(******************************************************************************) (* FILE : generalize.ml *) (* DESCRIPTION : Generalization. *) (* *) (* READS FILES : *) (* WRITES FILES : *) (* *) (* AUTHOR : R.J.Boulton *) (* DATE : 21st June 1991 *) (* *) (* LAST MODIFIED : R.J.Boulton *) (* DATE : 12th October 1992 *) (* *) (* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) (* DATE : July 2009 *) (******************************************************************************) (*----------------------------------------------------------------------------*) (* is_generalizable : string list -> term -> bool *) (* *) (* Function to determine whether or not a term has the correct properties to *) (* be generalizable. It takes a list of accessor function names as its first *) (* argument. This is for efficiency. It could compute them itself, but if an *) (* external function is going to call is_generalizable many times it is *) (* better for the external function to compute the list of accessors. *) (*----------------------------------------------------------------------------*) let is_generalizable accessors tm = not ((is_var tm) || (is_explicit_value_template tm) || (is_eq tm) || (try(mem ((fst o dest_const o fst o strip_comb) tm) accessors) with Failure _ -> false));; (*----------------------------------------------------------------------------*) (* generalizable_subterms : string list -> term -> term list *) (* *) (* Computes the generalizable subterms of a literal, given a list of accessor *) (* function names. *) (*----------------------------------------------------------------------------*) let generalizable_subterms accessors tm = try (setify (find_bm_terms (is_generalizable accessors) tm) ) with Failure _ -> failwith "generalizable_subterms";; (*----------------------------------------------------------------------------*) (* minimal_common_subterms : term list -> term list *) (* *) (* Given a list of terms, this function removes from the list any term that *) (* has one of the other terms as a proper subterm. It also eliminates any *) (* duplicates. *) (*----------------------------------------------------------------------------*) let minimal_common_subterms tml = let tml' = setify tml in filter (fun tm -> not (exists (fun tm' -> (is_subterm tm' tm) && (not (tm' = tm))) tml')) tml';; (*----------------------------------------------------------------------------*) (* to_be_generalized : term -> term list -> term -> bool *) (* *) (* This function decides whether a subterm of a literal should be generalized.*) (* It takes a literal, a list of other literals, and a subterm of the literal *) (* as arguments. The subterm should be generalized if it occurs in one of the *) (* other literals, or if the literal is an equality and it occurs on both *) (* sides, or if the literal is the negation of an equality and the subterm *) (* occurs on both sides. *) (*----------------------------------------------------------------------------*) let to_be_generalized tm tml gen = try (let (l,r) = dest_eq (dest_neg tm) in if ((is_subterm gen l) && (is_subterm gen r)) then true else failwith "") with Failure _ -> try (let (l,r) = dest_eq tm in if ((is_subterm gen l) && (is_subterm gen r)) then true else failwith "") with Failure _ -> (exists (is_subterm gen) tml);; (*----------------------------------------------------------------------------*) (* terms_to_be_generalized : term -> term list *) (* *) (* Given a clause, this function determines the subterms of the clause that *) (* are to be generalized. For each literal, the function computes the *) (* generalizable subterms. It then filters out those subterms that are not to *) (* be generalized. It only looks at the remaining literals when doing this, *) (* not at those already processed. This is legitimate because if the subterm *) (* occurs in a previous literal, it would have already been added to the main *) (* list of subterms that should be generalized. Before returning this main *) (* list, the function removes any