(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype. Require Import BinNat. Require BinPos Ndec. Require Export Ring. (******************************************************************************) (* A version of arithmetic on nat (natural numbers) that is better suited to *) (* small scale reflection than the Coq Arith library. It contains an *) (* extensive equational theory (including, e.g., the AGM inequality), as well *) (* as support for the ring tactic, and congruence tactics. *) (* The following operations and notations are provided: *) (* *) (* successor and predecessor *) (* n.+1, n.+2, n.+3, n.+4 and n.-1, n.-2 *) (* this frees the names "S" and "pred" *) (* *) (* basic arithmetic *) (* m + n, m - n, m * n *) (* Important: m - n denotes TRUNCATED subtraction: m - n = 0 if m <= n. *) (* The definitions use the nosimpl tag to prevent undesirable computation *) (* computation during simplification, but remain compatible with the ones *) (* provided in the Coq.Init.Peano prelude. *) (* For computation, a module NatTrec rebinds all arithmetic notations *) (* to less convenient but also less inefficient tail-recursive functions; *) (* the auxiliary functions used by these versions are flagged with %Nrec. *) (* Also, there is support for input and output of large nat values. *) (* Num 3 082 241 inputs the number 3082241 *) (* [Num of n] outputs the value n *) (* There are coercions num >-> BinNat.N >-> nat; ssrnat rebinds the scope *) (* delimiter for BinNat.N to %num, as it uses the shorter %N for its own *) (* notations (Peano notations are flagged with %coq_nat). *) (* *) (* doubling, halving, and parity *) (* n.*2, n./2, odd n, uphalf n, with uphalf n = n.+1./2 *) (* bool coerces to nat so we can write, e.g., n = odd n + n./2.*2. *) (* *) (* iteration *) (* iter n f x0 == f ( .. (f x0)) *) (* iteri n g x0 == g n.-1 (g ... (g 0 x0)) *) (* iterop n op x x0 == op x (... op x x) (n x's) or x0 if n = 0 *) (* *) (* exponentiation, factorial *) (* m ^ n, n`! *) (* m ^ 1 is convertible to m, and m ^ 2 to m * m *) (* *) (* comparison *) (* m <= n, m < n, m >= n, m > n, m == n, m <= n <= p, etc., *) (* comparisons are BOOLEAN operators, and m == n is the generic eqType *) (* operation. *) (* Most compatibility lemmas are stated as boolean equalities; this keeps *) (* the size of the library down. All the inequalities refer to the same *) (* constant "leq"; in particular m < n is identical to m.+1 <= n. *) (* *) (* -> patterns for contextual rewriting: *) (* leqLHS := (X in (X <= _)%N)%pattern *) (* leqRHS := (X in (_ <= X)%N)%pattern *) (* ltnLHS := (X in (X < _)%N)%pattern *) (* ltnRHS := (X in (_ < X)%N)%pattern *) (* *) (* conditionally strict inequality `leqif' *) (* m <= n ?= iff condition == (m <= n) and ((m == n) = condition) *) (* This is actually a pair of boolean equalities, so rewriting with an *) (* `leqif' lemma can affect several kinds of comparison. The transitivity *) (* lemma for leqif aggregates the conditions, allowing for arguments of *) (* the form ``m <= n <= p <= m, so equality holds throughout''. *) (* *) (* maximum and minimum *) (* maxn m n, minn m n *) (* Note that maxn m n = m + (n - m), due to the truncating subtraction. *) (* Absolute difference (linear distance) between nats is defined in the int *) (* library (in the int.IntDist sublibrary), with the syntax `|m - n|. The *) (* '-' in this notation is the signed integer difference. *) (* *) (* countable choice *) (* ex_minn : forall P : pred nat, (exists n, P n) -> nat *) (* This returns the smallest n such that P n holds. *) (* ex_maxn : forall (P : pred nat) m, *) (* (exists n, P n) -> (forall n, P n -> n <= m) -> nat *) (* This returns the largest n such that P n holds (given an explicit upper *) (* bound). *) (* *) (* This file adds the following suffix conventions to those documented in *) (* ssrbool.v and eqtype.v: *) (* A (infix) -- conjunction, as in *) (* ltn_neqAle : (m < n) = (m != n) && (m <= n). *) (* B -- subtraction, as in subBn : (m - n) - p = m - (n + p). *) (* D -- addition, as in mulnDl : (m + n) * p = m * p + n * p. *) (* M -- multiplication, as in expnMn : (m * n) ^ p = m ^ p * n ^ p. *) (* p (prefix) -- positive, as in *) (* eqn_pmul2l : m > 0 -> (m * n1 == m * n2) = (n1 == n2). *) (* P -- greater than 1, as in *) (* ltn_Pmull : 1 < n -> 0 < m -> m < n * m. *) (* S -- successor, as in addSn : n.+1 + m = (n + m).+1. *) (* V (infix) -- disjunction, as in *) (* leq_eqVlt : (m <= n) = (m == n) || (m < n). *) (* X - exponentiation, as in lognX : logn p (m ^ n) = logn p m * n in *) (* file prime.v (the suffix is not used in this file). *) (* Suffixes that abbreviate operations (D, B, M and X) are used to abbreviate *) (* second-rank operations in equational lemma names that describe left-hand *) (* sides (e.g., mulnDl); they are not used to abbreviate the main operation *) (* of relational lemmas (e.g., leq_add2l). *) (* For the asymmetrical exponentiation operator expn (m ^ n) a right suffix *) (* indicates an operation on the exponent, e.g., expnM : m ^ (n1 * n2) = ...; *) (* a trailing "n" is used to indicate the left operand, e.g., *) (* expnMn : (m1 * m2) ^ n = ... The operands of other operators are selected *) (* using the l/r suffixes. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope coq_nat_scope. Declare Scope nat_rec_scope. (* Disable Coq prelude hints to improve proof script robustness. *) #[global] Remove Hints plus_n_O plus_n_Sm mult_n_O mult_n_Sm : core. (* Declare legacy Arith operators in new scope. *) Delimit Scope coq_nat_scope with coq_nat. Notation "m + n" := (plus m n) : coq_nat_scope. Notation "m - n" := (minus m n) : coq_nat_scope. Notation "m * n" := (mult m n) : coq_nat_scope. Notation "m <= n" := (le m n) : coq_nat_scope. Notation "m < n" := (lt m n) : coq_nat_scope. Notation "m >= n" := (ge m n) : coq_nat_scope. Notation "m > n" := (gt m n) : coq_nat_scope. (* Rebind scope delimiters, reserving a scope for the "recursive", *) (* i.e., unprotected version of operators. *) Delimit Scope N_scope with num. Delimit Scope nat_scope with N. Delimit Scope nat_rec_scope with Nrec. (* Postfix notation for the successor and predecessor functions. *) (* SSreflect uses "pred" for the generic predicate type, and S as *) (* a local bound variable. *) Notation succn := Datatypes.S. Notation predn := Peano.pred. Notation "n .+1" := (succn n) (at level 2, left associativity, format "n .+1") : nat_scope. Notation "n .+2" := n.+1.+1 (at level 2, left associativity, format "n .+2") : nat_scope. Notation "n .+3" := n.+2.+1 (at level 2, left associativity, format "n .+3") : nat_scope. Notation "n .+4" := n.+2.+2 (at level 2, left associativity, format "n .+4") : nat_scope. Notation "n .-1" := (predn n) (at level 2, left associativity, format "n .-1") : nat_scope. Notation "n .-2" := n.-1.-1 (at level 2, left associativity, format "n .-2") : nat_scope. Lemma succnK : cancel succn predn. Proof. by []. Qed. Lemma succn_inj : injective succn. Proof. by move=> n m []. Qed. (* Predeclare postfix doubling/halving operators. *) Reserved Notation "n .*2" (at level 2, format "n .*2"). Reserved Notation "n ./2" (at level 2, format "n ./2"). (* Canonical comparison and eqType for nat. *) Fixpoint eqn m n {struct m} := match m, n with | 0, 0 => true | m'.+1, n'.+1 => eqn m' n' | _, _ => false end. Lemma eqnP : Equality.axiom eqn. Proof. move=> n m; apply: (iffP idP) => [|<-]; last by elim n. by elim: n m => [|n IHn] [|m] //= /IHn->. Qed. Canonical nat_eqMixin := EqMixin eqnP. Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin. Arguments eqn !m !n. Arguments eqnP {x y}. Lemma eqnE : eqn = eq_op. Proof. by []. Qed. Lemma eqSS m n : (m.+1 == n.+1) = (m == n). Proof. by []. Qed. Lemma nat_irrelevance (x y : nat) (E E' : x = y) : E = E'. Proof. exact: eq_irrelevance. Qed. (* Protected addition, with a more systematic set of lemmas. *) Definition addn_rec := plus. Notation "m + n" := (addn_rec m n) : nat_rec_scope. Definition addn := nosimpl addn_rec. Notation "m + n" := (addn m n) : nat_scope. Lemma addnE : addn = addn_rec. Proof. by []. Qed. Lemma plusE : plus = addn. Proof. by []. Qed. Lemma add0n : left_id 0 addn. Proof. by []. Qed. Lemma addSn m n : m.+1 + n = (m + n).+1. Proof. by []. Qed. Lemma add1n n : 1 + n = n.+1. Proof. by []. Qed. Lemma addn0 : right_id 0 addn. Proof. by move=> n; apply/eqP; elim: n. Qed. Lemma addnS m n : m + n.+1 = (m + n).+1. Proof. by apply/eqP; elim: m. Qed. Lemma addSnnS m n : m.+1 + n = m + n.+1. Proof. by rewrite addnS. Qed. Lemma addnCA : left_commutative addn. Proof. by move=> m n p; elim: m => //= m; rewrite addnS => <-. Qed. Lemma addnC : commutative addn. Proof. by move=> m n; rewrite -[n in LHS]addn0 addnCA addn0. Qed. Lemma addn1 n : n + 1 = n.