(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat. (******************************************************************************) (* The seq type is the ssreflect type for sequences; it is an alias for the *) (* standard Coq list type. The ssreflect library equips it with many *) (* operations, as well as eqType and predType (and, later, choiceType) *) (* structures. The operations are geared towards reflection: they generally *) (* expect and provide boolean predicates, e.g., the membership predicate *) (* expects an eqType. To avoid any confusion we do not Import the Coq List *) (* module. *) (* As there is no true subtyping in Coq, we don't use a type for non-empty *) (* sequences; rather, we pass explicitly the head and tail of the sequence. *) (* The empty sequence is especially bothersome for subscripting, since it *) (* forces us to pass a default value. This default value can often be hidden *) (* by a notation. *) (* Here is the list of seq operations: *) (* ** Constructors: *) (* seq T == the type of sequences of items of type T. *) (* bitseq == seq bool. *) (* [::], nil, Nil T == the empty sequence (of type T). *) (* x :: s, cons x s, Cons T x s == the sequence x followed by s (of type T). *) (* [:: x] == the singleton sequence. *) (* [:: x_0; ...; x_n] == the explicit sequence of the x_i. *) (* [:: x_0, ..., x_n & s] == the sequence of the x_i, followed by s. *) (* rcons s x == the sequence s, followed by x. *) (* All of the above, except rcons, can be used in patterns. We define a view *) (* lastP and an induction principle last_ind that can be used to decompose *) (* or traverse a sequence in a right to left order. The view lemma lastP has *) (* a dependent family type, so the ssreflect tactic case/lastP: p => [|p' x] *) (* will generate two subgoals in which p has been replaced by [::] and by *) (* rcons p' x, respectively. *) (* ** Factories: *) (* nseq n x == a sequence of n x's. *) (* ncons n x s == a sequence of n x's, followed by s. *) (* seqn n x_0 ... x_n-1 == the sequence of the x_i; can be partially applied. *) (* iota m n == the sequence m, m + 1, ..., m + n - 1. *) (* mkseq f n == the sequence f 0, f 1, ..., f (n - 1). *) (* ** Sequential access: *) (* head x0 s == the head (zero'th item) of s if s is non-empty, else x0. *) (* ohead s == None if s is empty, else Some x when the head of s is x. *) (* behead s == s minus its head, i.e., s' if s = x :: s', else [::]. *) (* last x s == the last element of x :: s (which is non-empty). *) (* belast x s == x :: s minus its last item. *) (* ** Dimensions: *) (* size s == the number of items (length) in s. *) (* shape ss == the sequence of sizes of the items of the sequence of *) (* sequences ss. *) (* ** Random access: *) (* nth x0 s i == the item i of s (numbered from 0), or x0 if s does *) (* not have at least i+1 items (i.e., size x <= i) *) (* s`_i == standard notation for nth x0 s i for a default x0, *) (* e.g., 0 for rings. *) (* set_nth x0 s i y == s where item i has been changed to y; if s does not *) (* have an item i, it is first padded with copies of x0 *) (* to size i+1. *) (* incr_nth s i == the nat sequence s with item i incremented (s is *) (* first padded with 0's to size i+1, if needed). *) (* ** Predicates: *) (* nilp s <=> s is [::]. *) (* := (size s == 0). *) (* x \in s == x appears in s (this requires an eqType for T). *) (* index x s == the first index at which x appears in s, or size s if *) (* x \notin s. *) (* has a s <=> a holds for some item in s, where a is an applicative *) (* bool predicate. *) (* all a s <=> a holds for all items in s. *) (* 'has_aP <-> the view reflect (exists2 x, x \in s & A x) (has a s), *) (* where aP x : reflect (A x) (a x). *) (* 'all_aP <=> the view for reflect {in s, forall x, A x} (all a s). *) (* all2 r s t <=> the (bool) relation r holds for all _respective_ items *) (* in s and t, which must also have the same size, i.e., *) (* for s := [:: x1; ...; x_m] and t := [:: y1; ...; y_n], *) (* the condition [&& r x_1 y_1, ..., r x_n y_n & m == n]. *) (* find p s == the index of the first item in s for which p holds, *) (* or size s if no such item is found. *) (* count p s == the number of items of s for which p holds. *) (* count_mem x s == the multiplicity of x in s, i.e., count (pred1 x) s. *) (* tally s == a tally of s, i.e., a sequence of (item, multiplicity) *) (* pairs for all items in sequence s (without duplicates). *) (* incr_tally bs x == increment the multiplicity of x in the tally bs, or add *) (* x with multiplicity 1 at then end if x is not in bs. *) (* bs \is a wf_tally <=> bs is well-formed tally, with no duplicate items or *) (* null multiplicities. *) (* tally_seq bs == the expansion of a tally bs into a sequence where each *) (* (x, n) pair expands into a sequence of n x's. *) (* constant s <=> all items in s are identical (trivial if s = [::]). *) (* uniq s <=> all the items in s are pairwise different. *) (* subseq s1 s2 <=> s1 is a subsequence of s2, i.e., s1 = mask m s2 for *) (* some m : bitseq (see below). *) (* infix s1 s2 <=> s1 is a contiguous subsequence of s2, i.e., *) (* s ++ s1 ++ s' = s2 for some sequences s, s'. *) (* prefix s1 s2 <=> s1 is a subchain of s2 appearing at the beginning *) (* of s2. *) (* suffix s1 s2 <=> s1 is a subchain of s2 appearing at the end of s2. *) (* infix_index s1 s2 <=> the first index at which s1 appears in s2, *) (* or (size s2).+1 if infix s1 s2 is false. *) (* perm_eq s1 s2 <=> s2 is a permutation of s1, i.e., s1 and s2 have the *) (* items (with the same repetitions), but possibly in a *) (* different order. *) (* perm_eql s1 s2 <-> s1 and s2 behave identically on the left of perm_eq. *) (* perm_eqr s1 s2 <-> s1 and s2 behave identically on the right of perm_eq. *) (* --> These left/right transitive versions of perm_eq make it easier to *) (* chain a sequence of equivalences. *) (* permutations s == a duplicate-free list of all permutations of s. *) (* ** Filtering: *) (* filter p s == the subsequence of s consisting of all the items *) (* for which the (boolean) predicate p holds. *) (* rem x s == the subsequence of s, where the first occurrence *) (* of x has been removed (compare filter (predC1 x) s *) (* where ALL occurrences of x are removed). *) (* undup s == the subsequence of s containing only the first *) (* occurrence of each item in s, i.e., s with all *) (* duplicates removed. *) (* mask m s == the subsequence of s selected by m : bitseq, with *) (* item i of s selected by bit i in m (extra items or *) (* bits are ignored. *) (* ** Surgery: *) (* s1 ++ s2, cat s1 s2 == the concatenation of s1 and s2. *) (* take n s == the sequence containing only the first n items of s *) (* (or all of s if size s <= n). *) (* drop n s == s minus its first n items ([::] if size s <= n) *) (* rot n s == s rotated left n times (or s if size s <= n). *) (* := drop n s ++ take n s *) (* rotr n s == s rotated right n times (or s if size s <= n). *) (* rev s == the (linear time) reversal of s. *) (* catrev s1 s2 == the reversal of s1 followed by s2 (this is the *) (* recursive form of rev). *) (* ** Dependent iterator: for s : seq S and t : S -> seq T *) (* [seq E | x <- s, y <- t] := flatten [seq [seq E | x <- t] | y <- s] *) (* == the sequence of all the f x y, with x and y drawn from *) (* s and t, respectively, in row-major order, *) (* and where t is possibly dependent in elements of s *) (* allpairs_dep f s t := self expanding definition for *) (* [seq f x y | x <- s, y <- t y] *) (* ** Iterators: for s == [:: x_1, ..., x_n], t == [:: y_1, ..., y_m], *) (* allpairs f s t := same as allpairs_dep but where t is non dependent, *) (* i.e. self expanding definition for *) (* [seq f x y | x <- s, y <- t] *) (* := [:: f x_1 y_1; ...; f x_1 y_m; f x_2 y_1; ...; f x_n y_m] *) (* allrel r xs ys := all [pred x | all (r x) ys] xs *) (* <=> r x y holds whenever x is in xs and y is in ys *) (* all2rel r xs := allrel r xs xs *) (* <=> the proposition r x y holds for all possible x, y in xs.*) (* pairwise r xs <=> the relation r holds for any i-th and j-th element of *) (* xs such that i < j. *) (* map f s == the sequence [:: f x_1, ..., f x_n]. *) (* pmap pf s == the sequence [:: y_i1, ..., y_ik] where i1 < ... < ik, *) (* pf x_i = Some y_i, and pf x_j = None iff j is not in *) (* {i1, ..., ik}. *) (* foldr f a s == the right fold of s by f (i.e., the natural iterator). *) (* := f x_1 (f x_2 ... (f x_n a)) *) (* sumn s == x_1 + (x_2 + ... + (x_n + 0)) (when s : seq nat). *) (* foldl f a s == the left fold of s by f. *) (* := f (f ... (f a x_1) ... x_n-1) x_n *) (* scanl f a s == the sequence of partial accumulators of foldl f a s. *) (* := [:: f a x_1; ...; foldl f a s] *) (* pairmap f a s == the sequence of f applied to consecutive items in a :: s. *) (* := [:: f a x_1; f x_1 x_2; ...; f x_n-1 x_n] *) (* zip s t == itemwise pairing of s and t (dropping any extra items). *) (* := [:: (x_1, y_1); ...; (x_mn, y_mn)] with mn = minn n m. *) (* unzip1 s == [:: (x_1).1; ...; (x_n).1] when s : seq (S * T). *) (* unzip2 s == [:: (x_1).2; ...; (x_n).2] when s : seq (S * T). *) (* flatten s == x_1 ++ ... ++ x_n ++ [::] when s : seq (seq T). *) (* reshape r s == s reshaped into a sequence of sequences whose sizes are *) (* given by r (truncating if s is too long or too short). *) (* := [:: [:: x_1; ...; x_r1]; *) (* [:: x_(r1 + 1); ...; x_(r0 + r1)]; *) (* ...; *) (* [:: x_(r1 + ... + r(k-1) + 1); ...; x_(r0 + ... rk)]] *) (* flatten_index sh r c == the index, in flatten ss, of the item of indexes *) (* (r, c) in any sequence of sequences ss of shape sh *) (* := sh_1 + sh_2 + ... + sh_r + c *) (* reshape_index sh i == the index, in reshape sh s, of the sequence *) (* containing the i-th item of s. *) (* reshape_offset sh i == the offset, in the (reshape_index sh i)-th *) (* sequence of reshape sh s of the i-th item of s *) (* ** Notation for manifest comprehensions: *) (* [seq x <- s | C] := filter (fun x => C) s. *) (* [seq E | x <- s] := map (fun x => E) s. *) (* [seq x <- s | C1 & C2] := [seq x <- s | C1 && C2]. *) (* [seq E | x <- s & C] := [seq E | x <- [seq x | C]]. *) (* --> The above allow optional type casts on the eigenvariables, as in *) (* [seq x : T <- s | C] or [seq E | x : T <- s, y : U <- t]. The cast may be *) (* needed as type inference considers E or C before s. *) (* We are quite systematic in providing lemmas to rewrite any composition *) (* of two operations. "rev", whose simplifications are not natural, is *) (* protected with nosimpl. *) (* ** The following are equivalent: *) (* [<-> P0; P1; ..; Pn] <-> P0, P1, ..., Pn are all equivalent. *) (* := P0 -> P1 -> ... -> Pn -> P0 *) (* if T : [<-> P0; P1; ..; Pn] is such an equivalence, and i, j are in nat *) (* then T i j is a proof of the equivalence Pi <-> Pj between Pi and Pj; *) (* when i (resp. j) is out of bounds, Pi (resp. Pj) defaults to P0. *) (* The tactic tfae splits the goal into n+1 implications to prove. *) (* An example of use can be found in fingraph theorem orbitPcycle. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope seq_scope. Reserved Notation "[ '<->' P0 ; P1 ; .. ; Pn ]" (at level 0, format "[ '<->' '[' P0 ; '/' P1 ; '/' .. ; '/' Pn ']' ]"). Delimit Scope seq_scope with SEQ. Open Scope seq_scope. (* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *) Notation seq := list. Bind Scope seq_scope with list. Arguments cons {T%type} x s%SEQ : rename. Arguments nil {T%type} : rename. Notation Cons T := (@cons T) (only parsing). Notation Nil T := (@nil T) (only parsing). (* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *) (* them here. *) Infix "::" := cons : seq_scope. Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope. Notation "[ :: x1 ]" := (x1 :: [::]) (at level 0, format "[ :: x1 ]") : seq_scope. Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope. Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..) (at level 0, format "'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'" ) : seq_scope. Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..) (at level 0, format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]" ) : seq_scope. Section Sequences. Variable n0 : nat. (* numerical parameter for take, drop et al *) Variable T : Type. (* must come before the implicit Type *) Variable x0 : T. (* default for head/nth *) Implicit Types x y z : T. Implicit Types m n : nat. Implicit Type s : seq T. Fixpoint size s := if s is _ :: s' then (size s').+1 else 0. Lemma size0nil s : size s = 0 -> s = [::]. Proof. by case: s. Qed. Definition nilp s := size s == 0. Lemma nilP s : reflect (s = [::]) (nilp s). Proof. by case: s => [|x s]; constructor. Qed. Definition ohead s := if s is x :: _ then Some x else None. Definition head s := if s is x :: _ then x else x0. Definition behead s := if s is _ :: s' then s' else [::]. Lemma size_behead s : size (behead s) = (size s).-1. Proof. by case: s. Qed. (* Factories *) Definition ncons n x := iter n (cons x). Definition nseq n x := ncons n x [::]. Lemma size_ncons n x s : size (ncons n x s) = n + size s. Proof. by elim: n => //= n ->. Qed. Lemma size_nseq n x : size (nseq n x) = n. Proof. by rewrite size_ncons addn0. Qed. (* n-ary, dependently typed constructor. *) Fixpoint seqn_type n := if n is n'.+1 then T -> seqn_type n' else seq T. Fixpoint seqn_rec f n : seqn_type n := if n is n'.+1 return seqn_type n then fun x => seqn_rec (fun s => f (x :: s)) n' else f [::]. Definition seqn := seqn_rec id. (* Sequence catenation "cat". *) Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2 where "s1 ++ s2" := (cat s1 s2) : seq_scope. Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed. Lemma cat1s x s : [:: x] ++ s = x :: s. Proof. by []. Qed. Lemma cat_cons x s1 s2 : (x :: s1) ++ s2 = x :: s1 ++ s2. Proof. by []. Qed. Lemma cat_nseq n x s : nseq n x ++ s = ncons n x s. Proof. by elim: n => //= n ->. Qed. Lemma nseqD n1 n2 x : nseq (n1 + n2) x = nseq n1 x ++ nseq n2 x. Proof. by rewrite cat_nseq /nseq /ncons iterD. Qed. Lemma cats0 s : s ++ [::] = s. Proof. by elim: s => //= x s ->. Qed. Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3. Proof. by elim: s1 => //= x s1 ->. Qed. Lemma size_cat s1 s2 : size (s1 ++ s2) = size s1 + size s2. Proof. by elim: s1 => //= x s1 ->. Qed. Lemma cat_nilp s1 s2 : nilp (s1 ++ s2) = nilp s1 && nilp s2. Proof. by case: s1. Qed. (* last, belast, rcons, and last induction. *) Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z]. Lemma rcons_cons x s z : rcons (x :: s) z = x :: rcons s z. Proof. by []. Qed. Lemma cats1 s z : s ++ [:: z] = rcons s z. Proof. by elim: s => //= x s ->. Qed. Fixpoint last x s := if s is x' :: s' then last x' s' else x. Fixpoint belast x s := if s is x' :: s' then x :: (belast x' s') else [::]. Lemma lastI x s : x :: s = rcons (belast x s) (last x s). Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed. Lemma last_cons x y s : last x (y :: s) = last y s. Proof. by []. Qed. Lemma size_rcons s x : size (rcons s x) = (size s).+1. Proof. by rewrite -cats1 size_cat addnC. Qed. Lemma size_belast x s : size (belast x s) = size s. Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed. Lemma last_cat x s1 s2 : last x (s1 ++ s2) = last (last x s1) s2. Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed. Lemma last_rcons x s z : last x (rcons s z) = z. Proof. by rewrite -cats1 last_cat. Qed. Lemma belast_cat x s1 s2 : belast x (s1 ++ s2) = belast x s1 ++ belast (last x s1) s2. Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed. Lemma belast_rcons x s z : belast x (rcons s z) = x :: s. Proof. by rewrite lastI -!cats1 belast_cat. Qed. Lemma cat_rcons x s1 s2 : rcons s1 x ++ s2 = s1 ++ x :: s2. Proof. by rewrite -cats1 -catA. Qed. Lemma rcons_cat x s1 s2 : rcons (s1 ++ s2) x = s1 ++ rcons s2 x. Proof. by rewrite -!cats1 catA. Qed. Variant last_spec : seq T -> Type := | LastNil : last_spec [::] | LastRcons s x : last_spec (rcons s x). Lemma lastP s : last_spec s. Proof. case: s => [|x s]; [left | rewrite lastI; right]. Qed. Lemma last_ind P : P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s. Proof. move=> Hnil Hlast s; rewrite -(cat0s s). elim: s [::] Hnil => [|x s2 IHs] s1 Hs1; first by rewrite cats0. by rewrite -cat_rcons; apply/IHs/Hlast. Qed. (* Sequence indexing. *) Fixpoint nth s n {struct n} := if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0. Fixpoint set_nth s n y {struct n} := if s is x :: s' then if n is n'.+1 then x :: @set_nth s' n' y else y :: s' else ncons n x0 [:: y]. Lemma nth0 s : nth s 0 = head s. Proof. by []. Qed. Lemma nth_default s n : size s <= n -> nth s n = x0. Proof. by elim: s n => [|x s IHs] []. Qed. Lemma nth_nil n : nth [::] n = x0. Proof. by case: n. Qed. Lemma nth_seq1 n x : nth [:: x] n = if n == 0 then x else x0. Proof. by case: n => [|[]]. Qed. Lemma last_nth x s : last x s = nth (x :: s) (size s). Proof. by elim: s x => [|y s IHs] x /=. Qed. Lemma nth_last s : nth s (size s).-1 = last x0 s. Proof. by case: s => //= x s; rewrite last_nth. Qed. Lemma nth_behead s n : nth (behead s) n = nth s n.+1. Proof. by case: s n => [|x s] [|n]. Qed. Lemma nth_cat s1 s2 n : nth (s1 ++ s2) n = if n < size s1 then nth s1 n else nth s2 (n - size s1). Proof. by elim: s1 n => [|x s1 IHs] []. Qed. Lemma nth_rcons s x n : nth (rcons s x) n = if n < size s then nth s n else if n == size s then x else x0. Proof. by elim: s n => [|y s IHs] [] //=; apply: nth_nil. Qed. Lemma nth_rcons_default s i : nth (rcons s x0) i = nth s i. Proof. by rewrite nth_rcons; case: ltngtP => //[/ltnW ?|->]; rewrite nth_default. Qed. Lemma nth_ncons m x s n : nth (ncons m x s) n = if n < m then x else nth s (n - m). Proof. by elim: m n => [|m IHm] []. Qed. Lemma nth_nseq m x n : nth (nseq m x) n = (if n < m then x else x0). Proof. by elim: m n => [|m IHm] []. Qed. Lemma eq_from_nth s1 s2 : size s1 = size s2 -> (forall i, i < size s1 -> nth s1 i = nth s2 i) -> s1 = s2. Proof. elim: s1 s2 => [|x1 s1 IHs1] [|x2 s2] //= [eq_sz] eq_s12. by rewrite [x1](eq_s12 0) // (IHs1 s2) // => i; apply: (eq_s12 i.+1). Qed. Lemma size_set_nth s n y : size (set_nth s n y) = maxn n.+1 (size s). Proof. rewrite maxnC; elim: s n => [|x s IHs] [|n] //=. - by rewrite size_ncons addn1. - by rewrite IHs maxnSS. Qed. Lemma set_nth_nil n y : set_nth [::] n y = ncons n x0 [:: y]. Proof. by case: n. Qed. Lemma nth_set_nth s n y : nth (set_nth s n y) =1 [eta nth s with n |-> y]. Proof. elim: s n => [|x s IHs] [|n] [|m] //=; rewrite ?nth_nil ?IHs // nth_ncons eqSS. case: ltngtP => // [lt_nm | ->]; last by rewrite subnn. by rewrite nth_default // subn_gt0. Qed. Lemma set_set_nth s n1 y1 n2 y2 (s2 := set_nth s n2 y2) : set_nth (set_nth s n1 y1) n2 y2 = if n1 == n2 then s2 else set_nth s2 n1 y1. Proof. have [-> | ne_n12] := eqVneq. apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnA maxnn. by do 2!rewrite !nth_set_nth /=; case: eqP. apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnCA. by do 2!rewrite !nth_set_nth /=; case: eqP => // ->; case: eqVneq ne_n12. Qed. (* find, count, has, all. *) Section SeqFind. Variable a : pred T. Fixpoint find s := if s is x :: s' then if a x then 0 else (find s').