrite imset_f ?inE // Dx Gx Ax. Qed. Lemma morphimIG A G : 'ker f \subset G -> f @* (A :&: G) = f @* A :&: f @* G. Proof. by move=> sKG; rewrite setIC morphimGI // setIC. Qed. Lemma morphimD A B : f @* A :\: f @* B \subset f @* (A :\: B). Proof. rewrite subDset -morphimU morphimS //. by rewrite setDE setUIr setUCr setIT subsetUr. Qed. Lemma morphimDG A G : 'ker f \subset G -> f @* (A :\: G) = f @* A :\: f @* G. Proof. move=> sKG; apply/eqP; rewrite eqEsubset morphimD andbT !setDE subsetI. rewrite morphimS ?subsetIl // -[~: f @* G]setU0 -subDset setDE setCK. by rewrite -morphimIG //= setIAC -setIA setICr setI0 morphim0. Qed. Lemma morphimD1 A : (f @* A)^# \subset f @* A^#. Proof. by rewrite -!set1gE -morphim1 morphimD. Qed. (* group structure preservation *) Lemma morphpre_groupset M : group_set (f @*^-1 M). Proof. apply/group_setP; split=> [|x y]; rewrite !inE ?(morph1, group1) //. by case/andP=> Dx Mfx /andP[Dy Mfy]; rewrite morphM ?groupM. Qed. Lemma morphim_groupset G : group_set (f @* G). Proof. apply/group_setP; split=> [|_ _ /morphimP[x Dx Gx ->] /morphimP[y Dy Gy ->]]. by rewrite -morph1 imset_f ?group1. by rewrite -morphM ?imset_f ?inE ?groupM. Qed. Canonical morphpre_group fPh M := @group _ (morphpre fPh M) (morphpre_groupset M). Canonical morphim_group fPh G := @group _ (morphim fPh G) (morphim_groupset G). Canonical ker_group fPh : {group aT} := Eval hnf in [group of ker fPh]. Lemma morph_dom_groupset : group_set (f @: D). Proof. by rewrite -morphimEdom groupP. Qed. Canonical morph_dom_group := group morph_dom_groupset. Lemma morphpreMr R S : S \subset f @* D -> f @*^-1 (R * S) = f @*^-1 R * f @*^-1 S. Proof. move=> sSfD; apply: invg_inj. by rewrite invMg -!morphpreV invMg morphpreMl // -invSg invgK invGid. Qed. Lemma morphimK A : A \subset D -> f @*^-1 (f @* A) = 'ker f * A. Proof. move=> sAD; apply/setP=> x; rewrite !inE. apply/idP/idP=> [/andP[Dx /morphimP[y Dy Ay eqxy]] | /imset2P[z y Kz Ay ->{x}]]. rewrite -(mulgKV y x) mem_mulg // !inE !(groupM, morphM, groupV) //. by rewrite morphV //= eqxy mulgV. have [Dy Dz]: y \in D /\ z \in D by rewrite (subsetP sAD) // dom_ker. by rewrite groupM // morphM // mker // mul1g imset_f // inE Dy. Qed. Lemma morphimGK G : 'ker f \subset G -> G \subset D -> f @*^-1 (f @* G) = G. Proof. by move=> sKG sGD; rewrite morphimK // mulSGid. Qed. Lemma morphpre_set1 x : x \in D -> f @*^-1 [set f x] = 'ker f :* x. Proof. by move=> Dx; rewrite -morphim_set1 // morphimK ?sub1set. Qed. Lemma morphpreK R : R \subset f @* D -> f @* (f @*^-1 R) = R. Proof. move=> sRfD; apply/setP=> y; apply/morphimP/idP=> [[x _] | Ry]. by rewrite !inE; case/andP=> _ Rfx ->. have /morphimP[x Dx _ defy]: y \in f @* D := subsetP sRfD y Ry. by exists x; rewrite // !inE Dx -defy. Qed. Lemma morphim_ker : f @* 'ker f = 1. Proof. by rewrite morphpreK ?sub1G. Qed. Lemma ker_sub_pre M : 'ker f \subset f @*^-1 M. Proof. by rewrite morphpreS ?sub1G. Qed. Lemma ker_normal_pre M : 'ker f <| f @*^-1 M. Proof. by rewrite /normal ker_sub_pre subIset ?ker_norm. Qed. Lemma morphpreSK R S : R \subset f @* D -> (f @*^-1 R \subset f @*^-1 S) = (R \subset S). Proof. move=> sRfD; apply/idP/idP=> [sf'RS|]; last exact: morphpreS. suffices: R \subset f @* D :&: S by rewrite subsetI sRfD. rewrite -(morphpreK sRfD) -[_ :&: S]morphpreK (morphimS, subsetIl) //. by rewrite morphpreI morphimGK ?subsetIl // setIA setIid. Qed. Lemma sub_morphim_pre A R : A \subset D -> (f @* A \subset R) = (A \subset f @*^-1 R). Proof. move=> sAD; rewrite -morphpreSK (morphimS, morphimK) //. apply/idP/idP; first by apply: subset_trans; apply: mulG_subr. by move/(mulgS ('ker f)); rewrite -morphpreMl ?(sub1G, mul1g). Qed. Lemma morphpre_proper R S : R \subset f @* D -> S \subset f @* D -> (f @*^-1 R \proper f @*^-1 S) = (R \proper S). Proof. by move=> dQ dR; rewrite /proper !morphpreSK. Qed. Lemma sub_morphpre_im R G : 'ker f \subset G -> G \subset D -> R \subset f @* D -> (f @*^-1 R \subset G) = (R \subset f @* G). Proof. by symmetry; rewrite -morphpreSK ?morphimGK. Qed. Lemma ker_trivg_morphim A : (A \subset 'ker f) = (A \subset D) && (f @* A \subset [1]). Proof. case sAD: (A \subset D); first by rewrite sub_morphim_pre. by rewrite subsetI sAD. Qed. Lemma morphimSK A B : A \subset D -> (f @* A \subset f @* B) = (A \subset 'ker f * B). Proof. move=> sAD; transitivity (A \subset 'ker f * (D :&: B)). by rewrite -morphimK ?subsetIl // -sub_morphim_pre // /morphim setIA setIid. by rewrite setIC group_modl (subsetIl, subsetI) // andbC sAD. Qed. Lemma morphimSGK A G : A \subset D -> 'ker f \subset G -> (f @* A \subset f @* G) = (A \subset G). Proof. by move=> sGD skfK; rewrite morphimSK // mulSGid. Qed. Lemma ltn_morphim A : [1] \proper 'ker_A f -> #|f @* A| < #|A|. Proof. case/properP; rewrite sub1set => /setIP[A1 _] [x /setIP[Ax kx] x1]. rewrite (cardsD1 1 A) A1 ltnS -{1}(setD1K A1) morphimU morphim1. rewrite (setUidPr _) ?sub1set; last first. by rewrite -(mker kx) mem_morphim ?