+1. Proof. by rewrite addnC. Qed. Lemma addnA : associative addn. Proof. by move=> m n p; rewrite (addnC n) addnCA addnC. Qed. Lemma addnAC : right_commutative addn. Proof. by move=> m n p; rewrite -!addnA (addnC n). Qed. Lemma addnCAC m n p : m + n + p = p + n + m. Proof. by rewrite addnC addnA addnAC. Qed. Lemma addnACl m n p: m + n + p = n + (p + m). Proof. by rewrite (addnC m) addnC addnCA. Qed. Lemma addnACA : interchange addn addn. Proof. by move=> m n p q; rewrite -!addnA (addnCA n). Qed. Lemma addn_eq0 m n : (m + n == 0) = (m == 0) && (n == 0). Proof. by case: m; case: n. Qed. Lemma eqn_add2l p m n : (p + m == p + n) = (m == n). Proof. by elim: p. Qed. Lemma eqn_add2r p m n : (m + p == n + p) = (m == n). Proof. by rewrite -!(addnC p) eqn_add2l. Qed. Lemma addnI : right_injective addn. Proof. by move=> p m n Heq; apply: eqP; rewrite -(eqn_add2l p) Heq eqxx. Qed. Lemma addIn : left_injective addn. Proof. move=> p m n; rewrite -!(addnC p); apply addnI. Qed. Lemma addn2 m : m + 2 = m.+2. Proof. by rewrite addnC. Qed. Lemma add2n m : 2 + m = m.+2. Proof. by []. Qed. Lemma addn3 m : m + 3 = m.+3. Proof. by rewrite addnC. Qed. Lemma add3n m : 3 + m = m.+3. Proof. by []. Qed. Lemma addn4 m : m + 4 = m.+4. Proof. by rewrite addnC. Qed. Lemma add4n m : 4 + m = m.+4. Proof. by []. Qed. (* Protected, structurally decreasing subtraction, and basic lemmas. *) (* Further properties depend on ordering conditions. *) Definition subn_rec := minus. Arguments subn_rec : simpl nomatch. Notation "m - n" := (subn_rec m n) : nat_rec_scope. Definition subn := nosimpl subn_rec. Notation "m - n" := (subn m n) : nat_scope. Lemma subnE : subn = subn_rec. Proof. by []. Qed. Lemma minusE : minus = subn. Proof. by []. Qed. Lemma sub0n : left_zero 0 subn. Proof. by []. Qed. Lemma subn0 : right_id 0 subn. Proof. by case. Qed. Lemma subnn : self_inverse 0 subn. Proof. by elim. Qed. Lemma subSS n m : m.+1 - n.+1 = m - n. Proof. by []. Qed. Lemma subn1 n : n - 1 = n.-1. Proof. by case: n => [|[]]. Qed. Lemma subn2 n : (n - 2)%N = n.-2. Proof. by case: n => [|[|[]]]. Qed. Lemma subnDl p m n : (p + m) - (p + n) = m - n. Proof. by elim: p. Qed. Lemma subnDr p m n : (m + p) - (n + p) = m - n. Proof. by rewrite -!(addnC p) subnDl. Qed. Lemma addnK n : cancel (addn^~ n) (subn^~ n). Proof. by move=> m; rewrite (subnDr n m 0) subn0. Qed. Lemma addKn n : cancel (addn n) (subn^~ n). Proof. by move=> m; rewrite addnC addnK. Qed. Lemma subSnn n : n.+1 - n = 1. Proof. exact (addnK n 1). Qed. Lemma subnDA m n p : n - (m + p) = (n - m) - p. Proof. by elim: m n => [|m IHm] []. Qed. Lemma subnAC : right_commutative subn. Proof. by move=> m n p; rewrite -!subnDA addnC. Qed. Lemma subnS m n : m - n.+1 = (m - n).-1. Proof. by rewrite -addn1 subnDA subn1. Qed. Lemma subSKn m n : (m.+1 - n).-1 = m - n. Proof. by rewrite -subnS. Qed. (* Integer ordering, and its interaction with the other operations. *) Definition leq m n := m - n == 0. Notation "m <= n" := (leq m n) : nat_scope. Notation "m < n" := (m.+1 <= n) : nat_scope. Notation "m >= n" := (n <= m) (only parsing) : nat_scope. Notation "m > n" := (n < m) (only parsing) : nat_scope. (* For sorting, etc. *) Definition geq := [rel m n | m >= n]. Definition ltn := [rel m n | m < n]. Definition gtn := [rel m n | m > n]. Notation "m <= n <= p" := ((m <= n) && (n <= p)) : nat_scope. Notation "m < n <= p" := ((m < n) && (n <= p)) : nat_scope. Notation "m <= n < p" := ((m <= n) && (n < p)) : nat_scope. Notation "m < n < p" := ((m < n) && (n < p)) : nat_scope. Lemma ltnS m n : (m < n.+1) = (m <= n). Proof. by []. Qed. Lemma leq0n n : 0 <= n. Proof. by []. Qed. Lemma ltn0Sn n : 0 < n.+1. Proof. by []. Qed. Lemma ltn0 n : n < 0 = false. Proof. by []. Qed. Lemma leqnn n : n <= n. Proof. by elim: n. Qed. #[global] Hint Resolve leqnn : core. Lemma ltnSn n : n < n.+1. Proof. by []. Qed. Lemma eq_leq m n : m = n -> m <= n. Proof. by move->. Qed. Lemma leqnSn n : n <= n.+1. Proof. by elim: n. Qed. #[global] Hint Resolve leqnSn : core. Lemma leq_pred n : n.-1 <= n. Proof. by case: n => /=. Qed. Lemma leqSpred n : n <= n.-1.+1. Proof. by case: n => /=. Qed. Lemma ltn_predL n : (n.-1 < n) = (0 < n). Proof. by case: n => [//|n]; rewrite ltnSn. Qed. Lemma ltn_predRL m n : (m < n.-1) = (m.+1 < n). Proof. by case: n => [//|n]; rewrite succnK. Qed. Lemma ltn_predK m n : m < n -> n.-1.+1 = n. Proof. by case: n. Qed. Lemma prednK n : 0 < n -> n.-1.+1 = n. Proof. exact: ltn_predK. Qed. Lemma leqNgt m n : (m <= n) = ~~ (n < m). Proof. by elim: m n => [|m IHm] []. Qed. Lemma ltnNge m n : (m < n) = ~~ (n <= m). Proof. by rewrite leqNgt. Qed. Lemma ltnn n : n < n = false. Proof. by rewrite ltnNge leqnn. Qed. Lemma leqn0 n : (n <= 0) = (n == 0). Proof. by case: n. Qed. Lemma lt0n n : (0 < n) = (n != 0). Proof. by case: n. Qed. Lemma lt0n_neq0 n : 0 < n -> n != 0. Proof. by case: n. Qed. Lemma eqn0Ngt n : (n == 0) = ~~ (n > 0). Proof. by case: n. Qed. Lemma neq0_lt0n n : (n == 0) = false -> 0 < n. Proof. by case: n. Qed. #[global] Hint Resolve lt0n_neq0 neq0_lt0n : core. Lemma eqn_leq m n : (m == n) = (m <= n <= m). Proof. by elim: m n => [|m IHm] []. Qed. Lemma anti_leq : antisymmetric leq. Proof. by move=> m n; rewrite -eqn_leq => /eqP. Qed. Lemma neq_ltn m n : (m != n) = (m < n) || (n < m). Proof. by rewrite eqn_leq negb_and orbC -!ltnNge. Qed. Lemma gtn_eqF m n : m < n -> n == m = false. Proof. by rewrite eqn_leq (leqNgt n) => ->. Qed. Lemma ltn_eqF m n : m < n -> m == n = false. Proof. by move/gtn_eqF; rewrite eq_sym. Qed. Lemma ltn_geF m n : m < n -> m >= n = false. Proof. by rewrite (leqNgt n) => ->. Qed. Lemma leq_gtF m n : m <= n -> m > n = false. Proof. by rewrite (ltnNge n) => ->. Qed. Lemma leq_eqVlt m n : (m <= n) = (m == n) || (m < n). Proof. by elim: m n => [|m IHm] []. Qed. Lemma ltn_neqAle m n : (m < n) = (m != n) && (m <= n). Proof. by rewrite ltnNge leq_eqVlt negb_or -leqNgt eq_sym. Qed. Lemma leq_trans n m p : m <= n -> n <= p -> m <= p. Proof. by elim: n m p => [|i IHn] [|m] [|p] //; apply: IHn m p. Qed. Lemma leq_ltn_trans n m p : m <= n -> n < p -> m < p. Proof. by move=> Hmn; apply: leq_trans. Qed. Lemma ltnW m n : m < n -> m <= n. Proof. exact: leq_trans. Qed. #[global] Hint Resolve ltnW : core. Lemma leqW m n : m <= n -> m <= n.+1. Proof. by move=> le_mn; apply: ltnW. Qed. Lemma ltn_trans n m p : m < n -> n < p -> m < p. Proof. by move=> lt_mn /ltnW; apply: leq_trans. Qed. Lemma leq_total m n : (m <= n) || (m >= n). Proof. by rewrite -implyNb -ltnNge; apply/implyP; apply: ltnW. Qed. (* Helper lemmas to support generalized induction over a nat measure. *) (* The idiom for a proof by induction over a measure Mxy : nat involving *) (* variables x, y, ... (e.g., size x + size y) is *) (* have [n leMn] := ubnP Mxy; elim: n => // n IHn in x y ... leMn ... *. *) (* after which the current goal (possibly modified by generalizations in the *) (* in ... part) can be proven with the extra context assumptions *) (* n : nat *) (* IHn : forall x y ..., Mxy < n -> ... -> the_initial_goal *) (* leMn : Mxy < n.+1 *) (* This is preferable to the legacy idiom relying on numerical occurrence *) (* selection, which is fragile if there can be multiple occurrences of x, y, *) (* ... in the measure expression Mxy (e.g., in #|y| with x : finType and *) (* y : {set x}). *) (* The leMn statement is convertible to Mxy <= n; if it is necessary to *) (* have _exactly_ leMn : Mxy <= n, the ltnSE helper lemma may be used as *) (* follows *) (* have [n] := ubnP Mxy; elim: n => // n IHn in x y ... * => /ltnSE-leMn. *) (* We also provide alternative helper lemmas for proofs where the upper *) (* bound appears in the goal, and we assume nonstrict (in)equality. *) (* In either case the proof will have to dispatch an Mxy = 0 case. *) (* have [n defM] := ubnPleq Mxy; elim: n => [|n IHn] in x y ... defM ... *. *) (* yields two subgoals, in which Mxy has been replaced by 0 and n.+1, *) (* with the extra assumption defM : Mxy <= 0 / Mxy <= n.+1, respectively. *) (* The second goal also has the inductive assumption *) (* IHn : forall x y ..., Mxy <= n -> ... -> the_initial_goal[n / Mxy]. *) (* Using ubnPgeq or ubnPeq instead of ubnPleq yields assumptions with *) (* Mxy >= 0/n.+1 or Mxy == 0/n.+1 instead of Mxy <= 0/n.+1, respectively. *) (* These introduce a different kind of induction; for example ubnPgeq M lets *) (* us remember that n < M throughout the induction. *) (* Finally, the ltn_ind lemma provides a generalized induction view for a *) (* property of a single integer (i.e., the case Mxy := x). *) Lemma ubnP m : {n | m < n}. Proof. by exists m.+1. Qed. Lemma ltnSE m n : m < n.