+1 else 0. Fixpoint filter s := if s is x :: s' then if a x then x :: filter s' else filter s' else [::]. Fixpoint count s := if s is x :: s' then a x + count s' else 0. Fixpoint has s := if s is x :: s' then a x || has s' else false. Fixpoint all s := if s is x :: s' then a x && all s' else true. Lemma size_filter s : size (filter s) = count s. Proof. by elim: s => //= x s <-; case (a x). Qed. Lemma has_count s : has s = (0 < count s). Proof. by elim: s => //= x s ->; case (a x). Qed. Lemma count_size s : count s <= size s. Proof. by elim: s => //= x s; case: (a x); last apply: leqW. Qed. Lemma all_count s : all s = (count s == size s). Proof. elim: s => //= x s; case: (a x) => _ //=. by rewrite add0n eqn_leq andbC ltnNge count_size. Qed. Lemma filter_all s : all (filter s). Proof. by elim: s => //= x s IHs; case: ifP => //= ->. Qed. Lemma all_filterP s : reflect (filter s = s) (all s). Proof. apply: (iffP idP) => [| <-]; last exact: filter_all. by elim: s => //= x s IHs /andP[-> Hs]; rewrite IHs. Qed. Lemma filter_id s : filter (filter s) = filter s. Proof. by apply/all_filterP; apply: filter_all. Qed. Lemma has_find s : has s = (find s < size s). Proof. by elim: s => //= x s IHs; case (a x); rewrite ?leqnn. Qed. Lemma find_size s : find s <= size s. Proof. by elim: s => //= x s IHs; case (a x). Qed. Lemma find_cat s1 s2 : find (s1 ++ s2) = if has s1 then find s1 else size s1 + find s2. Proof. by elim: s1 => //= x s1 IHs; case: (a x) => //; rewrite IHs (fun_if succn). Qed. Lemma has_nil : has [::] = false. Proof. by []. Qed. Lemma has_seq1 x : has [:: x] = a x. Proof. exact: orbF. Qed. Lemma has_nseq n x : has (nseq n x) = (0 < n) && a x. Proof. by elim: n => //= n ->; apply: andKb. Qed. Lemma has_seqb (b : bool) x : has (nseq b x) = b && a x. Proof. by rewrite has_nseq lt0b. Qed. Lemma all_nil : all [::] = true. Proof. by []. Qed. Lemma all_seq1 x : all [:: x] = a x. Proof. exact: andbT. Qed. Lemma all_nseq n x : all (nseq n x) = (n == 0) || a x. Proof. by elim: n => //= n ->; apply: orKb. Qed. Lemma all_nseqb (b : bool) x : all (nseq b x) = b ==> a x. Proof. by rewrite all_nseq eqb0 implybE. Qed. Lemma filter_nseq n x : filter (nseq n x) = nseq (a x * n) x. Proof. by elim: n => /= [|n ->]; case: (a x). Qed. Lemma count_nseq n x : count (nseq n x) = a x * n. Proof. by rewrite -size_filter filter_nseq size_nseq. Qed. Lemma find_nseq n x : find (nseq n x) = ~~ a x * n. Proof. by elim: n => /= [|n ->]; case: (a x). Qed. Lemma nth_find s : has s -> a (nth s (find s)). Proof. by elim: s => //= x s IHs; case a_x: (a x). Qed. Lemma before_find s i : i < find s -> a (nth s i) = false. Proof. by elim: s i => //= x s IHs; case: ifP => // a'x [|i] // /(IHs i). Qed. Lemma hasNfind s : ~~ has s -> find s = size s. Proof. by rewrite has_find; case: ltngtP (find_size s). Qed. Lemma filter_cat s1 s2 : filter (s1 ++ s2) = filter s1 ++ filter s2. Proof. by elim: s1 => //= x s1 ->; case (a x). Qed. Lemma filter_rcons s x : filter (rcons s x) = if a x then rcons (filter s) x else filter s. Proof. by rewrite -!cats1 filter_cat /=; case (a x); rewrite /= ?cats0. Qed. Lemma count_cat s1 s2 : count (s1 ++ s2) = count s1 + count s2. Proof. by rewrite -!size_filter filter_cat size_cat. Qed. Lemma has_cat s1 s2 : has (s1 ++ s2) = has s1 || has s2. Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs orbA. Qed. Lemma has_rcons s x : has (rcons s x) = a x || has s. Proof. by rewrite -cats1 has_cat has_seq1 orbC. Qed. Lemma all_cat s1 s2 : all (s1 ++ s2) = all s1 && all s2. Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs andbA. Qed. Lemma all_rcons s x : all (rcons s x) = a x && all s. Proof. by rewrite -cats1 all_cat all_seq1 andbC. Qed. End SeqFind. Lemma eq_find a1 a2 : a1 =1 a2 -> find a1 =1 find a2. Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed. Lemma eq_filter a1 a2 : a1 =1 a2 -> filter a1 =1 filter a2. Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed. Lemma eq_count a1 a2 : a1 =1 a2 -> count a1 =1 count a2. Proof. by move=> Ea s; rewrite -!size_filter (eq_filter Ea). Qed. Lemma eq_has a1 a2 : a1 =1 a2 -> has a1 =1 has a2. Proof. by move=> Ea s; rewrite !has_count (eq_count Ea). Qed. Lemma eq_all a1 a2 : a1 =1 a2 -> all a1 =1 all a2. Proof. by move=> Ea s; rewrite !all_count (eq_count Ea). Qed. Lemma all_filter (p q : pred T) xs : all p (filter q xs) = all [pred i | q i ==> p i] xs. Proof. by elim: xs => //= x xs <-; case: (q x). Qed. Section SubPred. Variable (a1 a2 : pred T). Hypothesis s12 : subpred a1 a2. Lemma sub_find s : find a2 s <= find a1 s. Proof. by elim: s => //= x s IHs; case: ifP => // /(contraFF (@s12 x))->. Qed. Lemma sub_has s : has a1 s -> has a2 s. Proof. by rewrite !has_find; apply: leq_ltn_trans (sub_find s). Qed. Lemma sub_count s : count a1 s <= count a2 s. Proof. by elim: s => //= x s; apply: leq_add; case a1x: (a1 x); rewrite // s12. Qed. Lemma sub_all s : all a1 s -> all a2 s. Proof. by rewrite !all_count !eqn_leq !count_size => /leq_trans-> //; apply: sub_count. Qed. End SubPred. Lemma filter_pred0 s : filter pred0 s = [::]. Proof. by elim: s. Qed. Lemma filter_predT s : filter predT s = s. Proof. by elim: s => //= x s ->. Qed. Lemma filter_predI a1 a2 s : filter (predI a1 a2) s = filter a1 (filter a2 s). Proof. by elim: s => //= x s ->; rewrite andbC; case: (a2 x). Qed. Lemma count_pred0 s : count pred0 s = 0. Proof. by rewrite -size_filter filter_pred0. Qed. Lemma count_predT s : count predT s = size s. Proof. by rewrite -size_filter filter_predT. Qed. Lemma count_predUI a1 a2 s : count (predU a1 a2) s + count (predI a1 a2) s = count a1 s + count a2 s. Proof. elim: s => //= x s IHs; rewrite /= addnACA [RHS]addnACA IHs. by case: (a1 x) => //; rewrite addn0. Qed. Lemma count_predC a s : count a s + count (predC a) s = size s. Proof. by elim: s => //= x s IHs; rewrite addnACA IHs; case: (a _). Qed. Lemma count_filter a1 a2 s : count a1 (filter a2 s) = count (predI a1 a2) s. Proof. by rewrite -!size_filter filter_predI. Qed. Lemma has_pred0 s : has pred0 s = false. Proof. by rewrite has_count count_pred0. Qed. Lemma has_predT s : has predT s = (0 < size s). Proof. by rewrite has_count count_predT. Qed. Lemma has_predC a s : has (predC a) s = ~~ all a s. Proof. by elim: s => //= x s ->; case (a x). Qed. Lemma has_predU a1 a2 s : has (predU a1 a2) s = has a1 s || has a2 s. Proof. by elim: s => //= x s ->; rewrite -!orbA; do !bool_congr. Qed. Lemma all_pred0 s : all pred0 s = (size s == 0). Proof. by rewrite all_count count_pred0 eq_sym. Qed. Lemma all_predT s : all predT s. Proof. by rewrite all_count count_predT. Qed. Lemma all_predC a s : all (predC a) s = ~~ has a s. Proof. by elim: s => //= x s ->; case (a x). Qed. Lemma all_predI a1 a2 s : all (predI a1 a2) s = all a1 s && all a2 s. Proof. apply: (can_inj negbK); rewrite negb_and -!has_predC -has_predU. by apply: eq_has => x; rewrite /= negb_and. Qed. (* Surgery: drop, take, rot, rotr. *) Fixpoint drop n s {struct s} := match s, n with | _ :: s', n'.+1 => drop n' s' | _, _ => s end. Lemma drop_behead : drop n0 =1 iter n0 behead. Proof. by elim: n0 => [|n IHn] [|x s] //; rewrite iterSr -IHn. Qed. Lemma drop0 s : drop 0 s = s. Proof. by case: s. Qed. Lemma drop1 : drop 1 =1 behead. Proof. by case=> [|x [|y s]]. Qed. Lemma drop_oversize n s : size s <= n -> drop n s = [::]. Proof. by elim: s n => [|x s IHs] []. Qed. Lemma drop_size s : drop (size s) s = [::]. Proof. by rewrite drop_oversize // leqnn. Qed. Lemma drop_cons x s : drop n0 (x :: s) = if n0 is n.+1 then drop n s else x :: s. Proof. by []. Qed. Lemma size_drop s : size (drop n0 s) = size s - n0. Proof. by elim: s n0 => [|x s IHs] []. Qed. Lemma drop_cat s1 s2 : drop n0 (s1 ++ s2) = if n0 < size s1 then drop n0 s1 ++ s2 else drop (n0 - size s1) s2. Proof. by elim: s1 n0 => [|x s1 IHs] []. Qed. Lemma drop_size_cat n s1 s2 : size s1 = n -> drop n (s1 ++ s2) = s2. Proof. by move <-; elim: s1 => //=; rewrite drop0. Qed. Lemma nconsK n x : cancel (ncons n x) (drop n). Proof. by elim: n => // -[]. Qed. Lemma drop_drop s n1 n2 : drop n1 (drop n2 s) = drop (n1 + n2) s. Proof. by elim: s n2 => // x s ihs [|n2]; rewrite ?drop0 ?addn0 ?addnS /=. Qed. Fixpoint take n s {struct s} := match s, n with | x :: s', n'.+1 => x :: take n' s' | _, _ => [::] end. Lemma take0 s : take 0 s = [::]. Proof. by case: s. Qed. Lemma take_oversize n s : size s <= n -> take n s = s. Proof. by elim: s n => [|x s IHs] [|n] //= /IHs->. Qed. Lemma take_size s : take (size s) s = s. Proof. exact: take_oversize. Qed. Lemma take_cons x s : take n0 (x :: s) = if n0 is n.+1 then x :: (take n s) else [::]. Proof. by []. Qed. Lemma drop_rcons s : n0 <= size s -> forall x, drop n0 (rcons s x) = rcons (drop n0 s) x. Proof. by elim: s n0 => [|y s IHs] []. Qed. Lemma cat_take_drop s : take n0 s ++ drop n0 s = s. Proof. by elim: s n0 => [|x s IHs] [|n] //=; rewrite IHs. Qed. Lemma size_takel s : n0 <= size s -> size (take n0 s) = n0. Proof. by move/subKn; rewrite -size_drop -[in size s](cat_take_drop s) size_cat addnK. Qed. Lemma size_take s : size (take n0 s) = if n0 < size s then n0 else size s. Proof. have [le_sn | lt_ns] := leqP (size s) n0; first by rewrite take_oversize. by rewrite size_takel // ltnW. Qed. Lemma size_take_min s : size (take n0 s) = minn n0 (size s). Proof. exact: size_take. Qed. Lemma take_cat s1 s2 : take n0 (s1 ++ s2) = if n0 < size s1 then take n0 s1 else s1 ++ take (n0 - size s1) s2. Proof. elim: s1 n0 => [|x s1 IHs] [|n] //=. by rewrite ltnS subSS -(fun_if (cons x)) -IHs. Qed. Lemma take_size_cat n s1 s2 : size s1 = n -> take n (s1 ++ s2) = s1. Proof. by move <-; elim: s1 => [|x s1 IHs]; rewrite ?take0 //= IHs. Qed. Lemma takel_cat s1 s2 : n0 <= size s1 -> take n0 (s1 ++ s2) = take n0 s1. Proof. by rewrite take_cat; case: ltngtP => // ->; rewrite subnn take0 take_size cats0. Qed. Lemma nth_drop s i : nth (drop n0 s) i = nth s (n0 + i). Proof. rewrite -[s in RHS]cat_take_drop nth_cat size_take ltnNge. case: ltnP => [?|le_s_n0]; rewrite ?(leq_trans le_s_n0) ?leq_addr ?addKn //=. by rewrite drop_oversize // !nth_default. Qed. Lemma find_ltn p s i : has p (take i s) -> find p s < i. Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs. Qed. Lemma has_take p s i : has p s -> has p (take i s) = (find p s < i). Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed. Lemma has_take_leq (p : pred T) (s : seq T) i : i <= size s -> has p (take i s) = (find p s < i). Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed. Lemma nth_take i : i < n0 -> forall s, nth (take n0 s) i = nth s i. Proof. move=> lt_i_n0 s; case lt_n0_s: (n0 < size s). by rewrite -[s in RHS]cat_take_drop nth_cat size_take lt_n0_s /= lt_i_n0. by rewrite -[s in LHS]cats0 take_cat lt_n0_s /= cats0. Qed. Lemma take_take i j : i <= j -> forall s, take i (take j s) = take i s. Proof. move=> ij s; elim: s i j ij => [// | a s IHs] [|i] [|j] //=. by rewrite ltnS => /IHs ->. Qed. Lemma take_drop i j s : take i (drop j s) = drop j (take (i + j) s). Proof. by rewrite addnC; elim: s i j => // x s IHs [|i] [|j] /=. Qed. Lemma takeD i j s : take (i + j) s = take i s ++ take j (drop i s). Proof. elim: i j s => [|i IHi] [|j] [|a s] //; first by rewrite take0 addn0 cats0. by rewrite addSn /= IHi. Qed. Lemma takeC i j s : take i (take j s) = take j (take i s). Proof. wlog i_le_j : i j / i <= j. by move=> Hwlog; case: (leqP i j) => [|/ltnW] /Hwlog ->. rewrite take_take // [RHS]take_oversize // (leq_trans _ i_le_j) //. elim: i s {i_le_j} => [|i IHi] s; first by rewrite take0. by case: s => [|a s]//; rewrite /= ltnS. Qed. Lemma take_nseq i j x : i <= j -> take i (nseq j x) = nseq i x. Proof. by move=>/subnKC <-; rewrite nseqD take_size_cat // size_nseq. Qed. Lemma drop_nseq i j x : drop i (nseq j x) = nseq (j - i) x. Proof. case: (leqP i j) => [/subnKC {1}<-|/ltnW j_le_i]. by rewrite nseqD drop_size_cat // size_nseq. by rewrite drop_oversize ?size_nseq // (eqP j_le_i). Qed. (* drop_nth and take_nth below do NOT use the default n0, because the "n" *) (* can be inferred from the condition, whereas the nth default value x0 *) (* will have to be given explicitly (and this will provide "d" as well). *) Lemma drop_nth n s : n < size s -> drop n s = nth s n :: drop n.+1 s. Proof. by elim: s n => [|x s IHs] [|n] Hn //=; rewrite ?drop0 1?IHs. Qed. Lemma take_nth n s : n < size s -> take n.+1 s = rcons (take n s) (nth s n). Proof. by elim: s n => [|x s IHs] //= [|n] Hn /=; rewrite ?take0 -?IHs. Qed. (* Rotation *) Definition rot n s := drop n s ++ take n s. Lemma rot0 s : rot 0 s = s. Proof. by rewrite /rot drop0 take0 cats0. Qed. Lemma size_rot s : size (rot n0 s) = size s. Proof. by rewrite -[s in RHS]cat_take_drop /rot !size_cat addnC. Qed. Lemma rot_oversize n s : size s <= n -> rot n s = s. Proof. by move=> le_s_n; rewrite /rot take_oversize ?drop_oversize. Qed. Lemma rot_size s : rot (size s) s = s. Proof. exact: rot_oversize. Qed. Lemma has_rot s a : has a (rot n0 s) = has a s. Proof. by rewrite has_cat orbC -has_cat cat_take_drop. Qed. Lemma rot_size_cat s1 s2 : rot (size s1) (s1 ++ s2) = s2 ++ s1. Proof. by rewrite /rot take_size_cat ?drop_size_cat. Qed. Definition rotr n s := rot (size s - n) s. Lemma rotK : cancel (rot n0) (rotr n0). Proof. move=> s; rewrite /rotr size_rot -size_drop {2}/rot. by rewrite rot_size_cat cat_take_drop. Qed. Lemma rot_inj : injective (rot n0). Proof. exact (can_inj rotK). Qed. (* (efficient) reversal *) Fixpoint catrev s1 s2 := if s1 is x :: s1' then catrev s1' (x :: s2) else s2. Definition rev s := catrev s [::]. Lemma catrev_catl s t u : catrev (s ++ t) u = catrev t (catrev s u). Proof. by elim: s u => /=. Qed. Lemma catrev_catr s t u : catrev s (t ++ u) = catrev s t ++ u. Proof. by elim: s t => //= x s IHs t; rewrite -IHs. Qed. Lemma catrevE s t : catrev s t = rev s ++ t. Proof. by rewrite -catrev_catr. Qed. Lemma rev_cons x s : rev (x :: s) = rcons (rev s) x. Proof. by rewrite -cats1 -catrevE. Qed. Lemma size_rev s : size (rev s) = size s. Proof. by elim: s => // x s IHs; rewrite rev_cons size_rcons IHs. Qed. Lemma rev_nilp s : nilp (rev s) = nilp s. Proof. by move: s (rev s) (size_rev s) => [|? ?] []. Qed. Lemma rev_cat s t : rev (s ++ t) = rev t ++ rev s. Proof. by rewrite -catrev_catr -catrev_catl. Qed. Lemma rev_rcons s x : rev (rcons s x) = x :: rev s. Proof. by rewrite -cats1 rev_cat. Qed. Lemma revK : involutive rev. Proof. by elim=> //= x s IHs; rewrite rev_cons rev_rcons IHs. Qed. Lemma nth_rev n s : n < size s -> nth (rev s) n = nth s (size s - n.+1). Proof. elim/last_ind: s => // s x IHs in n *. rewrite rev_rcons size_rcons ltnS subSS -cats1 nth_cat /=. case: n => [|n] lt_n_s; first by rewrite subn0 ltnn subnn. by rewrite subnSK //= leq_subr IHs. Qed. Lemma filter_rev a s : filter a (rev s) = rev (filter a s). Proof. by elim: s => //= x s IH; rewrite fun_if !rev_cons filter_rcons IH. Qed. Lemma count_rev a s : count a (rev s) = count a s. Proof. by rewrite -!size_filter filter_rev size_rev. Qed. Lemma has_rev a s : has a (rev s) = has a s. Proof. by rewrite !has_count count_rev. Qed. Lemma all_rev a s : all a (rev s) = all a s. Proof. by rewrite !all_count count_rev size_rev. Qed. Lemma rev_nseq n x : rev (nseq n x) = nseq n x. Proof. by elim: n => // n IHn; rewrite -[in LHS]addn1 nseqD rev_cat IHn. Qed. End Sequences. Prenex Implicits size ncons nseq head ohead behead last rcons belast. Arguments seqn {T} n. Prenex Implicits cat take drop rot rotr catrev. Prenex Implicits find count nth all has filter. Arguments rev {T} s : simpl never. Arguments nth : simpl nomatch. Arguments set_nth : simpl nomatch. Arguments take : simpl nomatch. Arguments drop : simpl nomatch. Arguments nilP {T s}. Arguments all_filterP {T a s}. Arguments rotK n0 {T} s : rename. Arguments rot_inj {n0 T} [s1 s2] eq_rot_s12 : rename. Arguments revK {T} s : rename. Notation count_mem x := (count (pred_of_simpl (pred1 x))). Infix "++" := cat : seq_scope. Notation "[ 'seq' x <- s | C ]" := (filter (fun x => C%B) s) (at level 0, x at level 99, format "[ '[hv' 'seq' x <- s '/ ' | C ] ']'") : seq_scope. Notation "[ 'seq' x <- s | C1 & C2 ]" := [seq x <- s | C1 && C2] (at level 0, x at level 99, format "[ '[hv' 'seq' x <- s '/ ' | C1 '/ ' & C2 ] ']'") : seq_scope. Notation "[ 'seq' x : T <- s | C ]" := (filter (fun x : T => C%B) s) (at level 0, x at level 99, only parsing). Notation "[ 'seq' x : T <- s | C1 & C2 ]" := [seq x : T <- s | C1 && C2] (at level 0, x at level 99, only parsing). (* Double induction/recursion. *) Lemma seq_ind2 {S T} (P : seq S -> seq T -> Type) : P [::] [::] -> (forall x y s t, size s = size t -> P s t -> P (x :: s) (y :: t)) -> forall s t, size s = size t -> P s t. Proof. by move=> Pnil Pcons; elim=> [|x s IHs] [|y t] //= [eq_sz]; apply/Pcons/IHs. Qed. Section FindSpec. Variable (T : Type) (a : {pred T}) (s : seq T). Variant find_spec : bool -> nat -> Type := | NotFound of ~~ has a s : find_spec false (size s) | Found (i : nat) of i < size s & (forall x0, a (nth x0 s i)) & (forall x0 j, j < i -> a (nth x0 s j) = false) : find_spec true i. Lemma findP : find_spec (has a s) (find a s). Proof. have [a_s|aNs] := boolP (has a s); last by rewrite hasNfind//; constructor. by constructor=> [|x0|x0]; rewrite -?has_find ?nth_find//; apply: before_find. Qed. End FindSpec. Arguments findP {T}. Section RotRcons. Variable T : Type. Implicit Types (x : T) (s : seq T). Lemma rot1_cons x s : rot 1 (x :: s) = rcons s x. Proof. by rewrite /rot /= take0 drop0 -cats1. Qed. Lemma rcons_inj s1 s2 x1 x2 : rcons s1 x1 = rcons s2 x2 :> seq T -> (s1, x1) = (s2, x2). Proof. by rewrite -!rot1_cons => /rot_inj[-> ->]. Qed. Lemma rcons_injl x : injective (rcons^~ x). Proof. by move=> s1 s2 /rcons_inj[]. Qed. Lemma rcons_injr s : injective (rcons s). Proof. by move=> x1 x2 /rcons_inj[]. Qed. End RotRcons. Arguments rcons_inj {T s1 x1 s2 x2} eq_rcons : rename. Arguments rcons_injl {T} x [s1 s2] eq_rcons : rename. Arguments rcons_injr {T} s [x1 x2] eq_rcons : rename. (* Equality and eqType for seq. *) Section EqSeq. Variables (n0 : nat) (T : eqType) (x0 : T). Local Notation nth := (nth x0). Implicit Types (x y z : T) (s : seq T). Fixpoint eqseq s1 s2 {struct s2} := match s1, s2 with | [::], [::] => true | x1 :: s1', x2 :: s2' => (x1 == x2) && eqseq s1' s2' | _, _ => false end. Lemma eqseqP : Equality.axiom eqseq. Proof. move; elim=> [|x1 s1 IHs] [|x2 s2]; do [by constructor | simpl]. have [<-|neqx] := x1 =P x2; last by right; case. by apply: (iffP (IHs s2)) => [<-|[]]. Qed. Canonical seq_eqMixin := EqMixin eqseqP. Canonical seq_eqType := Eval hnf in EqType (seq T) seq_eqMixin. Lemma eqseqE : eqseq = eq_op. Proof. by []. Qed. Lemma eqseq_cons x1 x2 s1 s2 : (x1 :: s1 == x2 :: s2) = (x1 == x2) && (s1 == s2). Proof. by []. Qed. Lemma eqseq_cat s1 s2 s3 s4 : size s1 = size s2 -> (s1 ++ s3 == s2 ++ s4) = (s1 == s2) && (s3 == s4). Proof. elim: s1 s2 => [|x1 s1 IHs] [|x2 s2] //= [sz12]. by rewrite !eqseq_cons -andbA IHs. Qed. Lemma eqseq_rcons s1 s2 x1 x2 : (rcons s1 x1 == rcons s2 x2) = (s1 == s2) && (x1 == x2). Proof. by rewrite -(can_eq revK) !rev_rcons eqseq_cons andbC (can_eq revK). Qed. Lemma size_eq0 s : (size s == 0) = (s == [::]). Proof. exact: (sameP nilP eqP). Qed. Lemma nilpE s : nilp s = (s == [::]). Proof. by case: s. Qed. Lemma has_filter a s : has a s = (filter a s != [::]). Proof. by rewrite -size_eq0 size_filter has_count lt0n. Qed. (* mem_seq and index. *) (* mem_seq defines a predType for seq. *) Fixpoint mem_seq (s : seq T) := if s is y :: s' then xpredU1 y (mem_seq s') else xpred0. Definition seq_eqclass := seq T. Identity Coercion seq_of_eqclass : seq_eqclass >-> seq. Coercion pred_of_seq (s : seq_eqclass) : {pred T} := mem_seq s. Canonical seq_predType := PredType (pred_of_seq : seq T -> pred T). (* The line below makes mem_seq a canonical instance of topred. *) Canonical mem_seq_predType := PredType mem_seq. Lemma in_cons y s x : (x \in y :: s) = (x == y) || (x \in s). Proof. by []. Qed. Lemma in_nil x : (x \in [::]) = false. Proof. by []. Qed. Lemma mem_seq1 x y : (x \in [:: y]) = (x == y). Proof. by rewrite in_cons orbF. Qed. (* to be repeated after the Section discharge. *) Let inE := (mem_seq1, in_cons, inE). Lemma forall_cons {P : T -> Prop} {a s} : {in a::s, forall x, P x} <-> P a /\ {in s, forall x, P x}. Proof. split=> [A|[A B]]; last by move => x /predU1P [-> //|]; apply: B. by split=> [|b Hb]; apply: A; rewrite !inE ?eqxx ?Hb ?orbT. Qed. Lemma exists_cons {P : T -> Prop} {a s} : (exists2 x, x \in a::s & P x) <-> P a \/ exists2 x, x \in s & P x. Proof. split=> [[x /predU1P[->|x_s] Px]|]; [by left| by right; exists x|]. by move=> [?