non-minimal common subterms. This operation *) (* also removes any duplicates. *) (*----------------------------------------------------------------------------*) let terms_to_be_generalized tm = let accessors = (all_accessors ()) (* @ (all_constructors()) *) in let rec terms_to_be_generalized' tml = if (tml = []) then [] else let h::t = tml in let gens = generalizable_subterms accessors h in let gens' = filter (to_be_generalized h t) gens in gens' @ (terms_to_be_generalized' t) in minimal_common_subterms (terms_to_be_generalized' (disj_list tm));; (*----------------------------------------------------------------------------*) (* distinct_var : term list -> type -> term *) (* *) (* Function to generate a sensibly-named variable of a specified type. *) (* Variables that the new variable must be distinct from can be specified in *) (* the first argument. The new variable will be named according to the first *) (* letter of the top-level constructor in the specified type, or if the type *) (* is a simple polymorphic type, the name `x' is used. The actual name will *) (* be this name followed by zero or more apostrophes. *) (*----------------------------------------------------------------------------*) let distinct_var vars ty = let letter = try((hd o explode o fst o dest_type) ty) with Failure _ -> "x" in variant vars (mk_var (letter,ty));; (*----------------------------------------------------------------------------*) (* distinct_vars : term list -> type list -> term list *) (* *) (* Generates new variables using `distinct_var' for each of the types in the *) (* given list. The function ensures that each of the new variables are *) (* distinct from each other, as well as from the argument list of variables. *) (*----------------------------------------------------------------------------*) let rec distinct_vars vars tyl = if (tyl = []) then [] else let var = distinct_var vars (hd tyl) in var::(distinct_vars (var::vars) (tl tyl));; (*----------------------------------------------------------------------------*) (* apply_gen_lemma : term -> thm -> thm *) (* *) (* Given a term to be generalized and a generalization lemma, this function *) (* tries to apply the lemma to the term. The result, if successful, is a *) (* specialization of the lemma. *) (* *) (* The function checks that the lemma has no hypotheses, and then extracts a *) (* list of subterms of the conclusion that match the given term and contain *) (* all the free variables of the conclusion. The second condition prevents *) (* new variables being introduced into the goal clause. The ordering of the *) (* subterms in the list is dependent on the implementation of `find_terms', *) (* but probably doesn't matter anyway, because the function tries each of *) (* them until it finds one that is acceptable. *) (* *) (* Each subterm is tried as follows. A matching between the subterm and the *) (* term to be generalized is obtained. This is used to instantiate the lemma. *) (* The function then checks that when the conclusion of this new theorem is *) (* generalized (by replacing the term to be generalized with a variable), the *) (* function symbol of the term to be generalized no longer appears in it. *) (*----------------------------------------------------------------------------*) let apply_gen_lemma tm th = try (let apply_gen_lemma' subtm = (let (_,tm_bind,ty_bind) = term_match [] subtm tm in let (insts,vars) = List.split tm_bind in let th' = ((SPECL insts) o (GENL vars) o (INST_TYPE ty_bind)) th in let gen_conc = subst [(genvar (type_of tm),tm)] (concl th') and f = fst (strip_comb tm) in if (is_subterm f gen_conc) then failwith "" else th') in let ([],conc) = dest_thm th in let conc_vars = frees conc in let good_subterm subtm = ((can (term_match [] subtm) tm) && ((subtract conc_vars (frees subtm)) = [])) in let subtms = rev (find_terms good_subterm conc) in tryfind apply_gen_lemma' subtms ) with Failure _ -> failwith "apply_gen_lemma";; (*----------------------------------------------------------------------------*) (* applicable_gen_lemmas : term list -> thm list *) (* *) (* Computes instantiations of generalization lemmas applicable to a list of *) (* terms, the terms to be generalized. *) (*----------------------------------------------------------------------------*) let applicable_gen_lemmas tml = flat (map (fun tm -> mapfilter (apply_gen_lemma tm) (gen_lemmas ())) tml);; (*----------------------------------------------------------------------------*) (* generalize_heuristic : (term # bool) -> ((term # bool) list # proof) *) (* *) (* Generalization heuristic. *) (* *) (* This function first computes the terms to be generalized in a clause. It *) (* fails if there are none. It then obtains a list of instantiated *) (* generalization lemmas for these terms. Each of these lemmas is transformed *) (* to a theorem of the form |- x = F. If the original lemma was a negation, *) (* x is the argument of the negation. Otherwise x is the negation of the *) (* original lemma. *) (* *) (* The negated lemmas are added to the clause, and the result is generalized *) (* by replacing each of the terms to be generalized by new distinct *) (* variables. This generalized clause is returned together with a proof of *) (* the original clause from it. *) (* *) (* The proof begins by specializing the variables that were used to replace *) (* the generalized terms. The theorem is then of the form: *) (* *) (* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause (1) *) (* *) (* We have a theorem |- lemmai = F for each i between 1 and n. Consider the *) (* first of these. From it, the following theorem can be obtained: *) (* *) (* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause = *) (* F \/ lemma2 \/ ... \/ lemman \/ original_clause *) (* *) (* Simplifying using |- F \/ x = x, this gives: *) (* *) (* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause = *) (* lemma2 \/ ... \/ lemman \/ original_clause *) (* *) (* From this theorem and (1), we obtain: *) (* *) (* |- lemma2 \/ ... \/ lemman \/ original_clause *) (* *) (* Having repeated this process for each of the lemmas, the proof eventually *) (* returns a theorem for the original clause, i.e. |- original_clause. *) (*----------------------------------------------------------------------------*) let generalize_heuristic (tm,(ind:bool)) = try (let NEGATE th = let ([],tm) = dest_thm th in if (is_neg tm) then EQF_INTRO th else EQF_INTRO (CONV_RULE (REWR_CONV (SYM (SPEC_ALL (hd (CONJUNCTS NOT_CLAUSES))))) th) and ELIM_LEMMA lemma th = let rest = snd (dest_disj (concl th)) in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR)) (AP_THM (AP_TERM `(\/)` lemma) rest)) th in let gen_terms = check (fun l -> not (l = [])) (terms_to_be_generalized tm) in let lemmas = map NEGATE (applicable_gen_lemmas gen_terms) in let tm' = itlist (curry mk_disj) (map (lhs o concl) lemmas) tm in let new_vars = distinct_vars (frees tm') (map type_of gen_terms) in let tm'' = subst (lcombinep (new_vars,gen_terms)) tm' in let countercheck = try counter_check 5 tm'' with Failure _ -> warn true "Could not generate counter example!" ; true in if (countercheck = true) then let proof th'' = let th' = SPECL gen_terms (GENL new_vars th'') in rev_itlist ELIM_LEMMA lemmas th' in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic" (proof o hd) [tm''])) else failwith "Counter example failure!" ) with Failure _ -> failwith "generalize_heuristic";; (* Implementation of Aderhold's Generalization techniques: *) let is_constructor_eq constructor v tm = try ( let (a,b) = dest_eq tm in let cand_c = ( if ( v = a ) then b else if ( v = b ) then a else failwith "" ) in let cand_name = (fst o dest_const o fst o strip_comb) cand_c in constructor = cand_name (* then cand_name else failwith ""*) ) with Failure _ -> false;; let is_constructor_neq constructor v tm = try ( let tm' = dest_neg tm in let (a,b) = dest_eq tm' in let cand_c = ( if ( v = a ) then b else if ( v = b ) then a else failwith "" ) in let cand_name = (fst o dest_const o fst o strip_comb) cand_c in