+1 -> m <= n. Proof. by []. Qed. Variant ubn_leq_spec m : nat -> Type := UbnLeq n of m <= n : ubn_leq_spec m n. Variant ubn_geq_spec m : nat -> Type := UbnGeq n of m >= n : ubn_geq_spec m n. Variant ubn_eq_spec m : nat -> Type := UbnEq n of m == n : ubn_eq_spec m n. Lemma ubnPleq m : ubn_leq_spec m m. Proof. by []. Qed. Lemma ubnPgeq m : ubn_geq_spec m m. Proof. by []. Qed. Lemma ubnPeq m : ubn_eq_spec m m. Proof. by []. Qed. Lemma ltn_ind P : (forall n, (forall m, m < n -> P m) -> P n) -> forall n, P n. Proof. move=> accP M; have [n leMn] := ubnP M; elim: n => // n IHn in M leMn *. by apply/accP=> p /leq_trans/(_ leMn)/IHn. Qed. (* Link to the legacy comparison predicates. *) Lemma leP m n : reflect (m <= n)%coq_nat (m <= n). Proof. apply: (iffP idP); last by elim: n / => // n _ /leq_trans->. elim: n => [|n IHn]; first by case: m. by rewrite leq_eqVlt ltnS => /predU1P[<- // | /IHn]; right. Qed. Arguments leP {m n}. Lemma le_irrelevance m n le_mn1 le_mn2 : le_mn1 = le_mn2 :> (m <= n)%coq_nat. Proof. elim/ltn_ind: n => n IHn in le_mn1 le_mn2 *; set n1 := n in le_mn1 *. pose def_n : n = n1 := erefl n; transitivity (eq_ind _ _ le_mn2 _ def_n) => //. case: n1 / le_mn1 le_mn2 => [|n1 le_mn1] {n}[|n le_mn2] in (def_n) IHn *. - by rewrite [def_n]eq_axiomK. - by case/leP/idPn: (le_mn2); rewrite -def_n ltnn. - by case/leP/idPn: (le_mn1); rewrite def_n ltnn. case: def_n (def_n) => <-{n1} def_n in le_mn1 *. by rewrite [def_n]eq_axiomK /=; congr le_S; apply: IHn. Qed. Lemma ltP m n : reflect (m < n)%coq_nat (m < n). Proof. exact leP. Qed. Arguments ltP {m n}. Lemma lt_irrelevance m n lt_mn1 lt_mn2 : lt_mn1 = lt_mn2 :> (m < n)%coq_nat. Proof. exact: (@le_irrelevance m.+1). Qed. (* Monotonicity lemmas *) Lemma leq_add2l p m n : (p + m <= p + n) = (m <= n). Proof. by elim: p. Qed. Lemma ltn_add2l p m n : (p + m < p + n) = (m < n). Proof. by rewrite -addnS; apply: leq_add2l. Qed. Lemma leq_add2r p m n : (m + p <= n + p) = (m <= n). Proof. by rewrite -!(addnC p); apply: leq_add2l. Qed. Lemma ltn_add2r p m n : (m + p < n + p) = (m < n). Proof. exact: leq_add2r p m.+1 n. Qed. Lemma leq_add m1 m2 n1 n2 : m1 <= n1 -> m2 <= n2 -> m1 + m2 <= n1 + n2. Proof. by move=> le_mn1 le_mn2; rewrite (@leq_trans (m1 + n2)) ?leq_add2l ?leq_add2r. Qed. Lemma leq_addl m n : n <= m + n. Proof. exact: (leq_add2r n 0). Qed. Lemma leq_addr m n : n <= n + m. Proof. by rewrite addnC leq_addl. Qed. Lemma ltn_addl m n p : m < n -> m < p + n. Proof. by move/leq_trans=> -> //; apply: leq_addl. Qed. Lemma ltn_addr m n p : m < n -> m < n + p. Proof. by move/leq_trans=> -> //; apply: leq_addr. Qed. Lemma addn_gt0 m n : (0 < m + n) = (0 < m) || (0 < n). Proof. by rewrite !lt0n -negb_and addn_eq0. Qed. Lemma subn_gt0 m n : (0 < n - m) = (m < n). Proof. by elim: m n => [|m IHm] [|n] //; apply: IHm n. Qed. Lemma subn_eq0 m n : (m - n == 0) = (m <= n). Proof. by []. Qed. Lemma leq_subLR m n p : (m - n <= p) = (m <= n + p). Proof. by rewrite -subn_eq0 -subnDA. Qed. Lemma leq_subr m n : n - m <= n. Proof. by rewrite leq_subLR leq_addl. Qed. Lemma ltn_subrR m n : (n < n - m) = false. Proof. by rewrite ltnNge leq_subr. Qed. Lemma leq_subrR m n : (n <= n - m) = (m == 0) || (n == 0). Proof. by case: m n => [|m] [|n]; rewrite ?subn0 ?leqnn ?ltn_subrR. Qed. Lemma ltn_subrL m n : (n - m < n) = (0 < m) && (0 < n). Proof. by rewrite ltnNge leq_subrR negb_or !lt0n. Qed. Lemma subnKC m n : m <= n -> m + (n - m) = n. Proof. by elim: m n => [|m IHm] [|n] // /(IHm n) {2}<-. Qed. Lemma addnBn m n : m + (n - m) = m - n + n. Proof. by elim: m n => [|m IHm] [|n] //; rewrite addSn addnS IHm. Qed. Lemma subnK m n : m <= n -> (n - m) + m = n. Proof. by rewrite addnC; apply: subnKC. Qed. Lemma addnBA m n p : p <= n -> m + (n - p) = m + n - p. Proof. by move=> le_pn; rewrite -[in RHS](subnK le_pn) addnA addnK. Qed. Lemma addnBAC m n p : n <= m -> m - n + p = m + p - n. Proof. by move=> le_nm; rewrite addnC addnBA // addnC. Qed. Lemma addnBCA m n p : p <= m -> p <= n -> m + (n - p) = n + (m - p). Proof. by move=> le_pm le_pn; rewrite !addnBA // addnC. Qed. Lemma addnABC m n p : p <= m -> p <= n -> m + (n - p) = m - p + n. Proof. by move=> le_pm le_pn; rewrite addnBA // addnBAC. Qed. Lemma subnBA m n p : p <= n -> m - (n - p) = m + p - n. Proof. by move=> le_pn; rewrite -[in RHS](subnK le_pn) subnDr. Qed. Lemma subnA m n p : p <= n -> n <= m -> m - (n - p) = m - n + p. Proof. by move=> le_pn lr_nm; rewrite addnBAC // subnBA. Qed. Lemma subKn m n : m <= n -> n - (n - m) = m. Proof. by move/subnBA->; rewrite addKn. Qed. Lemma subSn m n : m <= n -> n.+1 - m = (n - m).+1. Proof. by rewrite -add1n => /addnBA <-. Qed. Lemma subnSK m n : m < n -> (n - m.+1).+1 = n - m. Proof. by move/subSn. Qed. Lemma predn_sub m n : (m - n).-1 = (m.-1 - n). Proof. by case: m => // m; rewrite subSKn. Qed. Lemma leq_sub2r p m n : m <= n -> m - p <= n - p. Proof. by move=> le_mn; rewrite leq_subLR (leq_trans le_mn) // -leq_subLR. Qed. Lemma leq_sub2l p m n : m <= n -> p - n <= p - m. Proof. rewrite -(leq_add2r (p - m)) leq_subLR. by apply: leq_trans; rewrite -leq_subLR. Qed. Lemma leq_sub m1 m2 n1 n2 : m1 <= m2 -> n2 <= n1 -> m1 - n1 <= m2 - n2. Proof. by move/(leq_sub2r n1)=> le_m12 /(leq_sub2l m2); apply: leq_trans. Qed. Lemma ltn_sub2r p m n : p < n -> m < n -> m - p < n - p. Proof. by move/subnSK <-; apply: (@leq_sub2r p.+1). Qed. Lemma ltn_sub2l p m n : m < p -> m < n -> p - n < p - m. Proof. by move/subnSK <-; apply: leq_sub2l. Qed. Lemma ltn_subRL m n p : (n < p - m) = (m + n < p). Proof. by rewrite !ltnNge leq_subLR. Qed. Lemma leq_psubRL m n p : 0 < n -> (n <= p - m) = (m + n <= p). Proof. by move=> /prednK<-; rewrite ltn_subRL addnS. Qed. Lemma ltn_psubLR m n p : 0 < p -> (m - n < p) = (m < n + p). Proof. by move=> /prednK<-; rewrite ltnS leq_subLR addnS. Qed. Lemma leq_subRL m n p : m <= p -> (n <= p - m) = (m + n <= p). Proof. by move=> /subnKC{2}<-; rewrite leq_add2l. Qed. Lemma ltn_subLR m n p : n <= m -> (m - n < p) = (m < n + p). Proof. by move=> /subnKC{2}<-; rewrite ltn_add2l. Qed. Lemma leq_subCl m n p : (m - n <= p) = (m - p <= n). Proof. by rewrite !leq_subLR // addnC. Qed. Lemma ltn_subCr m n p : (p < m - n) = (n < m - p). Proof. by rewrite !ltn_subRL // addnC. Qed. Lemma leq_psubCr m n p : 0 < p -> 0 < n -> (p <= m - n) = (n <= m - p). Proof. by move=> p_gt0 n_gt0; rewrite !leq_psubRL // addnC. Qed. Lemma ltn_psubCl m n p : 0 < p -> 0 < n -> (m - n < p) = (m - p < n). Proof. by move=> p_gt0 n_gt0; rewrite !ltn_psubLR // addnC. Qed. Lemma leq_subCr m n p : n <= m -> p <= m -> (p <= m - n) = (n <= m - p). Proof. by move=> np pm; rewrite !leq_subRL // addnC. Qed. Lemma ltn_subCl m n p : n <= m -> p <= m -> (m - n < p) = (m - p < n). Proof. by move=> nm pm; rewrite !ltn_subLR // addnC. Qed. (* Max and min. *) Definition maxn m n := if m < n then n else m. Definition minn m n := if m < n then m else n. Lemma max0n : left_id 0 maxn. Proof. by case. Qed. Lemma maxn0 : right_id 0 maxn. Proof. by []. Qed. Lemma maxnC : commutative maxn. Proof. by rewrite /maxn; elim=> [|m ih] [] // n; rewrite !ltnS -!fun_if ih. Qed. Lemma maxnE m n : maxn m n = m + (n - m). Proof. rewrite /maxn; elim: m n => [|m ih] [|n]; rewrite ?addn0 //. by rewrite ltnS subSS addSn -ih; case: leq. Qed. Lemma maxnAC : right_commutative maxn. Proof. by move=> m n p; rewrite !maxnE -!addnA !subnDA -!maxnE maxnC. Qed. Lemma maxnA : associative maxn. Proof. by move=> m n p; rewrite !(maxnC m) maxnAC. Qed. Lemma maxnCA : left_commutative maxn. Proof. by move=> m n p; rewrite !maxnA (maxnC m). Qed. Lemma maxnACA : interchange maxn maxn. Proof. by move=> m n p q; rewrite -!maxnA (maxnCA n). Qed. Lemma maxn_idPl {m n} : reflect (maxn m n = m) (m >= n). Proof. by rewrite -subn_eq0 -(eqn_add2l m) addn0 -maxnE; apply: eqP. Qed. Lemma maxn_idPr {m n} : reflect (maxn m n = n) (m <= n). Proof. by rewrite maxnC; apply: maxn_idPl. Qed. Lemma maxnn : idempotent maxn. Proof. by move=> n; apply/maxn_idPl. Qed. Lemma leq_max m n1 n2 : (m <= maxn n1 n2) = (m <= n1) || (m <= n2). Proof. without loss le_n21: n1 n2 / n2 <= n1. by case/orP: (leq_total n2 n1) => le_n12; last rewrite maxnC orbC; apply. by rewrite (maxn_idPl le_n21) orb_idr // => /leq_trans->. Qed. Lemma leq_maxl m n : m <= maxn m n. Proof. by rewrite leq_max leqnn. Qed. Lemma leq_maxr m n : n <= maxn m n. Proof. by rewrite maxnC leq_maxl. Qed. Lemma gtn_max m n1 n2 : (m > maxn n1 n2) = (m > n1) && (m > n2). Proof. by rewrite !ltnNge leq_max negb_or. Qed. Lemma geq_max m n1 n2 : (m >= maxn n1 n2) = (m >= n1) && (m >= n2). Proof. by rewrite -ltnS gtn_max. Qed. Lemma maxnSS m n : maxn m.+1 n.+1 = (maxn m n).+1. Proof. by rewrite !maxnE. Qed. Lemma addn_maxl : left_distributive addn maxn. Proof. by move=> m1 m2 n; rewrite !maxnE subnDr addnAC. Qed. Lemma addn_maxr : right_distributive addn maxn. Proof. by move=> m n1 n2; rewrite !