(dom_ker kx) // inE x1. by rewrite (leq_trans (leq_imset_card _ _)) ?subset_leq_card ?subsetIr. Qed. (* injectivity of image and preimage *) Lemma morphpre_inj : {in [pred R : {set rT} | R \subset f @* D] &, injective (fun R => f @*^-1 R)}. Proof. exact: can_in_inj morphpreK. Qed. Lemma morphim_injG : {in [pred G : {group aT} | 'ker f \subset G & G \subset D] &, injective (fun G => f @* G)}. Proof. move=> G H /andP[sKG sGD] /andP[sKH sHD] eqfGH. by apply: val_inj; rewrite /= -(morphimGK sKG sGD) eqfGH morphimGK. Qed. Lemma morphim_inj G H : ('ker f \subset G) && (G \subset D) -> ('ker f \subset H) && (H \subset D) -> f @* G = f @* H -> G :=: H. Proof. by move=> nsGf nsHf /morphim_injG->. Qed. (* commutation with generated groups and cycles *) Lemma morphim_gen A : A \subset D -> f @* <> = <>. Proof. move=> sAD; apply/eqP. rewrite eqEsubset andbC gen_subG morphimS; last exact: subset_gen. by rewrite sub_morphim_pre gen_subG // -sub_morphim_pre // subset_gen. Qed. Lemma morphim_cycle x : x \in D -> f @* <[x]> = <[f x]>. Proof. by move=> Dx; rewrite morphim_gen (sub1set, morphim_set1). Qed. Lemma morphimY A B : A \subset D -> B \subset D -> f @* (A <*> B) = f @* A <*> f @* B. Proof. by move=> sAD sBD; rewrite morphim_gen ?morphimU // subUset sAD. Qed. Lemma morphpre_gen R : 1 \in R -> R \subset f @* D -> f @*^-1 <> = <>. Proof. move=> R1 sRfD; apply/eqP. rewrite eqEsubset andbC gen_subG morphpreS; last exact: subset_gen. rewrite -{1}(morphpreK sRfD) -morphim_gen ?subsetIl // morphimGK //=. by rewrite sub_gen // setIS // preimsetS ?sub1set. by rewrite gen_subG subsetIl. Qed. (* commutator, normaliser, normal, center properties*) Lemma morphimR A B : A \subset D -> B \subset D -> f @* [~: A, B] = [~: f @* A, f @* B]. Proof. move/subsetP=> sAD /subsetP sBD. rewrite morphim_gen; last first; last congr <<_>>. by apply/subsetP=> _ /imset2P[x y Ax By ->]; rewrite groupR; auto. apply/setP=> fz; apply/morphimP/imset2P=> [[z _] | [fx fy]]. case/imset2P=> x y Ax By -> -> {z fz}. have Dx := sAD x Ax; have Dy := sBD y By. by exists (f x) (f y); rewrite ?(imset_f, morphR) // ?(inE, Dx, Dy). case/morphimP=> x Dx Ax ->{fx}; case/morphimP=> y Dy By ->{fy} -> {fz}. by exists [~ x, y]; rewrite ?(inE, morphR, groupR, imset2_f). Qed. Lemma morphim_norm A : f @* 'N(A) \subset 'N(f @* A). Proof. apply/subsetP=> fx; case/morphimP=> x Dx Nx -> {fx}. by rewrite inE -morphimJ ?(normP Nx). Qed. Lemma morphim_norms A B : A \subset 'N(B) -> f @* A \subset 'N(f @* B). Proof. by move=> nBA; apply: subset_trans (morphim_norm B); apply: morphimS. Qed. Lemma morphim_subnorm A B : f @* 'N_A(B) \subset 'N_(f @* A)(f @* B). Proof. exact: subset_trans (morphimI A _) (setIS _ (morphim_norm B)). Qed. Lemma morphim_normal A B : A <| B -> f @* A <| f @* B. Proof. by case/andP=> sAB nAB; rewrite /(_ <| _) morphimS // morphim_norms. Qed. Lemma morphim_cent1 x : x \in D -> f @* 'C[x] \subset 'C[f x]. Proof. by move=> Dx; rewrite -(morphim_set1 Dx) morphim_norm. Qed. Lemma morphim_cent1s A x : x \in D -> A \subset 'C[x] -> f @* A \subset 'C[f x]. Proof. by move=> Dx cAx; apply: subset_trans (morphim_cent1 Dx); apply: morphimS. Qed. Lemma morphim_subcent1 A x : x \in D -> f @* 'C_A[x] \subset 'C_(f @* A)[f x]. Proof. by move=> Dx; rewrite -(morphim_set1 Dx) morphim_subnorm. Qed. Lemma morphim_cent A : f @* 'C(A) \subset 'C(f @* A). Proof. apply/bigcapsP=> fx; case/morphimP=> x Dx Ax ->{fx}. by apply: subset_trans (morphim_cent1 Dx); apply: morphimS; apply: bigcap_inf. Qed. Lemma morphim_cents A B : A \subset 'C(B) -> f @* A \subset 'C(f @* B). Proof. by move=> cBA; apply: subset_trans (morphim_cent B); apply: morphimS. Qed. Lemma morphim_subcent A B : f @* 'C_A(B) \subset 'C_(f @* A)(f @* B). Proof. exact: subset_trans (morphimI A _) (setIS _ (morphim_cent B)). Qed. Lemma morphim_abelian A : abelian A -> abelian (f @* A). Proof. exact: morphim_cents. Qed. Lemma morphpre_norm R : f @*^-1 'N(R) \subset 'N(f @*^-1 R). Proof. by apply/subsetP=> x /[!inE] /andP[Dx Nfx]; rewrite -morphpreJ ?morphpreS. Qed. Lemma