(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice. From mathcomp Require Import seq fintype. (*****************************************************************************) (* Provided a base type T, this files defines an interface for quotients Q *) (* of the type T with explicit functions for canonical surjection (\pi *) (* : T -> Q) and for choosing a representative (repr : Q -> T). It then *) (* provides a helper to quotient T by a decidable equivalence relation (e *) (* : rel T) if T is a choiceType (or encodable as a choiceType modulo e). *) (* *) (* See "Pragmatic Quotient Types in Coq", proceedings of ITP2013, *) (* by Cyril Cohen. *) (* *) (* *** Generic Quotienting *** *) (* QuotClass (reprK : cancel repr pi) == builds the quotient which *) (* canonical surjection function is pi and which *) (* representative selection function is repr. *) (* QuotType Q class == packs the quotClass class to build a quotType *) (* You may declare such elements as Canonical *) (* \pi_Q x == the class in Q of the element x of T *) (* \pi x == the class of x where Q is inferred from the context *) (* repr c == canonical representative in T of the class c *) (* [quotType of Q] == clone of the canonical quotType structure of Q on T *) (* x = y %[mod Q] := \pi_Q x = \pi_Q y *) (* <-> x and y are equal modulo Q *) (* x <> y %[mod Q] := \pi_Q x <> \pi_Q y *) (* x == y %[mod Q] := \pi_Q x == \pi_Q y *) (* x != y %[mod Q] := \pi_Q x != \pi_Q y *) (* *) (* The quotient_scope is delimited by %qT *) (* The most useful lemmas are piE and reprK *) (* *) (* *** Morphisms *** *) (* One may declare existing functions and predicates as liftings of some *) (* morphisms for a quotient. *) (* PiMorph1 pi_f == where pi_f : {morph \pi : x / f x >-> fq x} *) (* declares fq : Q -> Q as the lifting of f : T -> T *) (* PiMorph2 pi_g == idem with pi_g : {morph \pi : x y / g x y >-> gq x y} *) (* PiMono1 pi_p == idem with pi_p : {mono \pi : x / p x >-> pq x} *) (* PiMono2 pi_r == idem with pi_r : {morph \pi : x y / r x y >-> rq x y} *) (* PiMorph11 pi_f == idem with pi_f : {morph \pi : x / f x >-> fq x} *) (* where fq : Q -> Q' and f : T -> T'. *) (* PiMorph eq == Most general declaration of compatibility, *) (* /!\ use with caution /!\ *) (* One can use the following helpers to build the liftings which may or *) (* may not satisfy the above properties (but if they do not, it is *) (* probably not a good idea to define them): *) (* lift_op1 Q f := lifts f : T -> T *) (* lift_op2 Q g := lifts g : T -> T -> T *) (* lift_fun1 Q p := lifts p : T -> R *) (* lift_fun2 Q r := lifts r : T -> T -> R *) (* lift_op11 Q Q' f := lifts f : T -> T' *) (* There is also the special case of constants and embedding functions *) (* that one may define and declare as compatible with Q using: *) (* lift_cst Q x := lifts x : T to Q *) (* PiConst c := declare the result c of the previous construction as *) (* compatible with Q *) (* lift_embed Q e := lifts e : R -> T to R -> Q *) (* PiEmbed f := declare the result f of the previous construction as *) (* compatible with Q *) (* *) (* *** Quotients that have an eqType structure *** *) (* Having a canonical (eqQuotType e) structure enables piE to replace terms *) (* of the form (x == y) by terms of the form (e x' y') if x and y are *) (* canonical surjections of some x' and y'. *) (* EqQuotType e Q m == builds an (eqQuotType e) structure on Q from the *) (* morphism property m *) (* where m : {mono \pi : x y / e x y >-> x == y} *) (* [eqQuotType of Q] == clones the canonical eqQuotType structure of Q *) (* *) (* *** Equivalence and quotient by an equivalence *** *) (* EquivRel r er es et == builds an equiv_rel structure based on the *) (* reflexivity, symmetry and transitivity property *) (* of a boolean relation. *) (* {eq_quot e} == builds the quotType of T by equiv *) (* where e : rel T is an equiv_rel *) (* and T is a choiceType or a (choiceTypeMod e) *) (* it is canonically an eqType, a choiceType, *) (* a quotType and an eqQuotType. *) (* x = y %[mod_eq e] := x = y %[mod {eq_quot e}] *) (* <-> x and y are equal modulo e *) (* ... *) (*****************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope quotient_scope. Reserved Notation "\pi_ Q" (at level 0, format "\pi_ Q"). Reserved Notation "\pi" (at level 0, format "\pi"). Reserved Notation "{pi_ Q a }" (at level 0, Q at next level, format "{pi_ Q a }"). Reserved Notation "{pi a }" (at level 0, format "{pi a }"). Reserved Notation "x == y %[mod_eq e ]" (at level 70, y at next level, no associativity, format "'[hv ' x '/' == y '/' %[mod_eq e ] ']'"). Reserved Notation "x = y %[mod_eq e ]" (at level 70, y at next level, no associativity, format "'[hv ' x '/' = y '/' %[mod_eq e ] ']'"). Reserved Notation "x != y %[mod_eq e ]" (at level 70, y at next level, no associativity, format "'[hv ' x '/' != y '/' %[mod_eq e ] ']'"). Reserved Notation "x <> y %[mod_eq e ]" (at level 70, y at next level, no associativity, format "'[hv ' x '/' <> y '/' %[mod_eq e ] ']'"). Reserved Notation "{eq_quot e }" (at level 0, e at level 0, format "{eq_quot e }"). Delimit Scope quotient_scope with qT. Local Open Scope quotient_scope. (*****************************************) (* Definition of the quotient interface. *) (*****************************************) Section QuotientDef. Variable T : Type. Record quot_mixin_of qT := QuotClass { quot_repr : qT -> T; quot_pi : T -> qT; _ : cancel quot_repr quot_pi }. Notation quot_class_of := quot_mixin_of. Record quotType := QuotTypePack { quot_sort :> Type; quot_class : quot_class_of quot_sort }. Variable qT : quotType. Definition pi_phant of phant qT := quot_pi (quot_class qT). Local Notation "\pi" := (pi_phant (Phant qT)). Definition repr_of := quot_repr (quot_class qT). Lemma repr_ofK : cancel repr_of \pi. Proof. by rewrite /pi_phant /repr_of /=; case: qT=> [? []]. Qed. Definition QuotType_clone (Q : Type) qT cT of phant_id (quot_class qT) cT := @QuotTypePack Q cT. End QuotientDef. Arguments repr_ofK {T qT}. (****************************) (* Protecting some symbols. *) (****************************) Module Type PiSig. Parameter f : forall (T : Type) (qT : quotType T), phant qT -> T -> qT. Axiom E : f = pi_phant. End PiSig. Module Pi : PiSig. Definition f := pi_phant. Definition E := erefl f. End Pi. Module MPi : PiSig. Definition f := pi_phant. Definition E := erefl f. End MPi. Module Type ReprSig. Parameter f : forall (T : Type) (qT : quotType T), qT -> T. Axiom E : f = repr_of. End ReprSig. Module Repr : ReprSig. Definition f := repr_of. Definition E := erefl f. End Repr. (*******************) (* Fancy Notations *) (*******************) Notation repr := Repr.f. Notation "\pi_ Q" := (@Pi.f _ _ (Phant Q)) : quotient_scope. Notation "\pi" := (@Pi.f _ _ (Phant _)) (only parsing) : quotient_scope. Notation "x == y %[mod Q ]" := (\pi_Q x == \pi_Q y) : quotient_scope. Notation "x = y %[mod Q ]" := (\pi_Q x = \pi_Q y) : quotient_scope. Notation "x != y %[mod Q ]" := (\pi_Q x != \pi_Q y) : quotient_scope. Notation "x <> y %[mod Q ]" := (\pi_Q x <> \pi_Q y) : quotient_scope. Local Notation "\mpi" := (@MPi.f _ _ (Phant _)). Canonical mpi_unlock := Unlockable MPi.E. Canonical pi_unlock := Unlockable Pi.E. Canonical repr_unlock := Unlockable Repr.E. Notation quot_class_of := quot_mixin_of. Notation QuotType Q m := (@QuotTypePack _ Q m). Notation "[ 'quotType' 'of' Q ]" := (@QuotType_clone _ Q _ _ id) (at level 0, format "[ 'quotType' 'of' Q ]") : form_scope. Arguments repr {T qT} x. (************************) (* Exporting the theory *) (************************) Section QuotTypeTheory. Variable T : Type. Variable qT : quotType T. Lemma reprK : cancel repr \pi_qT. Proof. by move=> x; rewrite !unlock repr_ofK. Qed. Variant pi_spec (x : T) : T -> Type := PiSpec y of x = y %[mod qT] : pi_spec x y. Lemma piP (x : T) : pi_spec x (repr (\pi_qT x)). Proof. by constructor; rewrite reprK. Qed. Lemma mpiE : \mpi =1 \pi_qT. Proof. by move=> x; rewrite !unlock. Qed. Lemma quotW P : (forall y : T, P (\pi_qT y)) -> forall x : qT, P x. Proof. by move=> Py x; rewrite -[x]reprK; apply: Py. Qed. Lemma quotP P : (forall y : T, repr (\pi_qT y) = y -> P (\pi_qT y)) -> forall x : qT, P x. Proof. by move=> Py x; rewrite -[x]reprK; apply: Py; rewrite reprK. Qed. End QuotTypeTheory. Arguments reprK {T qT} x. (*******************) (* About morphisms *) (*******************) (* This was pi_morph T (x : T) := PiMorph { pi_op : T; _ : x = pi_op }. *) Structure equal_to T (x : T) := EqualTo { equal_val : T; _ : x = equal_val }. Lemma equal_toE (T : Type) (x : T) (m : equal_to x) : equal_val m = x. Proof. by case: m. Qed. Notation piE := (@equal_toE _ _). Canonical equal_to_pi T (qT : quotType T) (x : T) := @EqualTo _ (\pi_qT x) (\pi x) (erefl _). Arguments EqualTo {T x equal_val}. Section Morphism. Variables T U : Type. Variable (qT : quotType T). Variable (qU : quotType U). Variable (f : T -> T) (g : T -> T -> T) (p : T -> U) (r : T -> T -> U). Variable (fq : qT -> qT) (gq : qT -> qT -> qT) (pq : qT -> U) (rq : qT -> qT -> U). Variable (h : T -> U) (hq : qT -> qU). Hypothesis pi_f : {morph \pi : x / f x >-> fq x}. Hypothesis pi_g : {morph \pi : x y / g x y >-> gq x y}. Hypothesis pi_p : {mono \pi : x / p x >-> pq x}. Hypothesis pi_r : {mono \pi : x y / r x y >-> rq x y}. Hypothesis pi_h : forall (x : T), \pi_qU (h x) = hq (\pi_qT x). Variables (a b : T) (x : equal_to (\pi_qT a)) (y : equal_to (\pi_qT b)). (* Internal Lemmas : do not use directly *) Lemma pi_morph1 : \pi (f a) = fq (equal_val x). Proof. by rewrite !piE. Qed. Lemma pi_morph2 : \pi (g a b) = gq (equal_val x) (equal_val y). Proof. by rewrite !piE. Qed. Lemma pi_mono1 : p a = pq (equal_val x). Proof. by rewrite !piE. Qed. Lemma pi_mono2 : r a b = rq (equal_val x) (equal_val y). Proof. by rewrite !piE. Qed. Lemma pi_morph11 : \pi (h a) = hq (equal_val x). Proof. by rewrite !piE. Qed. End Morphism. Arguments pi_morph1 {T qT f fq}. Arguments pi_morph2 {T qT g gq}. Arguments pi_mono1 {T U qT p pq}. Arguments pi_mono2 {T U qT r rq}. Arguments pi_morph11 {T U qT qU h hq}. Notation "{pi_ Q a }" := (equal_to (\pi_Q a)) : quotient_scope. Notation "{pi a }" := (equal_to (\pi a)) : quotient_scope. (* Declaration of morphisms *) Notation PiMorph pi_x := (EqualTo pi_x). Notation PiMorph1 pi_f := (fun a (x : {pi a}) => EqualTo (pi_morph1 pi_f a x)). Notation PiMorph2 pi_g := (fun a b (x : {pi a}) (y : {pi b}) => EqualTo (pi_morph2 pi_g a b x y)). Notation PiMono1 pi_p := (fun a (x : {pi a}) => EqualTo (pi_mono1 pi_p a x)). Notation PiMono2 pi_r := (fun a b (x : {pi a}) (y : {pi b}) => EqualTo (pi_mono2 pi_r a b x y)). Notation PiMorph11 pi_f := (fun a (x : {pi a}) => EqualTo (pi_morph11 pi_f a x)). (* lifting helpers *) Notation lift_op1 Q f := (locked (fun x : Q => \pi_Q (f (repr x)) : Q)). Notation lift_op2 Q g := (locked (fun x y : Q => \pi_Q (g (repr x) (repr y)) : Q)). Notation lift_fun1 Q f := (locked (fun x : Q => f (repr x))). Notation lift_fun2 Q g := (locked (fun x y : Q => g (repr x) (repr y))). Notation lift_op11 Q Q' f := (locked (fun x : Q => \pi_Q' (f (repr x)) : Q')). (* constant declaration *) Notation lift_cst Q x := (locked (\pi_Q x : Q)). Notation PiConst a := (@EqualTo _ _ a (lock _)). (* embedding declaration, please don't redefine \pi *) Notation lift_embed qT e := (locked (fun x => \pi_qT (e x) : qT)). Lemma eq_lock T T' e : e =1 (@locked (T -> T') (fun x : T => e x)). Proof. by rewrite -lock. Qed. Prenex Implicits eq_lock. Notation PiEmbed e := (fun x => @EqualTo _ _ (e x) (eq_lock (fun _ => \pi _) _)). (********************) (* About eqQuotType *) (********************) Section EqQuotTypeStructure. Variable T : Type. Variable eq_quot_op : rel T. Definition eq_quot_mixin_of (Q : Type) (qc : quot_class_of T Q) (ec : Equality.class_of Q) := {mono \pi_(QuotTypePack qc) : x y / eq_quot_op x y >-> @eq_op (Equality.Pack ec) x y}. Record eq_quot_class_of (Q : Type) : Type := EqQuotClass { eq_quot_quot_class :> quot_class_of T Q; eq_quot_eq_mixin :> Equality.class_of Q; pi_eq_quot_mixin :> eq_quot_mixin_of eq_quot_quot_class eq_quot_eq_mixin }. Record eqQuotType : Type := EqQuotTypePack { eq_quot_sort :> Type; _ : eq_quot_class_of eq_quot_sort }. Implicit Type eqT : eqQuotType. Definition eq_quot_class eqT : eq_quot_class_of eqT := let: EqQuotTypePack _ cT as qT' := eqT return eq_quot_class_of qT' in cT. Canonical eqQuotType_eqType eqT := EqType eqT (eq_quot_class eqT). Canonical eqQuotType_quotType eqT := QuotType eqT (eq_quot_class eqT). Coercion eqQuotType_eqType : eqQuotType >-> eqType. Coercion eqQuotType_quotType : eqQuotType >-> quotType. Definition EqQuotType_pack Q := fun (qT : quotType T) (eT : eqType) qc ec of phant_id (quot_class qT) qc & phant_id (Equality.class eT) ec => fun m => EqQuotTypePack (@EqQuotClass Q qc ec m). Definition EqQuotType_clone (Q : Type) eqT cT of phant_id (eq_quot_class eqT) cT := @EqQuotTypePack Q cT. Lemma pi_eq_quot eqT : {mono \pi_eqT : x y / eq_quot_op x y >-> x == y}. Proof. by case: eqT => [] ? []. Qed. Canonical pi_eq_quot_mono eqT := PiMono2 (pi_eq_quot eqT). End EqQuotTypeStructure. Notation EqQuotType e Q m := (@EqQuotType_pack _ e Q _ _ _ _ id id m). Notation "[ 'eqQuotType' e 'of' Q ]" := (@EqQuotType_clone _ e Q _ _ id) (at level 0, format "[ 'eqQuotType' e 'of' Q ]") : form_scope. (**************************************************************************) (* Even if a quotType is a natural subType, we do not make this subType *) (* canonical, to allow the user to define the subtyping he wants. However *) (* one can: *) (* - get the eqMixin and the choiceMixin by subtyping *) (* - get the subType structure and maybe declare it Canonical. *) (**************************************************************************) Module QuotSubType. Section SubTypeMixin. Variable T : eqType. Variable qT : quotType T. Definition Sub x (px : repr (\pi_qT x) == x) := \pi_qT x. Lemma qreprK x Px : repr (@Sub x Px) = x. Proof. by rewrite /Sub (eqP Px). Qed. Lemma sortPx (x : qT) : repr (\pi_qT (repr x)) == repr x. Proof. by rewrite !reprK eqxx. Qed. Lemma sort_Sub (x : qT) : x = Sub (sortPx x). Proof. by rewrite /Sub reprK. Qed. Lemma reprP K (PK : forall x Px, K (@Sub x Px)) u : K u. Proof. by rewrite (sort_Sub u); apply: PK. Qed. Canonical subType := SubType _ _ _ reprP qreprK. Definition eqMixin := Eval hnf in [eqMixin of qT by <:]. Canonical eqType := EqType qT eqMixin. End SubTypeMixin. Definition choiceMixin (T : choiceType) (qT : quotType T) := Eval hnf in [choiceMixin of qT by <:]. Canonical choiceType (T : choiceType) (qT : quotType T) := ChoiceType qT (@choiceMixin T qT). Definition countMixin (T : countType) (qT : quotType T) := Eval hnf in [countMixin of qT by <:]. Canonical countType (T : countType) (qT : quotType T) := CountType qT (@countMixin T qT). Section finType. Variables (T : finType) (qT : quotType T). Canonical subCountType := [subCountType of qT]. Definition finMixin := Eval hnf in [finMixin of qT by <:]. End finType. End QuotSubType. Notation "[ 'subType' Q 'of' T 'by' %/ ]" := (@SubType T _ Q _ _ (@QuotSubType.reprP _ _) (@QuotSubType.qreprK _ _)) (at level 0, format "[ 'subType' Q 'of' T 'by' %/ ]") : form_scope. Notation "[ 'eqMixin' 'of' Q 'by' <:%/ ]" := (@QuotSubType.eqMixin _ _: Equality.class_of Q) (at level 0, format "[ 'eqMixin' 'of' Q 'by' <:%/ ]") : form_scope. Notation "[ 'choiceMixin' 'of' Q 'by' <:%/ ]" := (@QuotSubType.choiceMixin _ _: Choice.mixin_of Q) (at level 0, format "[ 'choiceMixin' 'of' Q 'by' <:%/ ]") : form_scope. Notation "[ 'countMixin' 'of' Q 'by' <:%/ ]" := (@QuotSubType.countMixin _ _: Countable.mixin_of Q) (at level 0, format "[ 'countMixin' 'of' Q 'by' <:%/ ]") : form_scope. Notation "[ 'finMixin' 'of' Q 'by' <:%/ ]" := (@QuotSubType.finMixin _ _: Finite.mixin_of Q) (at level 0, format "[ 'finMixin' 'of' Q 'by' <:%/ ]") : form_scope. (****************************************************) (* Definition of a (decidable) equivalence relation *) (****************************************************) Section EquivRel. Variable T : Type. Lemma left_trans (e : rel T) : symmetric e -> transitive e -> left_transitive e. Proof. by move=> s t ? * ?; apply/idP/idP; apply: t; rewrite // s. Qed. Lemma right_trans (e : rel T) : symmetric e -> transitive e -> right_transitive e. Proof. by move=> s t ? * x; rewrite ![e x _]s; apply: left_trans. Qed. Variant equiv_class_of (equiv : rel T) := EquivClass of reflexive equiv & symmetric equiv & transitive equiv. Record equiv_rel := EquivRelPack { equiv :> rel T; _ : equiv_class_of equiv }. Variable e : equiv_rel. Definition equiv_class := let: EquivRelPack _ ce as e' := e return equiv_class_of e' in ce. Definition equiv_pack (r : rel T) ce of phant_id ce equiv_class := @EquivRelPack r ce. Lemma equiv_refl x : e x x. Proof. by case: e => [] ? []. Qed. Lemma equiv_sym : symmetric e. Proof. by case: e => [] ? []. Qed. Lemma equiv_trans : transitive e. Proof. by case: e => [] ? []. Qed. Lemma eq_op_trans (T' : eqType) : transitive (@eq_op T'). Proof. by move=> x y z /eqP -> /eqP ->. Qed. Lemma equiv_ltrans: left_transitive e. Proof. by apply: left_trans; [apply: equiv_sym|apply: equiv_trans]. Qed. Lemma equiv_rtrans: right_transitive e. Proof. by apply: right_trans; [apply: equiv_sym|apply: equiv_trans]. Qed. End EquivRel. #[global] Hint Resolve equiv_refl : core. Notation EquivRel r er es et := (@EquivRelPack _ r (EquivClass er es et)). Notation "[ 'equiv_rel' 'of' e ]" := (@equiv_pack _ _ e _ id) (at level 0, format "[ 'equiv_rel' 'of' e ]") : form_scope. (**************************************************) (* Encoding to another type modulo an equivalence *) (**************************************************) Section EncodingModuloRel. Variables (D E : Type) (ED : E -> D) (DE : D -> E) (e : rel D). Variant encModRel_class_of (r : rel D) := EncModRelClassPack of (forall x, r x x -> r (ED (DE x)) x) & (r =2 e). Record encModRel := EncModRelPack { enc_mod_rel :> rel D; _ : encModRel_class_of enc_mod_rel }. Variable r : encModRel. Definition encModRelClass := let: EncModRelPack _ c as r' := r return encModRel_class_of r' in c. Definition encModRelP (x : D) : r x x -> r (ED (DE x)) x. Proof. by case: r => [] ? [] /= he _ /he. Qed. Definition encModRelE : r =2 e. Proof. by case: r => [] ? []. Qed. Definition encoded_equiv : rel E := [rel x y | r (ED x) (ED y)]. End EncodingModuloRel. Notation EncModRelClass m := (EncModRelClassPack (fun x _ => m x) (fun _ _ => erefl _)). Notation EncModRel r m := (@EncModRelPack _ _ _ _ _ r (EncModRelClass m)). Section EncodingModuloEquiv. Variables (D E : Type) (ED : E -> D) (DE : D -> E) (e : equiv_rel D). Variable (r : encModRel ED DE e). Lemma enc_mod_rel_is_equiv : equiv_class_of (enc_mod_rel r). Proof. split => [x|x y|y x z]; rewrite !encModRelE //; first by rewrite equiv_sym. by move=> exy /(equiv_trans exy). Qed. Definition enc_mod_rel_equiv_rel := EquivRelPack enc_mod_rel_is_equiv. Definition encModEquivP (x : D) : r (ED (DE x)) x. Proof. by rewrite encModRelP ?encModRelE. Qed. Local Notation e' := (encoded_equiv r). Lemma encoded_equivE : e' =2 [rel x y | e (ED x) (ED y)]. Proof. by move=> x y; rewrite /encoded_equiv /= encModRelE. Qed. Local Notation e'E := encoded_equivE. Lemma encoded_equiv_is_equiv : equiv_class_of e'. Proof. split => [x|x y|y x z]; rewrite !e'E //=; first by rewrite equiv_sym. by move=> exy /(equiv_trans exy). Qed. Canonical encoded_equiv_equiv_rel := EquivRelPack encoded_equiv_is_equiv. Lemma encoded_equivP x : e' (DE (ED x)) x. Proof. by rewrite /encoded_equiv /= encModEquivP. Qed. End EncodingModuloEquiv. (**************************************) (* Quotient by a equivalence relation *) (**************************************) Module EquivQuot. Section EquivQuot. Variables (D : Type) (C : choiceType) (CD : C -> D) (DC : D -> C). Variables (eD : equiv_rel D) (encD : encModRel CD DC eD). Notation eC := (encoded_equiv encD). Definition canon x := choose (eC x) (x). Record equivQuotient := EquivQuotient { erepr : C; _ : (frel canon) erepr erepr }. Definition type_of of (phantom (rel _) encD) := equivQuotient. Lemma canon_id : forall x, (invariant canon canon) x. Proof. move=> x /=; rewrite /canon (@eq_choose _ _ (eC x)). by rewrite (@choose_id _ (eC x) _ x) ?chooseP ?equiv_refl. by move=> y; apply: equiv_ltrans; rewrite equiv_sym /= chooseP. Qed. Definition pi := locked (fun x => EquivQuotient (canon_id x)). Lemma ereprK : cancel erepr pi. Proof. by unlock pi; case=> x hx; apply/(@val_inj _ _ [subType for erepr])/eqP. Qed. Local Notation encDE := (encModRelE encD). Local Notation encDP := (encModEquivP encD). Canonical encD_equiv_rel := EquivRelPack (enc_mod_rel_is_equiv encD). Lemma pi_CD (x y : C) : reflect (pi x = pi y) (eC x y). Proof. apply: (iffP idP) => hxy. apply: (can_inj ereprK); unlock pi canon => /=. rewrite -(@eq_choose _ (eC x) (eC y)); last first. by move=> z; rewrite /eC /=; apply: equiv_ltrans. by apply: choose_id; rewrite ?equiv_refl //. rewrite (equiv_trans (chooseP (equiv_refl _ _))) //=. move: hxy => /(f_equal erepr) /=; unlock pi canon => /= ->. by rewrite equiv_sym /= chooseP. Qed. Lemma pi_DC (x y : D) : reflect (pi (DC x) = pi (DC y)) (eD x y). Proof. apply: (iffP idP)=> hxy. apply/pi_CD; rewrite /eC /=. by rewrite (equiv_ltrans (encDP _)) (equiv_rtrans (encDP _)) /= encDE. rewrite -encDE -(equiv_ltrans (encDP _)) -(equiv_rtrans (encDP _)) /=. exact/pi_CD. Qed. Lemma equivQTP : cancel (CD \o erepr) (pi \o DC). Proof. by move=> x; rewrite /= (pi_CD _ (erepr x) _) ?ereprK /eC /= ?encDP. Qed. Local Notation qT := (type_of (Phantom (rel D) encD)). Definition quotClass := QuotClass equivQTP. Canonical quotType := QuotType qT quotClass. Lemma eqmodP x y : reflect (x = y %[mod qT]) (eD x y). Proof. by apply: (iffP (pi_DC _ _)); rewrite !unlock. Qed. Fact eqMixin : Equality.mixin_of qT. Proof. exact: CanEqMixin ereprK. Qed. Canonical eqType := EqType qT eqMixin. Definition choiceMixin := CanChoiceMixin ereprK. Canonical choiceType := ChoiceType qT choiceMixin. Lemma eqmodE x y : x == y %[mod qT] = eD x y. Proof. exact: sameP eqP (@eqmodP _ _). Qed. Canonical eqQuotType := EqQuotType eD qT eqmodE. End EquivQuot. End EquivQuot. Canonical EquivQuot.quotType. Canonical EquivQuot.eqType. Canonical EquivQuot.choiceType. Canonical EquivQuot.eqQuotType. Arguments EquivQuot.ereprK {D C CD DC eD encD}. Notation "{eq_quot e }" := (@EquivQuot.type_of _ _ _ _ _ _ (Phantom (rel _) e)) : quotient_scope. Notation "x == y %[mod_eq r ]" := (x == y %[mod {eq_quot r}]) : quotient_scope. Notation "x = y %[mod_eq r ]" := (x = y %[mod {eq_quot r}]) : quotient_scope. Notation "x != y %[mod_eq r ]" := (x != y %[mod {eq_quot r}]) : quotient_scope. Notation "x <> y %[mod_eq r ]" := (x <> y %[mod {eq_quot r}]) : quotient_scope. (***********************************************************) (* If the type is directly a choiceType, no need to encode *) (***********************************************************) Section DefaultEncodingModuloRel. Variables (D : choiceType) (r : rel D). Definition defaultEncModRelClass := @EncModRelClassPack D D id id r r (fun _ rxx => rxx) (fun _ _ => erefl _). Canonical defaultEncModRel := EncModRelPack defaultEncModRelClass. End DefaultEncodingModuloRel. (***************************************************) (* Recovering a potential countable type structure *) (***************************************************) Section CountEncodingModuloRel. Variables (D : Type) (C : countType) (CD : C -> D) (DC : D -> C). Variables (eD : equiv_rel D) (encD : encModRel CD DC eD). Notation eC := (encoded_equiv encD). Fact eq_quot_countMixin : Countable.mixin_of {eq_quot encD}. Proof. exact: CanCountMixin EquivQuot.ereprK. Qed. Canonical eq_quot_countType := CountType {eq_quot encD} eq_quot_countMixin. End CountEncodingModuloRel. Section EquivQuotTheory. Variables (T : choiceType) (e : equiv_rel T) (Q : eqQuotType e). Lemma eqmodE x y : x == y %[mod_eq e] = e x y. Proof. by rewrite pi_eq_quot. Qed. Lemma eqmodP x y : reflect (x = y %[mod_eq e]) (e x y). Proof. by rewrite -eqmodE; apply/eqP. Qed. End EquivQuotTheory. Prenex Implicits eqmodE eqmodP. Section EqQuotTheory. Variables (T : Type) (e : rel T) (Q : eqQuotType e). Lemma eqquotE x y : x == y %[mod Q] = e x y. Proof. by rewrite pi_eq_quot. Qed. Lemma eqquotP x y : reflect (x = y %[mod Q]) (e x y). Proof. by rewrite -eqquotE; apply/eqP. Qed. End EqQuotTheory. Prenex Implicits eqquotE eqquotP.