(addnC m) addn_maxl. Qed. Lemma subn_maxl : left_distributive subn maxn. Proof. move=> m n p; apply/eqP. rewrite eqn_leq !geq_max !leq_sub2r leq_max ?leqnn ?andbT ?orbT // /maxn. by case: (_ < _); rewrite leqnn // orbT. Qed. Lemma min0n : left_zero 0 minn. Proof. by case. Qed. Lemma minn0 : right_zero 0 minn. Proof. by []. Qed. Lemma minnC : commutative minn. Proof. by rewrite /minn; elim=> [|m ih] [] // n; rewrite !ltnS -!fun_if ih. Qed. Lemma addn_min_max m n : minn m n + maxn m n = m + n. Proof. by rewrite /minn /maxn; case: (m < n) => //; exact: addnC. Qed. Lemma minnE m n : minn m n = m - (m - n). Proof. by rewrite -(subnDl n) -maxnE -addn_min_max addnK minnC. Qed. Lemma minnAC : right_commutative minn. Proof. by move=> m n p; rewrite !minnE -subnDA subnAC -maxnE maxnC maxnE subnAC subnDA. Qed. Lemma minnA : associative minn. Proof. by move=> m n p; rewrite minnC minnAC (minnC n). Qed. Lemma minnCA : left_commutative minn. Proof. by move=> m n p; rewrite !minnA (minnC n). Qed. Lemma minnACA : interchange minn minn. Proof. by move=> m n p q; rewrite -!minnA (minnCA n). Qed. Lemma minn_idPl {m n} : reflect (minn m n = m) (m <= n). Proof. rewrite (sameP maxn_idPr eqP) -(eqn_add2l m) eq_sym -addn_min_max eqn_add2r. exact: eqP. Qed. Lemma minn_idPr {m n} : reflect (minn m n = n) (m >= n). Proof. by rewrite minnC; apply: minn_idPl. Qed. Lemma minnn : idempotent minn. Proof. by move=> n; apply/minn_idPl. Qed. Lemma leq_min m n1 n2 : (m <= minn n1 n2) = (m <= n1) && (m <= n2). Proof. wlog le_n21: n1 n2 / n2 <= n1. by case/orP: (leq_total n2 n1) => ?; last rewrite minnC andbC; apply. rewrite /minn ltnNge le_n21 /=; case le_m_n1: (m <= n1) => //=. apply/contraFF: le_m_n1 => /leq_trans; exact. Qed. Lemma gtn_min m n1 n2 : (m > minn n1 n2) = (m > n1) || (m > n2). Proof. by rewrite !ltnNge leq_min negb_and. Qed. Lemma geq_min m n1 n2 : (m >= minn n1 n2) = (m >= n1) || (m >= n2). Proof. by rewrite -ltnS gtn_min. Qed. Lemma geq_minl m n : minn m n <= m. Proof. by rewrite geq_min leqnn. Qed. Lemma geq_minr m n : minn m n <= n. Proof. by rewrite minnC geq_minl. Qed. Lemma addn_minr : right_distributive addn minn. Proof. by move=> m1 m2 n; rewrite !minnE subnDl addnBA ?leq_subr. Qed. Lemma addn_minl : left_distributive addn minn. Proof. by move=> m1 m2 n; rewrite -!(addnC n) addn_minr. Qed. Lemma subn_minl : left_distributive subn minn. Proof. move=> m n p; apply/eqP. rewrite eqn_leq !leq_min !leq_sub2r geq_min ?leqnn ?orbT //= /minn. by case: (_ < _); rewrite leqnn // orbT. Qed. Lemma minnSS m n : minn m.+1 n.+1 = (minn m n).+1. Proof. by rewrite -(addn_minr 1). Qed. (* Quasi-cancellation (really, absorption) lemmas *) Lemma maxnK m n : minn (maxn m n) m = m. Proof. exact/minn_idPr/leq_maxl. Qed. Lemma maxKn m n : minn n (maxn m n) = n. Proof. exact/minn_idPl/leq_maxr. Qed. Lemma minnK m n : maxn (minn m n) m = m. Proof. exact/maxn_idPr/geq_minl. Qed. Lemma minKn m n : maxn n (minn m n) = n. Proof. exact/maxn_idPl/geq_minr. Qed. (* Distributivity. *) Lemma maxn_minl : left_distributive maxn minn. Proof. move=> m1 m2 n; wlog le_m21: m1 m2 / m2 <= m1. move=> IH; case/orP: (leq_total m2 m1) => /IH //. by rewrite minnC [in R in _ = R]minnC. rewrite (minn_idPr le_m21); apply/esym/minn_idPr. by rewrite geq_max leq_maxr leq_max le_m21. Qed. Lemma maxn_minr : right_distributive maxn minn. Proof. by move=> m n1 n2; rewrite !(maxnC m) maxn_minl. Qed. Lemma minn_maxl : left_distributive minn maxn. Proof. by move=> m1 m2 n; rewrite maxn_minr !maxn_minl -minnA maxnn (maxnC _ n) !maxnK. Qed. Lemma minn_maxr : right_distributive minn maxn. Proof. by move=> m n1 n2; rewrite !(minnC m) minn_maxl. Qed. (* Comparison predicates. *) Variant leq_xor_gtn m n : nat -> nat -> nat -> nat -> bool -> bool -> Set := | LeqNotGtn of m <= n : leq_xor_gtn m n m m n n true false | GtnNotLeq of n < m : leq_xor_gtn m n n n m m false true. Lemma leqP m n : leq_xor_gtn m n (minn n m) (minn m n) (maxn n m) (maxn m n) (m <= n) (n < m). Proof. rewrite (minnC m) /minn (maxnC m) /maxn ltnNge. by case le_mn: (m <= n); constructor; rewrite //= ltnNge le_mn. Qed. Variant ltn_xor_geq m n : nat -> nat -> nat -> nat -> bool -> bool -> Set := | LtnNotGeq of m < n : ltn_xor_geq m n m m n n false true | GeqNotLtn of n <= m : ltn_xor_geq m n n n m m true false. Lemma ltnP m n : ltn_xor_geq m n (minn n m) (minn m n) (maxn n m) (maxn m n) (n <= m) (m < n). Proof. by case: leqP; constructor. Qed. Variant eqn0_xor_gt0 n : bool -> bool -> Set := | Eq0NotPos of n = 0 : eqn0_xor_gt0 n true false | PosNotEq0 of n > 0 : eqn0_xor_gt0 n false true. Lemma posnP n : eqn0_xor_gt0 n (n == 0) (0 < n). Proof. by case: n; constructor. Qed. Variant compare_nat m n : nat -> nat -> nat -> nat -> bool -> bool -> bool -> bool -> bool -> bool -> Set := | CompareNatLt of m < n : compare_nat m n m m n n false false false true false true | CompareNatGt of m > n : compare_nat m n n n m m false false true false true false | CompareNatEq of m = n : compare_nat m n m m m m true true true true false false. Lemma ltngtP m n : compare_nat m n (minn n m) (minn m n) (maxn n m) (maxn m n) (n == m) (m == n) (n <= m) (m <= n) (n < m) (m < n). Proof. rewrite !ltn_neqAle [_ == n]eq_sym; have [mn|] := ltnP m n. by rewrite ltnW // gtn_eqF //; constructor. rewrite leq_eqVlt; case: ltnP; rewrite ?(orbT, orbF) => //= lt_nm eq_nm. by rewrite ltn_eqF //; constructor. by rewrite eq_nm (eqP eq_nm); constructor. Qed. (* Eliminating the idiom for structurally decreasing compare and subtract. *) Lemma subn_if_gt T m n F (E : T) : (if m.+1 - n is m'.+1 then F m' else E) = (if n <= m then F (m - n) else E). Proof. by have [le_nm|/eqnP-> //] := leqP; rewrite -{1}(subnK le_nm) -addSn addnK. Qed. Notation leqLHS := (X in (X <= _)%N)%pattern. Notation leqRHS := (X in (_ <= X)%N)%pattern. Notation ltnLHS := (X in (X < _)%N)%pattern. Notation ltnRHS := (X in (_ < X)%N)%pattern. (* Getting a concrete value from an abstract existence proof. *) Section ExMinn. Variable P : pred nat. Hypothesis exP : exists n, P n. Inductive acc_nat i : Prop := AccNat0 of P i | AccNatS of acc_nat i.+1. Lemma find_ex_minn : {m | P m & forall n, P n -> n >= m}. Proof. have: forall n, P n -> n >= 0 by []. have: acc_nat 0. case exP => n; rewrite -(addn0 n); elim: n 0 => [|n IHn] j; first by left. by rewrite addSnnS; right; apply: IHn. move: 0; fix find_ex_minn 2 => m IHm m_lb; case Pm: (P m); first by exists m. apply: find_ex_minn m.+1 _ _ => [|n Pn]; first by case: IHm; rewrite ?Pm. by rewrite ltn_neqAle m_lb //; case: eqP Pm => // -> /idP[]. Qed. Definition ex_minn := s2val find_ex_minn. Inductive ex_minn_spec : nat -> Type := ExMinnSpec m of P m & (forall n, P n -> n >= m) : ex_minn_spec m. Lemma ex_minnP : ex_minn_spec ex_minn. Proof. by rewrite /ex_minn; case: find_ex_minn. Qed. End ExMinn. Section ExMaxn. Variables (P : pred nat) (m : nat). Hypotheses (exP : exists i, P i) (ubP : forall i, P i -> i <= m). Lemma ex_maxn_subproof : exists i, P (m - i). Proof. by case: exP => i Pi; exists (m - i); rewrite subKn ?ubP. Qed. Definition ex_maxn := m - ex_minn ex_maxn_subproof. Variant ex_maxn_spec : nat -> Type := ExMaxnSpec i of P i & (forall j, P j -> j <= i) : ex_maxn_spec i. Lemma ex_maxnP : ex_maxn_spec ex_maxn. Proof. rewrite /ex_maxn; case: ex_minnP => i Pmi min_i; split=> // j Pj. have le_i_mj: i <= m - j by rewrite min_i // subKn // ubP. rewrite -subn_eq0 subnBA ?(leq_trans le_i_mj) ?leq_subr //. by rewrite addnC -subnBA ?ubP. Qed. End ExMaxn. Lemma eq_ex_minn P Q exP exQ : P =1 Q -> @ex_minn P exP = @ex_minn Q exQ. Proof. move=> eqPQ; case: ex_minnP => m1 Pm1 m1_lb; case: ex_minnP => m2 Pm2 m2_lb. by apply/eqP; rewrite eqn_leq m1_lb (m2_lb, eqPQ) // -eqPQ. Qed. Lemma eq_ex_maxn (P Q : pred nat) m n exP ubP exQ ubQ : P =1 Q -> @ex_maxn P m exP ubP = @ex_maxn Q n exQ ubQ. Proof. move=> eqPQ; case: ex_maxnP => i Pi max_i; case: ex_maxnP => j Pj max_j. by apply/eqP; rewrite eqn_leq max_i ?eqPQ // max_j -?eqPQ. Qed. Section Iteration. Variable T : Type. Implicit Types m n : nat. Implicit Types x y : T. Implicit Types S : {pred T}. Definition iter n f x := let fix loop m := if m is i.+1 then f (loop i) else x in loop n. Definition iteri n f x := let fix loop m := if m is i.+1 then f i (loop i) else x in loop n. Definition iterop n op x := let f i y := if i is 0 then x else op x y in iteri n f. Lemma iterSr n f x : iter n.+1 f x = iter n f (f x). Proof. by elim: n => //= n <-. Qed. Lemma iterS n f x : iter n.+1 f x = f (iter n f x). Proof. by []. Qed. Lemma iterD n m f x : iter (n + m) f x = iter n f (iter m f x). Proof. by elim: n => //= n ->. Qed. Lemma iteriS n f x : iteri n.+1 f x = f n (iteri n f x). Proof. by []. Qed. Lemma iteropS idx n op x : iterop n.