morphpre_norms R S : R \subset 'N(S) -> f @*^-1 R \subset 'N(f @*^-1 S). Proof. by move=> nSR; apply: subset_trans (morphpre_norm S); apply: morphpreS. Qed. Lemma morphpre_normal R S : R \subset f @* D -> S \subset f @* D -> (f @*^-1 R <| f @*^-1 S) = (R <| S). Proof. move=> sRfD sSfD; apply/idP/andP=> [|[sRS nSR]]. by move/morphim_normal; rewrite !morphpreK //; case/andP. by rewrite /(_ <| _) (subset_trans _ (morphpre_norm _)) morphpreS. Qed. Lemma morphpre_subnorm R S : f @*^-1 'N_R(S) \subset 'N_(f @*^-1 R)(f @*^-1 S). Proof. by rewrite morphpreI setIS ?morphpre_norm. Qed. Lemma morphim_normG G : 'ker f \subset G -> G \subset D -> f @* 'N(G) = 'N_(f @* D)(f @* G). Proof. move=> sKG sGD; apply/eqP; rewrite eqEsubset -{1}morphimIdom morphim_subnorm. rewrite -(morphpreK (subsetIl _ _)) morphimS //= morphpreI subIset // orbC. by rewrite -{2}(morphimGK sKG sGD) morphpre_norm. Qed. Lemma morphim_subnormG A G : 'ker f \subset G -> G \subset D -> f @* 'N_A(G) = 'N_(f @* A)(f @* G). Proof. move=> sKB sBD; rewrite morphimIG ?normsG // morphim_normG //. by rewrite setICA setIA morphimIim. Qed. Lemma morphpre_cent1 x : x \in D -> 'C_D[x] \subset f @*^-1 'C[f x]. Proof. move=> Dx; rewrite -sub_morphim_pre ?subsetIl //. by apply: subset_trans (morphim_cent1 Dx); rewrite morphimS ?subsetIr. Qed. Lemma morphpre_cent1s R x : x \in D -> R \subset f @* D -> f @*^-1 R \subset 'C[x] -> R \subset 'C[f x]. Proof. by move=> Dx sRfD; move/(morphim_cent1s Dx); rewrite morphpreK. Qed. Lemma morphpre_subcent1 R x : x \in D -> 'C_(f @*^-1 R)[x] \subset f @*^-1 'C_R[f x]. Proof. move=> Dx; rewrite -morphpreIdom -setIA setICA morphpreI setIS //. exact: morphpre_cent1. Qed. Lemma morphpre_cent A : 'C_D(A) \subset f @*^-1 'C(f @* A). Proof. rewrite -sub_morphim_pre ?subsetIl // morphimGI ?(subsetIl, subIset) // orbC. by rewrite (subset_trans (morphim_cent _)). Qed. Lemma morphpre_cents A R : R \subset f @* D -> f @*^-1 R \subset 'C(A) -> R \subset 'C(f @* A). Proof. by move=> sRfD; move/morphim_cents; rewrite morphpreK. Qed. Lemma morphpre_subcent R A : 'C_(f @*^-1 R)(A) \subset f @*^-1 'C_R(f @* A). Proof. by rewrite -morphpreIdom -setIA setICA morphpreI setIS //; apply: morphpre_cent. Qed. (* local injectivity properties *) Lemma injmP : reflect {in D &, injective f} ('injm f). Proof. apply: (iffP subsetP) => [injf x y Dx Dy | injf x /= Kx]. by case/ker_rcoset=> // z /injf/set1P->; rewrite mul1g. have Dx := dom_ker Kx; apply/set1P/injf => //. by apply/rcoset_kerP; rewrite // mulg1. Qed. Lemma card_im_injm : (#|f @* D| == #|D|) = 'injm f. Proof. by rewrite morphimEdom (sameP imset_injP injmP). Qed. Section Injective. Hypothesis injf : 'injm f. Lemma ker_injm : 'ker f = 1. Proof. exact/trivgP. Qed. Lemma injmK A : A \subset D -> f @*^-1 (f @* A) = A. Proof. by move=> sAD; rewrite morphimK // ker_injm // mul1g. Qed. Lemma injm_morphim_inj A B : A \subset D -> B \subset D -> f @* A = f @* B -> A = B. Proof. by move=> sAD sBD eqAB; rewrite -(injmK sAD) eqAB injmK. Qed. Lemma card_injm A : A \subset D -> #|f @* A| = #|A|. Proof. move=> sAD; rewrite morphimEsub // card_in_imset //. exact: (sub_in2 (subsetP sAD) (injmP injf)). Qed. Lemma order_injm x : x \in D -> #[f x] = #[x]. Proof. by move=> Dx; rewrite orderE -morphim_cycle // card_injm ?cycle_subG. Qed. Lemma injm1 x : x \in D -> f x = 1 -> x = 1. Proof. by move=> Dx; move/(kerP Dx); rewrite ker_injm; move/set1P. Qed. Lemma morph_injm_eq1 x : x \in D -> (f x == 1) = (x == 1). Proof. by move=> Dx; rewrite -morph1 (inj_in_eq (injmP injf)) ?group1. Qed. Lemma injmSK A B : A \subset D -> (f @* A \subset f @* B) = (A \subset B). Proof. by move=> sAD; rewrite morphimSK // ker_injm mul1g. Qed. Lemma sub_morphpre_injm R A : A \subset D -> R \subset f @* D -> (f @*^-1 R \subset A) = (R \subset f @* A). Proof. by move=> sAD sRfD; rewrite -morphpreSK ?injmK. Qed. Lemma injm_eq A B : A \subset D -> B \subset D -> (f @* A == f @* B) = (A == B). Proof. by move=> sAD sBD; rewrite !eqEsubset !injmSK. Qed. Lemma morphim_injm_eq1 A : A \subset D -> (f @* A == 1) = (A == 1). Proof. by move=> sAD; rewrite -morphim1 injm_eq ?sub1G. Qed. Lemma injmI A B : f @* (A :&: B) = f @* A :&: f @* B. Proof. rewrite -morphimIdom setIIr -4!(injmK (subsetIl D _), =^~ morphimIdom). by rewrite -morphpreI morphpreK // subIset ?morphim_sub. Qed. Lemma injmD1 A : f @* A^# = (f @* A)^#. Proof. by have:= morphimDG A injf; rewrite morphim1. Qed. Lemma nclasses_injm A : A \subset D -> #|classes (f @* A)| = #|classes A|. Proof. move=> sAD; rewrite classes_morphim // card_in_imset //. move=> _ _ /imsetP[x Ax ->] /imsetP[y Ay ->]. by apply: injm_morphim_inj; rewrite // class_subG ?