|[x x_s ?]]; [exists a|exists x]; rewrite ?inE ?eqxx ?x_s ?orbT. Qed. Lemma mem_seq2 x y z : (x \in [:: y; z]) = xpred2 y z x. Proof. by rewrite !inE. Qed. Lemma mem_seq3 x y z t : (x \in [:: y; z; t]) = xpred3 y z t x. Proof. by rewrite !inE. Qed. Lemma mem_seq4 x y z t u : (x \in [:: y; z; t; u]) = xpred4 y z t u x. Proof. by rewrite !inE. Qed. Lemma mem_cat x s1 s2 : (x \in s1 ++ s2) = (x \in s1) || (x \in s2). Proof. by elim: s1 => //= y s1 IHs; rewrite !inE /= -orbA -IHs. Qed. Lemma mem_rcons s y : rcons s y =i y :: s. Proof. by move=> x; rewrite -cats1 /= mem_cat mem_seq1 orbC in_cons. Qed. Lemma mem_head x s : x \in x :: s. Proof. exact: predU1l. Qed. Lemma mem_last x s : last x s \in x :: s. Proof. by rewrite lastI mem_rcons mem_head. Qed. Lemma mem_behead s : {subset behead s <= s}. Proof. by case: s => // y s x; apply: predU1r. Qed. Lemma mem_belast s y : {subset belast y s <= y :: s}. Proof. by move=> x ys'x; rewrite lastI mem_rcons mem_behead. Qed. Lemma mem_nth s n : n < size s -> nth s n \in s. Proof. by elim: s n => // x s IHs [_|n sz_s]; rewrite ?mem_head // mem_behead ?IHs. Qed. Lemma mem_take s x : x \in take n0 s -> x \in s. Proof. by move=> s0x; rewrite -(cat_take_drop n0 s) mem_cat /= s0x. Qed. Lemma mem_drop s x : x \in drop n0 s -> x \in s. Proof. by move=> s0'x; rewrite -(cat_take_drop n0 s) mem_cat /= s0'x orbT. Qed. Lemma last_eq s z x y : x != y -> z != y -> (last x s == y) = (last z s == y). Proof. by move=> /negPf xz /negPf yz; case: s => [|t s]//; rewrite xz yz. Qed. Section Filters. Implicit Type a : pred T. Lemma hasP {a s} : reflect (exists2 x, x \in s & a x) (has a s). Proof. elim: s => [|y s IHs] /=; first by right; case. exact: equivP (orPP idP IHs) (iff_sym exists_cons). Qed. Lemma allP {a s} : reflect {in s, forall x, a x} (all a s). Proof. elim: s => [|/= y s IHs]; first by left. exact: equivP (andPP idP IHs) (iff_sym forall_cons). Qed. Lemma hasPn a s : reflect {in s, forall x, ~~ a x} (~~ has a s). Proof. by rewrite -all_predC; apply: allP. Qed. Lemma allPn a s : reflect (exists2 x, x \in s & ~~ a x) (~~ all a s). Proof. by rewrite -has_predC; apply: hasP. Qed. Lemma allss s : all (mem s) s. Proof. exact/allP. Qed. Lemma mem_filter a x s : (x \in filter a s) = a x && (x \in s). Proof. rewrite andbC; elim: s => //= y s IHs. rewrite (fun_if (fun s' : seq T => x \in s')) !in_cons {}IHs. by case: eqP => [->|_]; case (a y); rewrite /= ?andbF. Qed. Variables (a : pred T) (s : seq T) (A : T -> Prop). Hypothesis aP : forall x, reflect (A x) (a x). Lemma hasPP : reflect (exists2 x, x \in s & A x) (has a s). Proof. by apply: (iffP hasP) => -[x ? /aP]; exists x. Qed. Lemma allPP : reflect {in s, forall x, A x} (all a s). Proof. by apply: (iffP allP) => a_s x /a_s/aP. Qed. End Filters. Notation "'has_ view" := (hasPP _ (fun _ => view)) (at level 4, right associativity, format "''has_' view"). Notation "'all_ view" := (allPP _ (fun _ => view)) (at level 4, right associativity, format "''all_' view"). Section EqIn. Variables a1 a2 : pred T. Lemma eq_in_filter s : {in s, a1 =1 a2} -> filter a1 s = filter a2 s. Proof. by elim: s => //= x s IHs /forall_cons [-> /IHs ->]. Qed. Lemma eq_in_find s : {in s, a1 =1 a2} -> find a1 s = find a2 s. Proof. by elim: s => //= x s IHs /forall_cons [-> /IHs ->]. Qed. Lemma eq_in_count s : {in s, a1 =1 a2} -> count a1 s = count a2 s. Proof. by move/eq_in_filter=> eq_a12; rewrite -!size_filter eq_a12. Qed. Lemma eq_in_all s : {in s, a1 =1 a2} -> all a1 s = all a2 s. Proof. by move=> eq_a12; rewrite !all_count eq_in_count. Qed. Lemma eq_in_has s : {in s, a1 =1 a2} -> has a1 s = has a2 s. Proof. by move/eq_in_filter=> eq_a12; rewrite !has_filter eq_a12. Qed. End EqIn. Lemma eq_has_r s1 s2 : s1 =i s2 -> has^~ s1 =1 has^~ s2. Proof. by move=> Es a; apply/hasP/hasP=> -[x sx ax]; exists x; rewrite ?Es in sx *. Qed. Lemma eq_all_r s1 s2 : s1 =i s2 -> all^~ s1 =1 all^~ s2. Proof. by move=> Es a; apply/negb_inj; rewrite -!has_predC (eq_has_r Es). Qed. Lemma has_sym s1 s2 : has (mem s1) s2 = has (mem s2) s1. Proof. by apply/hasP/hasP=> -[x]; exists x. Qed. Lemma has_pred1 x s : has (pred1 x) s = (x \in s). Proof. by rewrite -(eq_has (mem_seq1^~ x)) (has_sym [:: x]) /= orbF. Qed. Lemma mem_rev s : rev s =i s. Proof. by move=> a; rewrite -!has_pred1 has_rev. Qed. (* Constant sequences, i.e., the image of nseq. *) Definition constant s := if s is x :: s' then all (pred1 x) s' else true. Lemma all_pred1P x s : reflect (s = nseq (size s) x) (all (pred1 x) s). Proof. elim: s => [|y s IHs] /=; first by left. case: eqP => [->{y} | ne_xy]; last by right=> [] [? _]; case ne_xy. by apply: (iffP IHs) => [<- //| []]. Qed. Lemma all_pred1_constant x s : all (pred1 x) s -> constant s. Proof. by case: s => //= y s /andP[/eqP->]. Qed. Lemma all_pred1_nseq x n : all (pred1 x) (nseq n x). Proof. by rewrite all_nseq /= eqxx orbT. Qed. Lemma mem_nseq n x y : (y \in nseq n x) = (0 < n) && (y == x). Proof. by rewrite -has_pred1 has_nseq eq_sym. Qed. Lemma nseqP n x y : reflect (y = x /\ n > 0) (y \in nseq n x). Proof. by rewrite mem_nseq andbC; apply: (iffP andP) => -[/eqP]. Qed. Lemma constant_nseq n x : constant (nseq n x). Proof. exact: all_pred1_constant (all_pred1_nseq x n). Qed. (* Uses x0 *) Lemma constantP s : reflect (exists x, s = nseq (size s) x) (constant s). Proof. apply: (iffP idP) => [| [x ->]]; last exact: constant_nseq. case: s => [|x s] /=; first by exists x0. by move/all_pred1P=> def_s; exists x; rewrite -def_s. Qed. (* Duplicate-freenes. *) Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true. Lemma cons_uniq x s : uniq (x :: s) = (x \notin s) && uniq s. Proof. by []. Qed. Lemma cat_uniq s1 s2 : uniq (s1 ++ s2) = [&& uniq s1, ~~ has (mem s1) s2 & uniq s2]. Proof. elim: s1 => [|x s1 IHs]; first by rewrite /= has_pred0. by rewrite has_sym /= mem_cat !negb_or has_sym IHs -!andbA; do !bool_congr. Qed. Lemma uniq_catC s1 s2 : uniq (s1 ++ s2) = uniq (s2 ++ s1). Proof. by rewrite !cat_uniq has_sym andbCA andbA andbC. Qed. Lemma uniq_catCA s1 s2 s3 : uniq (s1 ++ s2 ++ s3) = uniq (s2 ++ s1 ++ s3). Proof. by rewrite !catA -!(uniq_catC s3) !(cat_uniq s3) uniq_catC !has_cat orbC. Qed. Lemma rcons_uniq s x : uniq (rcons s x) = (x \notin s) && uniq s. Proof. by rewrite -cats1 uniq_catC. Qed. Lemma filter_uniq s a : uniq s -> uniq (filter a s). Proof. elim: s => //= x s IHs /andP[s'x]; case: ifP => //= a_x /IHs->. by rewrite mem_filter a_x s'x. Qed. Lemma rot_uniq s : uniq (rot n0 s) = uniq s. Proof. by rewrite /rot uniq_catC cat_take_drop. Qed. Lemma rev_uniq s : uniq (rev s) = uniq s. Proof. elim: s => // x s IHs. by rewrite rev_cons -cats1 cat_uniq /= andbT andbC mem_rev orbF IHs. Qed. Lemma count_memPn x s : reflect (count_mem x s = 0) (x \notin s). Proof. by rewrite -has_pred1 has_count -eqn0Ngt; apply: eqP. Qed. Lemma count_uniq_mem s x : uniq s -> count_mem x s = (x \in s). Proof. elim: s => //= y s IHs /andP[/negbTE s'y /IHs-> {IHs}]. by rewrite in_cons; case: (eqVneq y x) => // <-; rewrite s'y. Qed. Lemma leq_uniq_countP x s1 s2 : uniq s1 -> reflect (x \in s1 -> x \in s2) (count_mem x s1 <= count_mem x s2). Proof. move/count_uniq_mem->; case: (boolP (_ \in _)) => //= _; last by constructor. by rewrite -has_pred1 has_count; apply: (iffP idP) => //; apply. Qed. Lemma leq_uniq_count s1 s2 : uniq s1 -> {subset s1 <= s2} -> (forall x, count_mem x s1 <= count_mem x s2). Proof. by move=> s1_uniq s1_s2 x; apply/leq_uniq_countP/s1_s2. Qed. Lemma filter_pred1_uniq s x : uniq s -> x \in s -> filter (pred1 x) s = [:: x]. Proof. move=> uniq_s s_x; rewrite (all_pred1P _ _ (filter_all _ _)). by rewrite size_filter count_uniq_mem ?s_x. Qed. (* Removing duplicates *) Fixpoint undup s := if s is x :: s' then if x \in s' then undup s' else x :: undup s' else [::]. Lemma size_undup s : size (undup s) <= size s. Proof. by elim: s => //= x s IHs; case: (x \in s) => //=; apply: ltnW. Qed. Lemma mem_undup s : undup s =i s. Proof. move=> x; elim: s => //= y s IHs. by case s_y: (y \in s); rewrite !inE IHs //; case: eqP => [->|]. Qed. Lemma undup_uniq s : uniq (undup s). Proof. by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= mem_undup s_x. Qed. Lemma undup_id s : uniq s -> undup s = s. Proof. by elim: s => //= x s IHs /andP[/negbTE-> /IHs->]. Qed. Lemma ltn_size_undup s : (size (undup s) < size s) = ~~ uniq s. Proof. by elim: s => //= x s IHs; case s_x: (x \in s); rewrite //= ltnS size_undup. Qed. Lemma filter_undup p s : filter p (undup s) = undup (filter p s). Proof. elim: s => //= x s IHs; rewrite (fun_if undup) fun_if /= mem_filter /=. by rewrite (fun_if (filter p)) /= IHs; case: ifP => -> //=; apply: if_same. Qed. Lemma undup_nil s : undup s = [::] -> s = [::]. Proof. by case: s => //= x s; rewrite -mem_undup; case: ifP; case: undup. Qed. Lemma undup_cat s t : undup (s ++ t) = [seq x <- undup s | x \notin t] ++ undup t. Proof. by elim: s => //= x s ->; rewrite mem_cat; do 2 case: in_mem => //=. Qed. Lemma undup_rcons s x : undup (rcons s x) = rcons [seq y <- undup s | y != x] x. Proof. by rewrite -!cats1 undup_cat; congr cat; apply: eq_filter => y; rewrite inE. Qed. Lemma count_undup s p : count p (undup s) <= count p s. Proof. by rewrite -!size_filter filter_undup size_undup. Qed. (* Lookup *) Definition index x := find (pred1 x). Lemma index_size x s : index x s <= size s. Proof. by rewrite /index find_size. Qed. Lemma index_mem x s : (index x s < size s) = (x \in s). Proof. by rewrite -has_pred1 has_find. Qed. Lemma memNindex x s : x \notin s -> index x s = size s. Proof. by rewrite -has_pred1 => /hasNfind. Qed. Lemma nth_index x s : x \in s -> nth s (index x s) = x. Proof. by rewrite -has_pred1 => /(nth_find x0)/eqP. Qed. Lemma index_cat x s1 s2 : index x (s1 ++ s2) = if x \in s1 then index x s1 else size s1 + index x s2. Proof. by rewrite /index find_cat has_pred1. Qed. Lemma index_ltn x s i : x \in take i s -> index x s < i. Proof. by rewrite -has_pred1; apply: find_ltn. Qed. Lemma in_take x s i : x \in s -> (x \in take i s) = (index x s < i). Proof. by rewrite -?has_pred1; apply: has_take. Qed. Lemma in_take_leq x s i : i <= size s -> (x \in take i s) = (index x s < i). Proof. by rewrite -?has_pred1; apply: has_take_leq. Qed. Lemma nthK s: uniq s -> {in gtn (size s), cancel (nth s) (index^~ s)}. Proof. elim: s => //= x s IHs /andP[s'x Us] i; rewrite inE ltnS eq_sym -if_neg. by case: i => /= [_|i lt_i_s]; rewrite ?eqxx ?IHs ?(memPn s'x) ?mem_nth. Qed. Lemma index_uniq i s : i < size s -> uniq s -> index (nth s i) s = i. Proof. by move/nthK. Qed. Lemma index_head x s : index x (x :: s) = 0. Proof. by rewrite /= eqxx. Qed. Lemma index_last x s : uniq (x :: s) -> index (last x s) (x :: s) = size s. Proof. rewrite lastI rcons_uniq -cats1 index_cat size_belast. by case: ifP => //=; rewrite eqxx addn0. Qed. Lemma nth_uniq s i j : i < size s -> j < size s -> uniq s -> (nth s i == nth s j) = (i == j). Proof. by move=> lti ltj /nthK/can_in_eq->. Qed. Lemma uniqPn s : reflect (exists i j, [/\ i < j, j < size s & nth s i = nth s j]) (~~ uniq s). Proof. apply: (iffP idP) => [|[i [j [ltij ltjs]]]]; last first. by apply: contra_eqN => Us; rewrite nth_uniq ?ltn_eqF // (ltn_trans ltij). elim: s => // x s IHs /nandP[/negbNE | /IHs[i [j]]]; last by exists i.+1, j.+1. by exists 0, (index x s).+1; rewrite !ltnS index_mem /= nth_index. Qed. Lemma uniqP s : reflect {in gtn (size s) &, injective (nth s)} (uniq s). Proof. apply: (iffP idP) => [/nthK/can_in_inj// | nth_inj]. apply/uniqPn => -[i [j [ltij ltjs /nth_inj/eqP/idPn]]]. by rewrite !inE (ltn_trans ltij ltjs) ltn_eqF //=; case. Qed. Lemma mem_rot s : rot n0 s =i s. Proof. by move=> x; rewrite -[s in RHS](cat_take_drop n0) !mem_cat /= orbC. Qed. Lemma eqseq_rot s1 s2 : (rot n0 s1 == rot n0 s2) = (s1 == s2). Proof. exact/inj_eq/rot_inj. Qed. Lemma drop_index s (n := index x0 s) : x0 \in s -> drop n s = x0 :: drop n.+1 s. Proof. by move=> xs; rewrite (drop_nth x0) ?index_mem ?nth_index. Qed. (* lemmas about the pivot pattern [_ ++ _ :: _] *) Lemma index_pivot x s1 s2 (s := s1 ++ x :: s2) : x \notin s1 -> index x s = size s1. Proof. by rewrite index_cat/= eqxx addn0; case: ifPn. Qed. Lemma take_pivot x s2 s1 (s := s1 ++ x :: s2) : x \notin s1 -> take (index x s) s = s1. Proof. by move=> /index_pivot->; rewrite take_size_cat. Qed. Lemma rev_pivot x s1 s2 : rev (s1 ++ x :: s2) = rev s2 ++ x :: rev s1. Proof. by rewrite rev_cat rev_cons cat_rcons. Qed. Lemma eqseq_pivot2l x s1 s2 s3 s4 : x \notin s1 -> x \notin s3 -> (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). Proof. move=> xNs1 xNs3; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//]. suff S : size s1 = size s3 by rewrite eqseq_cat// eqseq_cons eqxx in E. by rewrite -(index_pivot s2 xNs1) (eqP E) index_pivot. Qed. Lemma eqseq_pivot2r x s1 s2 s3 s4 : x \notin s2 -> x \notin s4 -> (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). Proof. move=> xNs2 xNs4; rewrite -(can_eq revK) !rev_pivot. by rewrite eqseq_pivot2l ?mem_rev // !(can_eq revK) andbC. Qed. Lemma eqseq_pivotl x s1 s2 s3 s4 : x \notin s1 -> x \notin s2 -> (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). Proof. move=> xNs1 xNs2; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//]. rewrite -(@eqseq_pivot2l x)//; have /eqP/(congr1 (count_mem x)) := E. rewrite !count_cat/= eqxx !addnS (count_memPn _ _ xNs1) (count_memPn _ _ xNs2). by move=> -[/esym/eqP]; rewrite addn_eq0 => /andP[/eqP/count_memPn]. Qed. Lemma eqseq_pivotr x s1 s2 s3 s4 : x \notin s3 -> x \notin s4 -> (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). Proof. by move=> *; rewrite eq_sym eqseq_pivotl//; case: eqVneq => /=. Qed. Lemma uniq_eqseq_pivotl x s1 s2 s3 s4 : uniq (s1 ++ x :: s2) -> (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). Proof. by rewrite uniq_catC/= mem_cat => /andP[/norP[? ?] _]; rewrite eqseq_pivotl. Qed. Lemma uniq_eqseq_pivotr x s1 s2 s3 s4 : uniq (s3 ++ x :: s4) -> (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). Proof. by move=> ?; rewrite eq_sym uniq_eqseq_pivotl//; case: eqVneq => /=. Qed. End EqSeq. Arguments eqseq : simpl nomatch. Section RotIndex. Variables (T : eqType). Implicit Types x y z : T. Lemma rot_index s x (i := index x s) : x \in s -> rot i s = x :: (drop i.+1 s ++ take i s). Proof. by move=> x_s; rewrite /rot drop_index. Qed. Variant rot_to_spec s x := RotToSpec i s' of rot i s = x :: s'. Lemma rot_to s x : x \in s -> rot_to_spec s x. Proof. by move=> /rot_index /RotToSpec. Qed. End RotIndex. Definition inE := (mem_seq1, in_cons, inE). Prenex Implicits mem_seq1 constant uniq undup index. Arguments eqseq {T} !_ !_. Arguments pred_of_seq {T} s x /. Arguments eqseqP {T x y}. Arguments hasP {T a s}. Arguments hasPn {T a s}. Arguments allP {T a s}. Arguments allPn {T a s}. Arguments nseqP {T n x y}. Arguments count_memPn {T x s}. Arguments uniqPn {T} x0 {s}. Arguments uniqP {T} x0 {s}. Arguments forall_cons {T P a s}. Arguments exists_cons {T P a s}. (* Since both `all (mem s) s` and `all (pred_of_seq s) s` may appear in *) (* goals, the following hint has to be declared using the `Hint Extern` *) (* command. Additionally, `mem` and `pred_of_seq` in the above terms do not *) (* reduce to each other; thus, stating `allss` in the form of one of them *) (* makes `apply: allss` failing for the other case. Since both `mem` and *) (* `pred_of_seq` reduce to `mem_seq`, the following explicit type annotation *) (* for `allss` makes it work for both cases. *) #[global] Hint Extern 0 (is_true (all _ _)) => apply: (allss : forall T s, all (mem_seq s) s) : core. Section NthTheory. Lemma nthP (T : eqType) (s : seq T) x x0 : reflect (exists2 i, i < size s & nth x0 s i = x) (x \in s). Proof. apply: (iffP idP) => [|[n Hn <-]]; last exact: mem_nth. by exists (index x s); [rewrite index_mem | apply nth_index]. Qed. Variable T : Type. Implicit Types (a : pred T) (x : T). Lemma has_nthP a s x0 : reflect (exists2 i, i < size s & a (nth x0 s i)) (has a s). Proof. elim: s => [|x s IHs] /=; first by right; case. case nax: (a x); first by left; exists 0. by apply: (iffP IHs) => [[i]|[[|i]]]; [exists i.+1 | rewrite nax | exists i]. Qed. Lemma all_nthP a s x0 : reflect (forall i, i < size s -> a (nth x0 s i)) (all a s). Proof. rewrite -(eq_all (fun x => negbK (a x))) all_predC. case: (has_nthP _ _ x0) => [na_s | a_s]; [right=> a_s | left=> i lti]. by case: na_s => i lti; rewrite a_s. by apply/idPn=> na_si; case: a_s; exists i. Qed. Lemma set_nthE s x0 n x : set_nth x0 s n x = if n < size s then take n s ++ x :: drop n.+1 s else s ++ ncons (n - size s) x0 [:: x]. Proof. elim: s n => [|a s IH] n /=; first by rewrite subn0 set_nth_nil. case: n => [|n]; first by rewrite drop0. by rewrite ltnS /=; case: ltnP (IH n) => _ ->. Qed. Lemma count_set_nth a s x0 n x : count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n) * (n < size s) + (a x0) * (n - size s). Proof. rewrite set_nthE; case: ltnP => [nlts|nges]; last first. rewrite -cat_nseq !count_cat count_nseq /=. by rewrite muln0 addn0 subn0 addnAC addnA. have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW. rewrite -[in count a s](cat_take_drop n s) [drop n s](drop_nth x0)//. by rewrite !count_cat/= muln1 muln0 addn0 addnAC !addnA [in RHS]addnAC addnK. Qed. Lemma count_set_nth_ltn a s x0 n x : n < size s -> count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n). Proof. move=> nlts; rewrite count_set_nth nlts muln1. have -> : n - size s = 0 by apply/eqP; rewrite subn_eq0 ltnW. by rewrite muln0 addn0. Qed. Lemma count_set_nthF a s x0 n x : ~~ a x0 -> count a (set_nth x0 s n x) = count a s + a x - a (nth x0 s n). Proof. move=> /negbTE ax0; rewrite count_set_nth ax0 mul0n addn0. case: ltnP => [_|nges]; first by rewrite muln1. by rewrite nth_default// ax0 subn0. Qed. End NthTheory. Lemma set_nth_default T s (y0 x0 : T) n : n < size s -> nth x0 s n = nth y0 s n. Proof. by elim: s n => [|y s' IHs] [|n] //= /IHs. Qed. Lemma headI T s (x : T) : rcons s x = head x s :: behead (rcons s x). Proof. by case: s. Qed. Arguments nthP {T s x}. Arguments has_nthP {T a s}. Arguments all_nthP {T a s}. Definition bitseq := seq bool. Canonical bitseq_eqType := Eval hnf in [eqType of bitseq]. Canonical bitseq_predType := Eval hnf in [predType of bitseq]. (* Generalizations of splitP (from path.v): split_find_nth and split_find *) Section FindNth. Variables (T : Type). Implicit Types (x : T) (p : pred T) (s : seq T). Variant split_find_nth_spec p : seq T -> seq T -> seq T -> T -> Type := FindNth x s1 s2 of p x & ~~ has p s1 : split_find_nth_spec p (rcons s1 x ++ s2) s1 s2 x. Lemma split_find_nth x0 p s (i := find p s) : has p s -> split_find_nth_spec p s (take i s) (drop i.+1 s) (nth x0 s i). Proof. move=> p_s; rewrite -[X in split_find_nth_spec _ X](cat_take_drop i s). rewrite (drop_nth x0 _) -?has_find// -cat_rcons. by constructor; [apply: nth_find | rewrite has_take -?leqNgt]. Qed. Variant split_find_spec p : seq T -> seq T -> seq T -> Type := FindSplit x s1 s2 of p x & ~~ has p s1 : split_find_spec p (rcons s1 x ++ s2) s1 s2. Lemma split_find p s (i := find p s) : has p s -> split_find_spec p s (take i s) (drop i.+1 s). Proof. by case: s => // x ? in i * => ?; case: split_find_nth => //; constructor. Qed. Lemma nth_rcons_cat_find x0 p s1 s2 x (s := rcons s1 x ++ s2) : p x -> ~~ has p s1 -> nth x0 s (find p s) = x. Proof. move=> pz pNs1; rewrite /s cat_rcons find_cat (negPf pNs1). by rewrite nth_cat/= pz addn0 subnn ltnn. Qed. End FindNth. (* Incrementing the ith nat in a seq nat, padding with 0's if needed. This *) (* allows us to use nat seqs as bags of nats. *) Fixpoint incr_nth v i {struct i} := if v is n :: v' then if i is i'.+1 then n :: incr_nth v' i' else n.+1 :: v' else ncons i 0 [:: 1]. Arguments incr_nth : simpl nomatch. Lemma nth_incr_nth v i j : nth 0 (incr_nth v i) j = (i == j) + nth 0 v j. Proof. elim: v i j => [|n v IHv] [|i] [|j] //=; rewrite ?eqSS ?addn0 //; try by case j. elim: i j => [|i IHv] [|j] //=; rewrite ?eqSS //; by case j. Qed. Lemma size_incr_nth v i : size (incr_nth v i) = if i < size v then size v else i.