+1 op x idx = iter n (op x) x. Proof. by elim: n => //= n ->. Qed. Lemma eq_iter f f' : f =1 f' -> forall n, iter n f =1 iter n f'. Proof. by move=> eq_f n x; elim: n => //= n ->; rewrite eq_f. Qed. Lemma iter_fix n f x : f x = x -> iter n f x = x. Proof. by move=> fixf; elim: n => //= n ->. Qed. Lemma eq_iteri f f' : f =2 f' -> forall n, iteri n f =1 iteri n f'. Proof. by move=> eq_f n x; elim: n => //= n ->; rewrite eq_f. Qed. Lemma eq_iterop n op op' : op =2 op' -> iterop n op =2 iterop n op'. Proof. by move=> eq_op x; apply: eq_iteri; case. Qed. Lemma iter_in f S i : {homo f : x / x \in S} -> {homo iter i f : x / x \in S}. Proof. by move=> f_in x xS; elim: i => [|i /f_in]. Qed. End Iteration. Lemma iter_succn m n : iter n succn m = m + n. Proof. by rewrite addnC; elim: n => //= n ->. Qed. Lemma iter_succn_0 n : iter n succn 0 = n. Proof. exact: iter_succn. Qed. Lemma iter_predn m n : iter n predn m = m - n. Proof. by elim: n m => /= [|n IHn] m; rewrite ?subn0 // IHn subnS. Qed. (* Multiplication. *) Definition muln_rec := mult. Notation "m * n" := (muln_rec m n) : nat_rec_scope. Definition muln := nosimpl muln_rec. Notation "m * n" := (muln m n) : nat_scope. Lemma multE : mult = muln. Proof. by []. Qed. Lemma mulnE : muln = muln_rec. Proof. by []. Qed. Lemma mul0n : left_zero 0 muln. Proof. by []. Qed. Lemma muln0 : right_zero 0 muln. Proof. by elim. Qed. Lemma mul1n : left_id 1 muln. Proof. exact: addn0. Qed. Lemma mulSn m n : m.+1 * n = n + m * n. Proof. by []. Qed. Lemma mulSnr m n : m.+1 * n = m * n + n. Proof. exact: addnC. Qed. Lemma mulnS m n : m * n.+1 = m + m * n. Proof. by elim: m => // m; rewrite !mulSn !addSn addnCA => ->. Qed. Lemma mulnSr m n : m * n.+1 = m * n + m. Proof. by rewrite addnC mulnS. Qed. Lemma iter_addn m n p : iter n (addn m) p = m * n + p. Proof. by elim: n => /= [|n ->]; rewrite ?muln0 // mulnS addnA. Qed. Lemma iter_addn_0 m n : iter n (addn m) 0 = m * n. Proof. by rewrite iter_addn addn0. Qed. Lemma muln1 : right_id 1 muln. Proof. by move=> n; rewrite mulnSr muln0. Qed. Lemma mulnC : commutative muln. Proof. by move=> m n; elim: m => [|m]; rewrite (muln0, mulnS) // mulSn => ->. Qed. Lemma mulnDl : left_distributive muln addn. Proof. by move=> m1 m2 n; elim: m1 => //= m1 IHm; rewrite -addnA -IHm. Qed. Lemma mulnDr : right_distributive muln addn. Proof. by move=> m n1 n2; rewrite !(mulnC m) mulnDl. Qed. Lemma mulnBl : left_distributive muln subn. Proof. move=> m n [|p]; first by rewrite !muln0. by elim: m n => // [m IHm] [|n] //; rewrite mulSn subnDl -IHm. Qed. Lemma mulnBr : right_distributive muln subn. Proof. by move=> m n p; rewrite !(mulnC m) mulnBl. Qed. Lemma mulnA : associative muln. Proof. by move=> m n p; elim: m => //= m; rewrite mulSn mulnDl => ->. Qed. Lemma mulnCA : left_commutative muln. Proof. by move=> m n1 n2; rewrite !mulnA (mulnC m). Qed. Lemma mulnAC : right_commutative muln. Proof. by move=> m n p; rewrite -!mulnA (mulnC n). Qed. Lemma mulnACA : interchange muln muln. Proof. by move=> m n p q; rewrite -!mulnA (mulnCA n). Qed. Lemma muln_eq0 m n : (m * n == 0) = (m == 0) || (n == 0). Proof. by case: m n => // m [|n] //=; rewrite muln0. Qed. Lemma muln_eq1 m n : (m * n == 1) = (m == 1) && (n == 1). Proof. by case: m n => [|[|m]] [|[|n]] //; rewrite muln0. Qed. Lemma muln_gt0 m n : (0 < m * n) = (0 < m) && (0 < n). Proof. by case: m n => // m [|n] //=; rewrite muln0. Qed. Lemma leq_pmull m n : n > 0 -> m <= n * m. Proof. by move/prednK <-; apply: leq_addr. Qed. Lemma leq_pmulr m n : n > 0 -> m <= m * n. Proof. by move/leq_pmull; rewrite mulnC. Qed. Lemma leq_mul2l m n1 n2 : (m * n1 <= m * n2) = (m == 0) || (n1 <= n2). Proof. by rewrite [LHS]/leq -mulnBr muln_eq0. Qed. Lemma leq_mul2r m n1 n2 : (n1 * m <= n2 * m) = (m == 0) || (n1 <= n2). Proof. by rewrite -!(mulnC m) leq_mul2l. Qed. Lemma leq_mul m1 m2 n1 n2 : m1 <= n1 -> m2 <= n2 -> m1 * m2 <= n1 * n2. Proof. move=> le_mn1 le_mn2; apply (@leq_trans (m1 * n2)). by rewrite leq_mul2l le_mn2 orbT. by rewrite leq_mul2r le_mn1 orbT. Qed. Lemma eqn_mul2l m n1 n2 : (m * n1 == m * n2) = (m == 0) || (n1 == n2). Proof. by rewrite eqn_leq !leq_mul2l -orb_andr -eqn_leq. Qed. Lemma eqn_mul2r m n1 n2 : (n1 * m == n2 * m) = (m == 0) || (n1 == n2). Proof. by rewrite eqn_leq !leq_mul2r -orb_andr -eqn_leq. Qed. Lemma leq_pmul2l m n1 n2 : 0 < m -> (m * n1 <= m * n2) = (n1 <= n2). Proof. by move/prednK=> <-; rewrite leq_mul2l. Qed. Arguments leq_pmul2l [m n1 n2]. Lemma leq_pmul2r m n1 n2 : 0 < m -> (n1 * m <= n2 * m) = (n1 <= n2). Proof. by move/prednK <-; rewrite leq_mul2r. Qed. Arguments leq_pmul2r [m n1 n2]. Lemma eqn_pmul2l m n1 n2 : 0 < m -> (m * n1 == m * n2) = (n1 == n2). Proof. by move/prednK <-; rewrite eqn_mul2l. Qed. Arguments eqn_pmul2l [m n1 n2]. Lemma eqn_pmul2r m n1 n2 : 0 < m -> (n1 * m == n2 * m) = (n1 == n2). Proof. by move/prednK <-; rewrite eqn_mul2r. Qed. Arguments eqn_pmul2r [m n1 n2]. Lemma ltn_mul2l m n1 n2 : (m * n1 < m * n2) = (0 < m) && (n1 < n2). Proof. by rewrite lt0n !ltnNge leq_mul2l negb_or. Qed. Lemma ltn_mul2r m n1 n2 : (n1 * m < n2 * m) = (0 < m) && (n1 < n2). Proof. by rewrite lt0n !ltnNge leq_mul2r negb_or. Qed. Lemma ltn_pmul2l m n1 n2 : 0 < m -> (m * n1 < m * n2) = (n1 < n2). Proof. by move/prednK <-; rewrite ltn_mul2l. Qed. Arguments ltn_pmul2l [m n1 n2]. Lemma ltn_pmul2r m n1 n2 : 0 < m -> (n1 * m < n2 * m) = (n1 < n2). Proof. by move/prednK <-; rewrite ltn_mul2r. Qed. Arguments ltn_pmul2r [m n1 n2]. Lemma ltn_Pmull m n : 1 < n -> 0 < m -> m < n * m. Proof. by move=> lt1n m_gt0; rewrite -[ltnLHS]mul1n ltn_pmul2r. Qed. Lemma ltn_Pmulr m n : 1 < n -> 0 < m -> m < m * n. Proof. by move=> lt1n m_gt0; rewrite mulnC ltn_Pmull. Qed. Lemma ltn_mul m1 m2 n1 n2 : m1 < n1 -> m2 < n2 -> m1 * m2 < n1 * n2. Proof. move=> lt_mn1 lt_mn2; apply (@leq_ltn_trans (m1 * n2)). by rewrite leq_mul2l orbC ltnW. by rewrite ltn_pmul2r // (leq_trans _ lt_mn2). Qed. Lemma maxnMr : right_distributive muln maxn. Proof. by case=> // m n1 n2; rewrite /maxn (fun_if (muln _)) ltn_pmul2l. Qed. Lemma maxnMl : left_distributive muln maxn. Proof. by move=> m1 m2 n; rewrite -!(mulnC n) maxnMr. Qed. Lemma minnMr : right_distributive muln minn. Proof. by case=> // m n1 n2; rewrite /minn (fun_if (muln _)) ltn_pmul2l. Qed. Lemma minnMl : left_distributive muln minn. Proof. by move=> m1 m2 n; rewrite -!(mulnC n) minnMr. Qed. Lemma iterM (T : Type) (n m : nat) (f : T -> T) : iter (n * m) f =1 iter n (iter m f). Proof. by move=> x; elim: n => //= n <-; rewrite mulSn iterD. Qed. (* Exponentiation. *) Definition expn_rec m n := iterop n muln m 1. Notation "m ^ n" := (expn_rec m n) : nat_rec_scope. Definition expn := nosimpl expn_rec. Notation "m ^ n" := (expn m n) : nat_scope. Lemma expnE : expn = expn_rec. Proof. by []. Qed. Lemma expn0 m : m ^ 0 = 1. Proof. by []. Qed. Lemma expn1 m : m ^ 1 = m. Proof. by []. Qed. Lemma expnS m n : m ^ n.+1 = m * m ^ n. Proof. by case: n; rewrite ?muln1. Qed. Lemma expnSr m n : m ^ n.+1 = m ^ n * m. Proof. by rewrite mulnC expnS. Qed. Lemma iter_muln m n p : iter n (muln m) p = m ^ n * p. Proof. by elim: n => /= [|n ->]; rewrite ?mul1n // expnS mulnA. Qed. Lemma iter_muln_1 m n : iter n (muln m) 1 = m ^ n. Proof. by rewrite iter_muln muln1. Qed. Lemma exp0n n : 0 < n -> 0 ^ n = 0. Proof. by case: n => [|[]]. Qed. Lemma exp1n n : 1 ^ n = 1. Proof. by elim: n => // n; rewrite expnS mul1n. Qed. Lemma expnD m n1 n2 : m ^ (n1 + n2) = m ^ n1 * m ^ n2. Proof. by elim: n1 => [|n1 IHn]; rewrite !(mul1n, expnS) // IHn mulnA. Qed. Lemma expnMn m1 m2 n : (m1 * m2) ^ n = m1 ^ n * m2 ^ n. Proof. by elim: n => // n IHn; rewrite !expnS IHn -!mulnA (mulnCA m2). Qed. Lemma expnM m n1 n2 : m ^ (n1 * n2) = (m ^ n1) ^ n2. Proof. elim: n1 => [|n1 IHn]; first by rewrite exp1n. by rewrite expnD expnS expnMn IHn. Qed. Lemma expnAC m n1 n2 : (m ^ n1) ^ n2 = (m ^ n2) ^ n1. Proof. by rewrite -!expnM mulnC. Qed. Lemma expn_gt0 m n : (0 < m ^ n) = (0 < m) || (n == 0). Proof. by case: m => [|m]; elim: n => //= n IHn; rewrite expnS // addn_gt0 IHn. Qed. Lemma expn_eq0 m e : (m ^ e == 0) = (m == 0) && (e > 0). Proof. by rewrite !eqn0Ngt expn_gt0 negb_or -lt0n. Qed. Lemma ltn_expl m n : 1 < m -> n < m ^ n. Proof. move=> m_gt1; elim: n => //= n; rewrite -(leq_pmul2l (ltnW m_gt1)) expnS. by apply: leq_trans; apply: ltn_Pmull. Qed. Lemma leq_exp2l m n1 n2 : 1 < m -> (m ^ n1 <= m ^ n2) = (n1 <= n2). Proof. move=> m_gt1; elim: n1 n2 => [|n1 IHn] [|n2] //; last 1 first. - by rewrite !expnS leq_pmul2l ?IHn // ltnW. - by rewrite expn_gt0 ltnW. by rewrite leqNgt (leq_trans m_gt1) // expnS leq_pmulr // expn_gt0 ltnW. Qed. Lemma ltn_exp2l m n1 n2 : 1 < m -> (m ^ n1 < m ^ n2) = (n1 < n2). Proof. by move=> m_gt1; rewrite !ltnNge leq_exp2l. Qed. Lemma eqn_exp2l m n1 n2 : 1 < m -> (m ^ n1 == m ^ n2) = (n1 == n2). Proof. by move=> m_gt1; rewrite !eqn_leq !leq_exp2l. Qed. Lemma expnI m : 1 < m -> injective (expn m). Proof. by move=> m_gt1 e1 e2 /eqP; rewrite eqn_exp2l // => /eqP. Qed. Lemma leq_pexp2l m n1 n2 : 0 < m -> n1 <= n2 -> m ^ n1 <= m ^ n2. Proof. by case: m => [|[|m]] // _; [rewrite !exp1n | rewrite leq_exp2l]. Qed. Lemma ltn_pexp2l m n1 n2 : 0 < m -> m ^ n1 < m ^ n2 -> n1 < n2. Proof. by case: m => [|[|m]] // _; [rewrite !exp1n | rewrite ltn_exp2l]. Qed. Lemma ltn_exp2r m n e : e > 0 -> (m ^ e < n ^ e) = (m < n). Proof. move=> e_gt0; apply/idP/idP=> [|ltmn]. rewrite !ltnNge; apply: contra => lemn. by elim: e {e_gt0} => // e IHe; rewrite !expnS leq_mul. by elim: e e_gt0 => // [[|e] IHe] _; rewrite ?expn1 // ltn_mul // IHe. Qed. Lemma leq_exp2r m n e : e > 0 -> (m ^ e <= n ^ e) = (m <= n). Proof. by move=> e_gt0; rewrite leqNgt ltn_exp2r // -leqNgt. Qed. Lemma eqn_exp2r m n e : e > 0 -> (m ^ e == n ^ e) = (m == n). Proof. by move=> e_gt0; rewrite !eqn_leq !leq_exp2r. Qed. Lemma expIn e : e > 0 -> injective (expn^~ e). Proof. by move=> e_gt1 m n /eqP; rewrite eqn_exp2r // => /eqP. Qed. Lemma iterX (T : Type) (n m : nat) (f : T -> T) : iter (n ^ m) f =1 iter m (iter n) f. Proof. elim: m => //= m ihm x; rewrite expnS iterM; exact/eq_iter. Qed. (* Factorial. *) Fixpoint fact_rec n := if n is n'.