(subsetP sAD). Qed. Lemma injm_norm A : A \subset D -> f @* 'N(A) = 'N_(f @* D)(f @* A). Proof. move=> sAD; apply/eqP; rewrite -morphimIdom eqEsubset morphim_subnorm. rewrite -sub_morphpre_injm ?subsetIl // morphpreI injmK // setIS //. by rewrite -{2}(injmK sAD) morphpre_norm. Qed. Lemma injm_norms A B : A \subset D -> B \subset D -> (f @* A \subset 'N(f @* B)) = (A \subset 'N(B)). Proof. by move=> sAD sBD; rewrite -injmSK // injm_norm // subsetI morphimS. Qed. Lemma injm_normal A B : A \subset D -> B \subset D -> (f @* A <| f @* B) = (A <| B). Proof. by move=> sAD sBD; rewrite /normal injmSK ?injm_norms. Qed. Lemma injm_subnorm A B : B \subset D -> f @* 'N_A(B) = 'N_(f @* A)(f @* B). Proof. by move=> sBD; rewrite injmI injm_norm // setICA setIA morphimIim. Qed. Lemma injm_cent1 x : x \in D -> f @* 'C[x] = 'C_(f @* D)[f x]. Proof. by move=> Dx; rewrite injm_norm ?morphim_set1 ?sub1set. Qed. Lemma injm_subcent1 A x : x \in D -> f @* 'C_A[x] = 'C_(f @* A)[f x]. Proof. by move=> Dx; rewrite injm_subnorm ?morphim_set1 ?sub1set. Qed. Lemma injm_cent A : A \subset D -> f @* 'C(A) = 'C_(f @* D)(f @* A). Proof. move=> sAD; apply/eqP; rewrite -morphimIdom eqEsubset morphim_subcent. apply/subsetP=> fx; case/setIP; case/morphimP=> x Dx _ ->{fx} cAfx. rewrite mem_morphim // inE Dx -sub1set centsC cent_set1 -injmSK //. by rewrite injm_cent1 // subsetI morphimS // -cent_set1 centsC sub1set. Qed. Lemma injm_cents A B : A \subset D -> B \subset D -> (f @* A \subset 'C(f @* B)) = (A \subset 'C(B)). Proof. by move=> sAD sBD; rewrite -injmSK // injm_cent // subsetI morphimS. Qed. Lemma injm_subcent A B : B \subset D -> f @* 'C_A(B) = 'C_(f @* A)(f @* B). Proof. by move=> sBD; rewrite injmI injm_cent // setICA setIA morphimIim. Qed. Lemma injm_abelian A : A \subset D -> abelian (f @* A) = abelian A. Proof. by move=> sAD; rewrite /abelian -subsetIidl -injm_subcent // injmSK ?subsetIidl. Qed. End Injective. Lemma eq_morphim (g : {morphism D >-> rT}): {in D, f =1 g} -> forall A, f @* A = g @* A. Proof. by move=> efg A; apply: eq_in_imset; apply: sub_in1 efg => x /setIP[]. Qed. Lemma eq_in_morphim B A (g : {morphism B >-> rT}) : D :&: A = B :&: A -> {in A, f =1 g} -> f @* A = g @* A. Proof. move=> eqDBA eqAfg; rewrite /morphim /= eqDBA. by apply: eq_in_imset => x /setIP[_]/eqAfg. Qed. End MorphismTheory. Notation "''ker' f" := (ker_group (MorPhantom f)) : Group_scope. Notation "''ker_' G f" := (G :&: 'ker f)%G : Group_scope. Notation "f @* G" := (morphim_group (MorPhantom f) G) : Group_scope. Notation "f @*^-1 M" := (morphpre_group (MorPhantom f) M) : Group_scope. Notation "f @: D" := (morph_dom_group f D) : Group_scope. Arguments injmP {aT rT D f}. Arguments morphpreK {aT rT D f} [R] sRf. Section IdentityMorphism. Variable gT : finGroupType. Implicit Types A B : {set gT}. Implicit Type G : {group gT}. Definition idm of {set gT} := fun x : gT => x : FinGroup.sort gT. Lemma idm_morphM A : {in A & , {morph idm A : x y / x * y}}. Proof. by []. Qed. Canonical idm_morphism A := Morphism (@idm_morphM A). Lemma injm_idm G : 'injm (idm G). Proof. by apply/injmP=> x y _ _. Qed. Lemma ker_idm G : 'ker (idm G) = 1. Proof. by apply/trivgP; apply: injm_idm. Qed. Lemma morphim_idm A B : B \subset A -> idm A @* B = B. Proof. rewrite /morphim /= /idm => /setIidPr->. by apply/setP=> x; apply/imsetP/idP=> [[y By ->]|Bx]; last exists x. Qed. Lemma morphpre_idm A B : idm A @*^-1 B = A :&: B. Proof. by apply/setP=> x; rewrite !inE. Qed. Lemma im_idm A : idm A @* A = A. Proof. exact: morphim_idm. Qed. End IdentityMorphism. Arguments idm {_} _%g _%g. Section RestrictedMorphism. Variables aT rT : finGroupType. Variables A D : {set aT}. Implicit Type B : {set aT}. Implicit Type R : {set rT}. Definition restrm of A \subset D := @id (aT -> FinGroup.sort rT). Section Props. Hypothesis sAD : A \subset D. Variable f : {morphism D >-> rT}. Local Notation fA := (restrm sAD (mfun f)). Canonical restrm_morphism := @Morphism aT rT A fA (sub_in2 (subsetP sAD) (morphM f)). Lemma morphim_restrm B : fA @* B = f @* (A :&: B). Proof. by rewrite {2}/morphim setIA (setIidPr sAD). Qed. Lemma restrmEsub B : B \subset A -> fA @* B = f @* B. Proof. by rewrite morphim_restrm => /setIidPr->. Qed. Lemma im_restrm : fA @* A = f @* A. Proof. exact: restrmEsub. Qed. Lemma morphpre_restrm R : fA @*^-1 R = A :&: f @*^-1 