+1. Proof. elim: v i => [|n v IHv] [|i] //=; first by rewrite size_ncons /= addn1. by rewrite IHv; apply: fun_if. Qed. Lemma incr_nth_inj v : injective (incr_nth v). Proof. move=> i j /(congr1 (nth 0 ^~ i)); apply: contra_eq => neq_ij. by rewrite !nth_incr_nth eqn_add2r eqxx /nat_of_bool ifN_eqC. Qed. Lemma incr_nthC v i j : incr_nth (incr_nth v i) j = incr_nth (incr_nth v j) i. Proof. apply: (@eq_from_nth _ 0) => [|k _]; last by rewrite !nth_incr_nth addnCA. by do !rewrite size_incr_nth leqNgt if_neg -/(maxn _ _); apply: maxnAC. Qed. (* Equality up to permutation *) Section PermSeq. Variable T : eqType. Implicit Type s : seq T. Definition perm_eq s1 s2 := all [pred x | count_mem x s1 == count_mem x s2] (s1 ++ s2). Lemma permP s1 s2 : reflect (count^~ s1 =1 count^~ s2) (perm_eq s1 s2). Proof. apply: (iffP allP) => /= [eq_cnt1 a | eq_cnt x _]; last exact/eqP. have [n le_an] := ubnP (count a (s1 ++ s2)); elim: n => // n IHn in a le_an *. have [/eqP|] := posnP (count a (s1 ++ s2)). by rewrite count_cat addn_eq0; do 2!case: eqP => // ->. rewrite -has_count => /hasP[x s12x a_x]; pose a' := predD1 a x. have cnt_a' s: count a s = count_mem x s + count a' s. rewrite -count_predUI -[LHS]addn0 -(count_pred0 s). by congr (_ + _); apply: eq_count => y /=; case: eqP => // ->. rewrite !cnt_a' (eqnP (eq_cnt1 _ s12x)) (IHn a') // -ltnS. apply: leq_trans le_an. by rewrite ltnS cnt_a' -add1n leq_add2r -has_count has_pred1. Qed. Lemma perm_refl s : perm_eq s s. Proof. exact/permP. Qed. Hint Resolve perm_refl : core. Lemma perm_sym : symmetric perm_eq. Proof. by move=> s1 s2; apply/permP/permP=> eq_s12 a. Qed. Lemma perm_trans : transitive perm_eq. Proof. by move=> s2 s1 s3 /permP-eq12 /permP/(ftrans eq12)/permP. Qed. Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2). Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2). Lemma permEl s1 s2 : perm_eql s1 s2 -> perm_eq s1 s2. Proof. by move->. Qed. Lemma permPl s1 s2 : reflect (perm_eql s1 s2) (perm_eq s1 s2). Proof. apply: (iffP idP) => [eq12 s3 | -> //]; apply/idP/idP; last exact: perm_trans. by rewrite -!(perm_sym s3) => /perm_trans; apply. Qed. Lemma permPr s1 s2 : reflect (perm_eqr s1 s2) (perm_eq s1 s2). Proof. by apply/(iffP idP) => [/permPl eq12 s3| <- //]; rewrite !(perm_sym s3) eq12. Qed. Lemma perm_catC s1 s2 : perm_eql (s1 ++ s2) (s2 ++ s1). Proof. by apply/permPl/permP=> a; rewrite !count_cat addnC. Qed. Lemma perm_cat2l s1 s2 s3 : perm_eq (s1 ++ s2) (s1 ++ s3) = perm_eq s2 s3. Proof. apply/permP/permP=> eq23 a; apply/eqP; by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l. Qed. Lemma perm_catl s t1 t2 : perm_eq t1 t2 -> perm_eql (s ++ t1) (s ++ t2). Proof. by move=> eq_t12; apply/permPl; rewrite perm_cat2l. Qed. Lemma perm_cons x s1 s2 : perm_eq (x :: s1) (x :: s2) = perm_eq s1 s2. Proof. exact: (perm_cat2l [::x]). Qed. Lemma perm_cat2r s1 s2 s3 : perm_eq (s2 ++ s1) (s3 ++ s1) = perm_eq s2 s3. Proof. by do 2!rewrite perm_sym perm_catC; apply: perm_cat2l. Qed. Lemma perm_catr s1 s2 t : perm_eq s1 s2 -> perm_eql (s1 ++ t) (s2 ++ t). Proof. by move=> eq_s12; apply/permPl; rewrite perm_cat2r. Qed. Lemma perm_cat s1 s2 t1 t2 : perm_eq s1 s2 -> perm_eq t1 t2 -> perm_eq (s1 ++ t1) (s2 ++ t2). Proof. by move=> /perm_catr-> /perm_catl->. Qed. Lemma perm_catAC s1 s2 s3 : perm_eql ((s1 ++ s2) ++ s3) ((s1 ++ s3) ++ s2). Proof. by apply/permPl; rewrite -!catA perm_cat2l perm_catC. Qed. Lemma perm_catCA s1 s2 s3 : perm_eql (s1 ++ s2 ++ s3) (s2 ++ s1 ++ s3). Proof. by apply/permPl; rewrite !catA perm_cat2r perm_catC. Qed. Lemma perm_catACA s1 s2 s3 s4 : perm_eql ((s1 ++ s2) ++ (s3 ++ s4)) ((s1 ++ s3) ++ (s2 ++ s4)). Proof. by apply/permPl; rewrite perm_catAC !catA perm_catAC. Qed. Lemma perm_rcons x s : perm_eql (rcons s x) (x :: s). Proof. by move=> /= s2; rewrite -cats1 perm_catC. Qed. Lemma perm_rot n s : perm_eql (rot n s) s. Proof. by move=> /= s2; rewrite perm_catC cat_take_drop. Qed. Lemma perm_rotr n s : perm_eql (rotr n s) s. Proof. exact: perm_rot. Qed. Lemma perm_rev s : perm_eql (rev s) s. Proof. by apply/permPl/permP=> i; rewrite count_rev. Qed. Lemma perm_filter s1 s2 a : perm_eq s1 s2 -> perm_eq (filter a s1) (filter a s2). Proof. by move/permP=> s12_count; apply/permP=> Q; rewrite !count_filter. Qed. Lemma perm_filterC a s : perm_eql (filter a s ++ filter (predC a) s) s. Proof. apply/permPl; elim: s => //= x s IHs. by case: (a x); last rewrite /= -cat1s perm_catCA; rewrite perm_cons. Qed. Lemma perm_size s1 s2 : perm_eq s1 s2 -> size s1 = size s2. Proof. by move/permP=> eq12; rewrite -!count_predT eq12. Qed. Lemma perm_mem s1 s2 : perm_eq s1 s2 -> s1 =i s2. Proof. by move/permP=> eq12 x; rewrite -!has_pred1 !has_count eq12. Qed. Lemma perm_nilP s : reflect (s = [::]) (perm_eq s [::]). Proof. by apply: (iffP idP) => [/perm_size/eqP/nilP | ->]. Qed. Lemma perm_consP x s t : reflect (exists i u, rot i t = x :: u /\ perm_eq u s) (perm_eq t (x :: s)). Proof. apply: (iffP idP) => [eq_txs | [i [u [Dt eq_us]]]]. have /rot_to[i u Dt]: x \in t by rewrite (perm_mem eq_txs) mem_head. by exists i, u; rewrite -(perm_cons x) -Dt perm_rot. by rewrite -(perm_rot i) Dt perm_cons. Qed. Lemma perm_has s1 s2 a : perm_eq s1 s2 -> has a s1 = has a s2. Proof. by move/perm_mem/eq_has_r. Qed. Lemma perm_all s1 s2 a : perm_eq s1 s2 -> all a s1 = all a s2. Proof. by move/perm_mem/eq_all_r. Qed. Lemma perm_small_eq s1 s2 : size s2 <= 1 -> perm_eq s1 s2 -> s1 = s2. Proof. move=> s2_le1 eqs12; move/perm_size: eqs12 s2_le1 (perm_mem eqs12). by case: s2 s1 => [|x []] // [|y []] // _ _ /(_ x) /[!(inE, eqxx)] /eqP->. Qed. Lemma uniq_leq_size s1 s2 : uniq s1 -> {subset s1 <= s2} -> size s1 <= size s2. Proof. elim: s1 s2 => //= x s1 IHs s2 /andP[not_s1x Us1] /forall_cons[s2x ss12]. have [i s3 def_s2] := rot_to s2x; rewrite -(size_rot i s2) def_s2. apply: IHs => // y s1y; have:= ss12 y s1y. by rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)). Qed. Lemma leq_size_uniq s1 s2 : uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 -> uniq s2. Proof. elim: s1 s2 => [[] | x s1 IHs s2] // Us1x; have /andP[not_s1x Us1] := Us1x. case/forall_cons => /rot_to[i s3 def_s2] ss12 le_s21. rewrite -(rot_uniq i) -(size_rot i) def_s2 /= in le_s21 *. have ss13 y (s1y : y \in s1): y \in s3. by have:= ss12 y s1y; rewrite -(mem_rot i) def_s2 inE (negPf (memPn _ y s1y)). rewrite IHs // andbT; apply: contraL _ le_s21 => s3x; rewrite -leqNgt. by apply/(uniq_leq_size Us1x)/allP; rewrite /= s3x; apply/allP. Qed. Lemma uniq_size_uniq s1 s2 : uniq s1 -> s1 =i s2 -> uniq s2 = (size s2 == size s1). Proof. move=> Us1 eqs12; apply/idP/idP=> [Us2 | /eqP eq_sz12]. by rewrite eqn_leq !uniq_leq_size // => y; rewrite eqs12. by apply: (leq_size_uniq Us1) => [y|]; rewrite (eqs12, eq_sz12). Qed. Lemma uniq_min_size s1 s2 : uniq s1 -> {subset s1 <= s2} -> size s2 <= size s1 -> (size s1 = size s2) * (s1 =i s2). Proof. move=> Us1 ss12 le_s21; have Us2: uniq s2 := leq_size_uniq Us1 ss12 le_s21. suffices: s1 =i s2 by split; first by apply/eqP; rewrite -uniq_size_uniq. move=> x; apply/idP/idP=> [/ss12// | s2x]; apply: contraLR le_s21 => not_s1x. rewrite -ltnNge (@uniq_leq_size (x :: s1)) /= ?not_s1x //. by apply/allP; rewrite /= s2x; apply/allP. Qed. Lemma eq_uniq s1 s2 : size s1 = size s2 -> s1 =i s2 -> uniq s1 = uniq s2. Proof. move=> eq_sz12 eq_s12. by apply/idP/idP=> Us; rewrite (uniq_size_uniq Us) ?eq_sz12 ?eqxx. Qed. Lemma perm_uniq s1 s2 : perm_eq s1 s2 -> uniq s1 = uniq s2. Proof. by move=> eq_s12; apply/eq_uniq; [apply/perm_size | apply/perm_mem]. Qed. Lemma uniq_perm s1 s2 : uniq s1 -> uniq s2 -> s1 =i s2 -> perm_eq s1 s2. Proof. move=> Us1 Us2 eq12; apply/allP=> x _; apply/eqP. by rewrite !count_uniq_mem ?eq12. Qed. Lemma perm_undup s1 s2 : s1 =i s2 -> perm_eq (undup s1) (undup s2). Proof. by move=> Es12; rewrite uniq_perm ?undup_uniq // => s; rewrite !mem_undup. Qed. Lemma count_mem_uniq s : (forall x, count_mem x s = (x \in s)) -> uniq s. Proof. move=> count1_s; have Uus := undup_uniq s. suffices: perm_eq s (undup s) by move/perm_uniq->. by apply/allP=> x _; apply/eqP; rewrite (count_uniq_mem x Uus) mem_undup. Qed. Lemma eq_count_undup a s1 s2 : {in a, s1 =i s2} -> count a (undup s1) = count a (undup s2). Proof. move=> s1_eq_s2; rewrite -!size_filter !filter_undup. apply/perm_size/perm_undup => x. by rewrite !mem_filter; case: (boolP (a x)) => //= /s1_eq_s2. Qed. Lemma catCA_perm_ind P : (forall s1 s2 s3, P (s1 ++ s2 ++ s3) -> P (s2 ++ s1 ++ s3)) -> (forall s1 s2, perm_eq s1 s2 -> P s1 -> P s2). Proof. move=> PcatCA s1 s2 eq_s12; rewrite -[s1]cats0 -[s2]cats0. elim: s2 nil => [|x s2 IHs] s3 in s1 eq_s12 *. by case: s1 {eq_s12}(perm_size eq_s12). have /rot_to[i s' def_s1]: x \in s1 by rewrite (perm_mem eq_s12) mem_head. rewrite -(cat_take_drop i s1) -catA => /PcatCA. rewrite catA -/(rot i s1) def_s1 /= -cat1s => /PcatCA/IHs/PcatCA; apply. by rewrite -(perm_cons x) -def_s1 perm_rot. Qed. Lemma catCA_perm_subst R F : (forall s1 s2 s3, F (s1 ++ s2 ++ s3) = F (s2 ++ s1 ++ s3) :> R) -> (forall s1 s2, perm_eq s1 s2 -> F s1 = F s2). Proof. move=> FcatCA s1 s2 /catCA_perm_ind => ind_s12. by apply: (ind_s12 (eq _ \o F)) => //= *; rewrite FcatCA. Qed. End PermSeq. Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2). Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2). Arguments permP {T s1 s2}. Arguments permPl {T s1 s2}. Arguments permPr {T s1 s2}. Prenex Implicits perm_eq. #[global] Hint Resolve perm_refl : core. Section RotrLemmas. Variables (n0 : nat) (T : Type) (T' : eqType). Implicit Types (x : T) (s : seq T). Lemma size_rotr s : size (rotr n0 s) = size s. Proof. by rewrite size_rot. Qed. Lemma mem_rotr (s : seq T') : rotr n0 s =i s. Proof. by move=> x; rewrite mem_rot. Qed. Lemma rotr_size_cat s1 s2 : rotr (size s2) (s1 ++ s2) = s2 ++ s1. Proof. by rewrite /rotr size_cat addnK rot_size_cat. Qed. Lemma rotr1_rcons x s : rotr 1 (rcons s x) = x :: s. Proof. by rewrite -rot1_cons rotK. Qed. Lemma has_rotr a s : has a (rotr n0 s) = has a s. Proof. by rewrite has_rot. Qed. Lemma rotr_uniq (s : seq T') : uniq (rotr n0 s) = uniq s. Proof. by rewrite rot_uniq. Qed. Lemma rotrK : cancel (@rotr T n0) (rot n0). Proof. move=> s; have [lt_n0s | ge_n0s] := ltnP n0 (size s). by rewrite -{1}(subKn (ltnW lt_n0s)) -{1}[size s]size_rotr; apply: rotK. by rewrite -[in RHS](rot_oversize ge_n0s) /rotr (eqnP ge_n0s) rot0. Qed. Lemma rotr_inj : injective (@rotr T n0). Proof. exact (can_inj rotrK). Qed. Lemma take_rev s : take n0 (rev s) = rev (drop (size s - n0) s). Proof. set m := _ - n0; rewrite -[s in LHS](cat_take_drop m) rev_cat take_cat. rewrite size_rev size_drop -minnE minnC leq_min ltnn /m. by have [_|/eqnP->] := ltnP; rewrite ?subnn take0 cats0. Qed. Lemma rev_take s : rev (take n0 s) = drop (size s - n0) (rev s). Proof. by rewrite -[s in take _ s]revK take_rev revK size_rev. Qed. Lemma drop_rev s : drop n0 (rev s) = rev (take (size s - n0) s). Proof. set m := _ - n0; rewrite -[s in LHS](cat_take_drop m) rev_cat drop_cat. rewrite size_rev size_drop -minnE minnC leq_min ltnn /m. by have [_|/eqnP->] := ltnP; rewrite ?take0 // subnn drop0. Qed. Lemma rev_drop s : rev (drop n0 s) = take (size s - n0) (rev s). Proof. by rewrite -[s in drop _ s]revK drop_rev revK size_rev. Qed. Lemma rev_rotr s : rev (rotr n0 s) = rot n0 (rev s). Proof. by rewrite rev_cat -take_rev -drop_rev. Qed. Lemma rev_rot s : rev (rot n0 s) = rotr n0 (rev s). Proof. by apply: canLR revK _; rewrite rev_rotr revK. Qed. End RotrLemmas. Arguments rotrK n0 {T} s : rename. Arguments rotr_inj {n0 T} [s1 s2] eq_rotr_s12 : rename. Section RotCompLemmas. Variable T : Type. Implicit Type s : seq T. Lemma rotD m n s : m + n <= size s -> rot (m + n) s = rot m (rot n s). Proof. move=> sz_s; rewrite [LHS]/rot -[take _ s](cat_take_drop n). rewrite 5!(catA, =^~ rot_size_cat) !cat_take_drop. by rewrite size_drop !size_takel ?leq_addl ?addnK. Qed. Lemma rotS n s : n < size s -> rot n.+1 s = rot 1 (rot n s). Proof. exact: (@rotD 1). Qed. Lemma rot_add_mod m n s : n <= size s -> m <= size s -> rot m (rot n s) = rot (if m + n <= size s then m + n else m + n - size s) s. Proof. move=> Hn Hm; case: leqP => [/rotD // | /ltnW Hmn]; symmetry. by rewrite -{2}(rotK n s) /rotr -rotD size_rot addnBA ?subnK ?addnK. Qed. Lemma rot_minn n s : rot n s = rot (minn n (size s)) s. Proof. by case: (leqP n (size s)) => // /leqW ?; rewrite rot_size rot_oversize. Qed. Definition rot_add s n m (k := size s) (p := minn m k + minn n k) := locked (if p <= k then p else p - k). Lemma leq_rot_add n m s : rot_add s n m <= size s. Proof. by unlock rot_add; case: ifP; rewrite // leq_subLR leq_add // geq_minr. Qed. Lemma rot_addC n m s : rot_add s n m = rot_add s m n. Proof. by unlock rot_add; rewrite ![minn n _ + _]addnC. Qed. Lemma rot_rot_add n m s : rot m (rot n s) = rot (rot_add s n m) s. Proof. unlock rot_add. by rewrite (rot_minn n) (rot_minn m) rot_add_mod ?size_rot ?geq_minr. Qed. Lemma rot_rot m n s : rot m (rot n s) = rot n (rot m s). Proof. by rewrite rot_rot_add rot_addC -rot_rot_add. Qed. Lemma rot_rotr m n s : rot m (rotr n s) = rotr n (rot m s). Proof. by rewrite [RHS]/rotr size_rot rot_rot. Qed. Lemma rotr_rotr m n s : rotr m (rotr n s) = rotr n (rotr m s). Proof. by rewrite /rotr !size_rot rot_rot. Qed. End RotCompLemmas. Section Mask. Variables (n0 : nat) (T : Type). Implicit Types (m : bitseq) (s : seq T). Fixpoint mask m s {struct m} := match m, s with | b :: m', x :: s' => if b then x :: mask m' s' else mask m' s' | _, _ => [::] end. Lemma mask_false s n : mask (nseq n false) s = [::]. Proof. by elim: s n => [|x s IHs] [|n] /=. Qed. Lemma mask_true s n : size s <= n -> mask (nseq n true) s = s. Proof. by elim: s n => [|x s IHs] [|n] //= Hn; congr (_ :: _); apply: IHs. Qed. Lemma mask0 m : mask m [::] = [::]. Proof. by case: m. Qed. Lemma mask0s s : mask [::] s = [::]. Proof. by []. Qed. Lemma mask1 b x : mask [:: b] [:: x] = nseq b x. Proof. by case: b. Qed. Lemma mask_cons b m x s : mask (b :: m) (x :: s) = nseq b x ++ mask m s. Proof. by case: b. Qed. Lemma size_mask m s : size m = size s -> size (mask m s) = count id m. Proof. by move: m s; apply: seq_ind2 => // -[] x m s /= _ ->. Qed. Lemma mask_cat m1 m2 s1 s2 : size m1 = size s1 -> mask (m1 ++ m2) (s1 ++ s2) = mask m1 s1 ++ mask m2 s2. Proof. by move: m1 s1; apply: seq_ind2 => // -[] m1 x1 s1 /= _ ->. Qed. Lemma mask_rcons b m x s : size m = size s -> mask (rcons m b) (rcons s x) = mask m s ++ nseq b x. Proof. by move=> ms; rewrite -!cats1 mask_cat//; case: b. Qed. Lemma all_mask a m s : all a s -> all a (mask m s). Proof. by elim: s m => [|x s IHs] [|[] m]//= /andP[ax /IHs->]; rewrite ?ax. Qed. Lemma has_mask_cons a b m x s : has a (mask (b :: m) (x :: s)) = b && a x || has a (mask m s). Proof. by case: b. Qed. Lemma has_mask a m s : has a (mask m s) -> has a s. Proof. by apply/contraTT; rewrite -!all_predC; apply: all_mask. Qed. Lemma rev_mask m s : size m = size s -> rev (mask m s) = mask (rev m) (rev s). Proof. move: m s; apply: seq_ind2 => //= b x m s eq_size_sm IH. by case: b; rewrite !rev_cons mask_rcons ?IH ?size_rev// (cats1, cats0). Qed. Lemma mask_rot m s : size m = size s -> mask (rot n0 m) (rot n0 s) = rot (count id (take n0 m)) (mask m s). Proof. move=> Ems; rewrite mask_cat ?size_drop ?Ems // -rot_size_cat. by rewrite size_mask -?mask_cat ?size_take ?Ems // !cat_take_drop. Qed. Lemma resize_mask m s : {m1 | size m1 = size s & mask m s = mask m1 s}. Proof. exists (take (size s) m ++ nseq (size s - size m) false). by elim: s m => [|x s IHs] [|b m] //=; rewrite (size_nseq, IHs). by elim: s m => [|x s IHs] [|b m] //=; rewrite (mask_false, IHs). Qed. Lemma takeEmask i s : take i s = mask (nseq i true) s. Proof. by elim: i s => [s|i IHi []// ? ?]; rewrite ?take0 //= IHi. Qed. Lemma dropEmask i s : drop i s = mask (nseq i false ++ nseq (size s - i) true) s. Proof. by elim: i s => [s|? ? []//]; rewrite drop0/= mask_true// subn0. Qed. End Mask. Arguments mask _ !_ !_. Section EqMask. Variables (n0 : nat) (T : eqType). Implicit Types (s : seq T) (m : bitseq). Lemma mem_mask_cons x b m y s : (x \in mask (b :: m) (y :: s)) = b && (x == y) || (x \in mask m s). Proof. by case: b. Qed. Lemma mem_mask x m s : x \in mask m s -> x \in s. Proof. by rewrite -!has_pred1 => /has_mask. Qed. Lemma in_mask x m s : uniq s -> x \in mask m s = (x \in s) && nth false m (index x s). Proof. elim: s m => [|y s IHs] [|[] m]//= /andP[yNs ?]; rewrite ?in_cons ?IHs //=; by have [->|neq_xy] //= := eqVneq; rewrite ?andbF // (negPf yNs). Qed. Lemma mask_uniq s : uniq s -> forall m, uniq (mask m s). Proof. elim: s => [|x s IHs] Uxs [|b m] //=. case: b Uxs => //= /andP[s'x Us]; rewrite {}IHs // andbT. by apply: contra s'x; apply: mem_mask. Qed. Lemma mem_mask_rot m s : size m = size s -> mask (rot n0 m) (rot n0 s) =i mask m s. Proof. by move=> Ems x; rewrite mask_rot // mem_rot. Qed. End EqMask. Section Subseq. Variable T : eqType. Implicit Type s : seq T. Fixpoint subseq s1 s2 := if s2 is y :: s2' then if s1 is x :: s1' then subseq (if x == y then s1' else s1) s2' else true else s1 == [::]. Lemma sub0seq s : subseq [::] s. Proof. by case: s. Qed. Lemma subseq0 s : subseq s [::] = (s == [::]). Proof. by []. Qed. Lemma subseq_refl s : subseq s s. Proof. by elim: s => //= x s IHs; rewrite eqxx. Qed. Hint Resolve subseq_refl : core. Lemma subseqP s1 s2 : reflect (exists2 m, size m = size s2 & s1 = mask m s2) (subseq s1 s2). Proof. elim: s2 s1 => [|y s2 IHs2] [|x s1]. - by left; exists [::]. - by right=> -[m /eqP/nilP->]. - by left; exists (nseq (size s2).+1 false); rewrite ?size_nseq //= mask_false. apply: {IHs2}(iffP (IHs2 _)) => [] [m sz_m def_s1]. by exists ((x == y) :: m); rewrite /= ?sz_m // -def_s1; case: eqP => // ->. case: eqP => [_ | ne_xy]; last first. by case: m def_s1 sz_m => [|[] m] //; [case | move=> -> [<-]; exists m]. pose i := index true m; have def_m_i: take i m = nseq (size (take i m)) false. apply/all_pred1P; apply/(all_nthP true) => j. rewrite size_take ltnNge geq_min negb_or -ltnNge => /andP[lt_j_i _]. rewrite nth_take //= -negb_add addbF -addbT -negb_eqb. by rewrite [_ == _](before_find _ lt_j_i). have lt_i_m: i < size m. rewrite ltnNge; apply/negP=> le_m_i; rewrite take_oversize // in def_m_i. by rewrite def_m_i mask_false in def_s1. rewrite size_take lt_i_m in def_m_i. exists (take i m ++ drop i.+1 m). rewrite size_cat size_take size_drop lt_i_m. by rewrite sz_m in lt_i_m *; rewrite subnKC. rewrite {s1 def_s1}[s1](congr1 behead def_s1). rewrite -[s2](cat_take_drop i) -[m in LHS](cat_take_drop i) {}def_m_i -cat_cons. have sz_i_s2: size (take i s2) = i by apply: size_takel; rewrite sz_m in lt_i_m. rewrite lastI cat_rcons !mask_cat ?size_nseq ?size_belast ?mask_false //=. by rewrite (drop_nth true) // nth_index -?index_mem. Qed. Lemma mask_subseq m s : subseq (mask m s) s. Proof. by apply/subseqP; have [m1] := resize_mask m s; exists m1. Qed. Lemma subseq_trans : transitive subseq. Proof. move=> _ _ s /subseqP[m2 _ ->] /subseqP[m1 _ ->]. elim: s => [|x s IHs] in m2 m1 *; first by rewrite !mask0. case: m1 => [|[] m1]; first by rewrite mask0. case: m2 => [|[] m2] //; first by rewrite /= eqxx IHs. case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP. by exists (false :: m); rewrite //= sz_m. case/subseqP: (IHs m2 m1) => m sz_m def_s; apply/subseqP. by exists (false :: m); rewrite //= sz_m. Qed. Lemma cat_subseq s1 s2 s3 s4 : subseq s1 s3 -> subseq s2 s4 -> subseq (s1 ++ s2) (s3 ++ s4). Proof. case/subseqP=> m1 sz_m1 -> /subseqP [m2 sz_m2 ->]; apply/subseqP. by exists (m1 ++ m2); rewrite ?size_cat ?mask_cat ?sz_m1 ?sz_m2. Qed. Lemma prefix_subseq s1 s2 : subseq s1 (s1 ++ s2). Proof. by rewrite -[s1 in subseq s1]cats0 cat_subseq ?sub0seq. Qed. Lemma suffix_subseq s1 s2 : subseq s2 (s1 ++ s2). Proof. exact: cat_subseq (sub0seq s1) _. Qed. Lemma take_subseq s i : subseq (take i s) s. Proof. by rewrite -[s in X in subseq _ X](cat_take_drop i) prefix_subseq. Qed. Lemma drop_subseq s i : subseq (drop i s) s. Proof. by rewrite -[s in X in subseq _ X](cat_take_drop i) suffix_subseq. Qed. Lemma mem_subseq s1 s2 : subseq s1 s2 -> {subset s1 <= s2}. Proof. by case/subseqP=> m _ -> x; apply: mem_mask. Qed. Lemma sub1seq x s : subseq [:: x] s = (x \in s). Proof. by elim: s => //= y s /[1!inE]; case: ifP; rewrite ?sub0seq. Qed. Lemma size_subseq s1 s2 : subseq s1 s2 -> size s1 <= size s2. Proof. by case/subseqP=> m sz_m ->; rewrite size_mask -sz_m ?count_size. Qed. Lemma size_subseq_leqif s1 s2 : subseq s1 s2 -> size s1 <= size s2 ?