From mathcomp Require Import ssreflect. From Coq Require Export ssrfun. From mathcomp Require Export ssrnotations. Definition injective2 (rT aT1 aT2 : Type) (f : aT1 -> aT2 -> rT) := forall (x1 x2 : aT1) (y1 y2 : aT2), f x1 y1 = f x2 y2 -> (x1 = x2) * (y1 = y2). Arguments injective2 [rT aT1 aT2] f. (*******************) (* v8.17 additions *) (*******************) (******************************************************************************) (* oflit f := Some \o f *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Definition olift aT rT (f : aT -> rT) := Some \o f. Lemma obindEapp {aT rT} (f : aT -> option rT) : obind f = oapp f None. Proof. by []. Qed. Lemma omapEbind {aT rT} (f : aT -> rT) : omap f = obind (olift f). Proof. by []. Qed. Lemma omapEapp {aT rT} (f : aT -> rT) : omap f = oapp (olift f) None. Proof. by []. Qed. Lemma oappEmap {aT rT} (f : aT -> rT) (y0 : rT) x : oapp f y0 x = odflt y0 (omap f x). Proof. by case: x. Qed. Lemma omap_comp aT rT sT (f : aT -> rT) (g : rT -> sT) : omap (g \o f) =1 omap g \o omap f. Proof. by case. Qed. Lemma oapp_comp aT rT sT (f : aT -> rT) (g : rT -> sT) x : oapp (g \o f) x =1 (@oapp _ _)^~ x g \o omap f. Proof. by case. Qed. Lemma oapp_comp_f {aT rT sT} (f : aT -> rT) (g : rT -> sT) (x : rT) : oapp (g \o f) (g x) =1 g \o oapp f x. Proof. by case. Qed. Lemma olift_comp aT rT sT (f : aT -> rT) (g : rT -> sT) : olift (g \o f) = olift g \o f. Proof. by []. Qed. Lemma compA {A B C D : Type} (f : B -> A) (g : C -> B) (h : D -> C) : f \o (g \o h) = (f \o g) \o h. Proof. by []. Qed. Lemma ocan_comp [A B C : Type] [f : B -> option A] [h : C -> option B] [f' : A -> B] [h' : B -> C] : ocancel f f' -> ocancel h h' -> ocancel (obind f \o h) (h' \o f'). Proof. move=> fK hK c /=; rewrite -[RHS]hK/=; case hcE : (h c) => [b|]//=. by rewrite -[b in RHS]fK; case: (f b) => //=; have := hK c; rewrite hcE. Qed.