+1 then n * fact_rec n' else 1. Definition factorial := nosimpl fact_rec. Notation "n `!" := (factorial n) (at level 2, format "n `!") : nat_scope. Lemma factE : factorial = fact_rec. Proof. by []. Qed. Lemma fact0 : 0`! = 1. Proof. by []. Qed. Lemma factS n : (n.+1)`! = n.+1 * n`!. Proof. by []. Qed. Lemma fact_gt0 n : n`! > 0. Proof. by elim: n => //= n IHn; rewrite muln_gt0. Qed. Lemma fact_geq n : n <= n`!. Proof. by case: n => // n; rewrite factS -(addn1 n) leq_pmulr ?fact_gt0. Qed. Lemma ltn_fact m n : 0 < m -> m < n -> m`! < n`!. Proof. case: m n => // m n _; elim: n m => // n ih [|m] ?; last by rewrite ltn_mul ?ih. by rewrite -[_.+1]muln1 leq_mul ?fact_gt0. Qed. #[deprecated(since="mathcomp 1.13.0", note="Use ltn_fact instead")] Notation fact_smonotone := ltn_fact. (* Parity and bits. *) Coercion nat_of_bool (b : bool) := if b then 1 else 0. Lemma leq_b1 (b : bool) : b <= 1. Proof. by case: b. Qed. Lemma addn_negb (b : bool) : ~~ b + b = 1. Proof. by case: b. Qed. Lemma eqb0 (b : bool) : (b == 0 :> nat) = ~~ b. Proof. by case: b. Qed. Lemma eqb1 (b : bool) : (b == 1 :> nat) = b. Proof. by case: b. Qed. Lemma lt0b (b : bool) : (b > 0) = b. Proof. by case: b. Qed. Lemma sub1b (b : bool) : 1 - b = ~~ b. Proof. by case: b. Qed. Lemma mulnb (b1 b2 : bool) : b1 * b2 = b1 && b2. Proof. by case: b1; case: b2. Qed. Lemma mulnbl (b : bool) n : b * n = (if b then n else 0). Proof. by case: b; rewrite ?mul1n. Qed. Lemma mulnbr (b : bool) n : n * b = (if b then n else 0). Proof. by rewrite mulnC mulnbl. Qed. Fixpoint odd n := if n is n'.+1 then ~~ odd n' else false. Lemma oddS n : odd n.+1 = ~~ odd n. Proof. by []. Qed. Lemma oddb (b : bool) : odd b = b. Proof. by case: b. Qed. Lemma oddD m n : odd (m + n) = odd m (+) odd n. Proof. by elim: m => [|m IHn] //=; rewrite -addTb IHn addbA addTb. Qed. Lemma oddB m n : n <= m -> odd (m - n) = odd m (+) odd n. Proof. by move=> le_nm; apply: (@canRL bool) (addbK _) _; rewrite -oddD subnK. Qed. Lemma oddN i m : odd m = false -> i <= m -> odd (m - i) = odd i. Proof. by move=> oddm /oddB ->; rewrite oddm. Qed. Lemma oddM m n : odd (m * n) = odd m && odd n. Proof. by elim: m => //= m IHm; rewrite oddD -addTb andb_addl -IHm. Qed. Lemma oddX m n : odd (m ^ n) = (n == 0) || odd m. Proof. by elim: n => // n IHn; rewrite expnS oddM {}IHn orbC; case odd. Qed. (* Doubling. *) Fixpoint double_rec n := if n is n'.+1 then n'.*2%Nrec.+2 else 0 where "n .*2" := (double_rec n) : nat_rec_scope. Definition double := nosimpl double_rec. Notation "n .*2" := (double n) : nat_scope. Lemma doubleE : double = double_rec. Proof. by []. Qed. Lemma double0 : 0.*2 = 0. Proof. by []. Qed. Lemma doubleS n : n.+1.*2 = n.*2.+2. Proof. by []. Qed. Lemma addnn n : n + n = n.*2. Proof. by apply: eqP; elim: n => // n IHn; rewrite addnS. Qed. Lemma mul2n m : 2 * m = m.*2. Proof. by rewrite mulSn mul1n addnn. Qed. Lemma muln2 m : m * 2 = m.*2. Proof. by rewrite mulnC mul2n. Qed. Lemma doubleD m n : (m + n).*2 = m.*2 + n.*2. Proof. by rewrite -!mul2n mulnDr. Qed. Lemma doubleB m n : (m - n).*2 = m.*2 - n.*2. Proof. by elim: m n => [|m IHm] []. Qed. Lemma leq_double m n : (m.*2 <= n.*2) = (m <= n). Proof. by rewrite /leq -doubleB; case (m - n). Qed. Lemma ltn_double m n : (m.*2 < n.*2) = (m < n). Proof. by rewrite 2!ltnNge leq_double. Qed. Lemma ltn_Sdouble m n : (m.*2.+1 < n.*2) = (m < n). Proof. by rewrite -doubleS leq_double. Qed. Lemma leq_Sdouble m n : (m.*2 <= n.*2.+1) = (m <= n). Proof. by rewrite leqNgt ltn_Sdouble -leqNgt. Qed. Lemma odd_double n : odd n.*2 = false. Proof. by rewrite -addnn oddD addbb. Qed. Lemma double_gt0 n : (0 < n.*2) = (0 < n). Proof. by case: n. Qed. Lemma double_eq0 n : (n.*2 == 0) = (n == 0). Proof. by case: n. Qed. Lemma doubleMl m n : (m * n).*2 = m.*2 * n. Proof. by rewrite -!mul2n mulnA. Qed. Lemma doubleMr m n : (m * n).*2 = m * n.*2. Proof. by rewrite -!muln2 mulnA. Qed. (* Halving. *) Fixpoint half (n : nat) : nat := if n is n'.+1 then uphalf n' else n with uphalf (n : nat) : nat := if n is n'.+1 then n'./2.+1 else n where "n ./2" := (half n) : nat_scope. Lemma doubleK : cancel double half. Proof. by elim=> //= n ->. Qed. Definition half_double := doubleK. Definition double_inj := can_inj doubleK. Lemma uphalf_double n : uphalf n.*2 = n. Proof. by elim: n => //= n ->. Qed. Lemma uphalf_half n : uphalf n = odd n + n./2. Proof. by elim: n => //= n ->; rewrite addnA addn_negb. Qed. Lemma odd_double_half n : odd n + n./2.*2 = n. Proof. by elim: n => //= n {3}<-; rewrite uphalf_half doubleD; case (odd n). Qed. Lemma half_bit_double n (b : bool) : (b + n.*2)./2 = n. Proof. by case: b; rewrite /= (half_double, uphalf_double). Qed. Lemma halfD m n : (m + n)./2 = (odd m && odd n) + (m./2 + n./2). Proof. rewrite -[n in LHS]odd_double_half addnCA. rewrite -[m in LHS]odd_double_half -addnA -doubleD. by do 2!case: odd; rewrite /= ?add0n ?half_double ?uphalf_double. Qed. Lemma half_leq m n : m <= n -> m./2 <= n./2. Proof. by move/subnK <-; rewrite halfD addnA leq_addl. Qed. Lemma geq_half_double m n : (m <= n./2) = (m.*2 <= n). Proof. rewrite -[X in _.*2 <= X]odd_double_half. case: odd; last by rewrite leq_double. by case: m => // m; rewrite doubleS ltnS ltn_double. Qed. Lemma half_gt0 n : (0 < n./2) = (1 < n). Proof. by case: n => [|[]]. Qed. Lemma uphalf_leq m n : m <= n -> uphalf m <= uphalf n. Proof. move/subnK <-; rewrite !uphalf_half oddD halfD !addnA. by do 2 case: odd; apply: leq_addl. Qed. Lemma leq_uphalf_double m n : (uphalf m <= n) = (m <= n.*2). Proof. rewrite -[X in X <= _.*2]odd_double_half uphalf_half. by case: odd; [rewrite !add1n ltn_double | rewrite leq_double]. Qed. Lemma uphalf_gt0 n : (0 < uphalf n) = (0 < n). Proof. by case: n. Qed. Lemma odd_geq m n : odd n -> (m <= n) = (m./2.*2 <= n). Proof. move=> odd_n; rewrite -[m in LHS]odd_double_half -[n]odd_double_half odd_n. by case: (odd m); rewrite // leq_Sdouble ltnS leq_double. Qed. Lemma odd_ltn m n : odd n -> (n < m) = (n < m./2.*2). Proof. by move=> odd_n; rewrite !ltnNge odd_geq. Qed. Lemma odd_gt0 n : odd n -> n > 0. Proof. by case: n. Qed. Lemma odd_gt2 n : odd n -> n > 1 -> n > 2. Proof. by move=> odd_n n_gt1; rewrite odd_geq. Qed. (* Squares and square identities. *) Lemma mulnn m : m * m = m ^ 2. Proof. by rewrite !expnS muln1. Qed. Lemma sqrnD m n : (m + n) ^ 2 = m ^ 2 + n ^ 2 + 2 * (m * n). Proof. rewrite -!mulnn mul2n mulnDr !mulnDl (mulnC n) -!addnA. by congr (_ + _); rewrite addnA addnn addnC. Qed. Lemma sqrnB m n : n <= m -> (m - n) ^ 2 = m ^ 2 + n ^ 2 - 2 * (m * n). Proof. move/subnK <-; rewrite addnK sqrnD -addnA -addnACA -addnA. by rewrite addnn -mul2n -mulnDr -mulnDl addnK. Qed. Lemma sqrnD_sub m n : n <= m -> (m + n) ^ 2 - 4 * (m * n) = (m - n) ^ 2. Proof. move=> le_nm; rewrite -[4]/(2 * 2) -mulnA mul2n -addnn subnDA. by rewrite sqrnD addnK sqrnB. Qed. Lemma subn_sqr m n : m ^ 2 - n ^ 2 = (m - n) * (m + n). Proof. by rewrite mulnBl !mulnDr addnC (mulnC m) subnDl. Qed. Lemma ltn_sqr m n : (m ^ 2 < n ^ 2) = (m < n). Proof. by rewrite ltn_exp2r. Qed. Lemma leq_sqr m n : (m ^ 2 <= n ^ 2) = (m <= n). Proof. by rewrite leq_exp2r. Qed. Lemma sqrn_gt0 n : (0 < n ^ 2) = (0 < n). Proof. exact: (ltn_sqr 0). Qed. Lemma eqn_sqr m n : (m ^ 2 == n ^ 2) = (m == n). Proof. by rewrite eqn_exp2r. Qed. Lemma sqrn_inj : injective (expn ^~ 2). Proof. exact: expIn. Qed. (* Almost strict inequality: an inequality that is strict unless some *) (* specific condition holds, such as the Cauchy-Schwartz or the AGM *) (* inequality (we only prove the order-2 AGM here; the general one *) (* requires sequences). *) (* We formalize the concept as a rewrite multirule, that can be used *) (* both to rewrite the non-strict inequality to true, and the equality *) (* to the specific condition (for strict inequalities use the ltn_neqAle *) (* lemma); in addition, the conditional equality also coerces to a *) (* non-strict one. *) Definition leqif m n C := ((m <= n) * ((m == n) = C))%type. Notation "m <= n ?