(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div. From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup. From mathcomp Require Import action perm primitive_action. (* Application of the Burside formula to count the number of distinct *) (* colorings of the vertices of a square and a cube. *) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GroupScope. Lemma burnside_formula : forall (gT : finGroupType) s (G : {group gT}), uniq s -> s =i G -> forall (sT : finType) (to : {action gT &-> sT}), (#|orbit to G @: setT| * size s)%N = \sum_(p <- s) #|'Fix_to[p]|. Proof. move=> gT s G Us sG sT to. rewrite big_uniq // -(card_uniqP Us) (eq_card sG) -Frobenius_Cauchy. by apply: eq_big => // p _; rewrite setTI. by apply/actsP=> ? _ ?; rewrite !inE. Qed. Arguments burnside_formula {gT}. Section colouring. Variable n : nat. Definition colors := 'I_n. Canonical colors_eqType := Eval hnf in [eqType of colors]. Canonical colors_choiceType := Eval hnf in [choiceType of colors]. Canonical colors_countType := Eval hnf in [countType of colors]. Canonical colors_finType := Eval hnf in [finType of colors]. Section square_colouring. Definition square := 'I_4. Canonical square_eqType := Eval hnf in [eqType of square]. Canonical square_choiceType := Eval hnf in [choiceType of square]. Canonical square_countType := Eval hnf in [countType of square]. Canonical square_finType := Eval hnf in [finType of square]. Canonical square_subType := Eval hnf in [subType of square]. Canonical square_subCountType := Eval hnf in [subCountType of square]. Canonical square_subFinType := Eval hnf in [subFinType of square]. Definition mksquare i : square := Sub (i %% _) (ltn_mod i 4). Definition c0 := mksquare 0. Definition c1 := mksquare 1. Definition c2 := mksquare 2. Definition c3 := mksquare 3. (*rotations*) Definition R1 (sc : square) : square := tnth [tuple c1; c2; c3; c0] sc. Definition R2 (sc : square) : square := tnth [tuple c2; c3; c0; c1] sc. Definition R3 (sc : square) : square := tnth [tuple c3; c0; c1; c2] sc. Ltac get_inv elt l := match l with | (_, (elt, ?x)) => x | (elt, ?x) => x | (?x, _) => get_inv elt x end. Definition rot_inv := ((R1, R3), (R2, R2), (R3, R1)). Ltac inj_tac := move: (erefl rot_inv); unfold rot_inv; match goal with |- ?X = _ -> injective ?Y => move=> _; let x := get_inv Y X in apply: (can_inj (g:=x)); move=> [val H1] end. Lemma R1_inj : injective R1. Proof. by inj_tac; repeat (destruct val => //=; first by apply/eqP). Qed. Lemma R2_inj : injective R2. Proof. by inj_tac; repeat (destruct val => //=; first by apply/eqP). Qed. Lemma R3_inj : injective R3. Proof. by inj_tac; repeat (destruct val => //=; first by apply/eqP). Qed. Definition r1 := (perm R1_inj). Definition r2 := (perm R2_inj). Definition r3 := (perm R3_inj). Definition id1 := (1 : {perm square}). Definition is_rot (r : {perm _}) := (r * r1 == r1 * r). Definition rot := [set r | is_rot r]. Lemma group_set_rot : group_set rot. Proof. apply/group_setP; split; first by rewrite /rot inE /is_rot mulg1 mul1g. move=> x1 y; rewrite /rot !inE /= /is_rot; move/eqP => hx1; move/eqP => hy. by rewrite -mulgA hy !mulgA hx1. Qed. Canonical rot_group := Group group_set_rot. Definition rotations := [set id1; r1; r2; r3]. Lemma rot_eq_c0 : forall r s : {perm square}, is_rot r -> is_rot s -> r c0 = s c0 -> r = s. Proof. rewrite /is_rot => r s; move/eqP => hr; move/eqP=> hs hrs; apply/permP => a. have ->: a = (r1 ^+ a) c0 by apply/eqP; case: a; do 4?case=> //=; rewrite ?permM !permE. by rewrite -!permM -!commuteX // !permM hrs. Qed. Lemma rot_r1 : forall r, is_rot r -> r = r1 ^+ (r c0). Proof. move=> r hr; apply: rot_eq_c0 => //; apply/eqP. by symmetry; apply: commuteX. by case: (r c0); do 4?case=> //=; rewrite ?permM !permE /=. Qed. Lemma rotations_is_rot : forall r, r \in rotations -> is_rot r. Proof. move=> r Dr; apply/eqP; apply/permP => a; rewrite !inE -!orbA !permM in Dr *. by case/or4P: Dr; move/eqP->; rewrite !permE //; case: a; do 4?case. Qed. Lemma rot_is_rot : rot = rotations. Proof. apply/setP=> r; apply/idP/idP => [|/rotations_is_rot] /[!inE]// h. have -> : r = r1 ^+ (r c0) by apply: rot_eq_c0; rewrite // -rot_r1. have e2: 2 = r2 c0 by rewrite permE /=. have e3: 3 = r3 c0 by rewrite permE /=. case (r c0); do 4?[case] => // ?; rewrite ?(expg1, eqxx, orbT) //. by rewrite [nat_of_ord _]/= e2 -rot_r1 ?(eqxx, orbT, rotations_is_rot, inE). by rewrite [nat_of_ord _]/= e3 -rot_r1 ?(eqxx, orbT, rotations_is_rot, inE). Qed. (*symmetries*) Definition Sh (sc : square) : square := tnth [tuple c1; c0; c3; c2] sc. Lemma Sh_inj : injective Sh. Proof. by apply: (can_inj (g:= Sh)); case; do 4?case=> //=; move=> H; apply/eqP. Qed. Definition sh := (perm Sh_inj). Lemma sh_inv : sh^-1 = sh. Proof. apply: (mulIg sh); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed. Definition Sv (sc : square) : square := tnth [tuple c3; c2; c1; c0] sc. Lemma Sv_inj : injective Sv. Proof. by apply: (can_inj (g:= Sv)); case; do 4?case=> //=; move=> H; apply/eqP. Qed. Definition sv := (perm Sv_inj). Lemma sv_inv : sv^-1 = sv. Proof. apply: (mulIg sv); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed. Definition Sd1 (sc : square) : square := tnth [tuple c0; c3; c2; c1] sc. Lemma Sd1_inj : injective Sd1. Proof. by apply: can_inj Sd1 _; case; do 4?case=> //=; move=> H; apply/eqP. Qed. Definition sd1 := (perm Sd1_inj). Lemma sd1_inv : sd1^-1 = sd1. Proof. apply: (mulIg sd1); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed. Definition Sd2 (sc : square) : square := tnth [tuple c2; c1; c0; c3] sc. Lemma Sd2_inj : injective Sd2. Proof. by apply: can_inj Sd2 _; case; do 4?case=> //=; move=> H; apply/eqP. Qed. Definition sd2 := (perm Sd2_inj). Lemma sd2_inv : sd2^-1 = sd2. Proof. apply: (mulIg sd2); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed. Lemma ord_enum4 : enum 'I_4 = [:: c0; c1; c2; c3]. Proof. by apply: (inj_map val_inj); rewrite val_enum_ord. Qed. Lemma diff_id_sh : 1 != sh. Proof. by apply/eqP; move/(congr1 (fun p : {perm square} => p c0)); rewrite !permE. Qed. Definition isometries2 := [set 1; sh]. Lemma card_iso2 : #|isometries2| = 2. Proof. by rewrite cards2 diff_id_sh. Qed. Lemma group_set_iso2 : group_set isometries2. Proof. apply/group_setP; split => [|x y]; rewrite !inE ?eqxx //. do 2![case/orP; move/eqP->]; gsimpl; rewrite ?