(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice. From mathcomp Require Import fintype tuple. (******************************************************************************) (* This file implements a type for functions with a finite domain: *) (* {ffun aT -> rT} where aT should have a finType structure, *) (* {ffun forall x : aT, rT} for dependent functions over a finType aT, *) (* and {ffun funT} where funT expands to a product over a finType. *) (* Any eqType, choiceType, countType and finType structures on rT extend to *) (* {ffun aT -> rT} as Leibnitz equality and extensional equalities coincide. *) (* (T ^ n)%type is notation for {ffun 'I_n -> T}, which is isomorphic *) (* to n.-tuple T, but is structurally positive and thus can be used to *) (* define inductive types, e.g., Inductive tree := node n of tree ^ n (see *) (* mid-file for an expanded example). *) (* --> More generally, {ffun fT} is always structurally positive. *) (* {ffun fT} inherits combinatorial structures of rT, i.e., eqType, *) (* choiceType, countType, and finType. However, due to some limitations of *) (* the Coq 8.9 unification code the structures are only inherited in the *) (* NON dependent case, when rT does not depend on x. *) (* For f : {ffun fT} with fT := forall x : aT, rT we define *) (* f x == the image of x under f (f coerces to a CiC function) *) (* --> The coercion is structurally decreasing, e.g., Coq will accept *) (* Fixpoint size t := let: node n f := t in sumn (codom (size \o f)) + 1. *) (* as structurally decreasing on t of the inductive tree type above. *) (* {dffun fT} == alias for {ffun fT} that inherits combinatorial *) (* structures on rT, when rT DOES depend on x. *) (* total_fun g == the function induced by a dependent function g of type *) (* forall x, rT on the total space {x : aT & rT}. *) (* := fun x => Tagged (fun x => rT) (g x). *) (* tfgraph f == the total function graph of f, i.e., the #|aT|.-tuple *) (* of all the (dependent pair) values of total_fun f. *) (* finfun g == the f extensionally equal to g, and the RECOMMENDED *) (* interface for building elements of {ffun fT}. *) (* [ffun x : aT => E] := finfun (fun x : aT => E). *) (* There should be an explicit type constraint on E if *) (* type does not depend on x, due to the Coq unification *) (* limitations referred to above. *) (* ffun0 aT0 == the trivial finfun, from a proof aT0 that #|aT| = 0. *) (* f \in family F == f belongs to the family F (f x \in F x for all x) *) (* There are additional operations for non-dependent finite functions, *) (* i.e., f in {ffun aT -> rT}. *) (* [ffun x => E] := finfun (fun x => E). *) (* The type of E must not depend on x; this restriction *) (* is a mitigation of the aforementioned Coq unification *) (* limitations. *) (* [ffun=> E] := [ffun _ => E] (E should not have a dependent type). *) (* fgraph f == the function graph of f, i.e., the #|aT|.-tuple *) (* listing the values of f x, for x ranging over enum aT. *) (* Finfun G == the finfun f whose (simple) function graph is G. *) (* f \in ffun_on R == the range of f is a subset of R. *) (* y.