= iff (s1 == s2). Proof. move=> sub12; split; first exact: size_subseq. apply/idP/eqP=> [|-> //]; case/subseqP: sub12 => m sz_m ->{s1}. rewrite size_mask -sz_m // -all_count -(eq_all eqb_id). by move/(@all_pred1P _ true)->; rewrite sz_m mask_true. Qed. Lemma subseq_anti : antisymmetric subseq. Proof. move=> s1 s2 /andP[] /size_subseq_leqif /leqifP. by case: eqP => [//|_] + /size_subseq; rewrite ltnNge => /negP. Qed. Lemma subseq_cons s x : subseq s (x :: s). Proof. exact: suffix_subseq [:: x] s. Qed. Lemma cons_subseq s1 s2 x : subseq (x :: s1) s2 -> subseq s1 s2. Proof. exact/subseq_trans/subseq_cons. Qed. Lemma subseq_rcons s x : subseq s (rcons s x). Proof. by rewrite -cats1 prefix_subseq. Qed. Lemma subseq_uniq s1 s2 : subseq s1 s2 -> uniq s2 -> uniq s1. Proof. by case/subseqP=> m _ -> Us2; apply: mask_uniq. Qed. Lemma take_uniq s n : uniq s -> uniq (take n s). Proof. exact/subseq_uniq/take_subseq. Qed. Lemma drop_uniq s n : uniq s -> uniq (drop n s). Proof. exact/subseq_uniq/drop_subseq. Qed. Lemma undup_subseq s : subseq (undup s) s. Proof. elim: s => //= x s; case: (_ \in _); last by rewrite eqxx. by case: (undup s) => //= y u; case: (_ == _) => //=; apply: cons_subseq. Qed. Lemma subseq_rev s1 s2 : subseq (rev s1) (rev s2) = subseq s1 s2. Proof. wlog suff W : s1 s2 / subseq s1 s2 -> subseq (rev s1) (rev s2). by apply/idP/idP => /W //; rewrite !revK. by case/subseqP => m size_m ->; rewrite rev_mask // mask_subseq. Qed. Lemma subseq_cat2l s s1 s2 : subseq (s ++ s1) (s ++ s2) = subseq s1 s2. Proof. by elim: s => // x s IHs; rewrite !cat_cons /= eqxx. Qed. Lemma subseq_cat2r s s1 s2 : subseq (s1 ++ s) (s2 ++ s) = subseq s1 s2. Proof. by rewrite -subseq_rev !rev_cat subseq_cat2l subseq_rev. Qed. Lemma subseq_rot p s n : subseq p s -> exists2 k, k <= n & subseq (rot k p) (rot n s). Proof. move=> /subseqP[m size_m ->]. exists (count id (take n m)); last by rewrite -mask_rot // mask_subseq. by rewrite (leq_trans (count_size _ _))// size_take_min geq_minl. Qed. End Subseq. Prenex Implicits subseq. Arguments subseqP {T s1 s2}. #[global] Hint Resolve subseq_refl : core. Section Rem. Variables (T : eqType) (x : T). Fixpoint rem s := if s is y :: t then (if y == x then t else y :: rem t) else s. Lemma rem_cons y s : rem (y :: s) = if y == x then s else y :: rem s. Proof. by []. Qed. Lemma remE s : rem s = take (index x s) s ++ drop (index x s).+1 s. Proof. by elim: s => //= y s ->; case: eqVneq; rewrite ?drop0. Qed. Lemma rem_id s : x \notin s -> rem s = s. Proof. by elim: s => //= y s IHs /norP[neq_yx /IHs->]; case: eqVneq neq_yx. Qed. Lemma perm_to_rem s : x \in s -> perm_eq s (x :: rem s). Proof. move=> xs; rewrite remE -[X in perm_eq X](cat_take_drop (index x s)). by rewrite drop_index// -cat1s perm_catCA cat1s. Qed. Lemma size_rem s : x \in s -> size (rem s) = (size s).-1. Proof. by move/perm_to_rem/perm_size->. Qed. Lemma rem_subseq s : subseq (rem s) s. Proof. elim: s => //= y s IHs; rewrite eq_sym. by case: ifP => _; [apply: subseq_cons | rewrite eqxx]. Qed. Lemma rem_uniq s : uniq s -> uniq (rem s). Proof. by apply: subseq_uniq; apply: rem_subseq. Qed. Lemma mem_rem s : {subset rem s <= s}. Proof. exact: mem_subseq (rem_subseq s). Qed. Lemma rem_filter s : uniq s -> rem s = filter (predC1 x) s. Proof. elim: s => //= y s IHs /andP[not_s_y /IHs->]. by case: eqP => //= <-; apply/esym/all_filterP; rewrite all_predC has_pred1. Qed. Lemma mem_rem_uniq s : uniq s -> rem s =i [predD1 s & x]. Proof. by move/rem_filter=> -> y; rewrite mem_filter. Qed. Lemma mem_rem_uniqF s : uniq s -> x \in rem s = false. Proof. by move/mem_rem_uniq->; rewrite inE eqxx. Qed. Lemma count_rem P s : count P (rem s) = count P s - (x \in s) && P x. Proof. have [/perm_to_rem/permP->|xNs]/= := boolP (x \in s); first by rewrite addKn. by rewrite subn0 rem_id. Qed. Lemma count_mem_rem y s : count_mem y (rem s) = count_mem y s - (x == y). Proof. rewrite count_rem; have []//= := boolP (x \in s). by case: eqP => // <- /count_memPn->. Qed. End Rem. Section Map. Variables (n0 : nat) (T1 : Type) (x1 : T1). Variables (T2 : Type) (x2 : T2) (f : T1 -> T2). Fixpoint map s := if s is x :: s' then f x :: map s' else [::]. Lemma map_cons x s : map (x :: s) = f x :: map s. Proof. by []. Qed. Lemma map_nseq x : map (nseq n0 x) = nseq n0 (f x). Proof. by elim: n0 => // *; congr (_ :: _). Qed. Lemma map_cat s1 s2 : map (s1 ++ s2) = map s1 ++ map s2. Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs. Qed. Lemma size_map s : size (map s) = size s. Proof. by elim: s => //= x s ->. Qed. Lemma behead_map s : behead (map s) = map (behead s). Proof. by case: s. Qed. Lemma nth_map n s : n < size s -> nth x2 (map s) n = f (nth x1 s n). Proof. by elim: s n => [|x s IHs] []. Qed. Lemma map_rcons s x : map (rcons s x) = rcons (map s) (f x). Proof. by rewrite -!cats1 map_cat. Qed. Lemma last_map s x : last (f x) (map s) = f (last x s). Proof. by elim: s x => /=. Qed. Lemma belast_map s x : belast (f x) (map s) = map (belast x s). Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed. Lemma filter_map a s : filter a (map s) = map (filter (preim f a) s). Proof. by elim: s => //= x s IHs; rewrite (fun_if map) /= IHs. Qed. Lemma find_map a s : find a (map s) = find (preim f a) s. Proof. by elim: s => //= x s ->. Qed. Lemma has_map a s : has a (map s) = has (preim f a) s. Proof. by elim: s => //= x s ->. Qed. Lemma all_map a s : all a (map s) = all (preim f a) s. Proof. by elim: s => //= x s ->. Qed. Lemma count_map a s : count a (map s) = count (preim f a) s. Proof. by elim: s => //= x s ->. Qed. Lemma map_take s : map (take n0 s) = take n0 (map s). Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed. Lemma map_drop s : map (drop n0 s) = drop n0 (map s). Proof. by elim: n0 s => [|n IHn] [|x s] //=; rewrite IHn. Qed. Lemma map_rot s : map (rot n0 s) = rot n0 (map s). Proof. by rewrite /rot map_cat map_take map_drop. Qed. Lemma map_rotr s : map (rotr n0 s) = rotr n0 (map s). Proof. by apply: canRL (rotK n0) _; rewrite -map_rot rotrK. Qed. Lemma map_rev s : map (rev s) = rev (map s). Proof. by elim: s => //= x s IHs; rewrite !rev_cons -!cats1 map_cat IHs. Qed. Lemma map_mask m s : map (mask m s) = mask m (map s). Proof. by elim: m s => [|[|] m IHm] [|x p] //=; rewrite IHm. Qed. Lemma inj_map : injective f -> injective map. Proof. by move=> injf; elim=> [|y1 s1 IHs] [|y2 s2] //= [/injf-> /IHs->]. Qed. End Map. Notation "[ 'seq' E | i <- s ]" := (map (fun i => E) s) (at level 0, E at level 99, i name, format "[ '[hv' 'seq' E '/ ' | i <- s ] ']'") : seq_scope. Notation "[ 'seq' E | i <- s & C ]" := [seq E | i <- [seq i <- s | C]] (at level 0, E at level 99, i name, format "[ '[hv' 'seq' E '/ ' | i <- s '/ ' & C ] ']'") : seq_scope. Notation "[ 'seq' E | i : T <- s ]" := (map (fun i : T => E) s) (at level 0, E at level 99, i name, only parsing) : seq_scope. Notation "[ 'seq' E | i : T <- s & C ]" := [seq E | i : T <- [seq i : T <- s | C]] (at level 0, E at level 99, i name, only parsing) : seq_scope. Notation "[ 'seq' E : R | i <- s ]" := (@map _ R (fun i => E) s) (at level 0, E at level 99, i name, only parsing) : seq_scope. Notation "[ 'seq' E : R | i <- s & C ]" := [seq E : R | i <- [seq i <- s | C]] (at level 0, E at level 99, i name, only parsing) : seq_scope. Notation "[ 'seq' E : R | i : T <- s ]" := (@map T R (fun i : T => E) s) (at level 0, E at level 99, i name, only parsing) : seq_scope. Notation "[ 'seq' E : R | i : T <- s & C ]" := [seq E : R | i : T <- [seq i : T <- s | C]] (at level 0, E at level 99, i name, only parsing) : seq_scope. Lemma filter_mask T a (s : seq T) : filter a s = mask (map a s) s. Proof. by elim: s => //= x s <-; case: (a x). Qed. Lemma all_sigP T a (s : seq T) : all a s -> {s' : seq (sig a) | s = map sval s'}. Proof. elim: s => /= [_|x s ihs /andP [ax /ihs [s' ->]]]; first by exists [::]. by exists (exist a x ax :: s'). Qed. Section MiscMask. Lemma leq_count_mask T (P : {pred T}) m s : count P (mask m s) <= count P s. Proof. by elim: s m => [|x s IHs] [|[] m]//=; rewrite ?leq_add2l (leq_trans (IHs _)) ?leq_addl. Qed. Variable (T : eqType). Implicit Types (s : seq T) (m : bitseq). Lemma mask_filter s m : uniq s -> mask m s = [seq i <- s | i \in mask m s]. Proof. elim: m s => [|[] m IH] [|x s /= /andP[/negP xS uS]]; rewrite ?filter_pred0 //. rewrite inE eqxx /=; congr cons; rewrite [LHS]IH//. by apply/eq_in_filter => ? /[1!inE]; case: eqP => [->|]. by case: ifP => [/mem_mask //|_]; apply: IH. Qed. Lemma leq_count_subseq P s1 s2 : subseq s1 s2 -> count P s1 <= count P s2. Proof. by move=> /subseqP[m _ ->]; rewrite leq_count_mask. Qed. Lemma count_maskP s1 s2 : (forall x, count_mem x s1 <= count_mem x s2) <-> exists2 m : bitseq, size m = size s2 & perm_eq s1 (mask m s2). Proof. split=> [s1_le|[m _ /permP s1ms2 x]]; last by rewrite s1ms2 leq_count_mask. suff [m mP]: exists m, perm_eq s1 (mask m s2). by have [m' sm' eqm] := resize_mask m s2; exists m'; rewrite -?eqm. elim: s2 => [|x s2 IHs]//= in s1 s1_le *. by exists [::]; apply/allP => x _/=; rewrite eqn_leq s1_le. have [y|m s1s2] := IHs (rem x s1); first by rewrite count_mem_rem leq_subLR. exists ((x \in s1) :: m); have [|/rem_id<-//] := boolP (x \in s1). by move/perm_to_rem/permPl->; rewrite perm_cons. Qed. Lemma count_subseqP s1 s2 : (forall x, count_mem x s1 <= count_mem x s2) <-> exists2 s, subseq s s2 & perm_eq s1 s. Proof. rewrite count_maskP; split=> [[m _]|[_/subseqP[m sm ->]]]; last by exists m. by exists (mask m s2); rewrite ?mask_subseq. Qed. End MiscMask. Section FilterSubseq. Variable T : eqType. Implicit Types (s : seq T) (a : pred T). Lemma filter_subseq a s : subseq (filter a s) s. Proof. by apply/subseqP; exists (map a s); rewrite ?size_map ?filter_mask. Qed. Lemma subseq_filter s1 s2 a : subseq s1 (filter a s2) = all a s1 && subseq s1 s2. Proof. elim: s2 s1 => [|x s2 IHs] [|y s1] //=; rewrite ?andbF ?sub0seq //. by case a_x: (a x); rewrite /= !IHs /=; case: eqP => // ->; rewrite a_x. Qed. Lemma subseq_uniqP s1 s2 : uniq s2 -> reflect (s1 = filter (mem s1) s2) (subseq s1 s2). Proof. move=> uniq_s2; apply: (iffP idP) => [ss12 | ->]; last exact: filter_subseq. apply/eqP; rewrite -size_subseq_leqif ?subseq_filter ?(introT allP) //. apply/eqP/esym/perm_size. rewrite uniq_perm ?filter_uniq ?(subseq_uniq ss12) // => x. by rewrite mem_filter; apply: andb_idr; apply: (mem_subseq ss12). Qed. Lemma uniq_subseq_pivot x (s1 s2 s3 s4 : seq T) (s := s3 ++ x :: s4) : uniq s -> subseq (s1 ++ x :: s2) s = (subseq s1 s3 && subseq s2 s4). Proof. move=> uniq_s; apply/idP/idP => [sub_s'_s|/andP[? ?]]; last first. by rewrite cat_subseq //= eqxx. have uniq_s' := subseq_uniq sub_s'_s uniq_s. have/eqP {sub_s'_s uniq_s} := subseq_uniqP _ uniq_s sub_s'_s. rewrite !filter_cat /= mem_cat inE eqxx orbT /=. rewrite uniq_eqseq_pivotl // => /andP [/eqP -> /eqP ->]. by rewrite !filter_subseq. Qed. Lemma perm_to_subseq s1 s2 : subseq s1 s2 -> {s3 | perm_eq s2 (s1 ++ s3)}. Proof. elim Ds2: s2 s1 => [|y s2' IHs] [|x s1] //=; try by exists s2; rewrite Ds2. case: eqP => [-> | _] /IHs[s3 perm_s2] {IHs}. by exists s3; rewrite perm_cons. by exists (rcons s3 y); rewrite -cat_cons -perm_rcons -!cats1 catA perm_cat2r. Qed. Lemma subseq_rem x : {homo rem x : s1 s2 / @subseq T s1 s2}. Proof. move=> s1 s2; elim: s2 s1 => [|x2 s2 IHs2] [|x1 s1]; rewrite ?sub0seq //=. have [->|_] := eqVneq x1 x2; first by case: eqP => //= _ /IHs2; rewrite eqxx. move=> /IHs2/subseq_trans->//. by have [->|_] := eqVneq x x2; [apply: rem_subseq|apply: subseq_cons]. Qed. End FilterSubseq. Arguments subseq_uniqP [T s1 s2]. Section EqMap. Variables (n0 : nat) (T1 : eqType) (x1 : T1). Variables (T2 : eqType) (x2 : T2) (f : T1 -> T2). Implicit Type s : seq T1. Lemma map_f s x : x \in s -> f x \in map f s. Proof. by elim: s => //= y s IHs /predU1P[->|/IHs]; [apply: predU1l | apply: predU1r]. Qed. Lemma mapP s y : reflect (exists2 x, x \in s & y = f x) (y \in map f s). Proof. elim: s => [|x s IHs]; [by right; case|rewrite /= inE]. exact: equivP (orPP eqP IHs) (iff_sym exists_cons). Qed. Lemma map_uniq s : uniq (map f s) -> uniq s. Proof. elim: s => //= x s IHs /andP[not_sfx /IHs->]; rewrite andbT. by apply: contra not_sfx => sx; apply/mapP; exists x. Qed. Lemma map_inj_in_uniq s : {in s &, injective f} -> uniq (map f s) = uniq s. Proof. elim: s => //= x s IHs //= injf; congr (~~ _ && _). apply/mapP/idP=> [[y sy /injf] | ]; last by exists x. by rewrite mem_head mem_behead // => ->. by apply: IHs => y z sy sz; apply: injf => //; apply: predU1r. Qed. Lemma map_subseq s1 s2 : subseq s1 s2 -> subseq (map f s1) (map f s2). Proof. case/subseqP=> m sz_m ->; apply/subseqP. by exists m; rewrite ?size_map ?map_mask. Qed. Lemma nth_index_map s x0 x : {in s &, injective f} -> x \in s -> nth x0 s (index (f x) (map f s)) = x. Proof. elim: s => //= y s IHs inj_f s_x; rewrite (inj_in_eq inj_f) ?mem_head //. move: s_x; rewrite inE; have [-> // | _] := eqVneq; apply: IHs. by apply: sub_in2 inj_f => z; apply: predU1r. Qed. Lemma perm_map s t : perm_eq s t -> perm_eq (map f s) (map f t). Proof. by move/permP=> Est; apply/permP=> a; rewrite !count_map Est. Qed. Lemma sub_map s1 s2 : {subset s1 <= s2} -> {subset map f s1 <= map f s2}. Proof. by move=> sub_s ? /mapP[x x_s ->]; rewrite map_f ?sub_s. Qed. Lemma eq_mem_map s1 s2 : s1 =i s2 -> map f s1 =i map f s2. Proof. by move=> Es x; apply/idP/idP; apply: sub_map => ?; rewrite Es. Qed. Hypothesis Hf : injective f. Lemma mem_map s x : (f x \in map f s) = (x \in s). Proof. by apply/mapP/idP=> [[y Hy /Hf->] //|]; exists x. Qed. Lemma index_map s x : index (f x) (map f s) = index x s. Proof. by rewrite /index; elim: s => //= y s IHs; rewrite (inj_eq Hf) IHs. Qed. Lemma map_inj_uniq s : uniq (map f s) = uniq s. Proof. by apply: map_inj_in_uniq; apply: in2W. Qed. Lemma undup_map_inj s : undup (map f s) = map f (undup s). Proof. by elim: s => //= s0 s ->; rewrite mem_map //; case: (_ \in _). Qed. Lemma perm_map_inj s t : perm_eq (map f s) (map f t) -> perm_eq s t. Proof. move/permP=> Est; apply/allP=> x _ /=. have Dx: pred1 x =1 preim f (pred1 (f x)) by move=> y /=; rewrite inj_eq. by rewrite !(eq_count Dx) -!count_map Est. Qed. End EqMap. Arguments mapP {T1 T2 f s y}. Lemma map_of_seq (T1 : eqType) T2 (s : seq T1) (fs : seq T2) (y0 : T2) : {f | uniq s -> size fs = size s -> map f s = fs}. Proof. exists (fun x => nth y0 fs (index x s)) => uAs eq_sz. apply/esym/(@eq_from_nth _ y0); rewrite ?size_map eq_sz // => i ltis. by have x0 : T1 by [case: (s) ltis]; rewrite (nth_map x0) // index_uniq. Qed. Section MapComp. Variable T1 T2 T3 : Type. Lemma map_id (s : seq T1) : map id s = s. Proof. by elim: s => //= x s ->. Qed. Lemma eq_map (f1 f2 : T1 -> T2) : f1 =1 f2 -> map f1 =1 map f2. Proof. by move=> Ef; elim=> //= x s ->; rewrite Ef. Qed. Lemma map_comp (f1 : T2 -> T3) (f2 : T1 -> T2) s : map (f1 \o f2) s = map f1 (map f2 s). Proof. by elim: s => //= x s ->. Qed. Lemma mapK (f1 : T1 -> T2) (f2 : T2 -> T1) : cancel f1 f2 -> cancel (map f1) (map f2). Proof. by move=> eq_f12; elim=> //= x s ->; rewrite eq_f12. Qed. End MapComp. Lemma eq_in_map (T1 : eqType) T2 (f1 f2 : T1 -> T2) (s : seq T1) : {in s, f1 =1 f2} <-> map f1 s = map f2 s. Proof. by elim: s => //= x s IHs; rewrite forall_cons IHs; split => -[-> ->]. Qed. Lemma map_id_in (T : eqType) f (s : seq T) : {in s, f =1 id} -> map f s = s. Proof. by move/eq_in_map->; apply: map_id. Qed. (* Map a partial function *) Section Pmap. Variables (aT rT : Type) (f : aT -> option rT) (g : rT -> aT). Fixpoint pmap s := if s is x :: s' then let r := pmap s' in oapp (cons^~ r) r (f x) else [::]. Lemma map_pK : pcancel g f -> cancel (map g) pmap. Proof. by move=> gK; elim=> //= x s ->; rewrite gK. Qed. Lemma size_pmap s : size (pmap s) = count [eta f] s. Proof. by elim: s => //= x s <-; case: (f _). Qed. Lemma pmapS_filter s : map some (pmap s) = map f (filter [eta f] s). Proof. by elim: s => //= x s; case fx: (f x) => //= [u] <-; congr (_ :: _). Qed. Hypothesis fK : ocancel f g. Lemma pmap_filter s : map g (pmap s) = filter [eta f] s. Proof. by elim: s => //= x s <-; rewrite -{3}(fK x); case: (f _). Qed. Lemma pmap_cat s t : pmap (s ++ t) = pmap s ++ pmap t. Proof. by elim: s => //= x s ->; case/f: x. Qed. Lemma all_pmap (p : pred rT) s : all p (pmap s) = all [pred i | oapp p true (f i)] s. Proof. by elim: s => //= x s <-; case: f. Qed. End Pmap. Lemma eq_in_pmap (aT : eqType) rT (f1 f2 : aT -> option rT) s : {in s, f1 =1 f2} -> pmap f1 s = pmap f2 s. Proof. by elim: s => //= a s IHs /forall_cons [-> /IHs ->]. Qed. Lemma eq_pmap aT rT (f1 f2 : aT -> option rT) : f1 =1 f2 -> pmap f1 =1 pmap f2. Proof. by move=> Ef; elim => //= a s ->; rewrite Ef. Qed. Section EqPmap. Variables (aT rT : eqType) (f : aT -> option rT) (g : rT -> aT). Lemma mem_pmap s u : (u \in pmap f s) = (Some u \in map f s). Proof. by elim: s => //= x s IHs; rewrite in_cons -IHs; case: (f x). Qed. Hypothesis fK : ocancel f g. Lemma can2_mem_pmap : pcancel g f -> forall s u, (u \in pmap f s) = (g u \in s). Proof. by move=> gK s u; rewrite -(mem_map (pcan_inj gK)) pmap_filter // mem_filter gK. Qed. Lemma pmap_uniq s : uniq s -> uniq (pmap f s). Proof. move/(filter_uniq f); rewrite -(pmap_filter fK); exact: map_uniq. Qed. Lemma perm_pmap s t : perm_eq s t -> perm_eq (pmap f s) (pmap f t). Proof. move=> eq_st; apply/(perm_map_inj Some_inj); rewrite !pmapS_filter. exact/perm_map/perm_filter. Qed. End EqPmap. Section PmapSub. Variables (T : Type) (p : pred T) (sT : subType p). Lemma size_pmap_sub s : size (pmap (insub : T -> option sT) s) = count p s. Proof. by rewrite size_pmap (eq_count (isSome_insub _)). Qed. End PmapSub. Section EqPmapSub. Variables (T : eqType) (p : pred T) (sT : subType p). Let insT : T -> option sT := insub. Lemma mem_pmap_sub s u : (u \in pmap insT s) = (val u \in s). Proof. exact/(can2_mem_pmap (insubK _))/valK. Qed. Lemma pmap_sub_uniq s : uniq s -> uniq (pmap insT s). Proof. exact: (pmap_uniq (insubK _)). Qed. End EqPmapSub. (* Index sequence *) Fixpoint iota m n := if n is n'.+1 then m :: iota m.+1 n' else [::]. Lemma size_iota m n : size (iota m n) = n. Proof. by elim: n m => //= n IHn m; rewrite IHn. Qed. Lemma iotaD m n1 n2 : iota m (n1 + n2) = iota m n1 ++ iota (m + n1) n2. Proof. by elim: n1 m => [|n1 IHn1] m; rewrite ?addn0 // -addSnnS /= -IHn1. Qed. Lemma iotaDl m1 m2 n : iota (m1 + m2) n = map (addn m1) (iota m2 n). Proof. by elim: n m2 => //= n IHn m2; rewrite -addnS IHn. Qed. Lemma nth_iota p m n i : i < n -> nth p (iota m n) i = m + i. Proof. by move/subnKC <-; rewrite addSnnS iotaD nth_cat size_iota ltnn subnn. Qed. Lemma mem_iota m n i : (i \in iota m n) = (m <= i < m + n). Proof. elim: n m => [|n IHn] /= m; first by rewrite addn0 ltnNge andbN. by rewrite in_cons IHn addnS ltnS; case: ltngtP => // ->; rewrite leq_addr. Qed. Lemma iota_uniq m n : uniq (iota m n). Proof. by elim: n m => //= n IHn m; rewrite mem_iota ltnn /=. Qed. Lemma take_iota k m n : take k (iota m n) = iota m (minn k n). Proof. have [lt_k_n|le_n_k] := ltnP. by elim: k n lt_k_n m => [|k IHk] [|n] //= H m; rewrite IHk. by apply: take_oversize; rewrite size_iota. Qed. Lemma drop_iota k m n : drop k (iota m n) = iota (m + k) (n - k). Proof. by elim: k m n => [|k IHk] m [|n] //=; rewrite ?addn0 // IHk addnS subSS. Qed. Lemma filter_iota_ltn m n j : j <= n -> [seq i <- iota m n | i < m + j] = iota m j. Proof. elim: n m j => [m j|n IHn m [|j] jlen]; first by rewrite leqn0 => /eqP ->. rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => i. by rewrite addn0 ltnNge mem_iota => /andP[->]. by rewrite /= addnS leq_addr -addSn IHn. Qed. Lemma filter_iota_leq n m j : j < n -> [seq i <- iota m n | i <= m + j] = iota m j.+1. Proof. elim: n m j => [//|n IHn] m [|j] jlen /=; rewrite leq_addr. rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => i. by rewrite addn0 leqNgt mem_iota => /andP[->]. by rewrite addnS -addSn IHn -1?ltnS. Qed. (* Making a sequence of a specific length, using indexes to compute items. *) Section MakeSeq. Variables (T : Type) (x0 : T). Definition mkseq f n : seq T := map f (iota 0 n). Lemma size_mkseq f n : size (mkseq f n) = n. Proof. by rewrite size_map size_iota. Qed. Lemma mkseqS f n : mkseq f n.