R. Proof. by rewrite setIA (setIidPl sAD). Qed. Lemma ker_restrm : 'ker fA = 'ker_A f. Proof. exact: morphpre_restrm. Qed. Lemma injm_restrm : 'injm f -> 'injm fA. Proof. by apply: subset_trans; rewrite ker_restrm subsetIr. Qed. End Props. Lemma restrmP (f : {morphism D >-> rT}) : A \subset 'dom f -> {g : {morphism A >-> rT} | [/\ g = f :> (aT -> rT), 'ker g = 'ker_A f, forall R, g @*^-1 R = A :&: f @*^-1 R & forall B, B \subset A -> g @* B = f @* B]}. Proof. move=> sAD; exists (restrm_morphism sAD f). split=> // [|R|B sBA]; first 1 [exact: ker_restrm | exact: morphpre_restrm]. by rewrite morphim_restrm (setIidPr sBA). Qed. Lemma domP (f : {morphism D >-> rT}) : 'dom f = A -> {g : {morphism A >-> rT} | [/\ g = f :> (aT -> rT), 'ker g = 'ker f, forall R, g @*^-1 R = f @*^-1 R & forall B, g @* B = f @* B]}. Proof. by move <-; exists f. Qed. End RestrictedMorphism. Arguments restrm {_ _ _%g _%g} _ _%g. Arguments restrmP {aT rT A D}. Arguments domP {aT rT A D}. Section TrivMorphism. Variables aT rT : finGroupType. Definition trivm of {set aT} & aT := 1 : FinGroup.sort rT. Lemma trivm_morphM (A : {set aT}) : {in A &, {morph trivm A : x y / x * y}}. Proof. by move=> x y /=; rewrite mulg1. Qed. Canonical triv_morph A := Morphism (@trivm_morphM A). Lemma morphim_trivm (G H : {group aT}) : trivm G @* H = 1. Proof. apply/setP=> /= y; rewrite inE; apply/idP/eqP=> [|->]; first by case/morphimP. by apply/morphimP; exists (1 : aT); rewrite /= ?group1. Qed. Lemma ker_trivm (G : {group aT}) : 'ker (trivm G) = G. Proof. by apply/setIidPl/subsetP=> x _; rewrite !inE /=. Qed. End TrivMorphism. Arguments trivm {aT rT} _%g _%g. (* The composition of two morphisms is a Canonical morphism instance. *) Section MorphismComposition. Variables gT hT rT : finGroupType. Variables (G : {group gT}) (H : {group hT}). Variable f : {morphism G >-> hT}. Variable g : {morphism H >-> rT}. Local Notation gof := (mfun g \o mfun f). Lemma comp_morphM : {in f @*^-1 H &, {morph gof: x y / x * y}}. Proof. by move=> x y; rewrite /= !inE => /andP[? ?] /andP[? ?]; rewrite !morphM. Qed. Canonical comp_morphism := Morphism comp_morphM. Lemma ker_comp : 'ker gof = f @*^-1 'ker g. Proof. by apply/setP=> x; rewrite !inE andbA. Qed. Lemma injm_comp : 'injm f -> 'injm g -> 'injm gof. Proof. by move=> injf; rewrite ker_comp; move/trivgP=> ->. Qed. Lemma morphim_comp (A : {set gT}) : gof @* A = g @* (f @* A). Proof. apply/setP=> z; apply/morphimP/morphimP=> [[x]|[y Hy fAy ->{z}]]. rewrite !inE => /andP[Gx Hfx]; exists (f x) => //. by apply/morphimP; exists x. by case/morphimP: fAy Hy => x Gx Ax ->{y} Hfx; exists x; rewrite ?inE ?Gx. Qed. Lemma morphpre_comp (C : {set rT}) : gof @*^-1 C = f @*^-1 (g @*^-1 C). Proof. by apply/setP=> z; rewrite !inE andbA. Qed. End MorphismComposition. (* The factor morphism *) Section FactorMorphism. Variables aT qT rT : finGroupType. Variables G H : {group aT}. Variable f : {morphism G >-> rT}. Variable q : {morphism H >-> qT}. Definition factm of 'ker q \subset 'ker f & G \subset H := fun x => f (repr (q @*^-1 [set x])). Hypothesis sKqKf : 'ker q \subset 'ker f. Hypothesis sGH : G \subset H. Notation ff := (factm sKqKf sGH). Lemma factmE x : x \in G -> ff (q x) = f x. Proof. rewrite /ff => Gx; have Hx := subsetP sGH x Gx. have /mem_repr: x \in q @*^-1 [set q x] by rewrite !inE Hx /=. case/morphpreP; move: (repr _) => y Hy /set1P. by case/ker_rcoset=> // z Kz ->; rewrite mkerl ?(subsetP sKqKf). Qed. Lemma factm_morphM : {in q @* G &, {morph ff : x y / x * y}}. Proof. move=> _ _ /morphimP[x Hx Gx ->] /morphimP[y Hy Gy ->]. by rewrite -morphM ?factmE ?groupM // morphM. Qed. Canonical factm_morphism := Morphism factm_morphM. Lemma morphim_factm (A : {set aT}) : ff @* (q @* A) = f @* A. Proof. rewrite -morphim_comp /= {1}/morphim /= morphimGK //; last first. by rewrite (subset_trans sKqKf) ?subsetIl. apply/setP=> y; apply/morphimP/morphimP; by case=> x Gx Ax ->{y}; exists x; rewrite //= factmE. Qed. Lemma morphpre_factm (C : {set rT}) : ff @*^-1 C = q @* (f @*^-1 C). Proof. apply/setP=> y /[!inE]/=; apply/andP/morphimP=> [[]|[x Hx]]; last first. by case/morphpreP=> Gx Cfx ->; rewrite factmE ?imset_f ?inE ?Hx. case/morphimP=> x Hx Gx ->; rewrite factmE //. by exists x; rewrite // !inE Gx. Qed. Lemma ker_factm : 'ker ff = q @* 'ker f. Proof. exact: morphpre_factm. Qed. Lemma injm_factm : 'injm f -> 'injm ff. Proof. by rewrite ker_factm => /trivgP->; rewrite morphim1. Qed. Lemma injm_factmP : reflect ('ker f = 'ker q) ('injm