-support f == the y-support of f, i.e., [pred x | f x != y]. *) (* Thus, y.-support f \subset D means f has y-support D. *) (* We will put Notation support := 0.-support in ssralg. *) (* f \in pffun_on y D R == f is a y-partial function from D to R: *) (* f has y-support D and f x \in R for all x \in D. *) (* f \in pfamily y D F == f belongs to the y-partial family from D to F: *) (* f has y-support D and f x \in F x for all x \in D. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Section Def. Variables (aT : finType) (rT : aT -> Type). Inductive finfun_on : seq aT -> Type := | finfun_nil : finfun_on [::] | finfun_cons x s of rT x & finfun_on s : finfun_on (x :: s). Local Fixpoint finfun_rec (g : forall x, rT x) s : finfun_on s := if s is x1 :: s1 then finfun_cons (g x1) (finfun_rec g s1) else finfun_nil. Local Fixpoint fun_of_fin_rec x s (f_s : finfun_on s) : x \in s -> rT x := if f_s is finfun_cons x1 s1 y1 f_s1 then if eqP is ReflectT Dx in reflect _ Dxb return Dxb || (x \in s1) -> rT x then fun=> ecast x (rT x) (esym Dx) y1 else fun_of_fin_rec f_s1 else fun isF => False_rect (rT x) (notF isF). Variant finfun_of (ph : phant (forall x, rT x)) : predArgType := FinfunOf of finfun_on (enum aT). Definition dfinfun_of ph := finfun_of ph. Definition fun_of_fin ph (f : finfun_of ph) x := let: FinfunOf f_aT := f in fun_of_fin_rec f_aT (mem_enum aT x). End Def. Coercion fun_of_fin : finfun_of >-> Funclass. Identity Coercion unfold_dfinfun_of : dfinfun_of >-> finfun_of. Arguments fun_of_fin {aT rT ph} f x. Notation "{ 'ffun' fT }" := (finfun_of (Phant fT)) (at level 0, format "{ 'ffun' '[hv' fT ']' }") : type_scope. Notation "{ 'dffun' fT }" := (dfinfun_of (Phant fT)) (at level 0, format "{ 'dffun' '[hv' fT ']' }") : type_scope. Definition exp_finIndexType := ordinal_finType. Notation "T ^ n" := (@finfun_of (exp_finIndexType n) (fun=> T) (Phant _)) : type_scope. Local Notation finPi aT rT := (forall x : Finite.sort aT, rT x) (only parsing). Local Notation finfun_def := (fun aT rT g => FinfunOf (Phant (finPi aT rT)) (finfun_rec g (enum aT))). Module Type FinfunDefSig. Parameter finfun : forall aT rT, finPi aT rT -> {ffun finPi aT rT}. Axiom finfunE : finfun = finfun_def. End FinfunDefSig. Module FinfunDef : FinfunDefSig. Definition finfun := finfun_def. Lemma finfunE : finfun = finfun_def. Proof. by []. Qed. End FinfunDef. Notation finfun := FinfunDef.finfun. Canonical finfun_unlock := Unlockable FinfunDef.finfunE. Arguments finfun {aT rT} g. Notation "[ 'ffun' x : aT => E ]" := (finfun (fun x : aT => E)) (at level 0, x name) : fun_scope. Notation "[ 'ffun' x => E ]" := (@finfun _ (fun=> _) (fun x => E)) (at level 0, x name, format "[ 'ffun' x => E ]") : fun_scope. Notation "[ 'ffun' => E ]" := [ffun _ => E] (at level 0, format "[ 'ffun' => E ]") : fun_scope. (* Example outcommented. (* Examples of using finite functions as containers in recursive inductive *) (* types, and making use of the fact that the type and accessor are *) (* structurally positive and decreasing, respectively. *) Unset Elimination Schemes. Inductive tree := node n of tree ^ n. Fixpoint