constructor = cand_name ) with Failure _ -> false;; let infer_constructor v tm = try ( print_term v;print_string " XXX ";print_term tm;print_newline(); let v_ty = (fst o dest_type) (type_of v) in let clist = map fst3 ((shell_constructors o sys_shell_info) v_ty) in let conjs = conj_list tm in let check_constructor_eq c v tms = let res = map (is_constructor_eq c v) tms in if (mem true res) then true else false in let check_constructor_neq c v tms = let res = map (is_constructor_neq c v) tms in if (mem true res) then true else false in let check_constructor c all_constr v tms = if (check_constructor_eq c v tms) then true else let constrs = subtract all_constr [c] in let res = map (fun c -> check_constructor_neq c v tms) constrs in if (mem false res) then false else true in let res = map (fun c -> check_constructor c clist v conjs) clist in let reslist = List.combine res clist in assoc true reslist ) with Failure _ -> failwith "infer_constructor";; let get_rec_pos_of_fun f = try ( (fst o get_def o fst o dest_const) f ) with Failure _ -> 0;; let rec is_in_rec_pos subtm tm = let (op,args) = strip_comb tm in try ( let rec_argn = get_rec_pos_of_fun op in if ( (el (rec_argn - 1) args) = subtm ) then true else failwith "" ) with Failure _ -> mem true (map (is_in_rec_pos subtm) args) ;; let is_var_in_rec_pos v tm = try ( if (not (is_var v)) then false else if (not (mem v (frees tm))) then false else is_in_rec_pos v tm ) with Failure _ -> false;; let eliminateSelectors tm = try ( let vars = frees tm in let vars' = filter (not o (fun v -> is_var_in_rec_pos v tm )) vars in if (vars' = []) then tm else let rec find_candidate vars tm = if ( vars = [] ) then failwith "find_candidate" else let var = (hd vars) in try ( (var,infer_constructor var tm) ) with Failure _ -> find_candidate (tl vars) tm in let (var,constr) = find_candidate vars' tm in let v_ty = (fst o dest_type) (type_of var) in let s_info = sys_shell_info v_ty in let new_vars = distinct_vars vars (shell_constructor_arg_types constr s_info) in let new_subtm = list_mk_icomb constr new_vars in let new_tm = subst [new_subtm,var] tm in (snd o dest_eq o concl) (REWRITE_CONV (map snd (shell_constructor_accessors constr s_info)) new_tm) ) with Failure _ -> failwith "eliminateSelectors";; let all_variables = let rec vars(acc,tm) = if is_var tm then tm::acc else if is_const tm then acc else if is_abs tm then let v,bod = dest_abs tm in vars(v::acc,bod) else let l,r = dest_comb tm in vars(vars(acc,r),l) in fun tm -> vars([],tm);; let all_equations = let rec eqs(acc,tm) = if is_eq tm then tm::acc else if is_var tm then acc else if is_const tm then acc else if is_abs tm then let v,bod = dest_abs tm in eqs(acc,bod) else let l,r = dest_comb tm in eqs(eqs(acc,r),l) in fun tm -> eqs([],tm);; let rec contains_any tm args = if is_var tm then false else if is_numeral tm then false else if is_const tm then mem ((fst o dest_const) tm) args else if is_abs tm then let v,bod = dest_abs tm in contains_any v args else let l,r = dest_comb tm in (contains_any l args) || (contains_any r args);; let is_rec_type tm = try( mem ((fst o dest_type o type_of) tm) (shells()) ) with Failure _ -> false;; let is_generalizable_subterm bad tm = (is_rec_type tm) && not ( (is_var tm) || (is_const tm) || (is_numeral tm) || (contains_any tm bad) );; (*----------------------------------------------------------------------------*) (* A set S of terms is called a suitable proposal for some formula phi if each*) (* t' in S is a generalizable subterm of phi and if there is some t' in S that*) (* occurs at least twice in phi. *) (* Here gens is assumed to be the generalizable subterms of phi as found by *) (* find_bm_terms. This means that it will contain t' as many times as it was *) (* found in phi. Therefore, the occurences of t' in gens are equivalent to its*) (* occurences in phi. *) (*----------------------------------------------------------------------------*) let is_suitable_proposal s phi gens = ( forall (fun tm -> mem tm gens) s ) && (exists (fun tm -> lcount tm gens > 1) s);; let checksuitableeq = ref false;; (* equation criterion *) let newisgen = ref true;; (* Use Aderhold's (true) or Boulton's (false) is_generalizable for terms *) let is_eq_suitable t eq = if (not !checksuitableeq) then true else if (not (is_eq eq)) then false else let l,r = dest_eq eq in if ((is_subterm t r) && (is_subterm t l)) then true else length(find_bm_terms ((=) t) eq) > 1;; let generateProposals tm phi = let rec generateProposals' bad tm phi gens = let p = [] in if (is_eq tm) then let (t1,t2) = dest_eq tm in let p1 = (generateProposals' bad t1 phi gens) in let p1' = if (is_suitable_proposal [t1] phi gens) then p1@[[t1]] else p1 in let p = p @ filter (exists (fun t -> is_eq_suitable t tm)) p1' in let p2 = (generateProposals' bad t2 phi gens) in let p2' = if (is_suitable_proposal [t2] phi gens) then p2@[[t2]] else p2 in p @ filter (exists (fun t -> is_eq_suitable t tm)) p2' else if (is_comb tm) then let (op,args) = strip_comb tm in let recpos = get_rec_pos_of_fun op in let s = if (recpos > 0) then [el (recpos-1) args] else [] in let p = if (is_suitable_proposal s phi gens) then p@[s] else p in p @ flat (map (fun tm -> generateProposals' bad tm phi gens) args) else p in let bad = (all_accessors()) @ (all_constructors()) in let gens = if (!newisgen) then find_bm_terms (is_generalizable_subterm bad) phi else find_bm_terms (is_generalizable bad) phi in generateProposals' bad tm phi gens;; let proposal_induction_test s phi = let newvars = distinct_vars (frees phi) (map (type_of) s) in let subs = List.combine newvars s in let newterm = subst subs phi in let (unfl,fl) = possible_inductions newterm in if (exists (fun v -> (mem v (unfl@fl)) ) newvars ) then true else false;; let get_proposal_term_occs s phi = let gens = find_bm_terms (fun tm -> true) phi in let scount = map (fun tm -> lcount tm gens) s in itlist (+) scount 0;; let organizeProposals s phi = let stest = map (fun prop -> (prop,proposal_induction_test prop phi)) s in let indok = filter (((=) true) o snd) stest in let s' = if (indok = []) then (proof_print_string_l "Weak Generalization" (map fst stest)) else (map fst indok) in if (length s' = 1) then hd s' else let scounted = (rev o sort_on_snd) (map (fun prop -> (prop,lcount prop s')) s') in let smax = (snd o hd) scounted in let s'' = map fst (filter (((=) smax) o snd) scounted) in if (length s'' = 1) then hd s'' else let soccscounted = (rev o sort_on_snd) (map (fun prop -> (prop,get_proposal_term_occs prop phi)) s'') in (fst o hd) soccscounted;; let generalizeCommonSubterms tm = let props = generateProposals tm tm in if (props = []) then failwith "" else let s = organizeProposals props tm in let newvars = distinct_vars (frees tm) (map type_of s) in let varcomb = List.combine newvars s in (subst varcomb tm,varcomb);; let rec separate f v v' allrpos tm = let replace tm v v' rpos = if (not rpos) then tm else if (tm = v) then v' else (separate f v v' allrpos tm) in if (is_comb tm) then ( let (op,args) = strip_comb tm in let recpos = get_rec_pos_of_fun op in if ((allrpos) && not (op = `(=)`)) then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' ((i = recpos) || (recpos = 0))) (number_list args)))) else if (op = `(=)`) then (list_mk_comb(op,[replace (hd args) v v' true;replace ((hd o tl) args) v v' true])) else if (op = f) then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' (i = recpos)) (number_list args)))) else (list_mk_comb (op,(map (separate f v v' allrpos) args))) ) else tm;; let rec generalized_apart_successfully v v' tm tm' = if (tm' = v') then true else if (is_eq tm) then ( let (tm1,tm2) = dest_eq tm in let (tm1',tm2') = dest_eq tm' in (generalized_apart_successfully v v' tm1 tm1') && (generalized_apart_successfully v v' tm2 tm2') ) else ( let av = all_variables tm in let av' = all_variables tm' in let varsub = List.combine av av' in ((mem (v,v') varsub) && (mem v av')) );; let useful_apart_generalization v v' tm gen = let eqssub = List.combine (all_equations tm) (all_equations gen) in let eqsok = forall (fun (x,y) -> (x=y) || (generalized_apart_successfully v v' x y)) eqssub in let countercheck = try counter_check 5 gen with Failure s -> warn true ("Could not generate counter example: " ^ s) ; true in eqsok && (generalized_apart_successfully v v' tm gen) && countercheck;; let generalize_apart tm = let is_fun tm = (try( mem ((fst o dest_const o fst o strip_comb) tm) (defs_names ()) ) with Failure _ -> false) in let fs = find_bm_terms is_fun tm in let dfs = map strip_comb fs in let find_f (op,args) dfs = ( let r = get_rec_pos_of_fun op in let arg_filter args args' = (let v = el (r-1) args in (is_var v) && (mem v (snd (remove_el r args')))) in let match_filter (op',args') = ((op' = op) && (arg_filter args args')) in can (find match_filter) dfs ) in let (f,args) = try( find (fun (op,args) -> find_f (op,args) dfs) dfs ) with Failure _ -> failwith "" in let v = el ((get_rec_pos_of_fun f) -1) args in let v' = distinct_var (frees tm) (type_of v) (*distinct_var (flat (map frees args)) (type_of v)*) in let gen = separate f v v' false tm in if (useful_apart_generalization v v' tm gen) then (gen,[v',v]) else let pcs = map fst dfs in let restpcs = subtract pcs [f] in let recposs = map get_rec_pos_of_fun restpcs in let recpos = try (find ((<) 0) recposs) with Failure _ -> 0 in let gen = if (forall (fun x -> (x = 0) || (x = recpos)) recposs) then separate f v v' true tm else failwith "not same recpos for all functions" in if (useful_apart_generalization v v' tm gen) then (gen,[v',v]) else failwith "failed";; (*----------------------------------------------------------------------------*) (* Reference flag to check if a term has already been generalized so as to *) (* avoid multiple proposal generalization because of the waterfall loop. *) (*----------------------------------------------------------------------------*) let checkgen = ref true;; let generalize_heuristic_aderhold (tm,(ind:bool)) = if (mem tm !my_gen_terms && !checkgen) then failwith "" else try (let ELIM_LEMMA lemma th = let rest = snd (dest_disj (concl th)) in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR)) (AP_THM (AP_TERM `(\/)` lemma) rest)) th in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[]) in let (new_ap_vars,gen_ap_terms) = List.split subs in let (tm'',subs) = try( generalizeCommonSubterms tm' ) with Failure _ -> (tm',[]) in if (tm = tm'') then failwith "" else let (new_vars,gen_terms) = List.split subs in let lemmas = [] in let countercheck = try counter_check 5 tm'' with Failure s -> warn true ("Could not generate counter example: " ^ s) ; true in if (countercheck = true) then let proof th'' = let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o (SPECL gen_terms) o (GENL new_vars)) th'' in rev_itlist ELIM_LEMMA lemmas th' in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_aderhold" (proof o hd) [tm''])) else failwith "Counter example failure!" ) with Failure _ -> failwith "generalize_heuristic";; let generalize_heuristic_ext (tm,(ind:bool)) = if (mem tm !my_gen_terms && !checkgen) then failwith "" else try (let ELIM_LEMMA lemma th = let rest = snd (dest_disj (concl th)) in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR)) (AP_THM (AP_TERM `(\/)` lemma) rest)) th in let lemmas = [] in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[]) in let (new_ap_vars,gen_ap_terms) = List.split subs in let gen_terms = terms_to_be_generalized tm' in let _ = check (fun l -> not (l = [])) (gen_ap_terms@gen_terms) in let new_vars = distinct_vars (frees tm') (map type_of gen_terms) in let tm'' = subst (lcombinep (new_vars,gen_terms)) tm' in let countercheck = try counter_check 5 tm'' with Failure _ -> warn true "Could not generate counter example!" ; true in if (countercheck = true) then let proof th'' = let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o (SPECL gen_terms) o (GENL new_vars)) th'' in rev_itlist ELIM_LEMMA lemmas th' in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_ext" (proof o hd) [tm''])) else failwith "Counter example failure!" ) with Failure _ -> failwith "generalize_heuristic";;