(eqxx, orbT) //. by rewrite -/sh -{1}sh_inv mulVg eqxx. Qed. Canonical iso2_group := Group group_set_iso2. Definition isometries := [set p | [|| p == 1, p == r1, p == r2, p == r3, p == sh, p == sv, p == sd1 | p == sd2 ]]. Definition opp (sc : square) := tnth [tuple c2; c3; c0; c1] sc. Definition is_iso (p : {perm square}) := forall ci, p (opp ci) = opp (p ci). Lemma isometries_iso : forall p, p \in isometries -> is_iso p. Proof. move=> p; rewrite inE. by do ?case/orP; move/eqP=> -> a; rewrite !permE; case: a; do 4?case. Qed. Ltac non_inj p a1 a2 heq1 heq2 := let h1:= fresh "h1" in (absurd (p a1 = p a2); first (by red => - h1; move: (perm_inj h1)); by rewrite heq1 heq2; apply/eqP). Ltac is_isoPtac p f e0 e1 e2 e3 := suff ->: p = f by [rewrite inE eqxx ?orbT]; let e := fresh "e" in apply/permP; do 5?[case] => // ?; [move: e0 | move: e1 | move: e2 | move: e3] => e; apply: etrans (congr1 p _) (etrans e _); apply/eqP; rewrite // permE. Lemma is_isoP : forall p, reflect (is_iso p) (p \in isometries). Proof. move=> p; apply: (iffP idP) => [|iso_p]; first exact: isometries_iso. move e1: (p c1) (iso_p c1) => k1; move e0: (p c0) (iso_p c0) k1 e1 => k0. case: k0 e0; do 4?[case] => //= ? e0 e2; do 5?[case] => //= ? e1 e3; try by [non_inj p c0 c1 e0 e1 | non_inj p c0 c3 e0 e3]. by is_isoPtac p id1 e0 e1 e2 e3. by is_isoPtac p sd1 e0 e1 e2 e3. by is_isoPtac p sh e0 e1 e2 e3. by is_isoPtac p r1 e0 e1 e2 e3. by is_isoPtac p sd2 e0 e1 e2 e3. by is_isoPtac p r2 e0 e1 e2 e3. by is_isoPtac p r3 e0 e1 e2 e3. by is_isoPtac p sv e0 e1 e2 e3. Qed. Lemma group_set_iso : group_set isometries. Proof. apply/group_setP; split; first by rewrite inE eqxx /=. by move=> x y hx hy; apply/is_isoP => ci; rewrite !permM !isometries_iso. Qed. Canonical iso_group := Group group_set_iso. Lemma card_rot : #|rot| = 4. Proof. rewrite -[4]/(size [:: id1; r1; r2; r3]) -(card_uniqP _). by apply: eq_card => x; rewrite rot_is_rot !inE -!orbA. by apply: map_uniq (fun p : {perm square} => p c0) _ _; rewrite /= !permE. Qed. Lemma group_set_rotations : group_set rotations. Proof. by rewrite -rot_is_rot group_set_rot. Qed. Canonical rotations_group := Group group_set_rotations. Notation col_squares := {ffun square -> colors}. Definition act_f (sc : col_squares) (p : {perm square}) : col_squares := [ffun z => sc (p^-1 z)]. Lemma act_f_1 : forall k, act_f k 1 = k. Proof. by move=> k; apply/ffunP=> a; rewrite ffunE invg1 permE. Qed. Lemma act_f_morph : forall k x y, act_f k (x * y) = act_f (act_f k x) y. Proof. by move=> k x y; apply/ffunP=> a; rewrite !ffunE invMg permE. Qed. Definition to := TotalAction act_f_1 act_f_morph. Definition square_coloring_number2 := #|orbit to isometries2 @: setT|. Definition square_coloring_number4 := #|orbit to rotations @: setT|. Definition square_coloring_number8 := #|orbit to isometries @: setT|. Lemma Fid : 'Fix_to(1) = setT. Proof. by apply/setP=> x /=; rewrite in_setT; apply/afix1P; apply: act1. Qed. Lemma card_Fid : #|'Fix_to(1)| = (n ^ 4)%N. Proof. rewrite -[4]card_ord -[n]card_ord -card_ffun_on Fid cardsE. by symmetry; apply: eq_card => f; apply/ffun_onP. Qed. Definition coin0 (sc : col_squares) : colors := sc c0. Definition coin1 (sc : col_squares) : colors := sc c1. Definition coin2 (sc : col_squares) : colors := sc c2. Definition coin3 (sc : col_squares) : colors := sc c3. Lemma eqperm_map : forall p1 p2 : col_squares, (p1 == p2) = all (fun s => p1 s == p2 s) [:: c0; c1; c2; c3]. Proof. move=> p1 p2; apply/eqP/allP=> [-> // | Ep12]; apply/ffunP=> x. by apply/eqP; apply Ep12; case: x; do 4!case=> //. Qed. Lemma F_Sh : 'Fix_to[sh] = [set x | (coin0 x == coin1 x) && (coin2 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f sh_inv !ffunE !permE /=. by rewrite eq_sym (eq_sym (x c3)) andbT andbA !andbb. Qed. Lemma F_Sv : 'Fix_to[sv] = [set x | (coin0 x == coin3 x) && (coin2 x == coin1 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f sv_inv !ffunE !permE /=. by rewrite eq_sym andbT andbC (eq_sym (x c1)) andbA -andbA !andbb andbC. Qed. Ltac inv_tac := apply: esym (etrans _ (mul1g _)); apply: canRL (mulgK _) _; let a := fresh "a" in apply/permP => a; apply/eqP; rewrite permM !permE; case: a; do 4?case. Lemma r1_inv : r1^-1 = r3. Proof. by inv_tac. Qed. Lemma r2_inv : r2^-1 = r2. Proof. by inv_tac. Qed. Lemma r3_inv : r3^-1 = r1. Proof. by inv_tac. Qed. Lemma F_r2 : 'Fix_to[r2] = [set x | (coin0 x == coin2 x) && (coin1 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r2_inv !ffunE !permE /=. by rewrite eq_sym andbT andbCA andbC (eq_sym (x c3)) andbA -andbA !andbb andbC. Qed. Lemma F_r1 : 'Fix_to[r1] = [set x | (coin0 x == coin1 x)&&(coin1 x == coin2 x)&&(coin2 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r1_inv !ffunE !permE andbC. by do 3![case E: {+}(_ == _); rewrite // {E}(eqP E)]; rewrite eqxx. Qed. Lemma F_r3 : 'Fix_to[r3] = [set x | (coin0 x == coin1 x)&&(coin1 x == coin2 x)&&(coin2 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r3_inv !ffunE !permE /=. by do 3![case: eqVneq=> // <-]. Qed. Lemma card_n2 : forall x y z t : square, uniq [:: x; y; z; t] -> #|[set p : col_squares | (p x == p y) && (p z == p t)]| = (n ^ 2)%N. Proof. move=> x y z t Uxt; rewrite -[n]card_ord. pose f (p : col_squares) := (p x, p z); rewrite -(@card_in_image _ _ f). rewrite -mulnn -card_prod; apply: eq_card => [] [c d] /=; apply/imageP. rewrite (cat_uniq [::x; y]) in Uxt; case/and3P: Uxt => _. rewrite /= !orbF !andbT => /norP[] /[!inE] nxzt nyzt _. exists [ffun i => if pred2 x y i then c else d]. by rewrite inE !ffunE /= !eqxx orbT (negbTE nxzt) (negbTE nyzt) !eqxx. by rewrite {}/f !ffunE /= eqxx (negbTE nxzt). move=> p1 p2 /[!inE] /andP[p1y p1t] /andP[p2y p2t] [px pz]. have eqp12: all (fun i => p1 i == p2 i) [:: x; y; z; t]. by rewrite /= -(eqP p1y) -(eqP p1t) -(eqP p2y) -(eqP p2t) px pz !eqxx. apply/ffunP=> i; apply/eqP; apply: (allP eqp12). by rewrite (subset_cardP _ (subset_predT _)) // (card_uniqP Uxt) card_ord. Qed. Lemma card_n : #|[set x | (coin0 x == coin1 x)&&(coin1 x == coin2 x)&& (coin2 x == coin3 x)]| = n. Proof. rewrite -[n]card_ord /coin0 /coin1 /coin2 /coin3. pose f (p : col_squares) := p c3; rewrite -(@card_in_image _ _ f). apply: eq_card => c /=; apply/imageP. exists ([ffun => c] : col_squares); last by rewrite /f ffunE. by rewrite /= inE !ffunE !eqxx. move=> p1 p2; rewrite /= !inE /f -!andbA => eqp1 eqp2 eqp12. apply/eqP; rewrite eqperm_map /= andbT. case/and3P: eqp1; do 3!move/eqP->; case/and3P: eqp2; do 3!move/eqP->. by rewrite !andbb eqp12. Qed. Lemma burnside_app2 : (square_coloring_number2 * 2 = n ^ 4 + n ^ 2)%N. Proof. rewrite (burnside_formula [:: id1; sh]) => [||p]; last first. - by rewrite !inE. - by rewrite /= inE diff_id_sh. by rewrite 2!big_cons big_nil addn0 {1}card_Fid F_Sh card_n2. Qed. Lemma burnside_app_rot : (square_coloring_number4 * 4 = n ^ 4 + n ^ 2 + 2 * n)%N. Proof. rewrite (burnside_formula [:: id1; r1; r2; r3]) => [||p]; last first. - by rewrite !inE !orbA. - by apply: map_uniq (fun p : {perm square} => p c0) _ _; rewrite /= !permE. rewrite !big_cons big_nil /= addn0 {1}card_Fid F_r1 F_r2 F_r3. by rewrite card_n card_n2 //=; ring. Qed. Lemma F_Sd1 : 'Fix_to[sd1] = [set x | coin1 x == coin3 x]. Proof. apply/setP => x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f sd1_inv !ffunE !permE /=. by rewrite !eqxx !andbT eq_sym /= andbb. Qed. Lemma card_n3 : forall x y : square, x != y -> #|[set k : col_squares | k x == k y]| = (n ^ 3)%N. Proof. move=> x y nxy; apply/eqP; case: (posnP n) => [n0|]. by rewrite n0; apply/existsP=> [] [p _]; case: (p c0) => i; rewrite n0. move/eqn_pmul2l <-; rewrite -expnS -card_Fid Fid cardsT. rewrite -{1}[n]card_ord -cardX. pose pk k := [ffun i => k (if i == y then x else i) : colors]. rewrite -(@card_image _ _ (fun k : col_squares => (k y, pk k))). apply/eqP; apply: eq_card => ck /=; rewrite inE /= [_ \in _]inE. apply/eqP/imageP; last first. by case=> k _ -> /=; rewrite !ffunE if_same eqxx. case: ck => c k /= kxy. exists [ffun i => if i == y then c else k i]; first by rewrite inE. rewrite !ffunE eqxx; congr (_, _); apply/ffunP=> i; rewrite !ffunE. case Eiy: (i == y); last by rewrite Eiy. by rewrite (negbTE nxy) (eqP Eiy). move=> k1 k2 [Eky Epk]; apply/ffunP=> i. have{Epk}: pk k1 i = pk k2 i by rewrite Epk. by rewrite !ffunE; case: eqP => // ->. Qed. Lemma F_Sd2 : 'Fix_to[sd2] = [set x | coin0 x == coin2 x]. Proof. apply/setP => x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. by rewrite /act_f sd2_inv !ffunE !permE /= !eqxx !andbT eq_sym /= andbb. Qed. Lemma burnside_app_iso : (square_coloring_number8 * 8 = n ^ 4 + 2 * n ^ 3 + 3 * n ^ 2 + 2 * n)%N. Proof. pose iso_list := [:: id1; r1; r2; r3; sh; sv; sd1; sd2]. rewrite (burnside_formula iso_list) => [||p]; last first. - by rewrite /= !inE. - apply: map_uniq (fun p : {perm square} => (p c0, p c1)) _ _. by rewrite /= !permE. rewrite !big_cons big_nil {1}card_Fid F_r1 F_r2 F_r3 F_Sh F_Sv F_Sd1 F_Sd2. by rewrite card_n !card_n3 // !card_n2 //=; ring. Qed. End square_colouring. Section cube_colouring. Definition cube := 'I_6. Canonical cube_eqType := Eval hnf in [eqType of cube]. Canonical cube_choiceType := Eval hnf in [choiceType of cube]. Canonical cube_countType := Eval hnf in [countType of cube]. Canonical cube_finType := Eval hnf in [finType of cube]. Canonical cube_subType := Eval hnf in [subType of cube]. Canonical cube_subCountType := Eval hnf in [subCountType of cube]. Canonical cube_subFinType := Eval hnf in [subFinType of cube]. Definition mkFcube i : cube := Sub (i %% 6) (ltn_mod i 6). Definition F0 := mkFcube 0. Definition F1 := mkFcube 1. Definition F2 := mkFcube 2. Definition F3 := mkFcube 3. Definition F4 := mkFcube 4. Definition F5 := mkFcube 5. (* axial symetries*) Definition S05 := [:: F0; F4; F3; F2; F1; F5]. Definition S05f (sc : cube) : cube := tnth [tuple of S05] sc. Definition S14 := [:: F5; F1; F3; F2; F4; F0]. Definition S14f (sc : cube) : cube := tnth [tuple of S14] sc. Definition S23 := [:: F5; F4; F2; F3; F1; F0]. Definition S23f (sc : cube) : cube := tnth [tuple of S23] sc. (* rotations 90 *) Definition R05 := [:: F0; F2; F4; F1; F3; F5]. Definition R05f (sc : cube) : cube := tnth [tuple of R05] sc. Definition R50 := [:: F0; F3; F1; F4; F2; F5]. Definition R50f (sc : cube) : cube := tnth [tuple of R50] sc. Definition R14 := [:: F3; F1; F0; F5; F4; F2]. Definition R14f (sc : cube) : cube := tnth [tuple of R14] sc. Definition R41 := [:: F2; F1; F5; F0; F4; F3]. Definition R41f (sc : cube) : cube := tnth [tuple of R41] sc. Definition R23 := [:: F1; F5; F2; F3; F0; F4]. Definition R23f (sc : cube) : cube := tnth [tuple of R23] sc. Definition R32 := [:: F4; F0; F2; F3; F5; F1]. Definition R32f (sc : cube) : cube := tnth [tuple of R32] sc. (* rotations 120 *) Definition R024 := [:: F2; F5; F4; F1; F0; F3]. Definition R024f (sc : cube) : cube := tnth [tuple of R024] sc. Definition R042 := [:: F4; F3; F0; F5; F2; F1]. Definition R042f (sc : cube) : cube := tnth [tuple of R042] sc. Definition R012 := [:: F1; F2; F0; F5; F3; F4]. Definition R012f (sc : cube) : cube := tnth [tuple of R012] sc. Definition R021 := [:: F2; F0; F1; F4; F5; F3]. Definition R021f (sc : cube) : cube := tnth [tuple of R021] sc. Definition R031 := [:: F3; F0; F4; F1; F5; F2]. Definition R031f (sc : cube) : cube := tnth [tuple of R031] sc. Definition R013 := [:: F1; F3; F5; F0; F2; F4]. Definition R013f (sc : cube) : cube := tnth [tuple of R013] sc. Definition R043 := [:: F4; F2; F5; F0; F3; F1]. Definition R043f (sc : cube) : cube := tnth [tuple of R043] sc. Definition R034 := [:: F3; F5; F1; F4; F0; F2]. Definition R034f (sc : cube) : cube := tnth [tuple of R034] sc. (* last symmetries*) Definition S1 := [:: F5; F2; F1; F4; F3; F0]. Definition S1f (sc : cube) : cube := tnth [tuple of S1] sc. Definition S2 := [:: F5; F3; F4; F1; F2; F0]. Definition S2f (sc : cube) : cube := tnth [tuple of S2] sc. Definition S3 := [:: F1; F0; F3; F2; F5; F4]. Definition S3f (sc : cube) : cube := tnth [tuple of S3] sc. Definition S4 := [:: F4; F5; F3; F2; F0; F1]. Definition S4f (sc : cube) : cube := tnth [tuple of S4] sc. Definition S5 := [:: F2; F4; F0; F5; F1; F3]. Definition S5f (sc : cube) : cube := tnth [tuple of S5] sc. Definition S6 := [::F3; F4; F5; F0; F1; F2]. Definition S6f (sc : cube) : cube := tnth [tuple of S6] sc. Lemma S1_inv : involutive S1f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma S2_inv : involutive S2f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma S3_inv : involutive S3f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma S4_inv : involutive S4f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma S5_inv : involutive S5f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma S6_inv : involutive S6f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma S05_inj : injective S05f. Proof. by apply: can_inj S05f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma S14_inj : injective S14f. Proof. by apply: can_inj S14f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma S23_inv : involutive S23f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Lemma R05_inj : injective R05f. Proof. by apply: can_inj R50f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R14_inj : injective R14f. Proof. by apply: can_inj R41f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R23_inj : injective R23f. Proof. by apply: can_inj R32f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R50_inj : injective R50f. Proof. by apply: can_inj R05f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R41_inj : injective R41f. Proof. by apply: can_inj R14f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R32_inj : injective R32f. Proof. by apply: can_inj R23f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R024_inj : injective R024f. Proof. by apply: can_inj R042f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R042_inj : injective R042f. Proof. by apply: can_inj R024f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R012_inj : injective R012f. Proof. by apply: can_inj R021f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R021_inj : injective R021f. Proof. by apply: can_inj R012f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R031_inj : injective R031f. Proof. by apply: can_inj R013f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R013_inj : injective R013f. Proof. by apply: can_inj R031f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R043_inj : injective R043f. Proof. by apply: can_inj R034f _ => z; apply/eqP; case: z; do 6?case. Qed. Lemma R034_inj : injective R034f. Proof. by apply: can_inj R043f _ => z; apply/eqP; case: z; do 6?case. Qed. Definition id3 := 1 : {perm cube}. Definition s05 := (perm S05_inj). Definition s14 : {perm cube}. Proof. apply: (@perm _ S14f); apply: can_inj S14f _ => z. by apply/eqP; case: z; do 6?case. Defined. Definition s23 := (perm (inv_inj S23_inv)). Definition r05 := (perm R05_inj). Definition r14 := (perm R14_inj). Definition r23 := (perm R23_inj). Definition r50 := (perm R50_inj). Definition r41 := (perm R41_inj). Definition r32 := (perm R32_inj). Definition r024 := (perm R024_inj). Definition r042 := (perm R042_inj). Definition r012 := (perm R012_inj). Definition r021 := (perm R021_inj). Definition r031 := (perm R031_inj). Definition r013 := (perm R013_inj). Definition r043 := (perm R043_inj). Definition r034 := (perm R034_inj). Definition s1 := (perm (inv_inj S1_inv)). Definition s2 := (perm (inv_inj S2_inv)). Definition s3 := (perm (inv_inj S3_inv)). Definition s4 := (perm (inv_inj S4_inv)). Definition s5 := (perm (inv_inj S5_inv)). Definition s6 := (perm (inv_inj S6_inv)). Definition dir_iso3 := [set p | [|| id3 == p, s05 == p, s14 == p, s23 == p, r05 == p, r14 == p, r23 == p, r50 == p, r41 == p, r32 == p, r024 == p, r042 == p, r012 == p, r021 == p, r031 == p, r013 == p, r043 == p, r034 == p, s1 == p, s2 == p, s3 == p, s4 == p, s5 == p | s6 == p]]. Definition dir_iso3l := [:: id3; s05; s14; s23; r05; r14; r23; r50; r41; r32; r024; r042; r012; r021; r031; r013; r043; r034; s1; s2; s3; s4; s5; s6]. Definition S0 := [:: F5; F4; F3; F2; F1; F0]. Definition S0f (sc : cube) : cube := tnth [tuple of S0] sc. Lemma S0_inv : involutive S0f. Proof. by move=> z; apply/eqP; case: z; do 6?case. Qed. Definition s0 := (perm (inv_inj S0_inv)). Definition is_iso3 (p : {perm cube}) := forall fi, p (s0 fi) = s0 (p fi). Lemma dir_iso_iso3 : forall p, p \in dir_iso3 -> is_iso3 p. Proof. move=> p; rewrite inE. by do ?case/orP; move/eqP=> <- a; rewrite !permE; case: a; do 6?case. Qed. Lemma iso3_ndir : forall p, p \in dir_iso3 -> is_iso3 (s0 * p). Proof. move=> p; rewrite inE. by do ?case/orP; move/eqP=> <- a; rewrite !(permM, permE); case: a; do 6?case. Qed. Definition sop (p : {perm cube}) : seq cube := fgraph (val p). Lemma sop_inj : injective sop. Proof. by move=> p1 p2 /val_inj/(can_inj fgraphK)/val_inj. Qed. Definition prod_tuple (t1 t2 : seq cube) := map (fun n : 'I_6 => nth F0 t2 n) t1. Lemma sop_spec x (n0 : 'I_6): nth F0 (sop x) n0 = x n0. Proof. by rewrite nth_fgraph_ord pvalE. Qed. Lemma prod_t_correct : forall (x y : {perm cube}) (i : cube), (x * y) i = nth F0 (prod_tuple (sop x) (sop y)) i. Proof. move=> x y i; rewrite permM -!sop_spec [RHS](nth_map F0) // size_tuple /=. by rewrite card_ord ltn_ord. Qed. Lemma sop_morph : {morph sop : x y / x * y >-> prod_tuple x y}. Proof. move=> x y; apply: (@eq_from_nth _ F0) => [|/= i]. by rewrite size_map !size_tuple. rewrite size_tuple card_ord => lti6. by rewrite -[i]/(val (Ordinal lti6)) sop_spec -prod_t_correct. Qed. Definition ecubes : seq cube := [:: F0; F1; F2; F3; F4; F5]. Lemma ecubes_def : ecubes = enum (@predT cube). Proof. by apply: (inj_map val_inj); rewrite val_enum_ord. Qed. Definition seq_iso_L := [:: [:: F0; F1; F2; F3; F4; F5]; S05; S14; S23; R05; R14; R23; R50; R41; R32; R024; R042; R012; R021; R031; R013; R043; R034; S1; S2; S3; S4; S5; S6]. Lemma seqs1 : forall f injf, sop (@perm _ f injf) = map f ecubes. Proof. move=> f ?; rewrite ecubes_def /sop /= -codom_ffun pvalE. by apply: eq_codom; apply: permE. Qed. Lemma Lcorrect : seq_iso_L == map sop [:: id3; s05; s14; s23; r05; r14; r23; r50; r41; r32; r024; r042; r012; r021; r031; r013; r043; r034; s1; s2; s3; s4; s5; s6]. Proof. by rewrite /= !seqs1. Qed. Lemma iso0_1 : dir_iso3 =i dir_iso3l. Proof. by move=> p; rewrite /= !inE /= -!(eq_sym p). Qed. Lemma L_iso : forall p, (p \in dir_iso3) = (sop p \in seq_iso_L). Proof. by move=> p; rewrite (eqP Lcorrect) mem_map ?iso0_1 //; apply: sop_inj. Qed. Lemma stable : forall x y, x \in dir_iso3 -> y \in dir_iso3 -> x * y \in dir_iso3. Proof. move=> x y; rewrite !L_iso sop_morph => Hx Hy. by move/sop: y Hy; apply/allP; move/sop: x Hx; apply/allP; vm_compute. Qed. Lemma iso_eq_F0_F1 : forall r s : {perm cube}, r \in dir_iso3 -> s \in dir_iso3 -> r F0 = s F0 -> r F1 = s F1 -> r = s. Proof. move=> r s; rewrite !L_iso => hr hs hrs0 hrs1; apply: sop_inj; apply/eqP. move/eqP: hrs0; apply/implyP; move/eqP: hrs1; apply/implyP; rewrite -!sop_spec. by move/sop: r hr; apply/allP; move/sop: s hs; apply/allP; vm_compute. Qed. Lemma ndir_s0p : forall p, p \in dir_iso3 -> s0 * p \notin dir_iso3. Proof. move=> p; rewrite !L_iso sop_morph seqs1. by move/sop: p; apply/allP; vm_compute. Qed. Definition indir_iso3l := map (mulg s0) dir_iso3l. Definition iso3l := dir_iso3l ++ indir_iso3l. Definition seq_iso3_L := map sop iso3l. Lemma eqperm : forall p1 p2 : {perm cube}, (p1 == p2) = all (fun s => p1 s == p2 s) ecubes. Proof. move=> p1 p2; apply/eqP/allP=> [-> // | Ep12]; apply/permP=> x. by apply/eqP; rewrite Ep12 // ecubes_def mem_enum. Qed. Lemma iso_eq_F0_F1_F2 : forall r s : {perm cube}, is_iso3 r -> is_iso3 s -> r F0 = s F0 -> r F1 = s F1 -> r F2 = s F2 -> r = s. Proof. move=> r s hr hs hrs0 hrs1 hrs2. have:= hrs0; have:= hrs1; have:= hrs2. have e23: F2 = s0 F3 by apply/eqP; rewrite permE /S0f (tnth_nth F0). have e14: F1 = s0 F4 by apply/eqP; rewrite permE /S0f (tnth_nth F0). have e05: F0 = s0 F5 by apply/eqP; rewrite permE /S0f (tnth_nth F0). rewrite e23 e14 e05; rewrite !hr !hs. move/perm_inj=> hrs3; move/perm_inj=> hrs4; move/perm_inj=> hrs5. by apply/eqP; rewrite eqperm /= hrs0 hrs1 hrs2 hrs3 hrs4 hrs5 !eqxx. Qed. Ltac iso_tac := let a := fresh "a" in apply/permP => a; apply/eqP; rewrite !permM !permE; case: a; do 6?case. Ltac inv_tac := apply: esym (etrans _ (mul1g _)); apply: canRL (mulgK _) _; iso_tac. Lemma dir_s0p : forall p, (s0 * p) \in dir_iso3 -> p \notin dir_iso3. Proof. move=> p Hs0p; move: (ndir_s0p Hs0p); rewrite mulgA. have e: (s0^-1=s0) by inv_tac. by rewrite -{1}e mulVg mul1g. Qed. Definition is_iso3b p := (p * s0 == s0 * p). Definition iso3 := [set p | is_iso3b p]. Lemma is_iso3P : forall p, reflect (is_iso3 p) (p \in iso3). Proof. move=> p; apply: (iffP idP); rewrite inE /iso3 /is_iso3b /is_iso3 => e. by move=> fi; rewrite -!permM (eqP e). by apply/eqP; apply/permP=> z; rewrite !permM (e z). Qed. Lemma group_set_iso3 : group_set iso3. Proof. apply/group_setP; split. by apply/is_iso3P => fi; rewrite -!permM mulg1 mul1g. move=> x1 y; rewrite /iso3 !inE /= /is_iso3. rewrite /is_iso3b. rewrite -mulgA. move/eqP => hx1; move/eqP => hy. rewrite hy !mulgA. by rewrite -hx1. Qed. Canonical iso_group3 := Group group_set_iso3. Lemma group_set_diso3 : group_set