ff). Proof. rewrite ker_factm -morphimIdom sub_morphim_pre ?subsetIl //. rewrite setIA (setIidPr sGH) (sameP setIidPr eqP) (setIidPl _) // eq_sym. exact: eqP. Qed. Lemma ker_factm_loc (K : {group aT}) : 'ker_(q @* K) ff = q @* 'ker_K f. Proof. by rewrite ker_factm -morphimIG. Qed. End FactorMorphism. Prenex Implicits factm. Section InverseMorphism. Variables aT rT : finGroupType. Implicit Types A B : {set aT}. Implicit Types C D : {set rT}. Variables (G : {group aT}) (f : {morphism G >-> rT}). Hypothesis injf : 'injm f. Lemma invm_subker : 'ker f \subset 'ker (idm G). Proof. by rewrite ker_idm. Qed. Definition invm := factm invm_subker (subxx _). Canonical invm_morphism := Eval hnf in [morphism of invm]. Lemma invmE : {in G, cancel f invm}. Proof. exact: factmE. Qed. Lemma invmK : {in f @* G, cancel invm f}. Proof. by move=> fx; case/morphimP=> x _ Gx ->; rewrite invmE. Qed. Lemma morphpre_invm A : invm @*^-1 A = f @* A. Proof. by rewrite morphpre_factm morphpre_idm morphimIdom. Qed. Lemma morphim_invm A : A \subset G -> invm @* (f @* A) = A. Proof. by move=> sAG; rewrite morphim_factm morphim_idm. Qed. Lemma morphim_invmE C : invm @* C = f @*^-1 C. Proof. rewrite -morphpreIdom -(morphim_invm (subsetIl _ _)). by rewrite morphimIdom -morphpreIim morphpreK (subsetIl, morphimIdom). Qed. Lemma injm_proper A B : A \subset G -> B \subset G -> (f @* A \proper f @* B) = (A \proper B). Proof. move=> dA dB; rewrite -morphpre_invm -(morphpre_invm B). by rewrite morphpre_proper ?morphim_invm. Qed. Lemma injm_invm : 'injm invm. Proof. by move/can_in_inj/injmP: invmK. Qed. Lemma ker_invm : 'ker invm = 1. Proof. by move/trivgP: injm_invm. Qed. Lemma im_invm : invm @* (f @* G) = G. Proof. exact: morphim_invm. Qed. End InverseMorphism. Prenex Implicits invm. Section InjFactm. Variables (gT aT rT : finGroupType) (D G : {group gT}). Variables (g : {morphism G >-> rT}) (f : {morphism D >-> aT}) (injf : 'injm f). Definition ifactm := tag (domP [morphism of g \o invm injf] (morphpre_invm injf G)). Lemma ifactmE : {in D, forall x, ifactm (f x) = g x}. Proof. rewrite /ifactm => x Dx; case: domP => f' /= [def_f' _ _ _]. by rewrite {f'}def_f' //= invmE. Qed. Lemma morphim_ifactm (A : {set gT}) : A \subset D -> ifactm @* (f @* A) = g @* A. Proof. rewrite /ifactm => sAD; case: domP => _ /= [_ _ _ ->]. by rewrite morphim_comp morphim_invm. Qed. Lemma im_ifactm : G \subset D -> ifactm @* (f @* G) = g @* G. Proof. exact: morphim_ifactm. Qed. Lemma morphpre_ifactm C : ifactm @*^-1 C = f @* (g @*^-1 C). Proof. rewrite /ifactm; case: domP => _ /= [_ _ -> _]. by rewrite morphpre_comp morphpre_invm. Qed. Lemma ker_ifactm : 'ker ifactm = f @* 'ker g. Proof. exact: morphpre_ifactm. Qed. Lemma injm_ifactm : 'injm g -> 'injm ifactm. Proof. by rewrite ker_ifactm => /trivgP->; rewrite morphim1. Qed. End InjFactm. (* Reflected (boolean) form of morphism and isomorphism properties. *) Section ReflectProp. Variables aT rT : finGroupType. Section Defs. Variables (A : {set aT}) (B : {set rT}). (* morphic is the morphM property of morphisms seen through morphicP. *) Definition morphic (f : aT -> rT) := [forall u in [predX A & A], f (u.1 * u.2) == f u.1 * f u.2]. Definition isom f := f @: A^# == B^#. Definition misom f := morphic f && isom f. Definition isog := [exists f : {ffun aT -> rT}, misom f]. Section MorphicProps. Variable f : aT -> rT. Lemma morphicP : reflect {in A &, {morph f : x y / x * y}} (morphic f). Proof. apply: (iffP forallP) => [fM x y Ax Ay | fM [x y] /=]. by apply/eqP; have:= fM (x, y); rewrite inE /= Ax Ay. by apply/implyP=> /andP[Ax Ay]; rewrite fM. Qed. Definition morphm of morphic f := f : aT -> FinGroup.sort rT. Lemma morphmE fM : morphm fM = f. Proof. by []. Qed. Canonical morphm_morphism fM := @Morphism _ _ A (morphm fM) (morphicP fM). End MorphicProps. Lemma misomP f : reflect {fM : morphic f & isom (morphm fM)} (misom f). Proof. by apply: (iffP andP) => [] [fM fiso] //; exists fM. Qed. Lemma misom_isog f : misom f -> isog. Proof. case/andP=> fM iso_f; apply/existsP; exists (finfun f). apply/andP; split; last by rewrite /misom /isom !