+1 = rcons (mkseq f n) (f n). Proof. by rewrite /mkseq -addn1 iotaD add0n map_cat cats1. Qed. Lemma eq_mkseq f g : f =1 g -> mkseq f =1 mkseq g. Proof. by move=> Efg n; apply: eq_map Efg _. Qed. Lemma nth_mkseq f n i : i < n -> nth x0 (mkseq f n) i = f i. Proof. by move=> Hi; rewrite (nth_map 0) ?nth_iota ?size_iota. Qed. Lemma mkseq_nth s : mkseq (nth x0 s) (size s) = s. Proof. by apply: (@eq_from_nth _ x0); rewrite size_mkseq // => i Hi; rewrite nth_mkseq. Qed. Variant mkseq_spec s : seq T -> Type := | MapIota n f : s = mkseq f n -> mkseq_spec s (mkseq f n). Lemma mkseqP s : mkseq_spec s s. Proof. by rewrite -[s]mkseq_nth; constructor. Qed. Lemma map_nth_iota0 s i : i <= size s -> [seq nth x0 s j | j <- iota 0 i] = take i s. Proof. by move=> ile; rewrite -[s in RHS]mkseq_nth -map_take take_iota (minn_idPl _). Qed. Lemma map_nth_iota s i j : j <= size s - i -> [seq nth x0 s k | k <- iota i j] = take j (drop i s). Proof. elim: i => [|i IH] in s j *; first by rewrite subn0 drop0 => /map_nth_iota0->. case: s => [|x s /IH<-]; first by rewrite leqn0 => /eqP->. by rewrite -add1n iotaDl -map_comp. Qed. End MakeSeq. Section MakeEqSeq. Variable T : eqType. Lemma mkseq_uniqP (f : nat -> T) n : reflect {in gtn n &, injective f} (uniq (mkseq f n)). Proof. apply: (equivP (uniqP (f 0))); rewrite size_mkseq. by split=> injf i j lti ltj; have:= injf i j lti ltj; rewrite !nth_mkseq. Qed. Lemma mkseq_uniq (f : nat -> T) n : injective f -> uniq (mkseq f n). Proof. by move/map_inj_uniq->; apply: iota_uniq. Qed. Lemma perm_iotaP {s t : seq T} x0 (It := iota 0 (size t)) : reflect (exists2 Is, perm_eq Is It & s = map (nth x0 t) Is) (perm_eq s t). Proof. apply: (iffP idP) => [Est | [Is eqIst ->]]; last first. by rewrite -{2}[t](mkseq_nth x0) perm_map. elim: t => [|x t IHt] in s It Est *. by rewrite (perm_small_eq _ Est) //; exists [::]. have /rot_to[k s1 Ds]: x \in s by rewrite (perm_mem Est) mem_head. have [|Is1 eqIst1 Ds1] := IHt s1; first by rewrite -(perm_cons x) -Ds perm_rot. exists (rotr k (0 :: map succn Is1)). by rewrite perm_rot /It /= perm_cons (iotaDl 1) perm_map. by rewrite map_rotr /= -map_comp -(@eq_map _ _ (nth x0 t)) // -Ds1 -Ds rotK. Qed. End MakeEqSeq. Arguments perm_iotaP {T s t}. Section FoldRight. Variables (T : Type) (R : Type) (f : T -> R -> R) (z0 : R). Fixpoint foldr s := if s is x :: s' then f x (foldr s') else z0. End FoldRight. Section FoldRightComp. Variables (T1 T2 : Type) (h : T1 -> T2). Variables (R : Type) (f : T2 -> R -> R) (z0 : R). Lemma foldr_cat s1 s2 : foldr f z0 (s1 ++ s2) = foldr f (foldr f z0 s2) s1. Proof. by elim: s1 => //= x s1 ->. Qed. Lemma foldr_rcons s x : foldr f z0 (rcons s x) = foldr f (f x z0) s. Proof. by rewrite -cats1 foldr_cat. Qed. Lemma foldr_map s : foldr f z0 (map h s) = foldr (fun x z => f (h x) z) z0 s. Proof. by elim: s => //= x s ->. Qed. End FoldRightComp. (* Quick characterization of the null sequence. *) Definition sumn := foldr addn 0. Lemma sumn_nseq x n : sumn (nseq n x) = x * n. Proof. by rewrite mulnC; elim: n => //= n ->. Qed. Lemma sumn_cat s1 s2 : sumn (s1 ++ s2) = sumn s1 + sumn s2. Proof. by elim: s1 => //= x s1 ->; rewrite addnA. Qed. Lemma sumn_count T (a : pred T) s : sumn [seq a i : nat | i <- s] = count a s. Proof. by elim: s => //= s0 s /= ->. Qed. Lemma sumn_rcons s n : sumn (rcons s n) = sumn s + n. Proof. by rewrite -cats1 sumn_cat /= addn0. Qed. Lemma perm_sumn s1 s2 : perm_eq s1 s2 -> sumn s1 = sumn s2. Proof. by apply/catCA_perm_subst: s1 s2 => s1 s2 s3; rewrite !sumn_cat addnCA. Qed. Lemma sumn_rot s n : sumn (rot n s) = sumn s. Proof. by apply/perm_sumn; rewrite perm_rot. Qed. Lemma sumn_rev s : sumn (rev s) = sumn s. Proof. by apply/perm_sumn; rewrite perm_rev. Qed. Lemma natnseq0P s : reflect (s = nseq (size s) 0) (sumn s == 0). Proof. apply: (iffP idP) => [|->]; last by rewrite sumn_nseq. by elim: s => //= x s IHs; rewrite addn_eq0 => /andP[/eqP-> /IHs <-]. Qed. Section FoldLeft. Variables (T R : Type) (f : R -> T -> R). Fixpoint foldl z s := if s is x :: s' then foldl (f z x) s' else z. Lemma foldl_rev z s : foldl z (rev s) = foldr (fun x z => f z x) z s. Proof. by elim/last_ind: s z => // s x IHs z; rewrite rev_rcons -cats1 foldr_cat -IHs. Qed. Lemma foldl_cat z s1 s2 : foldl z (s1 ++ s2) = foldl (foldl z s1) s2. Proof. by rewrite -(revK (s1 ++ s2)) foldl_rev rev_cat foldr_cat -!foldl_rev !revK. Qed. Lemma foldl_rcons z s x : foldl z (rcons s x) = f (foldl z s) x. Proof. by rewrite -cats1 foldl_cat. Qed. End FoldLeft. Section Scan. Variables (T1 : Type) (x1 : T1) (T2 : Type) (x2 : T2). Variables (f : T1 -> T1 -> T2) (g : T1 -> T2 -> T1). Fixpoint pairmap x s := if s is y :: s' then f x y :: pairmap y s' else [::]. Lemma size_pairmap x s : size (pairmap x s) = size s. Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed. Lemma pairmap_cat x s1 s2 : pairmap x (s1 ++ s2) = pairmap x s1 ++ pairmap (last x s1) s2. Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed. Lemma nth_pairmap s n : n < size s -> forall x, nth x2 (pairmap x s) n = f (nth x1 (x :: s) n) (nth x1 s n). Proof. by elim: s n => [|y s IHs] [|n] //= Hn x; apply: IHs. Qed. Fixpoint scanl x s := if s is y :: s' then let x' := g x y in x' :: scanl x' s' else [::]. Lemma size_scanl x s : size (scanl x s) = size s. Proof. by elim: s x => //= y s IHs x; rewrite IHs. Qed. Lemma scanl_cat x s1 s2 : scanl x (s1 ++ s2) = scanl x s1 ++ scanl (foldl g x s1) s2. Proof. by elim: s1 x => //= y s1 IHs1 x; rewrite IHs1. Qed. Lemma scanl_rcons x s1 y : scanl x (rcons s1 y) = rcons (scanl x s1) (foldl g x (rcons s1 y)). Proof. by rewrite -!cats1 scanl_cat foldl_cat. Qed. Lemma nth_cons_scanl s n : n <= size s -> forall x, nth x1 (x :: scanl x s) n = foldl g x (take n s). Proof. by elim: s n => [|y s IHs] [|n] Hn x //=; rewrite IHs. Qed. Lemma nth_scanl s n : n < size s -> forall x, nth x1 (scanl x s) n = foldl g x (take n.+1 s). Proof. by move=> n_lt x; rewrite -nth_cons_scanl. Qed. Lemma scanlK : (forall x, cancel (g x) (f x)) -> forall x, cancel (scanl x) (pairmap x). Proof. by move=> Hfg x s; elim: s x => //= y s IHs x; rewrite Hfg IHs. Qed. Lemma pairmapK : (forall x, cancel (f x) (g x)) -> forall x, cancel (pairmap x) (scanl x). Proof. by move=> Hgf x s; elim: s x => //= y s IHs x; rewrite Hgf IHs. Qed. End Scan. Prenex Implicits mask map pmap foldr foldl scanl pairmap. Section Zip. Variables (S T : Type) (r : S -> T -> bool). Fixpoint zip (s : seq S) (t : seq T) {struct t} := match s, t with | x :: s', y :: t' => (x, y) :: zip s' t' | _, _ => [::] end. Definition unzip1 := map (@fst S T). Definition unzip2 := map (@snd S T). Fixpoint all2 s t := match s, t with | [::], [::] => true | x :: s, y :: t => r x y && all2 s t | _, _ => false end. Lemma zip_unzip s : zip (unzip1 s) (unzip2 s) = s. Proof. by elim: s => [|[x y] s /= ->]. Qed. Lemma unzip1_zip s t : size s <= size t -> unzip1 (zip s t) = s. Proof. by elim: s t => [|x s IHs] [|y t] //= le_s_t; rewrite IHs. Qed. Lemma unzip2_zip s t : size t <= size s -> unzip2 (zip s t) = t. Proof. by elim: s t => [|x s IHs] [|y t] //= le_t_s; rewrite IHs. Qed. Lemma size1_zip s t : size s <= size t -> size (zip s t) = size s. Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed. Lemma size2_zip s t : size t <= size s -> size (zip s t) = size t. Proof. by elim: s t => [|x s IHs] [|y t] //= Hs; rewrite IHs. Qed. Lemma size_zip s t : size (zip s t) = minn (size s) (size t). Proof. by elim: s t => [|x s IHs] [|t2 t] //=; rewrite IHs minnSS. Qed. Lemma zip_cat s1 s2 t1 t2 : size s1 = size t1 -> zip (s1 ++ s2) (t1 ++ t2) = zip s1 t1 ++ zip s2 t2. Proof. by move: s1 t1; apply: seq_ind2 => //= x y s1 t1 _ ->. Qed. Lemma nth_zip x y s t i : size s = size t -> nth (x, y) (zip s t) i = (nth x s i, nth y t i). Proof. by elim: i s t => [|i IHi] [|y1 s1] [|y2 t] //= [/IHi->]. Qed. Lemma nth_zip_cond p s t i : nth p (zip s t) i = (if i < size (zip s t) then (nth p.1 s i, nth p.2 t i) else p). Proof. rewrite size_zip ltnNge geq_min. by elim: s t i => [|x s IHs] [|y t] [|i] //=; rewrite ?orbT -?IHs. Qed. Lemma zip_rcons s t x y : size s = size t -> zip (rcons s x) (rcons t y) = rcons (zip s t) (x, y). Proof. by move=> eq_sz; rewrite -!cats1 zip_cat //= eq_sz. Qed. Lemma rev_zip s t : size s = size t -> rev (zip s t) = zip (rev s) (rev t). Proof. move: s t; apply: seq_ind2 => //= x y s t eq_sz IHs. by rewrite !rev_cons IHs zip_rcons ?size_rev. Qed. Lemma all2E s t : all2 s t = (size s == size t) && all [pred xy | r xy.1 xy.2] (zip s t). Proof. by elim: s t => [|x s IHs] [|y t] //=; rewrite IHs andbCA. Qed. Lemma zip_map I f g (s : seq I) : zip (map f s) (map g s) = [seq (f i, g i) | i <- s]. Proof. by elim: s => //= i s ->. Qed. End Zip. Prenex Implicits zip unzip1 unzip2 all2. Lemma eqseq_all (T : eqType) (s t : seq T) : (s == t) = all2 eq_op s t. Proof. by elim: s t => [|x s +] [|y t]//= => <-. Qed. Lemma eq_map_all I (T : eqType) (f g : I -> T) (s : seq I) : (map f s == map g s) = all [pred xy | xy.1 == xy.2] [seq (f i, g i) | i <- s]. Proof. by rewrite eqseq_all all2E !size_map eqxx zip_map. Qed. Section Flatten. Variable T : Type. Implicit Types (s : seq T) (ss : seq (seq T)). Definition flatten := foldr cat (Nil T). Definition shape := map (@size T). Fixpoint reshape sh s := if sh is n :: sh' then take n s :: reshape sh' (drop n s) else [::]. Definition flatten_index sh r c := sumn (take r sh) + c. Definition reshape_index sh i := find (pred1 0) (scanl subn i.+1 sh). Definition reshape_offset sh i := i - sumn (take (reshape_index sh i) sh). Lemma size_flatten ss : size (flatten ss) = sumn (shape ss). Proof. by elim: ss => //= s ss <-; rewrite size_cat. Qed. Lemma flatten_cat ss1 ss2 : flatten (ss1 ++ ss2) = flatten ss1 ++ flatten ss2. Proof. by elim: ss1 => //= s ss1 ->; rewrite catA. Qed. Lemma size_reshape sh s : size (reshape sh s) = size sh. Proof. by elim: sh s => //= s0 sh IHsh s; rewrite IHsh. Qed. Lemma nth_reshape (sh : seq nat) l n : nth [::] (reshape sh l) n = take (nth 0 sh n) (drop (sumn (take n sh)) l). Proof. elim: n sh l => [| n IHn] [| sh0 sh] l; rewrite ?take0 ?drop0 //=. by rewrite addnC -drop_drop; apply: IHn. Qed. Lemma flattenK ss : reshape (shape ss) (flatten ss) = ss. Proof. by elim: ss => //= s ss IHss; rewrite take_size_cat ?drop_size_cat ?IHss. Qed. Lemma reshapeKr sh s : size s <= sumn sh -> flatten (reshape sh s) = s. Proof. elim: sh s => [[]|n sh IHsh] //= s sz_s; rewrite IHsh ?cat_take_drop //. by rewrite size_drop leq_subLR. Qed. Lemma reshapeKl sh s : size s >= sumn sh -> shape (reshape sh s) = sh. Proof. elim: sh s => [[]|n sh IHsh] //= s sz_s. rewrite size_takel; last exact: leq_trans (leq_addr _ _) sz_s. by rewrite IHsh // -(leq_add2l n) size_drop -maxnE leq_max sz_s orbT. Qed. Lemma flatten_rcons ss s : flatten (rcons ss s) = flatten ss ++ s. Proof. by rewrite -cats1 flatten_cat /= cats0. Qed. Lemma flatten_seq1 s : flatten [seq [:: x] | x <- s] = s. Proof. by elim: s => //= s0 s ->. Qed. Lemma count_flatten ss P : count P (flatten ss) = sumn [seq count P x | x <- ss]. Proof. by elim: ss => //= s ss IHss; rewrite count_cat IHss. Qed. Lemma filter_flatten ss (P : pred T) : filter P (flatten ss) = flatten [seq filter P i | i <- ss]. Proof. by elim: ss => // s ss /= <-; apply: filter_cat. Qed. Lemma rev_flatten ss : rev (flatten ss) = flatten (rev (map rev ss)). Proof. by elim: ss => //= s ss IHss; rewrite rev_cons flatten_rcons -IHss rev_cat. Qed. Lemma nth_shape ss i : nth 0 (shape ss) i = size (nth [::] ss i). Proof. rewrite /shape; case: (ltnP i (size ss)) => Hi; first exact: nth_map. by rewrite !nth_default // size_map. Qed. Lemma shape_rev ss : shape (rev ss) = rev (shape ss). Proof. exact: map_rev. Qed. Lemma eq_from_flatten_shape ss1 ss2 : flatten ss1 = flatten ss2 -> shape ss1 = shape ss2 -> ss1 = ss2. Proof. by move=> Eflat Esh; rewrite -[LHS]flattenK Eflat Esh flattenK. Qed. Lemma rev_reshape sh s : size s = sumn sh -> rev (reshape sh s) = map rev (reshape (rev sh) (rev s)). Proof. move=> sz_s; apply/(canLR revK)/eq_from_flatten_shape. rewrite reshapeKr ?sz_s // -rev_flatten reshapeKr ?revK //. by rewrite size_rev sumn_rev sz_s. transitivity (rev (shape (reshape (rev sh) (rev s)))). by rewrite !reshapeKl ?revK ?size_rev ?sz_s ?sumn_rev. rewrite shape_rev; congr (rev _); rewrite -[RHS]map_comp. by under eq_map do rewrite /= size_rev. Qed. Lemma reshape_rcons s sh n (m := sumn sh) : m + n = size s -> reshape (rcons sh n) s = rcons (reshape sh (take m s)) (drop m s). Proof. move=> Dmn; apply/(can_inj revK); rewrite rev_reshape ?rev_rcons ?sumn_rcons //. rewrite /= take_rev drop_rev -Dmn addnK revK -rev_reshape //. by rewrite size_takel // -Dmn leq_addr. Qed. Lemma flatten_indexP sh r c : c < nth 0 sh r -> flatten_index sh r c < sumn sh. Proof. move=> lt_c_sh; rewrite -[sh in sumn sh](cat_take_drop r) sumn_cat ltn_add2l. suffices lt_r_sh: r < size sh by rewrite (drop_nth 0 lt_r_sh) ltn_addr. by case: ltnP => // le_sh_r; rewrite nth_default in lt_c_sh. Qed. Lemma reshape_indexP sh i : i < sumn sh -> reshape_index sh i < size sh. Proof. rewrite /reshape_index; elim: sh => //= n sh IHsh in i *; rewrite subn_eq0. by have [// | le_n_i] := ltnP i n; rewrite -leq_subLR subSn // => /IHsh. Qed. Lemma reshape_offsetP sh i : i < sumn sh -> reshape_offset sh i < nth 0 sh (reshape_index sh i). Proof. rewrite /reshape_offset /reshape_index; elim: sh => //= n sh IHsh in i *. rewrite subn_eq0; have [| le_n_i] := ltnP i n; first by rewrite subn0. by rewrite -leq_subLR /= subnDA subSn // => /IHsh. Qed. Lemma reshape_indexK sh i : flatten_index sh (reshape_index sh i) (reshape_offset sh i) = i. Proof. rewrite /reshape_offset /reshape_index /flatten_index -subSKn. elim: sh => //= n sh IHsh in i *; rewrite subn_eq0; have [//|le_n_i] := ltnP. by rewrite /= subnDA subSn // -addnA IHsh subnKC. Qed. Lemma flatten_indexKl sh r c : c < nth 0 sh r -> reshape_index sh (flatten_index sh r c) = r. Proof. rewrite /reshape_index /flatten_index. elim: sh r => [|n sh IHsh] [|r] //= lt_c_sh; first by rewrite ifT. by rewrite -addnA -addnS addKn IHsh. Qed. Lemma flatten_indexKr sh r c : c < nth 0 sh r -> reshape_offset sh (flatten_index sh r c) = c. Proof. rewrite /reshape_offset /reshape_index /flatten_index. elim: sh r => [|n sh IHsh] [|r] //= lt_c_sh; first by rewrite ifT ?subn0. by rewrite -addnA -addnS addKn /= subnDl IHsh. Qed. Lemma nth_flatten x0 ss i (r := reshape_index (shape ss) i) : nth x0 (flatten ss) i = nth x0 (nth [::] ss r) (reshape_offset (shape ss) i). Proof. rewrite /reshape_offset -subSKn {}/r /reshape_index. elim: ss => //= s ss IHss in i *; rewrite subn_eq0 nth_cat. by have [//|le_s_i] := ltnP; rewrite subnDA subSn /=. Qed. Lemma reshape_leq sh i1 i2 (r1 := reshape_index sh i1) (c1 := reshape_offset sh i1) (r2 := reshape_index sh i2) (c2 := reshape_offset sh i2) : (i1 <= i2) = ((r1 < r2) || ((r1 == r2) && (c1 <= c2))). Proof. rewrite {}/r1 {}/c1 {}/r2 {}/c2 /reshape_offset /reshape_index. elim: sh => [|s0 s IHs] /= in i1 i2 *; rewrite ?subn0 ?subn_eq0 //. have [[] i1s0 [] i2s0] := (ltnP i1 s0, ltnP i2 s0); first by rewrite !subn0. - by apply: leq_trans i2s0; apply/ltnW. - by apply/negP => /(leq_trans i1s0); rewrite leqNgt i2s0. by rewrite !subSn // !eqSS !ltnS !subnDA -IHs leq_subLR subnKC. Qed. End Flatten. Prenex Implicits flatten shape reshape. Lemma map_flatten S T (f : T -> S) ss : map f (flatten ss) = flatten (map (map f) ss). Proof. by elim: ss => // s ss /= <-; apply: map_cat. Qed. Lemma flatten_map1 (S T : Type) (f : S -> T) s : flatten [seq [:: f x] | x <- s] = map f s. Proof. by elim: s => //= s0 s ->. Qed. Lemma undup_flatten_nseq n (T : eqType) (s : seq T) : 0 < n -> undup (flatten (nseq n s)) = undup s. Proof. elim: n => [|[|n]/= IHn]//= _; rewrite ?cats0// undup_cat {}IHn//. rewrite (@eq_in_filter _ _ pred0) ?filter_pred0// => x. by rewrite mem_undup mem_cat => ->. Qed. Lemma sumn_flatten (ss : seq (seq nat)) : sumn (flatten ss) = sumn (map sumn ss). Proof. by elim: ss => // s ss /= <-; apply: sumn_cat. Qed. Lemma map_reshape T S (f : T -> S) sh s : map (map f) (reshape sh s) = reshape sh (map f s). Proof. by elim: sh s => //= sh0 sh IHsh s; rewrite map_take IHsh map_drop. Qed. Section EqFlatten. Variables S T : eqType. Lemma flattenP (A : seq (seq T)) x : reflect (exists2 s, s \in A & x \in s) (x \in flatten A). Proof. elim: A => /= [|s A IH_A]; [by right; case | rewrite mem_cat]. by apply: equivP (iff_sym exists_cons); apply: (orPP idP IH_A). Qed. Arguments flattenP {A x}. Lemma flatten_mapP (A : S -> seq T) s y : reflect (exists2 x, x \in s & y \in A x) (y \in flatten (map A s)). Proof. apply: (iffP flattenP) => [[_ /mapP[x sx ->]] | [x sx]] Axy; first by exists x. by exists (A x); rewrite ?map_f. Qed. Lemma perm_flatten (ss1 ss2 : seq (seq T)) : perm_eq ss1 ss2 -> perm_eq (flatten ss1) (flatten ss2). Proof. move=> eq_ss; apply/permP=> a; apply/catCA_perm_subst: ss1 ss2 eq_ss. by move=> ss1 ss2 ss3; rewrite !flatten_cat !count_cat addnCA. Qed. End EqFlatten. Arguments flattenP {T A x}. Arguments flatten_mapP {S T A s y}. Notation "[ 'seq' E | x <- s , y <- t ]" := (flatten [seq [seq E | y <- t] | x <- s]) (at level 0, E at level 99, x name, y name, format "[ '[hv' 'seq' E '/ ' | x <- s , '/ ' y <- t ] ']'") : seq_scope. Notation "[ 'seq' E | x : S <- s , y : T <- t ]" := (flatten [seq [seq E | y : T <- t] | x : S <- s]) (at level 0, E at level 99, x name, y name, only parsing) : seq_scope. Notation "[ 'seq' E : R | x : S <- s , y : T <- t ]" := (flatten [seq [seq E : R | y : T <- t] | x : S <- s]) (at level 0, E at level 99, x name, y name, only parsing) : seq_scope. Notation "[ 'seq' E : R | x <- s , y <- t ]" := (flatten [seq [seq E : R | y <- t] | x <- s]) (at level 0, E at level 99, x name, y name, only parsing) : seq_scope. Section PrefixSuffixInfix. Variables T : eqType. Implicit Type s : seq T. Fixpoint prefix s1 s2 {struct s2} := if s1 isn't x :: s1' then true else if s2 isn't y :: s2' then false else (x == y) && prefix s1' s2'. Lemma prefixE s1 s2 : prefix s1 s2 = (take (size s1) s2 == s1). Proof. by elim: s2 s1 => [|y s2 +] [|x s1]//= => ->; rewrite eq_sym. Qed. Lemma prefix_refl s : prefix s s. Proof. by rewrite prefixE take_size. Qed. Lemma prefixs0 s : prefix s [::] = (s == [::]). Proof. by case: s. Qed. Lemma prefix0s s : prefix [::] s. Proof. by case: s. Qed. Lemma prefix_cons s1 s2 x y : prefix (x :: s1) (y :: s2) = (x == y) && prefix s1 s2. Proof. by []. Qed. Lemma prefix_catr s1 s2 s1' s3 : size s1 = size s1' -> prefix (s1 ++ s2) (s1' ++ s3) = (s1 == s1') && prefix s2 s3. Proof. elim: s1 s1' => [|x s1 IHs1] [|y s1']//= [eqs1]. by rewrite IHs1// eqseq_cons andbA. Qed. Lemma prefix_prefix s1 s2 : prefix s1 (s1 ++ s2). Proof. by rewrite prefixE take_cat ltnn subnn take0 cats0. Qed. Hint Resolve prefix_prefix : core. Lemma prefixP {s1 s2} : reflect (exists s2' : seq T, s2 = s1 ++ s2') (prefix s1 s2). Proof. apply: (iffP idP) => [|[{}s2 ->]]; last exact: prefix_prefix. by rewrite prefixE => /eqP<-; exists (drop (size s1) s2); rewrite cat_take_drop. Qed. Lemma prefix_trans : transitive prefix. Proof. by move=> _ s2 _ /prefixP[s1 ->] /prefixP[s3 ->]; rewrite -catA. Qed. Lemma prefixs1 s x : prefix s [:: x] = (s == [::]) || (s == [:: x]). Proof. by case: s => //= y s; rewrite prefixs0 eqseq_cons. Qed. Lemma catl_prefix s1 s2 s3 : prefix (s1 ++ s3) s2 -> prefix s1 s2. Proof. by move=> /prefixP [s2'] ->; rewrite -catA. Qed. Lemma prefix_catl s1 s2 s3 : prefix s1 s2 -> prefix s1 (s2 ++ s3). Proof. by move=> /prefixP [s2'] ->; rewrite -catA. Qed. Lemma prefix_rcons s x : prefix s (rcons s x). Proof. by rewrite -cats1 prefix_prefix. Qed. Definition suffix s1 s2 := prefix (rev s1) (rev s2). Lemma suffixE s1 s2 : suffix s1 s2 = (drop (size s2 - size s1) s2 == s1). Proof. by rewrite /suffix prefixE take_rev (can_eq revK) size_rev. Qed. Lemma suffix_refl s : suffix s s. Proof. exact: prefix_refl. Qed. Lemma suffixs0 s : suffix s [::] = (s == [::]). Proof. by rewrite /suffix prefixs0 -!nilpE rev_nilp. Qed. Lemma suffix0s s : suffix [::] s. Proof. exact: prefix0s. Qed. Lemma prefix_rev s1 s2 : prefix (rev s1) (rev s2) = suffix s1 s2. Proof. by []. Qed. Lemma prefix_revLR s1 s2 : prefix (rev s1) s2 = suffix s1 (rev s2). Proof. by rewrite -prefix_rev revK. Qed. Lemma suffix_rev s1 s2 : suffix (rev s1) (rev s2) = prefix s1 s2. Proof. by rewrite -prefix_rev !revK. Qed. Lemma suffix_revLR s1 s2 : suffix (rev s1) s2 = prefix s1 (rev s2). Proof. by rewrite -prefix_rev revK. Qed. Lemma suffix_suffix s1 s2 : suffix s2 (s1 ++ s2). Proof. by rewrite /suffix rev_cat prefix_prefix. Qed. Hint Resolve suffix_suffix : core. Lemma suffixP {s1 s2} : reflect (exists s2' : seq T, s2 = s2' ++ s1) (suffix s1 s2). Proof. apply: (iffP prefixP) => [[s2' rev_s2]|[s2' ->]]; exists (rev s2'); last first. by rewrite rev_cat. by rewrite -[s2]revK rev_s2 rev_cat revK. Qed. Lemma suffix_trans : transitive suffix. Proof. by move=> _ s2 _ /suffixP[s1 ->] /suffixP[s3 ->]; rewrite catA. Qed. Lemma suffix_rcons s1 s2 x y : suffix (rcons s1 x) (rcons s2 y) = (x == y) && suffix s1 s2. Proof. by rewrite /suffix 2!rev_rcons prefix_cons. Qed. Lemma suffix_catl s1 s2 s3 s3' : size s3 = size s3' -> suffix (s1 ++ s3) (s2 ++ s3') = (s3 == s3') && suffix s1 s2. Proof. by move=> eqs3; rewrite /suffix !rev_cat prefix_catr ?size_rev// (can_eq revK). Qed. Lemma suffix_catr s1 s2 s3 : suffix s1 s2 -> suffix s1 (s3 ++ s2). Proof. by move=> /suffixP [s2'] ->; rewrite catA suffix_suffix. Qed. Lemma catl_suffix s s1 s2 : suffix (s ++ s1) s2 -> suffix s1 s2. Proof. by move=> /suffixP [s2'] ->; rewrite catA suffix_suffix. Qed. Lemma suffix_cons s x : suffix s (x :: s). Proof. by rewrite /suffix rev_cons prefix_rcons. Qed. Fixpoint infix s1 s2 := if s2 is y :: s2' then prefix s1 s2 || infix s1 s2' else s1 == [::]. Fixpoint infix_index s1 s2 := if prefix s1 s2 then 0 else if s2 is y :: s2' then (infix_index s1 s2').