size t := let: node n f := t in sumn (codom (size \o f)) + 1. Example tree_step (K : tree -> Type) := forall n st (t := node st) & forall i : 'I_n, K (st i), K t. Example tree_rect K (Kstep : tree_step K) : forall t, K t. Proof. by fix IHt 1 => -[n st]; apply/Kstep=> i; apply: IHt. Defined. (* An artificial example use of dependent functions. *) Inductive tri_tree n := tri_row of {ffun forall i : 'I_n, tri_tree i}. Fixpoint tri_size n (t : tri_tree n) := let: tri_row f := t in sumn [seq tri_size (f i) | i : 'I_n] + 1. Example tri_tree_step (K : forall n, tri_tree n -> Type) := forall n st (t := tri_row st) & forall i : 'I_n, K i (st i), K n t. Example tri_tree_rect K (Kstep : tri_tree_step K) : forall n t, K n t. Proof. by fix IHt 2 => n [st]; apply/Kstep=> i; apply: IHt. Defined. Set Elimination Schemes. (* End example. *) *) (* The correspondence between finfun_of and CiC dependent functions. *) Section DepPlainTheory. Variables (aT : finType) (rT : aT -> Type). Notation fT := {ffun finPi aT rT}. Implicit Type f : fT. Fact ffun0 (aT0 : #|aT| = 0) : fT. Proof. by apply/finfun=> x; have:= card0_eq aT0 x. Qed. Lemma ffunE g x : (finfun g : fT) x = g x. Proof. rewrite unlock /=; set s := enum aT; set s_x : mem_seq s x := mem_enum _ _. by elim: s s_x => //= x1 s IHs; case: eqP => [|_]; [case: x1 / | apply: IHs]. Qed. Lemma ffunP (f1 f2 : fT) : (forall x, f1 x = f2 x) <-> f1 = f2. Proof. suffices ffunK f g: (forall x, f x = g x) -> f = finfun g. by split=> [/ffunK|] -> //; apply/esym/ffunK. case: f => f Dg; rewrite unlock; congr FinfunOf. have{} Dg x (aTx : mem_seq (enum aT) x): g x = fun_of_fin_rec f aTx. by rewrite -Dg /= (bool_irrelevance (mem_enum _ _) aTx). elim: (enum aT) / f (enum_uniq aT) => //= x1 s y f IHf /andP[s'x1 Us] in Dg *. rewrite Dg ?eqxx //=; case: eqP => // /eq_axiomK-> /= _. rewrite {}IHf // => x s_x; rewrite Dg ?s_x ?orbT //. by case: eqP (memPn s'x1 x s_x) => // _ _ /(bool_irrelevance s_x) <-. Qed. Lemma ffunK : @cancel (finPi aT rT) fT fun_of_fin finfun. Proof. by move=> f; apply/ffunP=> x; rewrite ffunE. Qed. Lemma eq_dffun (g1 g2 : forall x, rT x) : (forall x, g1 x = g2 x) -> finfun g1 = finfun g2. Proof. by move=> eq_g; apply/ffunP => x; rewrite !ffunE eq_g. Qed. Definition total_fun g x := Tagged rT (g x : rT x). Definition tfgraph f := codom_tuple (total_fun f). Lemma codom_tffun f : codom (total_fun f) = tfgraph f. Proof. by []. Qed. Local Definition tfgraph_inv (G : #|aT|.-tuple {x : aT & rT x}) : option fT := if eqfunP isn't ReflectT Dtg then None else Some [ffun x => ecast x (rT x) (Dtg x) (tagged (tnth G (enum_rank x)))]. Local Lemma tfgraphK : pcancel tfgraph tfgraph_inv. Proof. move=> f; have Dg x: tnth (tfgraph f) (enum_rank x) = total_fun f x. by rewrite tnth_map -[tnth _ _]enum_val_nth enum_rankK. rewrite /tfgraph_inv; case: eqfunP => /= [Dtg | [] x]; last by rewrite Dg. congr (Some _); apply/ffunP=> x; rewrite ffunE. by rewrite Dg in (Dx := Dtg x) *; rewrite eq_axiomK. Qed. Lemma tfgraph_inj : injective tfgraph. Proof. exact: pcan_inj tfgraphK. Qed. Definition family_mem mF := [pred f : fT | [forall x, in_mem (f