= 'iff' C" := (leqif m n C) : nat_scope. Coercion leq_of_leqif m n C (H : m <= n ?= iff C) := H.1 : m <= n. Lemma leqifP m n C : reflect (m <= n ?= iff C) (if C then m == n else m < n). Proof. rewrite ltn_neqAle; apply: (iffP idP) => [|lte]; last by rewrite !lte; case C. by case C => [/eqP-> | /andP[/negPf]]; split=> //; apply: eqxx. Qed. Lemma leqif_refl m C : reflect (m <= m ?= iff C) C. Proof. by apply: (iffP idP) => [-> | <-] //; split; rewrite ?eqxx. Qed. Lemma leqif_trans m1 m2 m3 C12 C23 : m1 <= m2 ?= iff C12 -> m2 <= m3 ?= iff C23 -> m1 <= m3 ?= iff C12 && C23. Proof. move=> ltm12 ltm23; apply/leqifP; rewrite -ltm12. have [->|eqm12] := eqVneq; first by rewrite ltn_neqAle !ltm23 andbT; case C23. by rewrite (@leq_trans m2) ?ltm23 // ltn_neqAle eqm12 ltm12. Qed. Lemma mono_leqif f : {mono f : m n / m <= n} -> forall m n C, (f m <= f n ?= iff C) = (m <= n ?= iff C). Proof. by move=> f_mono m n C; rewrite /leqif !eqn_leq !f_mono. Qed. Lemma leqif_geq m n : m <= n -> m <= n ?= iff (m >= n). Proof. by move=> lemn; split=> //; rewrite eqn_leq lemn. Qed. Lemma leqif_eq m n : m <= n -> m <= n ?= iff (m == n). Proof. by []. Qed. Lemma geq_leqif a b C : a <= b ?= iff C -> (b <= a) = C. Proof. by case=> le_ab; rewrite eqn_leq le_ab. Qed. Lemma ltn_leqif a b C : a <= b ?= iff C -> (a < b) = ~~ C. Proof. by move=> le_ab; rewrite ltnNge (geq_leqif le_ab). Qed. Lemma ltnNleqif x y C : x <= y ?= iff ~~ C -> (x < y) = C. Proof. by move=> /ltn_leqif; rewrite negbK. Qed. Lemma eq_leqif x y C : x <= y ?= iff C -> (x == y) = C. Proof. by move=> /leqifP; case: C ltngtP => [] []. Qed. Lemma eqTleqif x y C : x <= y ?= iff C -> C -> x = y. Proof. by move=> /eq_leqif<-/eqP. Qed. Lemma leqif_add m1 n1 C1 m2 n2 C2 : m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 -> m1 + m2 <= n1 + n2 ?= iff C1 && C2. Proof. rewrite -(mono_leqif (leq_add2r m2)) -(mono_leqif (leq_add2l n1) m2). exact: leqif_trans. Qed. Lemma leqif_mul m1 n1 C1 m2 n2 C2 : m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 -> m1 * m2 <= n1 * n2 ?= iff (n1 * n2 == 0) || (C1 && C2). Proof. case: n1 => [|n1] le1; first by case: m1 le1 => [|m1] [_ <-] //. case: n2 m2 => [|n2] [|m2] /=; try by case=> // _ <-; rewrite !muln0 ?andbF. have /leq_pmul2l-/mono_leqif<-: 0 < n1.+1 by []. by apply: leqif_trans; have /leq_pmul2r-/mono_leqif->: 0 < m2.+1. Qed. Lemma nat_Cauchy m n : 2 * (m * n) <= m ^ 2 + n ^ 2 ?= iff (m == n). Proof. without loss le_nm: m n / n <= m. by have [?|/ltnW ?] := leqP n m; last rewrite eq_sym addnC (mulnC m); apply. apply/leqifP; have [-> | ne_mn] := eqVneq; first by rewrite addnn mul2n. by rewrite -subn_gt0 -sqrnB // sqrn_gt0 subn_gt0 ltn_neqAle eq_sym ne_mn. Qed. Lemma nat_AGM2 m n : 4 * (m * n) <= (m + n) ^ 2 ?= iff (m == n). Proof. rewrite -[4]/(2 * 2) -mulnA mul2n -addnn sqrnD; apply/leqifP. by rewrite ltn_add2r eqn_add2r ltn_neqAle !nat_Cauchy; case: eqVneq. Qed. Section ContraLeq. Implicit Types (b : bool) (m n : nat) (P : Prop). Lemma contraTleq b m n : (n < m -> ~~ b) -> (b -> m <= n). Proof. by rewrite ltnNge; apply: contraTT. Qed. Lemma contraTltn b m n : (n <= m -> ~~ b) -> (b -> m < n). Proof. by rewrite ltnNge; apply: contraTN. Qed. Lemma contraPleq P m n : (n < m -> ~ P) -> (P -> m <= n). Proof. by rewrite ltnNge; apply: contraPT. Qed. Lemma contraPltn P m n : (n <= m -> ~ P) -> (P -> m < n). Proof. by rewrite ltnNge; apply: contraPN. Qed. Lemma contraNleq b m n : (n < m -> b) -> (~~ b -> m <= n). Proof. by rewrite ltnNge; apply: contraNT. Qed. Lemma contraNltn b m n : (n <= m -> b) -> (~~ b -> m < n). Proof. by rewrite ltnNge; apply: contraNN. Qed. Lemma contra_not_leq P m n : (n < m -> P) -> (~ P -> m <= n). Proof. by rewrite ltnNge; apply: contra_notT. Qed. Lemma contra_not_ltn P m n : (n <= m -> P) -> (~ P -> m < n). Proof. by rewrite ltnNge; apply: contra_notN. Qed. Lemma contraFleq b m n : (n < m -> b) -> (b = false -> m <= n). Proof. by rewrite ltnNge; apply: contraFT. Qed. Lemma contraFltn b m n : (n <= m -> b) -> (b = false -> m < n). Proof. by rewrite ltnNge; apply: contraFN. Qed. Lemma contra_leqT b m n : (~~ b -> m < n) -> (n <= m -> b). Proof. by rewrite ltnNge; apply: contraTT. Qed. Lemma contra_ltnT b m n : (~~ b -> m <= n) -> (n < m -> b). Proof. by rewrite ltnNge; apply: contraNT. Qed. Lemma contra_leqN b m n : (b -> m < n) -> (n <= m -> ~~ b). Proof. by rewrite ltnNge; apply: contraTN. Qed. Lemma contra_ltnN b m n : (b -> m <= n) -> (n < m -> ~~ b). Proof. by rewrite ltnNge; apply: contraNN. Qed. Lemma contra_leq_not P m n : (P -> m < n) -> (n <= m -> ~ P). Proof. by rewrite ltnNge; apply: contraTnot. Qed. Lemma contra_ltn_not P m n : (P -> m <= n) -> (n < m -> ~ P). Proof. by rewrite ltnNge; apply: contraNnot. Qed. Lemma contra_leqF b m n : (b -> m < n) -> (n <= m -> b = false). Proof. by rewrite ltnNge; apply: contraTF. Qed. Lemma contra_ltnF b m n : (b -> m <= n) -> (n < m -> b = false). Proof. by rewrite ltnNge; apply: contraNF. Qed. Lemma contra_leq m n p q : (q < p -> n < m) -> (m <= n -> p <= q). Proof. by rewrite !ltnNge; apply: contraTT. Qed. Lemma contra_leq_ltn m n p q : (q <= p -> n < m) -> (m <= n -> p < q). Proof. by rewrite !ltnNge; apply: contraTN. Qed. Lemma contra_ltn_leq m n p q : (q < p -> n <= m) -> (m < n -> p <= q). Proof. by rewrite !ltnNge; apply: contraNT. Qed. Lemma contra_ltn m n p q : (q <= p -> n <= m) -> (m < n -> p < q). Proof. by rewrite !ltnNge; apply: contraNN. Qed. End ContraLeq. Section Monotonicity. Variable T : Type. Lemma homo_ltn_in (D : {pred nat}) (f : nat -> T) (r : T -> T -> Prop) : (forall y x z, r x y -> r y z -> r x z) -> {in D &, forall i j k, i < k < j -> k \in D} -> {in D, forall i, i.+1 \in D -> r (f i) (f i.+1)} -> {in D &, {homo f : i j / i < j >-> r i j}}. Proof. move=> r_trans Dcx r_incr i j iD jD lt_ij; move: (lt_ij) (jD) => /subnKC<-. elim: (_ - _) => [|k ihk]; first by rewrite addn0 => Dsi; apply: r_incr. move=> DSiSk [: DSik]; apply: (r_trans _ _ _ (ihk _)); rewrite ?addnS. by abstract: DSik; apply: (Dcx _ _ iD DSiSk); rewrite ltn_addr ?addnS /=. by apply: r_incr; rewrite -?addnS. Qed. Lemma homo_ltn (f : nat -> T) (r : T -> T -> Prop) : (forall y x z, r x y -> r y z -> r x z) -> (forall i, r (f i) (f i.+1)) -> {homo f : i j / i < j >-> r i j}. Proof. by move=> /(@homo_ltn_in predT f) fr fS i j; apply: fr. Qed. Lemma homo_leq_in (D : {pred nat}) (f : nat -> T) (r : T -> T -> Prop) : (forall x, r x x) -> (forall y x z, r x y -> r y z -> r x z) -> {in D &, forall i j k, i < k < j -> k \in D} -> {in D, forall i, i.+1 \in D -> r (f i) (f i.+1)} -> {in D &, {homo f : i j / i <= j >-> r i j}}. Proof. move=> r_refl r_trans Dcx /(homo_ltn_in r_trans Dcx) lt_r i j iD jD. case: ltngtP => [? _||->] //; exact: lt_r. Qed. Lemma homo_leq (f : nat -> T) (r : T -> T -> Prop) : (forall x, r x x) -> (forall y x z, r x y -> r y z -> r x z) -> (forall i, r (f i) (f i.+1)) -> {homo f : i j / i <= j >-> r i j}. Proof. by move=> rrefl /(@homo_leq_in predT f r) fr fS i j; apply: fr. Qed. Section NatToNat. Variable (f : nat -> nat). (****************************************************************************) (* This listing of "Let"s factor out the required premises for the *) (* subsequent lemmas, putting them in the context so that "done" solves the *) (* goals quickly *) (****************************************************************************) Let ltn_neqAle := ltn_neqAle. Let gtn_neqAge x y : (y < x) = (x != y) && (y <= x). Proof. by rewrite ltn_neqAle eq_sym. Qed. Let anti_leq := anti_leq. Let anti_geq : antisymmetric geq. Proof. by move=> m n /=; rewrite andbC => /anti_leq. Qed. Let leq_total := leq_total. Lemma ltnW_homo : {homo f : m n / m < n} -> {homo f : m n / m <= n}. Proof. exact: homoW. Qed. Lemma inj_homo_ltn : injective f -> {homo f : m n / m <= n} -> {homo f : m n / m < n}. Proof. exact: inj_homo. Qed. Lemma ltnW_nhomo : {homo f : m n /~ m < n} -> {homo f : m n /~ m <= n}. Proof. exact: homoW. Qed. Lemma inj_nhomo_ltn : injective f -> {homo f : m n /~ m <= n} -> {homo f : m n /~ m < n}. Proof. exact: inj_homo. Qed. Lemma incn_inj : {mono f : m n / m <= n} -> injective f. Proof. exact: mono_inj. Qed. Lemma decn_inj : {mono f : m n /~ m <= n} -> injective f. Proof. exact: mono_inj. Qed. Lemma leqW_mono : {mono f : m n / m <= n} -> {mono f : m n / m < n}. Proof. exact: anti_mono. Qed. Lemma leqW_nmono : {mono f : m n /~ m <= n} -> {mono f : m n /~ m < n}. Proof. exact: anti_mono. Qed. Lemma leq_mono : {homo f : m n / m < n} -> {mono f : m n / m <= n}. Proof. exact: total_homo_mono. Qed. Lemma leq_nmono : {homo f : m n /~ m < n} -> {mono f : m n /~ m <= n}. Proof. exact: total_homo_mono. Qed. Variables (D D' : {pred nat}). Lemma ltnW_homo_in : {in D & D', {homo f : m n / m < n}} -> {in D & D', {homo f : m n / m <= n}}. Proof. exact: homoW_in. Qed. Lemma ltnW_nhomo_in : {in D & D', {homo f : m n /~ m < n}} -> {in D & D', {homo f : m n /~ m <= n}}. Proof. exact: homoW_in. Qed. Lemma inj_homo_ltn_in : {in D & D', injective f} -> {in D & D', {homo f : m n / m <= n}} -> {in D & D', {homo f : m n / m < n}}. Proof. exact: inj_homo_in. Qed. Lemma inj_nhomo_ltn_in : {in D & D', injective f} -> {in D & D', {homo f : m n /~ m <= n}} -> {in D & D', {homo f : m n /~ m < n}}. Proof. exact: inj_homo_in. Qed. Lemma incn_inj_in : {in D &, {mono f : m n / m <= n}} -> {in D &, injective f}. Proof. exact: mono_inj_in. Qed. Lemma decn_inj_in : {in D &, {mono f : m n /~ m <= n}} -> {in D &, injective f}. Proof. exact: mono_inj_in. Qed. Lemma leqW_mono_in : {in D &, {mono f : m n / m <= n}} -> {in D &, {mono f : m n / m < n}}. Proof. exact: anti_mono_in. Qed. Lemma leqW_nmono_in : {in D &, {mono f : m n /~ m <= n}} -> {in D &, {mono f : m n /~ m < n}}. Proof. exact: anti_mono_in. Qed. Lemma leq_mono_in : {in D &, {homo f : m n / m < n}} -> {in D &, {mono f : m n / m <= n}}. Proof. exact: total_homo_mono_in. Qed. Lemma leq_nmono_in : {in D &, {homo f : m n /~ m < n}} -> {in D &, {mono f : m n /~ m <= n}}. Proof. exact: total_homo_mono_in. Qed. End NatToNat. End Monotonicity. Lemma leq_pfact : {in [pred n | 0 < n] &, {mono factorial : m n / m <= n}}. Proof. by apply: leq_mono_in => n m n0 m0; apply: ltn_fact. Qed. Lemma leq_fact : {homo factorial : m n / m <= n}. Proof. by move=> [m|m n mn]; rewrite ?fact_gt0// leq_pfact// inE (leq_trans _ mn). Qed. Lemma ltn_pfact : {in [pred n | 0 < n] &, {mono factorial : m n / m < n}}. Proof. exact/leqW_mono_in/leq_pfact. Qed. (* Support for larger integers. The normal definitions of +, - and even *) (* IO are unsuitable for Peano integers larger than 2000 or so because *) (* they are not tail-recursive. We provide a workaround module, along *) (* with a rewrite multirule to change the tailrec operators to the *) (* normal ones. We handle IO via the NatBin module, but provide our *) (* own (more efficient) conversion functions. *) Module NatTrec. (* Usage: *) (* Import NatTrec. *) (* in section defining functions, rebinds all *) (* non-tail recursive operators. *) (* rewrite !trecE. *) (* in the correctness proof, restores operators *) Fixpoint add m n := if m is m'.+1 then m' + n.+1 else n where "n + m" := (add n m) : nat_scope. Fixpoint add_mul m n s := if m is m'.+1 then add_mul m' n (n + s) else s. Definition mul m n := if m is m'.+1 then add_mul m' n n else 0. Notation "n * m" := (mul n m) : nat_scope. Fixpoint mul_exp m n p := if n is n'.+1 then mul_exp m n' (m * p) else p. Definition exp m n := if n is n'.+1 then mul_exp m n' m else 1. Notation "n ^ m" := (exp n m) : nat_scope. Local Notation oddn := odd. Fixpoint odd n := if n is n'.+2 then odd n' else eqn n 1. Local Notation doublen := double. Definition double n := if n is n'.+1 then n' + n.+1 else 0. Notation "n .*2" := (double n) : nat_scope. Lemma addE : add =2 addn. Proof. by elim=> //= n IHn m; rewrite IHn addSnnS. Qed. Lemma doubleE : double =1 doublen. Proof. by case=> // n; rewrite -addnn -addE. Qed. Lemma add_mulE n m s : add_mul n m s = addn (muln n m) s. Proof. by elim: n => //= n IHn in m s *; rewrite IHn addE addnCA addnA. Qed. Lemma mulE : mul =2 muln. Proof. by case=> //= n m; rewrite add_mulE addnC. Qed. Lemma mul_expE m n p : mul_exp m n p = muln (expn m n) p. Proof. by elim: n => [|n IHn] in p *; rewrite ?mul1n //= expnS IHn mulE mulnCA mulnA. Qed. Lemma expE : exp =2 expn. Proof. by move=> m [|n] //=; rewrite mul_expE expnS mulnC. Qed. Lemma oddE : odd =1 oddn. Proof. move=> n; rewrite -[n in LHS]odd_double_half addnC. by elim: n./2 => //=; case (oddn n). Qed. Definition trecE := (addE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))). End NatTrec. Notation natTrecE := NatTrec.trecE. Lemma eq_binP : Equality.axiom N.eqb. Proof. move=> p q; apply: (iffP idP) => [|<-]; last by case: p => //; elim. by case: q; case: p => //; elim=> [p IHp|p IHp|] [q|q|] //= /IHp [->]. Qed. Canonical bin_nat_eqMixin := EqMixin eq_binP. Canonical bin_nat_eqType := Eval hnf in EqType N bin_nat_eqMixin. Arguments N.eqb !n !m. Section NumberInterpretation. Import BinPos. Section Trec. Import NatTrec. Fixpoint nat_of_pos p0 := match p0 with | xO p => (nat_of_pos p).*2 | xI p => (nat_of_pos p).*2.+1 | xH => 1 end. End Trec. Local Coercion nat_of_pos : positive >-> nat. Coercion nat_of_bin b := if b is Npos p then p : nat else 0. Fixpoint pos_of_nat n0 m0 := match n0, m0 with | n.+1, m.+2 => pos_of_nat n m | n.+1, 1 => xO (pos_of_nat n n) | n.+1, 0 => xI (pos_of_nat n n) | 0, _ => xH end. Definition bin_of_nat n0 := if n0 is n.+1 then Npos (pos_of_nat n n) else 0%num. Lemma bin_of_natK : cancel bin_of_nat nat_of_bin. Proof. have sub2nn n : n.*2 - n = n by rewrite -addnn addKn. case=> //= n; rewrite -[n in RHS]sub2nn. by elim: n {2 4}n => // m IHm [|[|n]] //=; rewrite IHm // natTrecE sub2nn. Qed. Lemma nat_of_binK : cancel nat_of_bin bin_of_nat. Proof. case=> //=; elim=> //= p; case: (nat_of_pos p) => //= n [<-]. by rewrite natTrecE !addnS {2}addnn; elim: {1 3}n. by rewrite natTrecE addnS /= addnS {2}addnn; elim: {1 3}n. Qed. Lemma nat_of_succ_pos p : Pos.succ p = p.+1 :> nat. Proof. by elim: p => //= p ->; rewrite !natTrecE. Qed. Lemma nat_of_add_pos p q : (p + q)%positive = p + q :> nat. Proof. apply: @fst _ (Pplus_carry p q = (p + q).+1 :> nat) _. elim: p q => [p IHp|p IHp|] [q|q|] //=; rewrite !natTrecE //; by rewrite ?IHp ?nat_of_succ_pos ?(doubleS, doubleD, addn1, addnS). Qed. Lemma nat_of_mul_pos p q : (p * q)%positive = p * q :> nat. Proof. elim: p => [p IHp|p IHp|] /=; rewrite ?mul1n //; by rewrite ?nat_of_add_pos /= !natTrecE IHp doubleMl. Qed. Lemma nat_of_add_bin b1 b2 : (b1 + b2)%num = b1 + b2 :> nat. Proof. by case: b1 b2 => [|p] [|q]; rewrite ?addn0 //= nat_of_add_pos. Qed. Lemma nat_of_mul_bin b1 b2 : (b1 * b2)%num = b1 * b2 :> nat. Proof. by case: b1 b2 => [|p] [|q]; rewrite ?muln0 //= nat_of_mul_pos. Qed. Lemma nat_of_exp_bin n (b : N) : n ^ b = pow_N 1 muln n b. Proof. by case: b; last (elim=> //= p <-; rewrite natTrecE mulnn -expnM muln2 ?expnS). Qed. End NumberInterpretation. (* Big(ger) nat IO; usage: *) (* Num 1 072 399 *) (* to create large numbers for test cases *) (* Eval compute in [Num of some expression] *) (* to display the result of an expression that *) (* returns a larger integer. *) Record number : Type := Num {bin_of_number :> N}. Definition extend_number (nn : number) m := Num (nn * 1000 + bin_of_nat m). Coercion extend_number : number >-> Funclass. Canonical number_subType := [newType for bin_of_number]. Definition number_eqMixin := Eval hnf in [eqMixin of number by <:]. Canonical number_eqType := Eval hnf in EqType number number_eqMixin. Notation "[ 'Num' 'of' e ]" := (Num (bin_of_nat e)) (at level 0, format "[ 'Num' 'of' e ]") : nat_scope. (* Interface to ring/ring_simplify tactics *) Lemma nat_semi_ring : semi_ring_theory 0 1 addn muln (@eq _). Proof. exact: mk_srt add0n addnC addnA mul1n mul0n mulnC mulnA mulnDl. Qed. Lemma nat_semi_morph : semi_morph 0 1 addn muln (@eq _) 0%num 1%num Nplus Nmult pred1 nat_of_bin. Proof. by move: nat_of_add_bin nat_of_mul_bin; split=> //= m n /eqP ->. Qed. Lemma nat_power_theory : power_theory 1 muln (@eq _) nat_of_bin expn. Proof. by split; apply: nat_of_exp_bin. Qed. (* Interface to the ring tactic machinery. *) Fixpoint pop_succn e := if e is e'.+1 then fun n => pop_succn e' n.+1 else id. Ltac pop_succn e := eval lazy beta iota delta [pop_succn] in (pop_succn e 1). Ltac nat_litteral e := match pop_succn e with | ?n.+1 => constr: (bin_of_nat n) | _ => NotConstant end. Ltac succn_to_add := match goal with | |- context G [?e.+1] => let x := fresh "NatLit0" in match pop_succn e with | ?n.+1 => pose x := n.+1; let G' := context G [x] in change G' | _ ?e' ?n => pose x := n; let G' := context G [x + e'] in change G' end; succn_to_add; rewrite {}/x | _ => idtac end. Add Ring nat_ring_ssr : nat_semi_ring (morphism nat_semi_morph, constants [nat_litteral], preprocess [succn_to_add], power_tac nat_power_theory [nat_litteral]). (* A congruence tactic, similar to the boolean one, along with an .+1/+ *) (* normalization tactic. *) Ltac nat_norm := succn_to_add; rewrite ?add0n ?addn0 -?addnA ?(addSn, addnS, add0n, addn0). Ltac nat_congr := first [ apply: (congr1 succn _) | apply: (congr1 predn _) | apply: (congr1 (addn _) _) | apply: (congr1 (subn _) _) | apply: (congr1 (addn^~ _) _) | match goal with |- (?X1 + ?X2 = ?X3) => symmetry; rewrite -1?(addnC X1) -?(addnCA X1); apply: (congr1 (addn X1) _); symmetry end ].