+1 else 1. Lemma infix0s s : infix [::] s. Proof. by case: s. Qed. Lemma infixs0 s : infix s [::] = (s == [::]). Proof. by case: s. Qed. Lemma infix_consl s1 y s2 : infix s1 (y :: s2) = prefix s1 (y :: s2) || infix s1 s2. Proof. by []. Qed. Lemma infix_indexss s : infix_index s s = 0. Proof. by case: s => //= x s; rewrite eqxx prefix_refl. Qed. Lemma infix_index_le s1 s2 : infix_index s1 s2 <= (size s2).+1. Proof. by elim: s2 => [|x s2'] /=; case: ifP. Qed. Lemma infixTindex s1 s2 : (infix_index s1 s2 <= size s2) = infix s1 s2. Proof. by elim: s2 s1 => [|y s2 +] [|x s1]//= => <-; case: ifP. Qed. Lemma infixPn s1 s2 : reflect (infix_index s1 s2 = (size s2).+1) (~~ infix s1 s2). Proof. rewrite -infixTindex -ltnNge; apply: (iffP idP) => [s2lt|->//]. by apply/eqP; rewrite eqn_leq s2lt infix_index_le. Qed. Lemma infix_index0s s : infix_index [::] s = 0. Proof. by case: s. Qed. Lemma infix_indexs0 s : infix_index s [::] = (s != [::]). Proof. by case: s. Qed. Lemma infixE s1 s2 : infix s1 s2 = (take (size s1) (drop (infix_index s1 s2) s2) == s1). Proof. elim: s2 s1 => [|y s2 +] [|x s1]//= => -> /=. by case: ifP => // /andP[/eqP-> ps1s2/=]; rewrite eqseq_cons -prefixE eqxx. Qed. Lemma infix_refl s : infix s s. Proof. by rewrite infixE infix_indexss// drop0 take_size. Qed. Lemma prefixW s1 s2 : prefix s1 s2 -> infix s1 s2. Proof. by elim: s2 s1 => [|y s2 IHs2] [|x s1]//=->. Qed. Lemma prefix_infix s1 s2 : infix s1 (s1 ++ s2). Proof. exact: prefixW. Qed. Hint Resolve prefix_infix : core. Lemma infix_infix s1 s2 s3 : infix s2 (s1 ++ s2 ++ s3). Proof. by elim: s1 => //= x s1 ->; rewrite orbT. Qed. Hint Resolve infix_infix : core. Lemma suffix_infix s1 s2 : infix s2 (s1 ++ s2). Proof. by rewrite -[X in s1 ++ X]cats0. Qed. Hint Resolve suffix_infix : core. Lemma infixP {s1 s2} : reflect (exists s s' : seq T, s2 = s ++ s1 ++ s') (infix s1 s2). Proof. apply: (iffP idP) => [|[p [s {s2}->]]]//=; rewrite infixE => /eqP<-. set k := infix_index _ _; exists (take k s2), (drop (size s1 + k) s2). by rewrite -drop_drop !cat_take_drop. Qed. Lemma infix_rev s1 s2 : infix (rev s1) (rev s2) = infix s1 s2. Proof. gen have sr : s1 s2 / infix s1 s2 -> infix (rev s1) (rev s2); last first. by apply/idP/idP => /sr; rewrite ?revK. by move=> /infixP[s [p ->]]; rewrite !rev_cat -catA. Qed. Lemma suffixW s1 s2 : suffix s1 s2 -> infix s1 s2. Proof. by rewrite -infix_rev; apply: prefixW. Qed. Lemma infix_trans : transitive infix. Proof. move=> s s1 s2 /infixP[s1p [s1s def_s]] /infixP[sp [ss def_s2]]. by apply/infixP; exists (sp ++ s1p),(s1s ++ ss); rewrite def_s2 def_s -!catA. Qed. Lemma infix_revLR s1 s2 : infix (rev s1) s2 = infix s1 (rev s2). Proof. by rewrite -infix_rev revK. Qed. Lemma infix_rconsl s1 s2 y : infix s1 (rcons s2 y) = suffix s1 (rcons s2 y) || infix s1 s2. Proof. rewrite -infix_rev rev_rcons infix_consl. by rewrite -rev_rcons prefix_rev infix_rev. Qed. Lemma infix_cons s x : infix s (x :: s). Proof. by rewrite -cat1s suffix_infix. Qed. Lemma infixs1 s x : infix s [:: x] = (s == [::]) || (s == [:: x]). Proof. by rewrite infix_consl prefixs1 orbC orbA orbb. Qed. Lemma catl_infix s s1 s2 : infix (s ++ s1) s2 -> infix s1 s2. Proof. apply: infix_trans; exact/suffixW/suffix_suffix. Qed. Lemma catr_infix s s1 s2 : infix (s1 ++ s) s2 -> infix s1 s2. Proof. by rewrite -infix_rev rev_cat => /catl_infix; rewrite infix_rev. Qed. Lemma cons2_infix s1 s2 x : infix (x :: s1) (x :: s2) -> infix s1 s2. Proof. by rewrite /= eqxx /= -cat1s => /orP[/prefixW//|]; exact: catl_infix. Qed. Lemma rcons2_infix s1 s2 x : infix (rcons s1 x) (rcons s2 x) -> infix s1 s2. Proof. by rewrite -infix_rev !rev_rcons => /cons2_infix; rewrite infix_rev. Qed. Lemma catr2_infix s s1 s2 : infix (s ++ s1) (s ++ s2) -> infix s1 s2. Proof. by elim: s => //= x s IHs /cons2_infix. Qed. Lemma catl2_infix s s1 s2 : infix (s1 ++ s) (s2 ++ s) -> infix s1 s2. Proof. by rewrite -infix_rev !rev_cat => /catr2_infix; rewrite infix_rev. Qed. Lemma infix_catl s1 s2 s3 : infix s1 s2 -> infix s1 (s3 ++ s2). Proof. by move=> is12; apply: infix_trans is12 (suffix_infix _ _). Qed. Lemma infix_catr s1 s2 s3 : infix s1 s2 -> infix s1 (s2 ++ s3). Proof. case: s3 => [|x s /infixP [p [sf]] ->]; first by rewrite cats0. by rewrite -catA; apply: infix_catl; rewrite -catA prefix_infix. Qed. Lemma prefix_infix_trans s2 s1 s3 : prefix s1 s2 -> infix s2 s3 -> infix s1 s3. Proof. by move=> /prefixW/infix_trans; apply. Qed. Lemma suffix_infix_trans s2 s1 s3 : suffix s1 s2 -> infix s2 s3 -> infix s1 s3. Proof. by move=> /suffixW/infix_trans; apply. Qed. Lemma infix_prefix_trans s2 s1 s3 : infix s1 s2 -> prefix s2 s3 -> infix s1 s3. Proof. by move=> + /prefixW; apply: infix_trans. Qed. Lemma infix_suffix_trans s2 s1 s3 : infix s1 s2 -> suffix s2 s3 -> infix s1 s3. Proof. by move=> + /suffixW; apply: infix_trans. Qed. Lemma prefix_suffix_trans s2 s1 s3 : prefix s1 s2 -> suffix s2 s3 -> infix s1 s3. Proof. by move=> /prefixW + /suffixW +; apply: infix_trans. Qed. Lemma suffix_prefix_trans s2 s1 s3 : suffix s1 s2 -> prefix s2 s3 -> infix s1 s3. Proof. by move=> /suffixW + /prefixW +; apply: infix_trans. Qed. Lemma infixW s1 s2 : infix s1 s2 -> subseq s1 s2. Proof. move=> /infixP[sp [ss ->]]. exact: subseq_trans (prefix_subseq _ _) (suffix_subseq _ _). Qed. Lemma mem_infix s1 s2 : infix s1 s2 -> {subset s1 <= s2}. Proof. by move=> /infixW subH; apply: mem_subseq. Qed. Lemma infix1s s x : infix [:: x] s = (x \in s). Proof. by elim: s => // x' s /= ->; rewrite in_cons prefix0s andbT. Qed. Lemma prefix1s s x : prefix [:: x] s -> x \in s. Proof. by rewrite -infix1s => /prefixW. Qed. Lemma suffix1s s x : suffix [:: x] s -> x \in s. Proof. by rewrite -infix1s => /suffixW. Qed. Lemma infix_rcons s x : infix s (rcons s x). Proof. by rewrite -cats1 prefix_infix. Qed. Lemma infix_uniq s1 s2 : infix s1 s2 -> uniq s2 -> uniq s1. Proof. by move=> /infixW /subseq_uniq subH. Qed. Lemma prefix_uniq s1 s2 : prefix s1 s2 -> uniq s2 -> uniq s1. Proof. by move=> /prefixW /infix_uniq preH. Qed. Lemma suffix_uniq s1 s2 : suffix s1 s2 -> uniq s2 -> uniq s1. Proof. by move=> /suffixW /infix_uniq preH. Qed. Lemma prefix_take s i : prefix (take i s) s. Proof. by rewrite -{2}[s](cat_take_drop i). Qed. Lemma suffix_drop s i : suffix (drop i s) s. Proof. by rewrite -{2}[s](cat_take_drop i). Qed. Lemma infix_take s i : infix (take i s) s. Proof. by rewrite prefixW // prefix_take. Qed. Lemma prefix_drop_gt0 s i : ~~ prefix (drop i s) s -> i > 0. Proof. by case: i => //=; rewrite drop0 ltnn prefix_refl. Qed. Lemma infix_drop s i : infix (drop i s) s. Proof. by rewrite -{2}[s](cat_take_drop i). Qed. Lemma consr_infix s1 s2 x : infix (x :: s1) s2 -> infix [:: x] s2. Proof. by rewrite -cat1s => /catr_infix. Qed. Lemma consl_infix s1 s2 x : infix (x :: s1) s2 -> infix s1 s2. Proof. by rewrite -cat1s => /catl_infix. Qed. Lemma prefix_index s1 s2 : prefix s1 s2 -> infix_index s1 s2 = 0. Proof. by case: s1 s2 => [|x s1] [|y s2] //= ->. Qed. Lemma size_infix s1 s2 : infix s1 s2 -> size s1 <= size s2. Proof. by move=> /infixW; apply: size_subseq. Qed. Lemma size_prefix s1 s2 : prefix s1 s2 -> size s1 <= size s2. Proof. by move=> /prefixW; apply: size_infix. Qed. Lemma size_suffix s1 s2 : suffix s1 s2 -> size s1 <= size s2. Proof. by move=> /suffixW; apply: size_infix. Qed. End PrefixSuffixInfix. Section AllPairsDep. Variables (S S' : Type) (T T' : S -> Type) (R : Type). Implicit Type f : forall x, T x -> R. Definition allpairs_dep f s t := [seq f x y | x <- s, y <- t x]. Lemma size_allpairs_dep f s t : size [seq f x y | x <- s, y <- t x] = sumn [seq size (t x) | x <- s]. Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed. Lemma allpairs0l f t : [seq f x y | x <- [::], y <- t x] = [::]. Proof. by []. Qed. Lemma allpairs0r f s : [seq f x y | x <- s, y <- [::]] = [::]. Proof. by elim: s. Qed. Lemma allpairs1l f x t : [seq f x y | x <- [:: x], y <- t x] = [seq f x y | y <- t x]. Proof. exact: cats0. Qed. Lemma allpairs1r f s y : [seq f x y | x <- s, y <- [:: y x]] = [seq f x (y x) | x <- s]. Proof. exact: flatten_map1. Qed. Lemma allpairs_cons f x s t : [seq f x y | x <- x :: s, y <- t x] = [seq f x y | y <- t x] ++ [seq f x y | x <- s, y <- t x]. Proof. by []. Qed. Lemma eq_allpairs (f1 f2 : forall x, T x -> R) s t : (forall x, f1 x =1 f2 x) -> [seq f1 x y | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x]. Proof. by move=> eq_f; under eq_map do under eq_map do rewrite eq_f. Qed. Lemma eq_allpairsr (f : forall x, T x -> R) s t1 t2 : (forall x, t1 x = t2 x) -> [seq f x y | x <- s, y <- t1 x] = [seq f x y | x <- s, y <- t2 x]. Proof. by move=> eq_t; under eq_map do rewrite eq_t. Qed. Lemma allpairs_cat f s1 s2 t : [seq f x y | x <- s1 ++ s2, y <- t x] = [seq f x y | x <- s1, y <- t x] ++ [seq f x y | x <- s2, y <- t x]. Proof. by rewrite map_cat flatten_cat. Qed. Lemma allpairs_rcons f x s t : [seq f x y | x <- rcons s x, y <- t x] = [seq f x y | x <- s, y <- t x] ++ [seq f x y | y <- t x]. Proof. by rewrite -cats1 allpairs_cat allpairs1l. Qed. Lemma allpairs_mapl f (g : S' -> S) s t : [seq f x y | x <- map g s, y <- t x] = [seq f (g x) y | x <- s, y <- t (g x)]. Proof. by rewrite -map_comp. Qed. Lemma allpairs_mapr f (g : forall x, T' x -> T x) s t : [seq f x y | x <- s, y <- map (g x) (t x)] = [seq f x (g x y) | x <- s, y <- t x]. Proof. by under eq_map do rewrite -map_comp. Qed. End AllPairsDep. Arguments allpairs_dep {S T R} f s t /. Lemma map_allpairs S T R R' (g : R' -> R) f s t : map g [seq f x y | x : S <- s, y : T x <- t x] = [seq g (f x y) | x <- s, y <- t x]. Proof. by rewrite map_flatten allpairs_mapl allpairs_mapr. Qed. Section AllPairsNonDep. Variables (S T R : Type) (f : S -> T -> R). Implicit Types (s : seq S) (t : seq T). Definition allpairs s t := [seq f x y | x <- s, y <- t]. Lemma size_allpairs s t : size [seq f x y | x <- s, y <- t] = size s * size t. Proof. by elim: s => //= x s IHs; rewrite size_cat size_map IHs. Qed. End AllPairsNonDep. Arguments allpairs {S T R} f s t /. Section EqAllPairsDep. Variables (S : eqType) (T : S -> eqType). Implicit Types (R : eqType) (s : seq S) (t : forall x, seq (T x)). Lemma allpairsPdep R (f : forall x, T x -> R) s t (z : R) : reflect (exists x y, [/\ x \in s, y \in t x & z = f x y]) (z \in [seq f x y | x <- s, y <- t x]). Proof. apply: (iffP flatten_mapP); first by case=> x sx /mapP[y ty ->]; exists x, y. by case=> x [y [sx ty ->]]; exists x; last apply: map_f. Qed. Variable R : eqType. Implicit Type f : forall x, T x -> R. Lemma allpairs_f_dep f s t x y : x \in s -> y \in t x -> f x y \in [seq f x y | x <- s, y <- t x]. Proof. by move=> sx ty; apply/allpairsPdep; exists x, y. Qed. Lemma eq_in_allpairs_dep f1 f2 s t : {in s, forall x, {in t x, f1 x =1 f2 x}} <-> [seq f1 x y : R | x <- s, y <- t x] = [seq f2 x y | x <- s, y <- t x]. Proof. split=> [eq_f | eq_fst x s_x]. by congr flatten; apply/eq_in_map=> x s_x; apply/eq_in_map/eq_f. apply/eq_in_map; apply/eq_in_map: x s_x; apply/eq_from_flatten_shape => //. by rewrite /shape -!map_comp; apply/eq_map=> x /=; rewrite !size_map. Qed. Lemma mem_allpairs_dep f s1 t1 s2 t2 : s1 =i s2 -> {in s1, forall x, t1 x =i t2 x} -> [seq f x y | x <- s1, y <- t1 x] =i [seq f x y | x <- s2, y <- t2 x]. Proof. move=> eq_s eq_t z; apply/allpairsPdep/allpairsPdep=> -[x [y [sx ty ->]]]; by exists x, y; rewrite -eq_s in sx *; rewrite eq_t in ty *. Qed. Lemma allpairs_uniq_dep f s t (st := [seq Tagged T y | x <- s, y <- t x]) : let g (p : {x : S & T x}) : R := f (tag p) (tagged p) in uniq s -> {in s, forall x, uniq (t x)} -> {in st &, injective g} -> uniq [seq f x y | x <- s, y <- t x]. Proof. move=> g Us Ut; rewrite -(map_allpairs g (existT T)) => /map_inj_in_uniq->{f g}. elim: s Us => //= x s IHs /andP[s'x Us] in st Ut *; rewrite {st}cat_uniq. rewrite {}IHs {Us}// ?andbT => [|x1 s_s1]; last exact/Ut/mem_behead. have injT: injective (existT T x) by move=> y z /eqP; rewrite eq_Tagged => /eqP. rewrite (map_inj_in_uniq (in2W injT)) {injT}Ut ?mem_head // has_sym has_map. by apply: contra s'x => /hasP[y _ /allpairsPdep[z [_ [? _ /(congr1 tag)/=->]]]]. Qed. End EqAllPairsDep. Arguments allpairsPdep {S T R f s t z}. Section MemAllPairs. Variables (S : Type) (T : S -> Type) (R : eqType). Implicit Types (f : forall x, T x -> R) (s : seq S). Lemma perm_allpairs_catr f s t1 t2 : perm_eql [seq f x y | x <- s, y <- t1 x ++ t2 x] ([seq f x y | x <- s, y <- t1 x] ++ [seq f x y | x <- s, y <- t2 x]). Proof. apply/permPl; rewrite perm_sym; elim: s => //= x s ihs. by rewrite perm_catACA perm_cat ?map_cat. Qed. Lemma mem_allpairs_catr f s y0 t : [seq f x y | x <- s, y <- y0 x ++ t x] =i [seq f x y | x <- s, y <- y0 x] ++ [seq f x y | x <- s, y <- t x]. Proof. exact/perm_mem/permPl/perm_allpairs_catr. Qed. Lemma perm_allpairs_consr f s y0 t : perm_eql [seq f x y | x <- s, y <- y0 x :: t x] ([seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x]). Proof. by apply/permPl; rewrite (perm_allpairs_catr _ _ (fun=> [:: _])) allpairs1r. Qed. Lemma mem_allpairs_consr f s t y0 : [seq f x y | x <- s, y <- y0 x :: t x] =i [seq f x (y0 x) | x <- s] ++ [seq f x y | x <- s, y <- t x]. Proof. exact/perm_mem/permPl/perm_allpairs_consr. Qed. Lemma allpairs_rconsr f s y0 t : perm_eql [seq f x y | x <- s, y <- rcons (t x) (y0 x)] ([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s]). Proof. apply/permPl; rewrite -(eq_allpairsr _ _ (fun=> cats1 _ _)). by rewrite perm_allpairs_catr allpairs1r. Qed. Lemma mem_allpairs_rconsr f s t y0 : [seq f x y | x <- s, y <- rcons (t x) (y0 x)] =i ([seq f x y | x <- s, y <- t x] ++ [seq f x (y0 x) | x <- s]). Proof. exact/perm_mem/permPl/allpairs_rconsr. Qed. End MemAllPairs. Lemma all_allpairsP (S : eqType) (T : S -> eqType) (R : Type) (p : pred R) (f : forall x : S, T x -> R) (s : seq S) (t : forall x : S, seq (T x)) : reflect (forall (x : S) (y : T x), x \in s -> y \in t x -> p (f x y)) (all p [seq f x y | x <- s, y <- t x]). Proof. elim: s => [|x s IHs]; first by constructor. rewrite /= all_cat all_map /preim. apply/(iffP andP)=> [[/allP /= ? ? x' y x'_in_xs]|p_xs_t]. by move: x'_in_xs y => /[1!inE] /predU1P [-> //|? ?]; exact: IHs. split; first by apply/allP => ?; exact/p_xs_t/mem_head. by apply/IHs => x' y x'_in_s; apply: p_xs_t; rewrite inE x'_in_s orbT. Qed. Arguments all_allpairsP {S T R p f s t}. Section EqAllPairs. Variables S T R : eqType. Implicit Types (f : S -> T -> R) (s : seq S) (t : seq T). Lemma allpairsP f s t (z : R) : reflect (exists p, [/\ p.1 \in s, p.2 \in t & z = f p.1 p.2]) (z \in [seq f x y | x <- s, y <- t]). Proof. by apply: (iffP allpairsPdep) => [[x[y]]|[[x y]]]; [exists (x, y)|exists x, y]. Qed. Lemma allpairs_f f s t x y : x \in s -> y \in t -> f x y \in [seq f x y | x <- s, y <- t]. Proof. exact: allpairs_f_dep. Qed. Lemma eq_in_allpairs f1 f2 s t : {in s & t, f1 =2 f2} <-> [seq f1 x y : R | x <- s, y <- t] = [seq f2 x y | x <- s, y <- t]. Proof. split=> [eq_f | /eq_in_allpairs_dep-eq_f x y /eq_f/(_ y)//]. by apply/eq_in_allpairs_dep=> x /eq_f. Qed. Lemma mem_allpairs f s1 t1 s2 t2 : s1 =i s2 -> t1 =i t2 -> [seq f x y | x <- s1, y <- t1] =i [seq f x y | x <- s2, y <- t2]. Proof. by move=> eq_s eq_t; apply: mem_allpairs_dep. Qed. Lemma allpairs_uniq f s t (st := [seq (x, y) | x <- s, y <- t]) : uniq s -> uniq t -> {in st &, injective (uncurry f)} -> uniq [seq f x y | x <- s, y <- t]. Proof. move=> Us Ut inj_f; rewrite -(map_allpairs (uncurry f) (@pair S T)) -/st. rewrite map_inj_in_uniq // allpairs_uniq_dep {Us Ut st inj_f}//. by apply: in2W => -[x1 y1] [x2 y2] /= [-> ->]. Qed. End EqAllPairs. Arguments allpairsP {S T R f s t z}. Arguments perm_nilP {T s}. Arguments perm_consP {T x s t}. Section AllRel. Variables (T S : Type) (r : T -> S -> bool). Implicit Types (x : T) (y : S) (xs : seq T) (ys : seq S). Definition allrel xs ys := all [pred x | all (r x) ys] xs. Lemma allrel0l ys : allrel [::] ys. Proof. by []. Qed. Lemma allrel0r xs : allrel xs [::]. Proof. by elim: xs. Qed. Lemma allrel_consl x xs ys : allrel (x :: xs) ys = all (r x) ys && allrel xs ys. Proof. by []. Qed. Lemma allrel_consr xs y ys : allrel xs (y :: ys) = all (r^~ y) xs && allrel xs ys. Proof. exact: all_predI. Qed. Lemma allrel_cons2 x y xs ys : allrel (x :: xs) (y :: ys) = [&& r x y, all (r x) ys, all (r^~ y) xs & allrel xs ys]. Proof. by rewrite /= allrel_consr -andbA. Qed. Lemma allrel1l x ys : allrel [:: x] ys = all (r x) ys. Proof. exact: andbT. Qed. Lemma allrel1r xs y : allrel xs [:: y] = all (r^~ y) xs. Proof. by rewrite allrel_consr allrel0r andbT. Qed. Lemma allrel_catl xs xs' ys : allrel (xs ++ xs') ys = allrel xs ys && allrel xs' ys. Proof. exact: all_cat. Qed. Lemma allrel_catr xs ys ys' : allrel xs (ys ++ ys') = allrel xs ys && allrel xs ys'. Proof. elim: ys => /= [|y ys ihys]; first by rewrite allrel0r. by rewrite !allrel_consr ihys andbA. Qed. Lemma allrel_maskl m xs ys : allrel xs ys -> allrel (mask m xs) ys. Proof. by elim: m xs => [|[] m IHm] [|x xs] //= /andP [xys /IHm->]; rewrite ?xys. Qed. Lemma allrel_maskr m xs ys : allrel xs ys -> allrel xs (mask m ys). Proof. by elim: xs => //= x xs IHxs /andP [/all_mask->]. Qed. Lemma allrel_filterl a xs ys : allrel xs ys -> allrel (filter a xs) ys. Proof. by rewrite filter_mask; apply: allrel_maskl. Qed. Lemma allrel_filterr a xs ys : allrel xs ys -> allrel xs (filter a ys). Proof. by rewrite filter_mask; apply: allrel_maskr. Qed. Lemma allrel_allpairsE xs ys : allrel xs ys = all id [seq r x y | x <- xs, y <- ys]. Proof. by elim: xs => //= x xs ->; rewrite all_cat all_map. Qed. End AllRel. Arguments allrel {T S} r xs ys : simpl never. Arguments allrel0l {T S} r ys. Arguments allrel0r {T S} r xs. Arguments allrel_consl {T S} r x xs ys. Arguments allrel_consr {T S} r xs y ys. Arguments allrel1l {T S} r x ys. Arguments allrel1r {T S} r xs y. Arguments allrel_catl {T S} r xs xs' ys. Arguments allrel_catr {T S} r xs ys ys'. Arguments allrel_maskl {T S} r m xs ys. Arguments allrel_maskr {T S} r m xs ys. Arguments allrel_filterl {T S} r a xs ys. Arguments allrel_filterr {T S} r a xs ys. Arguments allrel_allpairsE {T S} r xs ys. Notation all2rel r xs := (allrel r xs xs). Lemma sub_in_allrel {T S : Type} (P : {pred T}) (Q : {pred S}) (r r' : T -> S -> bool) : {in P & Q, forall x y, r x y -> r' x y} -> forall xs ys, all P xs -> all Q ys -> allrel r xs ys -> allrel r' xs ys. Proof. move=> rr' + ys; elim=> //= x xs IHxs /andP [Px Pxs] Qys. rewrite !allrel_consl => /andP [+ {}/IHxs-> //]; rewrite andbT. by elim: ys Qys => //= y ys IHys /andP [Qy