dir_iso3. Proof. apply/group_setP; split; first by rewrite inE eqxx /=. by apply: stable. Qed. Canonical diso_group3 := Group group_set_diso3. Lemma gen_diso3 : dir_iso3 = <<[set r05; r14]>>. Proof. apply/setP/subset_eqP/andP; split; first last. rewrite gen_subG; apply/subsetP. by move=> x /[!inE] /orP[] /eqP->; rewrite !eqxx !orbT. apply/subsetP => x /[!inE]. have -> : s05 = r05 * r05 by iso_tac. have -> : s14 = r14 * r14 by iso_tac. have -> : s23 = r14 * r14 * r05 * r05 by iso_tac. have -> : r23 = r05 * r14 * r05 * r14 * r14 by iso_tac. have -> : r50 = r05 * r05 * r05 by iso_tac. have -> : r41 = r14 * r14 * r14 by iso_tac. have -> : r32 = r14 * r14 * r14 * r05* r14 by iso_tac. have -> : r024 = r05 * r14 * r14 * r14 by iso_tac. have -> : r042 = r14 * r05 * r05 * r05 by iso_tac. have -> : r012 = r14 * r05 by iso_tac. have -> : r021 = r05 * r14 * r05 * r05 by iso_tac. have -> : r031 = r05 * r14 by iso_tac. have -> : r013 = r05 * r05 * r14 * r05 by iso_tac. have -> : r043 = r14 * r14 * r14 * r05 by iso_tac. have -> : r034 = r05 * r05 * r05 * r14 by iso_tac. have -> : s1 = r14 * r14 * r05 by iso_tac. have -> : s2 = r05 * r14 * r14 by iso_tac. have -> : s3 = r05 * r14 * r05 by iso_tac. have -> : s4 = r05 * r14 * r14 * r14 * r05 by iso_tac. have -> : s5 = r14 * r05 * r05 by iso_tac. have -> : s6 = r05 * r05 * r14 by iso_tac. by do ?case/predU1P=> [<-|]; first exact: group1; last (move/eqP<-); rewrite ?groupMl ?mem_gen // !inE eqxx ?orbT. Qed. Notation col_cubes := {ffun cube -> colors}. Definition act_g (sc : col_cubes) (p : {perm cube}) : col_cubes := [ffun z => sc (p^-1 z)]. Lemma act_g_1 : forall k, act_g k 1 = k. Proof. by move=> k; apply/ffunP=> a; rewrite ffunE invg1 permE. Qed. Lemma act_g_morph : forall k x y, act_g k (x * y) = act_g (act_g k x) y. Proof. by move=> k x y; apply/ffunP=> a; rewrite !ffunE invMg permE. Qed. Definition to_g := TotalAction act_g_1 act_g_morph. Definition cube_coloring_number24 := #|orbit to_g diso_group3 @: setT|. Lemma Fid3 : 'Fix_to_g[1] = setT. Proof. by apply/setP=> x /=; rewrite (sameP afix1P eqP) !inE act1 eqxx. Qed. Lemma card_Fid3 : #|'Fix_to_g[1]| = (n ^ 6)%N. Proof. rewrite -[6]card_ord -[n]card_ord -card_ffun_on Fid3 cardsT. by symmetry; apply: eq_card => ff; apply/ffun_onP. Qed. Definition col0 (sc : col_cubes) : colors := sc F0. Definition col1 (sc : col_cubes) : colors := sc F1. Definition col2 (sc : col_cubes) : colors := sc F2. Definition col3 (sc : col_cubes) : colors := sc F3. Definition col4 (sc : col_cubes) : colors := sc F4. Definition col5 (sc : col_cubes) : colors := sc F5. Lemma eqperm_map2 : forall p1 p2 : col_cubes, (p1 == p2) = all (fun s => p1 s == p2 s) [:: F0; F1; F2; F3; F4; F5]. Proof. move=> p1 p2; apply/eqP/allP=> [-> // | Ep12]; apply/ffunP=> x. by apply/eqP; apply Ep12; case: x; do 6?case. Qed. Notation infE := (sameP afix1P eqP). Lemma F_s05 : 'Fix_to_g[s05] = [set x | (col1 x == col4 x) && (col2 x == col3 x)]. Proof. have s05_inv: s05^-1=s05 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s05_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= andbT/col1/col2/col3/col4/col5/col0. by do 2![rewrite eq_sym; case: {+}(_ == _)=> //= ]. Qed. Lemma F_s14 : 'Fix_to_g[s14]= [set x | (col0 x == col5 x) && (col2 x == col3 x)]. Proof. have s14_inv: s14^-1=s14 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s14_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= andbT/col1/col2/col3/col4/col5/col0. by do 2![rewrite eq_sym; case: {+}(_ == _)=> //= ]. Qed. Lemma r05_inv : r05^-1 = r50. Proof. by inv_tac. Qed. Lemma r50_inv : r50^-1 = r05. Proof. by inv_tac. Qed. Lemma r14_inv : r14^-1 = r41. Proof. by inv_tac. Qed. Lemma r41_inv : r41^-1 = r14. Proof. by inv_tac. Qed. Lemma s23_inv : s23^-1 = s23. Proof. by inv_tac. Qed. Lemma F_s23 : 'Fix_to_g[s23] = [set x | (col0 x == col5 x) && (col1 x == col4 x)]. Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s23_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= andbT/col1/col2/col3/col4/col5/col0. by do 2![rewrite eq_sym; case: {+}(_ == _)=> //=]. Qed. Lemma F_r05 : 'Fix_to_g[r05]= [set x | (col1 x == col2 x) && (col2 x == col3 x) && (col3 x == col4 x)]. Proof. apply sym_equal. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r05_inv !ffunE !permE /=. rewrite !eqxx /= !andbT /col1/col2/col3/col4/col5/col0. by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r50 : 'Fix_to_g[r50]= [set x | (col1 x == col2 x) && (col2 x == col3 x) && (col3 x == col4 x)]. Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r50_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col1/col2/col3/col4. by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r23 : 'Fix_to_g[r23] = [set x | (col0 x == col1 x) && (col1 x == col4 x) && (col4 x == col5 x)]. Proof. have r23_inv: r23^-1 = r32 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r23_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col1/col0/col5/col4. by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r32 : 'Fix_to_g[r32] = [set x | (col0 x == col1 x) && (col1 x == col4 x) && (col4 x == col5 x)]. Proof. have r32_inv: r32^-1 = r23 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r32_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col1/col0/col5/col4. by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r14 : 'Fix_to_g[r14] = [set x | (col0 x == col2 x) && (col2 x == col3 x) && (col3 x == col5 x)]. Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r14_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col2/col0/col5/col3. by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r41 : 'Fix_to_g[r41] = [set x | (col0 x == col2 x) && (col2 x == col3 x) && (col3 x == col5 x)]. Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r41_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col2/col0/col5/col3. by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r024 : 'Fix_to_g[r024] = [set x | (col0 x == col4 x) && (col4 x == col2 x) && (col1 x == col3 x) && (col3 x == col5 x) ]. Proof. have r024_inv: r024^-1 = r042 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r024_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r042 : 'Fix_to_g[r042] = [set x | (col0 x == col4 x) && (col4 x == col2 x) && (col1 x == col3 x) && (col3 x == col5 x)]. Proof. have r042_inv: r042^-1 = r024 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r042_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r012 : 'Fix_to_g[r012] = [set x | (col0 x == col2 x) && (col2 x == col1 x) && (col3 x == col4 x) && (col4 x == col5 x)]. Proof. have r012_inv: r012^-1 = r021 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r012_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r021 : 'Fix_to_g[r021] = [set x | (col0 x == col2 x) && (col2 x == col1 x) && (col3 x == col4 x) && (col4 x == col5 x)]. Proof. have r021_inv: r021^-1 = r012 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r021_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r031 : 'Fix_to_g[r031] = [set x | (col0 x == col3 x) && (col3 x == col1 x) && (col2 x == col4 x) && (col4 x == col5 x)]. Proof. have r031_inv: r031^-1 = r013 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r031_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r013 : 'Fix_to_g[r013] = [set x | (col0 x == col3 x) && (col3 x == col1 x) && (col2 x == col4 x) && (col4 x == col5 x)]. Proof. have r013_inv: r013^-1 = r031 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r013_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r043 : 'Fix_to_g[r043] = [set x | (col0 x == col4 x) && (col4 x == col3 x) && (col1 x == col2 x) && (col2 x == col5 x)]. Proof. have r043_inv: r043^-1 = r034 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r043_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r034 : 'Fix_to_g[r034] = [set x | (col0 x == col4 x) && (col4 x == col3 x) && (col1 x == col2 x) && (col2 x == col5 x)]. Proof. have r034_inv: r034^-1 = r043 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r034_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s1 : 'Fix_to_g[s1] = [set x | (col0 x == col5 x) && (col1 x == col2 x) && (col3 x == col4 x)]. Proof. have s1_inv: s1^-1 = s1 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s1_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s2 : 'Fix_to_g[s2] = [set x | (col0 x == col5 x) && (col1 x == col3 x) && (col2 x == col4 x)]. Proof. have s2_inv: s2^-1 = s2 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s2_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s3 : 'Fix_to_g[s3] = [set x | (col0 x == col1 x) && (col2 x == col3 x) && (col4 x == col5 x)]. Proof. have s3_inv: s3^-1 = s3 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s3_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s4 : 'Fix_to_g[s4] = [set x | (col0 x == col4 x) && (col1 x == col5 x) && (col2 x == col3 x)]. Proof. have s4_inv: s4^-1 = s4 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s4_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s5 : 'Fix_to_g[s5] = [set x | (col0 x == col2 x) && (col1 x == col4 x) && (col3 x == col5 x)]. Proof. have s5_inv: s5^-1 = s5 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s5_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s6 : 'Fix_to_g[s6] = [set x | (col0 x == col3 x) && (col1 x == col4 x) && (col2 x == col5 x)]. Proof. have s6_inv: s6^-1 = s6 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s6_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma uniq4_uniq6 : forall x y z t : cube, uniq [:: x; y; z; t] -> exists u, exists v, uniq [:: x; y; z; t; u; v]. Proof. move=> x y z t Uxt; move: (cardC (mem [:: x; y; z; t])). rewrite card_ord (card_uniq_tuple Uxt) => hcard. have hcard2: #|predC (mem [:: x; y; z; t])| = 2. by apply: (@addnI 4); rewrite /injective hcard. have: #|predC (mem [:: x; y; z; t])| != 0 by rewrite hcard2. case/existsP=> u Hu; exists u. move: (cardC (mem [:: x; y; z; t; u])); rewrite card_ord => hcard5. have: #|[predC [:: x; y; z; t; u]]| !=0. rewrite -lt0n -(ltn_add2l #|[:: x; y; z; t; u]|) hcard5 addn0. by apply: (leq_ltn_trans (card_size [:: x; y; z; t; u])). case/existsP => v; rewrite inE (mem_cat _ [:: _; _; _; _]) => /norP[Hv Huv]. exists v; rewrite (cat_uniq [:: x; y; z; t]) Uxt andTb. by rewrite -rev_uniq /= negb_or Hu orbF Hv Huv. Qed. Lemma card_n4 : forall x y z t : cube, uniq [:: x; y; z; t] -> #|[set p : col_cubes | (p x == p y) && (p z == p t)]| = (n ^ 4)%N. Proof. move=> x y z t Uxt; rewrite -[n]card_ord. case: (uniq4_uniq6 Uxt) => u [v Uxv]. pose ff (p : col_cubes) := (p x, p z, p u, p v). rewrite -(@card_in_image _ _ ff); first last. move=> p1 p2 /[!inE] /andP[p1y p1t] /andP[p2y p2t] [px pz] pu pv. have eqp12 : all (fun i => p1 i == p2 i) [:: x; y; z; t; u; v]. by rewrite /= -(eqP p1y) -(eqP p1t) -(eqP p2y) -(eqP p2t) px pz pu pv !eqxx. apply/ffunP=> i; apply/eqP; apply: (allP eqp12). by rewrite (subset_cardP _ (subset_predT _)) // (card_uniqP Uxv) card_ord. have -> : forall n, (n ^ 4 = n * n * n * n)%N by move=> ?; rewrite -!mulnA. rewrite -!card_prod; apply: eq_card => [] [[[c d] e] g] /=; apply/imageP => /=. move: Uxv; rewrite (cat_uniq [:: x; y; z; t]) => /and3P[_]/=; rewrite orbF. move=> /norP[] /[!inE] + + /andP[/negPf nuv _]. rewrite orbA => /norP[/negPf nxyu /negPf nztu]. rewrite orbA => /norP[/negPf nxyv /negPf nztv]. move: Uxt; rewrite (cat_uniq [::x; y]) => /and3P[_]/= /[!