x) (mF x)]]. Variables (pT : forall x, predType (rT x)) (F : forall x, pT x). (* Helper for defining notation for function families. *) Local Definition fmem F x := mem (F x : pT x). Lemma familyP f : reflect (forall x, f x \in F x) (f \in family_mem (fmem F)). Proof. exact: forallP. Qed. End DepPlainTheory. Arguments ffunK {aT rT} f : rename. Arguments ffun0 {aT rT} aT0. Arguments eq_dffun {aT rT} [g1] g2 eq_g12. Arguments total_fun {aT rT} g x. Arguments tfgraph {aT rT} f. Arguments tfgraphK {aT rT} f : rename. Arguments tfgraph_inj {aT rT} [f1 f2] : rename. Arguments fmem {aT rT pT} F x /. Arguments familyP {aT rT pT F f}. Notation family F := (family_mem (fmem F)). Section InheritedStructures. Variable aT : finType. Notation dffun_aT rT rS := {dffun forall x : aT, rT x : rS}. Local Remark eqMixin rT : Equality.mixin_of (dffun_aT rT eqType). Proof. exact: PcanEqMixin tfgraphK. Qed. Canonical finfun_eqType (rT : eqType) := EqType {ffun aT -> rT} (eqMixin (fun=> rT)). Canonical dfinfun_eqType rT := EqType (dffun_aT rT eqType) (eqMixin rT). Local Remark choiceMixin rT : Choice.mixin_of (dffun_aT rT choiceType). Proof. exact: PcanChoiceMixin tfgraphK. Qed. Canonical finfun_choiceType (rT : choiceType) := ChoiceType {ffun aT -> rT} (choiceMixin (fun=> rT)). Canonical dfinfun_choiceType rT := ChoiceType (dffun_aT rT choiceType) (choiceMixin rT). Local Remark countMixin rT : Countable.mixin_of (dffun_aT rT countType). Proof. exact: PcanCountMixin tfgraphK. Qed. Canonical finfun_countType (rT : countType) := CountType {ffun aT -> rT} (countMixin (fun => rT)). Canonical dfinfun_countType rT := CountType (dffun_aT rT countType) (countMixin rT). Local Definition finMixin rT := PcanFinMixin (tfgraphK : @pcancel _ (dffun_aT rT finType) _ _). Canonical finfun_finType (rT : finType) := FinType {ffun aT -> rT} (finMixin (fun=> rT)). Canonical dfinfun_finType rT := FinType (dffun_aT rT finType) (finMixin rT). End InheritedStructures. Section FinFunTuple. Context {T : Type} {n : nat}. Definition tuple_of_finfun (f : T ^ n) : n.-tuple T := [tuple f i | i < n]. Definition finfun_of_tuple (t : n.-tuple T) : (T ^ n) := [ffun i => tnth t i]. Lemma finfun_of_tupleK : cancel finfun_of_tuple tuple_of_finfun. Proof. by move=> t; apply: eq_from_tnth => i; rewrite tnth_map ffunE tnth_ord_tuple. Qed. Lemma tuple_of_finfunK : cancel tuple_of_finfun finfun_of_tuple. Proof. by move=> f; apply/ffunP => i; rewrite ffunE tnth_map tnth_ord_tuple. Qed. End FinFunTuple. Section FunPlainTheory. Variables (aT : finType) (rT : Type). Notation fT := {ffun aT -> rT}. Implicit Types (f : fT) (R : pred rT). Definition fgraph f := codom_tuple f. Definition Finfun (G : #|aT|.