Qys] /andP [/rr'-> // /IHys->]. Qed. Lemma sub_allrel {T S : Type} (r r' : T -> S -> bool) : (forall x y, r x y -> r' x y) -> forall xs ys, allrel r xs ys -> allrel r' xs ys. Proof. by move=> rr' xs ys; apply/sub_in_allrel/all_predT/all_predT; apply: in2W. Qed. Lemma eq_in_allrel {T S : Type} (P : {pred T}) (Q : {pred S}) r r' : {in P & Q, r =2 r'} -> forall xs ys, all P xs -> all Q ys -> allrel r xs ys = allrel r' xs ys. Proof. move=> rr' xs ys Pxs Qys. by apply/idP/idP; apply/sub_in_allrel/Qys/Pxs => ? ? ? ?; rewrite rr'. Qed. Lemma eq_allrel {T S : Type} (r r' : T -> S -> bool) : r =2 r' -> allrel r =2 allrel r'. Proof. by move=> rr' xs ys; apply/eq_in_allrel/all_predT/all_predT. Qed. Lemma allrelC {T S : Type} (r : T -> S -> bool) xs ys : allrel r xs ys = allrel (fun y => r^~ y) ys xs. Proof. by elim: xs => [|x xs ih]; [elim: ys | rewrite allrel_consr -ih]. Qed. Lemma allrel_mapl {T T' S : Type} (f : T' -> T) (r : T -> S -> bool) xs ys : allrel r (map f xs) ys = allrel (fun x => r (f x)) xs ys. Proof. exact: all_map. Qed. Lemma allrel_mapr {T S S' : Type} (f : S' -> S) (r : T -> S -> bool) xs ys : allrel r xs (map f ys) = allrel (fun x y => r x (f y)) xs ys. Proof. by rewrite allrelC allrel_mapl allrelC. Qed. Lemma allrelP {T S : eqType} {r : T -> S -> bool} {xs ys} : reflect {in xs & ys, forall x y, r x y} (allrel r xs ys). Proof. by rewrite allrel_allpairsE; exact: all_allpairsP. Qed. Lemma allrelT {T S : Type} (xs : seq T) (ys : seq S) : allrel (fun _ _ => true) xs ys = true. Proof. by elim: xs => //= ? ?; rewrite allrel_consl all_predT. Qed. Lemma allrel_relI {T S : Type} (r r' : T -> S -> bool) xs ys : allrel (fun x y => r x y && r' x y) xs ys = allrel r xs ys && allrel r' xs ys. Proof. by rewrite -all_predI; apply: eq_all => ?; rewrite /= -all_predI. Qed. Section All2Rel. Variable (T : nonPropType) (r : rel T). Implicit Types (x y z : T) (xs : seq T). Hypothesis (rsym : symmetric r). Lemma all2rel1 x : all2rel r [:: x] = r x x. Proof. by rewrite /allrel /= !andbT. Qed. Lemma all2rel2 x y : all2rel r [:: x; y] = r x x && r y y && r x y. Proof. by rewrite /allrel /= rsym; do 3 case: r. Qed. Lemma all2rel_cons x xs : all2rel r (x :: xs) = [&& r x x, all (r x) xs & all2rel r xs]. Proof. rewrite allrel_cons2; congr andb; rewrite andbA -all_predI; congr andb. by elim: xs => //= y xs ->; rewrite rsym andbb. Qed. End All2Rel. Section Pairwise. Variables (T : Type) (r : T -> T -> bool). Implicit Types (x y : T) (xs ys : seq T). Fixpoint pairwise xs : bool := if xs is x :: xs then all (r x) xs && pairwise xs else true. Lemma pairwise_cons x xs : pairwise (x :: xs) = all (r x) xs && pairwise xs. Proof. by []. Qed. Lemma pairwise_cat xs ys : pairwise (xs ++ ys) = [&& allrel r xs ys, pairwise xs & pairwise ys]. Proof. by elim: xs => //= x xs ->; rewrite all_cat -!andbA; bool_congr. Qed. Lemma pairwise_rcons xs x : pairwise (rcons xs x) = all (r^~ x) xs && pairwise xs. Proof. by rewrite -cats1 pairwise_cat allrel1r andbT. Qed. Lemma pairwise2 x y : pairwise [:: x; y] = r x y. Proof. by rewrite /= !andbT. Qed. Lemma pairwise_mask m xs : pairwise xs -> pairwise (mask m xs). Proof. by elim: m xs => [|[] m IHm] [|x xs] //= /andP [? ?]; rewrite ?IHm // all_mask. Qed. Lemma pairwise_filter a xs : pairwise xs -> pairwise (filter a xs). Proof. by rewrite filter_mask; apply: pairwise_mask. Qed. Lemma pairwiseP x0 xs : reflect {in gtn (size xs) &, {homo nth x0 xs : i j / i < j >-> r i j}} (pairwise xs). Proof. elim: xs => /= [|x xs IHxs]; first exact: (iffP idP). apply: (iffP andP) => [[r_x_xs pxs] i j|Hnth]; rewrite -?topredE /= ?ltnS. by case: i j => [|i] [|j] //= gti gtj ij; [exact/all_nthP | exact/IHxs]. split; last by apply/IHxs => // i j; apply/(Hnth i.+1 j.+1). by apply/(all_nthP x0) => i gti; apply/(Hnth 0 i.+1). Qed. Lemma pairwise_all2rel : reflexive r -> symmetric r -> forall xs, pairwise xs = all2rel r xs. Proof. by move=> r_refl r_sym; elim => //= x xs ->; rewrite all2rel_cons // r_refl. Qed. End Pairwise. Arguments pairwise {T} r xs. Arguments pairwise_cons {T} r x xs. Arguments pairwise_cat {T} r xs ys. Arguments pairwise_rcons {T} r xs x. Arguments pairwise2 {T} r x y. Arguments pairwise_mask {T r} m {xs}. Arguments pairwise_filter {T r} a {xs}. Arguments pairwiseP {T r} x0 {xs}. Arguments pairwise_all2rel {T r} r_refl r_sym xs. Lemma sub_in_pairwise {T : Type} (P : {pred T}) (r r' : rel T) : {in P &, subrel r r'} -> forall xs, all P xs -> pairwise r xs -> pairwise r' xs. Proof. move=> rr'; elim=> //= x xs IHxs /andP [Px Pxs] /andP [+ {}/IHxs->] //. rewrite andbT; elim: xs Pxs => //= x' xs IHxs /andP [? ?] /andP [+ /IHxs->] //. by rewrite andbT; apply: rr'. Qed. Lemma sub_pairwise {T : Type} (r r' : rel T) xs : subrel r r' -> pairwise r xs -> pairwise r' xs. Proof. by move=> rr'; apply/sub_in_pairwise/all_predT; apply: in2W. Qed. Lemma eq_in_pairwise {T : Type} (P : {pred T}) (r r' : rel T) : {in P &, r =2 r'} -> forall xs, all P xs -> pairwise r xs = pairwise r' xs. Proof. move=> rr' xs Pxs. by apply/idP/idP; apply/sub_in_pairwise/Pxs => ? ? ? ?; rewrite rr'. Qed. Lemma eq_pairwise {T : Type} (r r' : rel T) : r =2 r' -> pairwise r =i pairwise r'. Proof. by move=> rr' xs; apply/eq_in_pairwise/all_predT. Qed. Lemma pairwise_map {T T' : Type} (f : T' -> T) (r : rel T) xs : pairwise r (map f xs) = pairwise (relpre f r) xs. Proof. by elim: xs => //= x xs ->; rewrite all_map. Qed. Lemma pairwise_relI {T : Type} (r r' : rel T) (s : seq T) : pairwise [rel x y | r x y && r' x y] s = pairwise r s && pairwise r' s. Proof. by elim: s => //= x s ->; rewrite andbACA all_predI. Qed. Section EqPairwise. Variables (T : eqType) (r : T -> T -> bool). Implicit Types (xs ys : seq T). Lemma subseq_pairwise xs ys : subseq xs ys -> pairwise r ys -> pairwise r xs. Proof. by case/subseqP => m _ ->; apply: pairwise_mask. Qed. Lemma uniq_pairwise xs : uniq xs = pairwise [rel x y | x != y] xs. Proof. elim: xs => //= x xs ->; congr andb; rewrite -has_pred1 -all_predC. by elim: xs => //= x' xs ->; case: eqVneq. Qed. Lemma pairwise_uniq xs : irreflexive r -> pairwise r xs -> uniq xs. Proof. move=> r_irr; rewrite uniq_pairwise; apply/sub_pairwise => x y. by apply: contraTneq => ->; rewrite r_irr. Qed. Lemma pairwise_eq : antisymmetric r -> forall xs ys, pairwise r xs -> pairwise r ys -> perm_eq xs ys -> xs = ys. Proof. move=> r_asym; elim=> [|x xs IHxs] [|y ys] //=; try by move=> ? ? /perm_size. move=> /andP [r_x_xs pxs] /andP [r_y_ys pys] eq_xs_ys. move: (mem_head y ys) (mem_head x xs). rewrite -(perm_mem eq_xs_ys) [x \in _](perm_mem eq_xs_ys) !inE. case: eqVneq eq_xs_ys => /= [->|ne_xy] eq_xs_ys ys_x xs_y. by rewrite (IHxs ys) // -(perm_cons x). by case/eqP: ne_xy; apply: r_asym; rewrite (allP r_x_xs) ?(allP r_y_ys). Qed. Lemma pairwise_trans s : antisymmetric r -> pairwise r s -> {in s & &, transitive r}. Proof. move=> /(_ _ _ _)/eqP r_anti + y x z => /pairwiseP-/(_ y) ltP ys xs zs. have [-> //|neqxy] := eqVneq x y; have [-> //|neqzy] := eqVneq z y. move=> lxy lyz; move: ys xs zs lxy neqxy lyz neqzy. move=> /(nthP y)[j jlt <-] /(nthP y)[i ilt <-] /(nthP y)[k klt <-]. have [ltij|ltji|->] := ltngtP i j; last 2 first. - by move=> leij; rewrite r_anti// leij ltP. - by move=> lejj; rewrite r_anti// lejj. move=> _ _; have [ltjk|ltkj|->] := ltngtP j k; last 2 first. - by move=> lejk; rewrite r_anti// lejk ltP. - by move=> lekk; rewrite r_anti// lekk. by move=> _ _; apply: (ltP) => //; apply: ltn_trans ltjk. Qed. End EqPairwise. Arguments subseq_pairwise {T r xs ys}. Arguments uniq_pairwise {T} xs. Arguments pairwise_uniq {T r xs}. Arguments pairwise_eq {T r} r_asym {xs ys}. Section Permutations. Variable T : eqType. Implicit Types (x : T) (s t : seq T) (bs : seq (T * nat)) (acc : seq (seq T)). Fixpoint incr_tally bs x := if bs isn't b :: bs then [:: (x, 1)] else if x == b.1 then (x, b.2.+1) :: bs else b :: incr_tally bs x. Definition tally s := foldl incr_tally [::] s. Definition wf_tally := [qualify a bs : seq (T * nat) | uniq (unzip1 bs) && (0 \notin unzip2 bs)]. Definition tally_seq bs := flatten [seq nseq b.2 b.1 | b <- bs]. Local Notation tseq := tally_seq. Lemma size_tally_seq bs : size (tally_seq bs) = sumn (unzip2 bs). Proof. by rewrite size_flatten /shape -map_comp; under eq_map do rewrite /= size_nseq. Qed. Lemma tally_seqK : {in wf_tally, cancel tally_seq tally}. Proof. move=> bs /andP[]; elim: bs => [|[x [|n]] bs IHbs] //= /andP[bs'x Ubs] bs'0. rewrite inE /tseq /tally /= -[n.+1]addn1 in bs'0 *. elim: n 1 => /= [|n IHn] m; last by rewrite eqxx IHn addnS. rewrite -{}[in RHS]IHbs {Ubs bs'0}// /tally /tally_seq add0n. elim: bs bs'x [::] => [|[y n] bs IHbs] //= /[1!inE] /norP[y'x bs'x]. by elim: n => [|n IHn] bs1 /=; [rewrite IHbs | rewrite eq_sym ifN // IHn]. Qed. Lemma incr_tallyP x : {homo incr_tally^~ x : bs / bs \in wf_tally}. Proof. move=> bs /andP[]; rewrite unfold_in. elim: bs => [|[y [|n]] bs IHbs] //= /andP[bs'y Ubs] /[1!inE] /= bs'0. have [<- | y'x] /= := eqVneq y; first by rewrite bs'y Ubs. rewrite -andbA {}IHbs {Ubs bs'0}// andbT. elim: bs bs'y => [|b bs IHbs] /=; rewrite inE ?y'x // => /norP[b'y bs'y]. by case: ifP => _; rewrite /= inE negb_or ?y'x // b'y IHbs. Qed. Lemma tallyP s : tally s \is a wf_tally. Proof. rewrite /tally; set bs := [::]; have: bs \in wf_tally by []. by elim: s bs => //= x s IHs bs /(incr_tallyP x)/IHs. Qed. Lemma tallyK s : perm_eq (tally_seq (tally s)) s. Proof. rewrite -[s in perm_eq _ s]cats0 -[nil]/(tseq [::]) /tally. elim: s [::] => //= x s IHs bs; rewrite {IHs}(permPl (IHs _)). rewrite perm_sym -cat1s perm_catCA {s}perm_cat2l. elim: bs => //= b bs IHbs; case: eqP => [-> | _] //=. by rewrite -cat1s perm_catCA perm_cat2l. Qed. Lemma tallyEl s : perm_eq (unzip1 (tally s)) (undup s). Proof. have /andP[Ubs bs'0] := tallyP s; set bs := tally s in Ubs bs'0 *. rewrite uniq_perm ?undup_uniq {Ubs}// => x. rewrite mem_undup -(perm_mem (tallyK s)) -/bs. elim: bs => [|[y [|m]] bs IHbs] //= in bs'0 *. by rewrite inE IHbs // mem_cat mem_nseq. Qed. Lemma tallyE s : perm_eq (tally s) [seq (x, count_mem x s) | x <- undup s]. Proof. have /andP[Ubs _] := tallyP s; pose b := [fun s x => (x, count_mem x (tseq s))]. suffices /permPl->: perm_eq (tally s) (map (b (tally s)) (unzip1 (tally s))). congr perm_eq: (perm_map (b (tally s)) (tallyEl s)). by under eq_map do rewrite /= (permP (tallyK s)). elim: (tally s) Ubs => [|[x m] bs IH] //= /andP[bs'x /IH-IHbs {IH}]. rewrite /tseq /= -/(tseq _) count_cat count_nseq /= eqxx mul1n. rewrite (count_memPn _) ?addn0 ?perm_cons; last first. apply: contra bs'x; elim: {b IHbs}bs => //= b bs IHbs. by rewrite mem_cat mem_nseq inE andbC; case: (_ == _). congr perm_eq: IHbs; apply/eq_in_map=> y bs_y; congr (y, _). by rewrite count_cat count_nseq /= (negPf (memPnC bs'x y bs_y)). Qed. Lemma perm_tally s1 s2 : perm_eq s1 s2 -> perm_eq (tally s1) (tally s2). Proof. move=> eq_s12; apply: (@perm_trans _ [seq (x, count_mem x s2) | x <- undup s1]). by congr perm_eq: (tallyE s1); under eq_map do rewrite (permP eq_s12). by rewrite (permPr (tallyE s2)); apply/perm_map/perm_undup/(perm_mem eq_s12). Qed. Lemma perm_tally_seq bs1 bs2 : perm_eq bs1 bs2 -> perm_eq (tally_seq bs1) (tally_seq bs2). Proof. by move=> Ebs12; rewrite perm_flatten ?perm_map. Qed. Local Notation perm_tseq := perm_tally_seq. Lemma perm_count_undup s : perm_eq (flatten [seq nseq (count_mem x s) x | x <- undup s]) s. Proof. by rewrite -(permPr (tallyK s)) (permPr (perm_tseq (tallyE s))) /tseq -map_comp. Qed. Local Fixpoint cons_perms_ perms_rec (s : seq T) bs bs2 acc := if bs isn't b :: bs1 then acc else if b isn't (x, m.+1) then cons_perms_ perms_rec s bs1 bs2 acc else let acc_xs := perms_rec (x :: s) ((x, m) :: bs1 ++ bs2) acc in cons_perms_ perms_rec s bs1 (b :: bs2) acc_xs. Local Fixpoint perms_rec n s bs acc := if n isn't n.+1 then s :: acc else cons_perms_ (perms_rec n) s bs [::] acc. Local Notation cons_perms n := (cons_perms_ (perms_rec n) [::]). Definition permutations s := perms_rec (size s) [::] (tally s) [::]. Let permsP s : exists n bs, [/\ permutations s = perms_rec n [::] bs [::], size (tseq bs) == n, perm_eq (tseq bs) s & uniq (unzip1 bs)]. Proof. have /andP[Ubs _] := tallyP s; exists (size s), (tally s). by rewrite (perm_size (tallyK s)) tallyK. Qed. Local Notation bsCA := (permEl (perm_catCA _ [:: _] _)). Let cons_permsE : forall n x bs bs1 bs2, let cp := cons_perms n bs bs2 in let perms s := perms_rec n s bs1 [::] in cp (perms [:: x]) = cp [::] ++ [seq rcons t x | t <- perms [::]]. Proof. pose is_acc f := forall acc, f acc = f [::] ++ acc. (* f is accumulating. *) have cpE: forall f & forall s bs, is_acc (f s bs), is_acc (cons_perms_ f _ _ _). move=> s bs bs2 f fE acc; elim: bs => [|[x [|m]] bs IHbs] //= in s bs2 acc *. by rewrite fE IHbs catA -IHbs. have prE: is_acc (perms_rec _ _ _) by elim=> //= n IHn s bs; apply: cpE. pose has_suffix f := forall s : seq T, f s = [seq t ++ s | t <- f [::]]. suffices prEs n bs: has_suffix (fun s => perms_rec n s bs [::]). move=> n x bs bs1 bs2 /=; rewrite cpE // prEs. by under eq_map do rewrite cats1. elim: n bs => //= n IHn bs s; elim: bs [::] => [|[x [|m]] bs IHbs] //= bs1. rewrite cpE // IHbs IHn [in RHS]cpE // [in RHS]IHn map_cat -map_comp. by congr (_ ++ _); apply: eq_map => t /=; rewrite -catA. Qed. Lemma mem_permutations s t : (t \in permutations s) = perm_eq t s. Proof. have{s} [n [bs [-> Dn /permPr<- _]]] := permsP s. elim: n => [|n IHn] /= in t bs Dn *. by rewrite inE (nilP Dn); apply/eqP/perm_nilP. rewrite -[bs in tseq bs]cats0 in Dn *; have x0 : T by case: (tseq _) Dn. rewrite -[RHS](@andb_idl (last x0 t \in tseq bs)); last first. case/lastP: t {IHn} => [|t x] Dt; first by rewrite -(perm_size Dt) in Dn. by rewrite -[bs]cats0 -(perm_mem Dt) last_rcons mem_rcons mem_head. elim: bs [::] => [|[x [|m]] bs IHbs] //= bs2 in Dn *. rewrite cons_permsE -!cat_cons !mem_cat (mem_nseq m.+1) orbC andb_orl. rewrite {}IHbs ?(perm_size (perm_tseq bsCA)) //= (permPr (perm_tseq bsCA)). congr (_ || _); apply/mapP/andP=> [[t1 Dt1 ->] | [/eqP]]. by rewrite last_rcons perm_rcons perm_cons IHn in Dt1 *. case/lastP: t => [_ /perm_size//|t y]; rewrite last_rcons perm_rcons => ->. by rewrite perm_cons; exists t; rewrite ?IHn. Qed. Lemma permutations_uniq s : uniq (permutations s). Proof. have{s} [n [bs [-> Dn _ Ubs]]] := permsP s. elim: n => //= n IHn in bs Dn Ubs *; rewrite -[bs]cats0 /unzip1 in Dn Ubs. elim: bs [::] => [|[x [|m]] bs IHbs] //= bs2 in Dn Ubs *. by case/andP: Ubs => _ /IHbs->. rewrite /= cons_permsE cat_uniq has_sym andbCA andbC. rewrite {}IHbs; first 1 last; first by rewrite (perm_size (perm_tseq bsCA)). by rewrite (perm_uniq (perm_map _ bsCA)). rewrite (map_inj_uniq (rcons_injl x)) {}IHn {Dn}//=. have: x \notin unzip1 bs by apply: contraL Ubs; rewrite map_cat mem_cat => ->. move: {bs2 m Ubs}(perms_rec n _ _ _) (_ :: bs2) => ts. elim: bs => [|[y [|m]] bs IHbs] //= /[1!inE] bs2 /norP[x'y /IHbs//]. rewrite cons_permsE has_cat negb_or has_map => ->. by apply/hasPn=> t _; apply: contra x'y => /mapP[t1 _ /rcons_inj[_ ->]]. Qed. Notation perms := permutations. Lemma permutationsE s : 0 < size s -> perm_eq (perms s) [seq x :: t | x <- undup s, t <- perms (rem x s)]. Proof. move=> nt_s; apply/uniq_perm=> [||t]; first exact: permutations_uniq. apply/allpairs_uniq_dep=> [|x _|]; rewrite ?undup_uniq ?permutations_uniq //. by case=> [_ _] [x t] _ _ [-> ->]. rewrite mem_permutations; apply/idP/allpairsPdep=> [Dt | [x [t1 []]]]. rewrite -(perm_size Dt) in nt_s; case: t nt_s => // x t _ in Dt *. have s_x: x \in s by rewrite -(perm_mem Dt) mem_head. exists x, t; rewrite mem_undup mem_permutations; split=> //. by rewrite -(perm_cons x) (permPl Dt) perm_to_rem. rewrite mem_undup mem_permutations -(perm_cons x) => s_x Dt1 ->. by rewrite (permPl Dt1) perm_sym perm_to_rem. Qed. Lemma permutationsErot x s (le_x := fun t => iota 0 (index x t + 1)) : perm_eq (perms (x :: s)) [seq rot i (x :: t) | t <- perms s, i <- le_x t]. Proof. have take'x t i: i <= index x t -> i <= size t /\ x \notin take i t. move=> le_i_x; have le_i_t: i <= size t := leq_trans le_i_x (index_size x t). case: (nthP x) => // -[j lt_j_i /eqP]; rewrite size_takel // in lt_j_i. by rewrite nth_take // [_ == _](before_find x (leq_trans lt_j_i le_i_x)). pose xrot t i := rot i (x :: t); pose xrotV t := index x (rev (rot 1 t)). have xrotK t: {in le_x t, cancel (xrot t) xrotV}. move=> i; rewrite mem_iota addn1 /xrotV => /take'x[le_i_t ti'x]. rewrite -rotD ?rev_cat //= rev_cons cat_rcons index_cat mem_rev size_rev. by rewrite ifN // size_takel //= eqxx addn0. apply/uniq_perm=> [||t]; first exact: permutations_uniq. apply/allpairs_uniq_dep=> [|t _|]; rewrite ?permutations_uniq ?iota_uniq //. move=> _ _ /allpairsPdep[t [i [_ ? ->]]] /allpairsPdep[u [j [_ ? ->]]] Etu. have Eij: i = j by rewrite -(xrotK t i) // /xrot Etu xrotK. by move: Etu; rewrite Eij => /rot_inj[->]. rewrite mem_permutations; apply/esym; apply/allpairsPdep/idP=> [[u [i]] | Dt]. rewrite mem_permutations => -[Du _ /(canLR (rotK i))]; rewrite /rotr. by set j := (j in rot j _) => Dt; apply/perm_consP; exists j, u. pose r := rev (rot 1 t); pose i := index x r; pose u := rev (take i r). have r_x: x \in r by rewrite mem_rev mem_rot (perm_mem Dt) mem_head. have [v Duv]: {v | rot i (x :: u ++ v) = t}; first exists (rev (drop i.+1 r)). rewrite -rev_cat -rev_rcons -rot1_cons -cat_cons -(nth_index x r_x). by rewrite -drop_nth ?index_mem // rot_rot !rev_rot revK rotK rotrK. exists (u ++ v), i; rewrite mem_permutations -(perm_cons x) -(perm_rot i) Duv. rewrite mem_iota addn1 ltnS /= index_cat mem_rev size_rev. by have /take'x[le_i_t ti'x] := leqnn i; rewrite ifN ?size_takel ?leq_addr. Qed. Lemma size_permutations s : uniq s -> size (permutations s) = (size s)`!. Proof. move Dn: (size s) => n Us; elim: n s => [[]|n IHn s] //= in Dn Us *. rewrite (perm_size (permutationsE _)) ?Dn // undup_id // factS -Dn. rewrite -(size_iota 0 n`!) -(size_allpairs (fun=>id)) !size_allpairs_dep. by apply/congr1/eq_in_map=> x sx; rewrite size_iota IHn ?size_rem ?Dn ?rem_uniq. Qed. Lemma permutations_all_uniq s : uniq s -> all uniq (permutations s). Proof. by move=> Us; apply/allP=> t; rewrite mem_permutations => /perm_uniq->. Qed. Lemma perm_permutations s t : perm_eq s t -> perm_eq (permutations s) (permutations t). Proof. move=> Est; apply/uniq_perm; try exact: permutations_uniq. by move=> u; rewrite !mem_permutations (permPr Est). Qed. End Permutations. Section AllIff. (* The Following Are Equivalent *) (* We introduce a specific conjunction, used to chain the consecutive *) (* items in a circular list of implications *) Inductive all_iff_and (P Q : Prop) : Prop := AllIffConj of P & Q. Definition all_iff (P0 : Prop) (Ps : seq Prop) : Prop := let fix loop (P : Prop) (Qs : seq Prop) : Prop := if Qs is Q :: Qs then all_iff_and (P -> Q) (loop Q Qs) else P -> P0 in loop P0 Ps. Lemma all_iffLR P0 Ps : all_iff P0 Ps -> forall m n, nth P0 (P0 :: Ps) m -> nth P0 (P0 :: Ps) n. Proof. move=> iffPs; have PsS n: nth P0 Ps n -> nth P0 Ps n.+1. elim: n P0 Ps iffPs => [|n IHn] P0 [|P [|Q Ps]] //= [iP0P] //; first by case. by rewrite nth_nil. by case=> iPQ iffPs; apply: IHn; split=> // /iP0P. have{PsS} lePs: {homo nth P0 Ps : m n / m <= n >-> (m -> n)}. by move=> m n /subnK<-; elim: {n}(n - m) => // n IHn /IHn; apply: PsS. move=> m n P_m; have{m P_m} hP0: P0. case: m P_m => //= m /(lePs m _ (leq_maxl m (size Ps))). by rewrite nth_default ?leq_maxr. case: n =>// n; apply: lePs 0 n (leq0n n) _. by case: Ps iffPs hP0 => // P Ps []. Qed. Lemma all_iffP P0 Ps : all_iff P0 Ps -> forall m n, nth P0 (P0 :: Ps) m <-> nth P0 (P0 :: Ps) n. Proof. by move=> /all_iffLR-iffPs m n; split => /iffPs. Qed. End AllIff. Arguments all_iffLR {P0 Ps}. Arguments all_iffP {P0 Ps}. Coercion all_iffP : all_iff >-> Funclass. (* This means "the following are all equivalent: P0, ... Pn" *) Notation "[ '<->' P0 ; P1 ; .. ; Pn ]" := (all_iff P0 (@cons Prop P1 (.. (@cons Prop Pn nil) ..))) : form_scope. Ltac tfae := do !apply: AllIffConj. (* Temporary backward compatibility. *) #[deprecated(since="mathcomp 1.13.0", note="Use iotaD instead.")] Notation iota_add := iotaD (only parsing).