(andbT, orbF)]. move=> /norP[] /[!inE] /negPf nxyz /negPf nxyt _. exists [ffun i => if pred2 x y i then c else if pred2 z t i then d else if u == i then e else g]. by rewrite !(inE, ffunE, eqxx,orbT)//= nxyz nxyt. by rewrite {}/ff !ffunE /= !eqxx /= nxyz nxyu nztu nxyv nztv nuv. Qed. Lemma card_n3_3 : forall x y z t: cube, uniq [:: x; y; z; t] -> #|[set p : col_cubes | (p x == p y) && (p y == p z)&& (p z == p t)]| = (n ^ 3)%N. Proof. move=> x y z t Uxt; rewrite -[n]card_ord. case: (uniq4_uniq6 Uxt) => u [v Uxv]. pose ff (p : col_cubes) := (p x, p u, p v); rewrite -(@card_in_image _ _ ff); first last. move=> p1 p2 /[!inE]; rewrite -!andbA. move=> /and3P[/eqP p1xy /eqP p1yz /eqP p1zt]. move=> /and3P[/eqP p2xy /eqP p2yz /eqP p2zt] [px pu] pv. have eqp12: all (fun i => p1 i == p2 i) [:: x; y; z; t; u; v]. by rewrite /= -p1zt -p2zt -p1yz -p2yz -p1xy -p2xy px pu pv !eqxx. apply/ffunP=> i; apply/eqP; apply: (allP eqp12). by rewrite (subset_cardP _ (subset_predT _)) // (card_uniqP Uxv) card_ord. have -> : forall n, (n ^ 3 = n * n * n)%N by move=> ?; rewrite -!mulnA. rewrite -!card_prod; apply: eq_card => [] [[c d] e] /=; apply/imageP. move: Uxv; rewrite (cat_uniq [::x; y; z; t]) => /and3P[_ hasxt]. rewrite /uniq !inE !andbT => /negPf nuv. exists [ffun i => if i \in [:: x; y; z; t] then c else if u == i then d else e]. by rewrite /= !(inE, ffunE, eqxx, orbT). rewrite {}/ff !(ffunE, inE, eqxx) /=; move: hasxt; rewrite nuv. by do 8![case E: ( _ == _ ); rewrite ?(eqP E)/= ?inE ?eqxx //= ?E {E}]. Qed. Lemma card_n2_3 : forall x y z t u v: cube, uniq [:: x; y; z; t; u; v] -> #|[set p : col_cubes | (p x == p y) && (p y == p z)&& (p t == p u ) && (p u== p v)]| = (n ^ 2)%N. Proof. move=> x y z t u v Uxv; rewrite -[n]card_ord . pose ff (p : col_cubes) := (p x, p t). rewrite -(@card_in_image _ _ ff); first last. move=> p1 p2 /[!inE]; rewrite -!andbA. move=> /and4P[/eqP p1xy /eqP p1yz /eqP p1tu /eqP p1uv]. move=> /and4P[/eqP p2xy/eqP p2yz /eqP p2tu /eqP p2uv] [px pu]. have eqp12: all (fun i => p1 i == p2 i) [:: x; y; z; t; u; v]. by rewrite /= -p1yz -p2yz -p1xy -p2xy -p1uv -p2uv -p1tu -p2tu px pu !eqxx. apply/ffunP=> i; apply/eqP; apply: (allP eqp12). by rewrite (subset_cardP _ (subset_predT _)) // (card_uniqP Uxv) card_ord. rewrite -mulnn -!card_prod; apply: eq_card => [] [c d]/=; apply/imageP. move: Uxv; rewrite (cat_uniq [::x; y; z]) => /= /and3P[Uxt + nuv]. move=> /[!orbF] /norP[] /[!inE] /negPf nxyzt /norP[/negPf nxyzu /negPf nxyzv]. exists [ffun i => if (i \in [:: x; y; z] ) then c else d]. by rewrite /= !(inE, ffunE, eqxx, orbT, nxyzt, nxyzu, nxyzv). by rewrite {}/ff !ffunE !inE /= !eqxx /= nxyzt. Qed. Lemma card_n3s : forall x y z t u v: cube, uniq [:: x; y; z; t; u; v] -> #|[set p : col_cubes | (p x == p y) && (p z == p t)&& (p u == p v )]| = (n ^ 3)%N. Proof. move=> x y z t u v Uxv; rewrite -[n]card_ord . pose ff (p : col_cubes) := (p x, p z, p u). rewrite -(@card_in_image _ _ ff); first last. move=> p1 p2 /[!inE]; rewrite -!andbA. move=> /and3P[/eqP p1xy /eqP p1zt /eqP p1uv]. move=> /and3P[/eqP p2xy /eqP p2zt /eqP p2uv] [px pz] pu. have eqp12: all (fun i => p1 i == p2 i) [:: x; y; z; t; u; v]. by rewrite /= -p1xy -p2xy -p1zt -p2zt -p1uv -p2uv px pz pu !eqxx. apply/ffunP=> i; apply/eqP; apply: (allP eqp12). by rewrite (subset_cardP _ (subset_predT _)) // (card_uniqP Uxv) card_ord. have -> : forall n, (n ^ 3 = n * n * n)%N by move=> ?; rewrite -!mulnA. rewrite -!card_prod; apply: eq_card => [] [[c d] e] /=; apply/imageP. move: Uxv; rewrite (cat_uniq [::x; y; z; t]) => /and3P[Uxt + nuv]. move=> /= /[!orbF] /norP[] /[!inE]. rewrite orbA => /norP[/negPf nxyu /negPf nztu]. rewrite orbA => /norP[/negPf nxyv /negPf nztv]. move: Uxt; rewrite (cat_uniq [::x; y]) => /and3P[_]. rewrite /= !orbF !andbT => /norP[] /[!inE] /negPf nxyz /negPf nxyt _. exists [ffun i => if i \in [:: x; y] then c else if i \in [:: z; t] then d else e]. by rewrite !(inE, ffunE, eqxx,orbT)//= nxyz nxyt nxyu nztu nxyv nztv !eqxx. by rewrite {}/ff !ffunE !inE /= !eqxx nxyz nxyu nztu. Qed. Lemma burnside_app_iso3 : (cube_coloring_number24 * 24 = n ^ 6 + 6 * n ^ 3 + 3 * n ^ 4 + 8 * (n ^ 2) + 6 * n ^ 3)%N. Proof. pose iso_list := [:: id3; s05; s14; s23; r05; r14; r23; r50; r41; r32; r024; r042; r012; r021; r031; r013; r043; r034; s1; s2; s3; s4; s5; s6]. rewrite (burnside_formula iso_list); last first. - by move=> p; rewrite !inE /= !(eq_sym _ p). - apply: map_uniq (fun p : {perm cube} => (p F0, p F1)) _ _. have bsr : (fun p : {perm cube} => (p F0, p F1)) =1 (fun p => (nth F0 p F0, nth F0 p F1)) \o sop. by move=> x; rewrite /= -2!sop_spec. by rewrite (eq_map bsr) map_comp -(eqP Lcorrect); vm_compute. rewrite !big_cons big_nil {1}card_Fid3 /= F_s05 F_s14 F_s23 F_r05 F_r14 F_r23 F_r50 F_r41 F_r32 F_r024 F_r042 F_r012 F_r021 F_r031 F_r013 F_r043 F_r034 F_s1 F_s2 F_s3 F_s4 F_s5 F_s6. by rewrite !card_n4 // !card_n3_3 // !card_n2_3 // !card_n3s //; ring. Qed. End cube_colouring. End colouring. Corollary burnside_app_iso_3_3col: cube_coloring_number24 3 = 57. Proof. by apply/eqP; rewrite -(@eqn_pmul2r 24) // burnside_app_iso3. Qed. Corollary burnside_app_iso_2_4col: square_coloring_number8 4 = 55. Proof. by apply/eqP; rewrite -(@eqn_pmul2r 8) // burnside_app_iso. Qed.