-tuple rT) := [ffun x => tnth G (enum_rank x)]. Lemma tnth_fgraph f i : tnth (fgraph f) i = f (enum_val i). Proof. by rewrite tnth_map /tnth -enum_val_nth. Qed. Lemma FinfunK : cancel Finfun fgraph. Proof. by move=> G; apply/eq_from_tnth=> i; rewrite tnth_fgraph ffunE enum_valK. Qed. Lemma fgraphK : cancel fgraph Finfun. Proof. by move=> f; apply/ffunP=> x; rewrite ffunE tnth_fgraph enum_rankK. Qed. Lemma fgraph_ffun0 aT0 : fgraph (ffun0 aT0) = nil :> seq rT. Proof. by apply/nilP/eqP; rewrite size_tuple. Qed. Lemma codom_ffun f : codom f = fgraph f. Proof. by []. Qed. Lemma tagged_tfgraph f : @map _ rT tagged (tfgraph f) = fgraph f. Proof. by rewrite -map_comp. Qed. Lemma eq_ffun (g1 g2 : aT -> rT) : g1 =1 g2 -> finfun g1 = finfun g2. Proof. exact: eq_dffun. Qed. Lemma fgraph_codom f : fgraph f = codom_tuple f. Proof. exact/esym/val_inj/codom_ffun. Qed. Definition ffun_on_mem (mR : mem_pred rT) := family_mem (fun _ : aT => mR). Lemma ffun_onP R f : reflect (forall x, f x \in R) (f \in ffun_on_mem (mem R)). Proof. exact: forallP. Qed. End FunPlainTheory. Arguments Finfun {aT rT} G. Arguments fgraph {aT rT} f. Arguments FinfunK {aT rT} G : rename. Arguments fgraphK {aT rT} f : rename. Arguments eq_ffun {aT rT} [g1] g2 eq_g12. Arguments ffun_onP {aT rT R f}. Notation ffun_on R := (ffun_on_mem _ (mem R)). Notation "@ 'ffun_on' aT R" := (ffun_on R : simpl_pred (finfun_of (Phant (aT -> id _)))) (at level 10, aT, R at level 9). Lemma nth_fgraph_ord T n (x0 : T) (i : 'I_n) f : nth x0 (fgraph f) i = f i. Proof. by rewrite -[i in RHS]enum_rankK -tnth_fgraph (tnth_nth x0) enum_rank_ord. Qed. (*****************************************************************************) Section Support. Variables (aT : Type) (rT : eqType). Definition support_for y (f : aT -> rT) := [pred x | f x != y]. Lemma supportE x y f : (x \in support_for y f) = (f x != y). Proof. by []. Qed. End Support. Notation "y .-support" := (support_for y) (at level 2, format "y .-support") : fun_scope. Section EqTheory. Variables (aT : finType) (rT : eqType). Notation fT := {ffun aT -> rT}. Implicit Types (y : rT) (D : {pred aT}) (R : {pred rT}) (f : fT). Lemma supportP y D g : reflect (forall x, x \notin D -> g x = y) (y.-support g \subset D). Proof. by apply: (iffP subsetP) => Dg x; [apply: contraNeq | apply: contraR] => /Dg->. Qed. Definition pfamily_mem y mD (mF : aT -> mem_pred rT) := family (fun i : aT => if in_mem i mD then pred_of_simpl (mF i) else pred1 y). Lemma pfamilyP (pT : predType rT) y D (F : aT -> pT) f : reflect (y.-support f \subset D /\ {in D, forall x, f x \in F x}) (f \in pfamily_mem y (mem D) (fmem F)). Proof. apply: (iffP familyP) => [/= f_pfam | [/supportP f_supp f_fam] x]. split=> [|x Ax]; last by have:= f_pfam x; rewrite Ax. by apply/subsetP=> x; case: ifP (f_pfam x) => //= _ fx0 /negP[]. by case: ifPn => Ax /=; rewrite inE /= (f_fam, f_supp). Qed. Definition pffun_on_mem y mD mR := pfamily_mem y mD (fun _ => mR). Lemma pffun_onP y D R f : reflect (y.-support f \subset D /\ {subset image f D <= R}) (f \in pffun_on_mem y (mem D) (mem R)). Proof. apply: (iffP (pfamilyP y D (fun _ => R) f)) => [] [-> f_fam]; split=> //. by move=> _ /imageP[x Ax ->]; apply: f_fam. by move=> x Ax; apply: f_fam; apply/imageP; exists x. Qed. End EqTheory. Arguments supportP {aT rT y D g}. Arguments pfamilyP {aT rT pT y D F f}. Arguments pffun_onP {aT rT y D R f}. Notation pfamily y D F := (pfamily_mem y (mem D) (fmem F)). Notation pffun_on y D R := (pffun_on_mem y (mem D) (mem