(eq_imset _ (ffunE f)). by apply/forallP=> u; rewrite !ffunE; apply: forallP fM u. Qed. Lemma isom_isog (D : {group aT}) (f : {morphism D >-> rT}) : A \subset D -> isom f -> isog. Proof. move=> sAD isof; apply: (@misom_isog f); rewrite /misom isof andbT. by apply/morphicP; apply: (sub_in2 (subsetP sAD) (morphM f)). Qed. Lemma isog_isom : isog -> {f : {morphism A >-> rT} | isom f}. Proof. by case/existsP/sigW=> f /misomP[fM isom_f]; exists (morphm_morphism fM). Qed. End Defs. Infix "\isog" := isog. Arguments isom_isog [A B D]. (* The real reflection properties only hold for true groups and morphisms. *) Section Main. Variables (G : {group aT}) (H : {group rT}). Lemma isomP (f : {morphism G >-> rT}) : reflect ('injm f /\ f @* G = H) (isom G H f). Proof. apply: (iffP eqP) => [eqfGH | [injf <-]]; last first. by rewrite -injmD1 // morphimEsub ?subsetDl. split. apply/subsetP=> x /morphpreP[Gx fx1]; have: f x \notin H^# by rewrite inE fx1. by apply: contraR => ntx; rewrite -eqfGH imset_f // inE ntx. rewrite morphimEdom -{2}(setD1K (group1 G)) imsetU eqfGH. by rewrite imset_set1 morph1 setD1K. Qed. Lemma isogP : reflect (exists2 f : {morphism G >-> rT}, 'injm f & f @* G = H) (G \isog H). Proof. apply: (iffP idP) => [/isog_isom[f /isomP[]] | [f injf fG]]; first by exists f. by apply: (isom_isog f) => //; apply/isomP. Qed. Variable f : {morphism G >-> rT}. Hypothesis isoGH : isom G H f. Lemma isom_inj : 'injm f. Proof. by have /isomP[] := isoGH. Qed. Lemma isom_im : f @* G = H. Proof. by have /isomP[] := isoGH. Qed. Lemma isom_card : #|G| = #|H|. Proof. by rewrite -isom_im card_injm ?isom_inj. Qed. Lemma isom_sub_im : H \subset f @* G. Proof. by rewrite isom_im. Qed. Definition isom_inv := restrm isom_sub_im (invm isom_inj). End Main. Variables (G : {group aT}) (f : {morphism G >-> rT}). Lemma morphim_isom (H : {group aT}) (K : {group rT}) : H \subset G -> isom H K f -> f @* H = K. Proof. by case/(restrmP f)=> g [gf _ _ <- //]; rewrite -gf; case/isomP. Qed. Lemma sub_isom (A : {set aT}) (C : {set rT}) : A \subset G -> f @* A = C -> 'injm f -> isom A C f. Proof. move=> sAG; case: (restrmP f sAG) => g [_ _ _ img] <-{C} injf. rewrite /isom -morphimEsub ?morphimDG ?morphim1 //. by rewrite subDset setUC subsetU ?sAG. Qed. Lemma sub_isog (A : {set aT}) : A \subset G -> 'injm f -> isog A (f @* A). Proof. by move=> sAG injf; apply: (isom_isog f sAG); apply: sub_isom. Qed. Lemma restr_isom_to (A : {set aT}) (C R : {group rT}) (sAG : A \subset G) : f @* A = C -> isom G R f -> isom A C (restrm sAG f). Proof. by move=> defC /isomP[inj_f _]; apply: sub_isom. Qed. Lemma restr_isom (A : {group aT}) (R : {group rT}) (sAG : A \subset G) : isom G R f -> isom A (f @* A) (restrm sAG f). Proof. exact: restr_isom_to. Qed. End ReflectProp. Arguments isom {_ _} _%g _%g _. Arguments morphic {_ _} _%g _. Arguments misom _ _ _%g _%g _. Arguments isog {_ _} _%g _%g. Arguments morphicP {aT rT A f}. Arguments misomP {aT rT A B f}. Arguments isom_isog [aT rT A B D]. Arguments isomP {aT rT G H f}. Arguments isogP {aT rT G H}. Prenex Implicits morphm. Notation "x \isog y":= (isog x y). Section Isomorphisms. Variables gT hT kT : finGroupType. Variables (G : {group gT}) (H : {group hT}) (K : {group kT}). Lemma idm_isom : isom G G (idm G). Proof. exact: sub_isom (im_idm G) (injm_idm G). Qed. Lemma isog_refl : G \isog G. Proof. exact: isom_isog idm_isom. Qed. Lemma card_isog : G \isog H -> #|G| = #|H|. Proof. by case/isogP=> f injf <-; apply: isom_card (f) _; apply/isomP. Qed. Lemma isog_abelian : G \isog H -> abelian G = abelian H. Proof. by case/isogP=> f injf <-; rewrite injm_abelian. Qed. Lemma trivial_isog : G :=: 1 -> H :=: 1 -> G \isog H. Proof. move=> -> ->; apply/isogP. exists [morphism of @trivm gT hT 1]; rewrite /= ?morphim1 //. by rewrite ker_trivm; apply: subxx. Qed. Lemma isog_eq1 : G \isog H -> (G :==: 1) = (H :==: 1). Proof. by move=> isoGH; rewrite !trivg_card1 card_isog. Qed. Lemma isom_sym (f : {morphism G >-> hT}) (isoGH : isom G H f) : isom H G (isom_inv isoGH). Proof. rewrite sub_isom 1?injm_restrm ?injm_invm // im_restrm. by rewrite -(isom_im isoGH) im_invm. Qed. Lemma isog_symr : G \isog H -> H \isog G. Proof. by case/isog_isom=> f /isom_sym/isom_isog->. Qed. Lemma isog_trans : G \isog H -> H \isog K -> G \isog K. Proof. case/isogP=> f injf <-; case/isogP=> g injg <-. have defG: f @*^-1 (f @* G) = G by rewrite morphimGK ?subsetIl. rewrite -morphim_comp -{1 8}defG. by apply/isogP; exists [morphism of g \o f]; rewrite ?injm_comp. Qed. Lemma nclasses_isog : G \isog H -> #|classes G| = #|classes H|. Proof. by case/isogP=> f injf <-; rewrite nclasses_injm. Qed. End Isomorphisms. Section IsoBoolEquiv. Variables gT hT kT : finGroupType. Variables (G : {group gT}) (H : {group hT}) (K : {group kT}). Lemma isog_sym : (G \isog H) = (H \isog G). Proof. by apply/idP/idP; apply: isog_symr. Qed. Lemma isog_transl : G \isog H -> (G \isog K) = (H \isog K). Proof. by move=> iso; apply/idP/idP; apply: isog_trans; rewrite // -isog_sym. Qed. Lemma isog_transr : G \isog H -> (K \isog G) = (K \isog H). Proof. by move=> iso; apply/idP/idP; move/isog_trans; apply; rewrite // -isog_sym. Qed. End IsoBoolEquiv. Section Homg. Implicit Types rT gT aT : finGroupType. Definition homg rT aT (C : {set rT}) (D : {set aT}) := [exists (f : {ffun aT -> rT} | morphic D f), f @: D == C]. Lemma homgP rT aT (C : {set rT}) (D : {set aT}) : reflect (exists f : {morphism D >-> rT}, f @* D = C) (homg C D). Proof. apply: (iffP exists_eq_inP) => [[f fM <-] | [f <-]]. by exists (morphm_morphism fM); rewrite /morphim /= setIid. exists (finfun f); first by apply/morphicP=> x y Dx Dy; rewrite !ffunE morphM. by rewrite /morphim setIid; apply: eq_imset => x; rewrite ffunE. Qed. Lemma morphim_homg aT rT (A D : {set aT}) (f : {morphism D >-> rT}) : A \subset D -> homg (f @* A) A. Proof. move=> sAD; apply/homgP; exists (restrm_morphism sAD f). by rewrite morphim_restrm setIid. Qed. Lemma leq_homg rT aT (C : {set rT}) (G : {group aT}) : homg C G -> #|C| <= #|G|. Proof. by case/homgP=> f <-; apply: leq_morphim. Qed. Lemma homg_refl aT (A : {set aT}) : homg A A. Proof. by apply/homgP; exists (idm_morphism A); rewrite im_idm. Qed. Lemma homg_trans aT (B : {set aT}) rT (C : {set rT}) gT (G : {group gT}) : homg C B -> homg B G -> homg C G. Proof. move=> homCB homBG; case/homgP: homBG homCB => fG <- /homgP[fK <-]. by rewrite -morphim_comp morphim_homg // -sub_morphim_pre. Qed. Lemma isogEcard rT aT (G : {group rT}) (H : {group aT}) : (G \isog H) = (homg G H) && (#|H| <= #|G|). Proof. rewrite isog_sym; apply/isogP/andP=> [[f injf <-] | []]. by rewrite leq_eqVlt eq_sym card_im_injm injf morphim_homg. case/homgP=> f <-; rewrite leq_eqVlt eq_sym card_im_injm. by rewrite ltnNge leq_morphim orbF; exists f. Qed. Lemma isog_hom rT aT (G : {group rT}) (H : {group aT}) : G \isog H -> homg G H. Proof. by rewrite isogEcard; case/andP. Qed. Lemma isogEhom rT aT (G : {group rT}) (H : {group aT}) : (G \isog H) = homg G H && homg H G. Proof. apply/idP/andP=> [isoGH | [homGH homHG]]. by rewrite !isog_hom // isog_sym. by rewrite isogEcard homGH leq_homg. Qed. Lemma eq_homgl gT aT rT (G : {group gT}) (H : {group aT}) (K : {group rT}) : G \isog H -> homg G K = homg H K. Proof. by rewrite isogEhom => /andP[homGH homHG]; apply/idP/idP; apply: homg_trans. Qed. Lemma eq_homgr gT rT aT (G : {group gT}) (H : {group rT}) (K : {group aT}) : G \isog H -> homg K G = homg K H. Proof. rewrite isogEhom => /andP[homGH homHG]. by apply/idP/idP=> homK; apply: homg_trans homK _. Qed. End Homg. Arguments homg _ _ _%g _%g. Notation "G \homg H" := (homg G H) (at level 70, no associativity) : group_scope. Arguments homgP {rT aT C D}. (* Isomorphism between a group and its subtype. *) Section SubMorphism. Variables (gT : finGroupType) (G : {group gT}). Canonical sgval_morphism := Morphism (@sgvalM _ G). Canonical subg_morphism := Morphism (@subgM _ G). Lemma injm_sgval : 'injm sgval. Proof. exact/injmP/(in2W subg_inj). Qed. Lemma injm_subg : 'injm (subg G). Proof. exact/injmP/(can_in_inj subgK). Qed. Hint Resolve injm_sgval injm_subg : core. Lemma ker_sgval : 'ker sgval = 1. Proof. exact/trivgP. Qed. Lemma ker_subg : 'ker (subg G) = 1. Proof. exact/trivgP. Qed. Lemma im_subg : subg G @* G = [subg G]. Proof. apply/eqP; rewrite -subTset morphimEdom. by apply/subsetP=> u _; rewrite -(sgvalK u) imset_f ?subgP. Qed. Lemma sgval_sub A : sgval @* A \subset G. Proof. by apply/subsetP=> x; case/imsetP=> u _ ->; apply: subgP. Qed. Lemma sgvalmK A : subg G @* (sgval @* A) = A. Proof. apply/eqP; rewrite eqEcard !card_injm ?subsetT ?sgval_sub // leqnn andbT. rewrite -morphim_comp; apply/subsetP=> _ /morphimP[v _ Av ->] /=. by rewrite sgvalK. Qed. Lemma subgmK (A : {set gT}) : A \subset G -> sgval @* (subg G @* A) = A. Proof. move=> sAG; apply/eqP; rewrite eqEcard !card_injm ?subsetT //. rewrite leqnn andbT -morphim_comp morphimE /= morphpreT. by apply/subsetP=> _ /morphimP[v Gv Av ->] /=; rewrite subgK. Qed. Lemma im_sgval : sgval @* [subg G] = G. Proof. by rewrite -{2}im_subg subgmK. Qed. Lemma isom_subg : isom G [subg G] (subg G). Proof. by apply/isomP; rewrite im_subg. Qed. Lemma isom_sgval : isom [subg G] G sgval. Proof. by apply/isomP; rewrite im_sgval. Qed. Lemma isog_subg : isog G [subg G]. Proof. exact: isom_isog isom_subg. Qed. End SubMorphism. Arguments sgvalmK {gT G} A. Arguments subgmK {gT G} [A] sAG.