R)). (*****************************************************************************) Section FinDepTheory. Variables (aT : finType) (rT : aT -> finType). Notation fT := {dffun forall x : aT, rT x}. Lemma card_family (F : forall x, pred (rT x)) : #|(family F : simpl_pred fT)| = foldr muln 1 [seq #|F x| | x : aT]. Proof. rewrite /image_mem; set E := enum aT in (uniqE := enum_uniq aT) *. have trivF x: x \notin E -> #|F x| = 1 by rewrite mem_enum. elim: E uniqE => /= [_ | x0 E IH_E /andP[E'x0 uniqE]] in F trivF *. have /fin_all_exists[f0 Ff0] x: exists y0, F x =i pred1 y0. have /pred0Pn[y Fy]: #|F x| != 0 by rewrite trivF. by exists y; apply/fsym/subset_cardP; rewrite ?subset_pred1 // card1 trivF. apply: eq_card1 (finfun f0 : fT) _ _ => f; apply/familyP/eqP=> [Ff | {f}-> x]. by apply/ffunP=> x; have /[!(Ff0, ffunE)]/eqP := Ff x. by rewrite ffunE Ff0 inE /=. have [y0 Fxy0 | Fx00] := pickP (F x0); last first. by rewrite !eq_card0 // => f; apply: contraFF (Fx00 (f x0))=> /familyP; apply. pose F1 x := if eqP is ReflectT Dx then xpred1 (ecast x (rT x) Dx y0) else F x. transitivity (#|[predX F x0 & family F1 : pred fT]|); last first. rewrite cardX {}IH_E {uniqE}// => [|x E'x]; last first. rewrite /F1; case: eqP => [Dx | /nesym/eqP-x0'x]; first exact: card1. by rewrite trivF // negb_or x0'x. congr (_ * foldr _ _ _); apply/eq_in_map=> x Ex. by rewrite /F1; case: eqP => // Dx0; rewrite Dx0 Ex in E'x0. pose g yf : fT := let: (y, f) := yf : rT x0 * fT in [ffun x => if eqP is ReflectT Dx then ecast x (rT x) Dx y else f x]. have gK: cancel (fun f : fT => (f x0, g (y0, f))) g. by move=> f; apply/ffunP=> x; rewrite !ffunE; case: eqP => //; case: x /. rewrite -(card_image (can_inj gK)); apply: eq_card => [] [y f] /=. apply/imageP/andP=> [[f1 /familyP/=Ff1] [-> ->]| [/=Fx0y /familyP/=Ff]]. split=> //; apply/familyP=> x; rewrite ffunE /F1 /=. by case: eqP => // Dx; apply: eqxx. exists (g (y, f)). by apply/familyP=> x; have:= Ff x; rewrite ffunE /F1; case: eqP; [case: x /|]. congr (_, _); first by rewrite /= ffunE; case: eqP => // Dx; rewrite eq_axiomK. by apply/ffunP=> x; have:= Ff x; rewrite !ffunE /F1; case: eqP => // Dx /eqP. Qed. Lemma card_dep_ffun : #|fT| = foldr muln 1 [seq #|rT x| | x : aT]. Proof. by rewrite -card_family; apply/esym/eq_card=> f; apply/familyP. Qed. End FinDepTheory. Section FinFunTheory. Variables aT rT : finType. Notation fT := {ffun aT -> rT}. Implicit Types (D : {pred aT}) (R : {pred rT}) (F : aT -> pred rT). Lemma card_pfamily y0 D F : #|pfamily y0 D F| = foldr muln 1 [seq #|F x| | x in D]. Proof. rewrite card_family !/(image _ _) /(enum D) -enumT /=. by elim: (enum aT) => //= x E ->; have [// | D'x] := ifP; rewrite card1 mul1n. Qed. Lemma card_pffun_on y0 D R : #|pffun_on y0 D R| = #|R| ^ #|D|. Proof. rewrite (cardE D) card_pfamily /image_mem. by elim: (enum D) => //= _ e ->; rewrite expnS. Qed. Lemma card_ffun_on R : #|@ffun_on aT R| = #|R| ^ #|aT|. Proof. rewrite card_family /image_mem cardT. by elim: (enum aT) => //= _ e ->; rewrite expnS. Qed. Lemma card_ffun : #|fT| = #|rT| ^ #|aT|. Proof. by rewrite -card_ffun_on; apply/esym/eq_card=> f; apply/forallP. Qed. End FinFunTheory.