(* ========================================================================= *) (* Twisted Edwards curves in general, a * x^2 + y^2 = 1 + d * x^2 * y^2. *) (* ========================================================================= *) needs "EC/misc.ml";; (* ------------------------------------------------------------------------- *) (* Basic definitions and naive cardinality bounds. *) (* ------------------------------------------------------------------------- *) let edwards_point = define `edwards_point f (x:A,y) <=> x IN ring_carrier f /\ y IN ring_carrier f`;; let edwards_curve = define `edwards_curve(f:A ring,a:A,d:A) (x,y) <=> x IN ring_carrier f /\ y IN ring_carrier f /\ ring_add f (ring_mul f a (ring_pow f x 2)) (ring_pow f y 2) = ring_add f (ring_1 f) (ring_mul f d (ring_mul f (ring_pow f x 2) (ring_pow f y 2)))`;; let edwards_nonsingular = define `edwards_nonsingular (f:A ring,a:A,d:A) <=> (?b. b IN ring_carrier f /\ ring_pow f b 2 = a) /\ (d = ring_0 f \/ ~(?c. c IN ring_carrier f /\ ring_pow f c 2 = d))`;; let edwards_0 = define `edwards_0 (f:A ring,a:A,d:A) = (ring_0 f,ring_1 f)`;; let edwards_neg = define `edwards_neg (f:A ring,a:A,d:A) (x,y:A) = (ring_neg f x,y)`;; let edwards_add = define `edwards_add (f:A ring,a:A,d:A) (x1,y1) (x2,y2) = ring_div f (ring_add f (ring_mul f x1 y2) (ring_mul f y1 x2)) (ring_add f (ring_1 f) (ring_mul f d (ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2))))), ring_div f (ring_sub f (ring_mul f y1 y2) (ring_mul f a (ring_mul f x1 x2))) (ring_sub f (ring_1 f) (ring_mul f d (ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2)))))`;; let edwards_group = define `edwards_group (f:A ring,a:A,d:A) = group(edwards_curve(f,a,d), edwards_0(f,a,d), edwards_neg(f,a,d), edwards_add(f,a,d))`;; let EDWARD_NONSINGULAR_ALT = prove (`!f a (d:A). field f /\ a IN ring_carrier f /\ d IN ring_carrier f ==> (edwards_nonsingular (f,a,d) <=> (?b. b IN ring_carrier f /\ ring_pow f b 2 = a) /\ ~(?c. c IN ring_carrier f /\ ~(c = ring_0 f) /\ ring_pow f c 2 = d))`, REPEAT STRIP_TAC THEN REWRITE_TAC[edwards_nonsingular] THEN AP_TERM_TAC THEN ASM_CASES_TAC `d:A = ring_0 f` THEN ASM_REWRITE_TAC[] THENL [FIELD_TAC; AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIELD_TAC);; let FINITE_EDWARDS_CURVE = prove (`!f a d:A. field f /\ FINITE(ring_carrier f) ==> FINITE(edwards_curve(f,a,d))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f}` THEN ASM_SIMP_TAC[FINITE_PRODUCT] THEN REWRITE_TAC[edwards_curve; SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN SIMP_TAC[edwards_curve; IN]);; let CARD_BOUND_EDWARDS_CURVE = prove (`!f a d:A. field f /\ FINITE(ring_carrier f) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular(f,a,d) ==> CARD(edwards_curve(f,a,d)) <= 2 * CARD(ring_carrier f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[FINITE_SUBSET; CARD_SUBSET; LE_TRANS] `!s. t SUBSET s /\ FINITE s /\ CARD s <= n ==> CARD t <= n`) THEN EXISTS_TAC `{(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f /\ ring_pow f y 2 = ring_div f (ring_sub f (ring_1 f) (ring_mul f a (ring_pow f x 2))) (ring_sub f (ring_1 f) (ring_mul f d (ring_pow f x 2)))}`THEN ASM_SIMP_TAC[FINITE_QUADRATIC_CURVE; FIELD_IMP_INTEGRAL_DOMAIN] THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[edwards_curve] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SYM o SYM) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN REWRITE_TAC[NOT_EXISTS_THM; RIGHT_OR_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `ring_inv f x:A` o CONJUNCT2) THEN ASM_SIMP_TAC[RING_INV] THEN FIELD_TAC);; (* ------------------------------------------------------------------------- *) (* Proof of the group properties by algebraic brute force. We do use a bit *) (* more delicacy than calling FIELD_TAC in order to avoid assuming anything *) (* about the characteristic of the field. *) (* ------------------------------------------------------------------------- *) let EDWARDS_NONSINGULAR_DENOMINATORS = prove (`!f a (d:A) x1 y1 x2 y2. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular(f,a,d) /\ edwards_curve(f,a,d) (x1,y1) /\ edwards_curve(f,a,d) (x2,y2) ==> ~(ring_add f (ring_1 f) (ring_mul f d (ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2)))) = ring_0 f) /\ ~(ring_sub f (ring_1 f) (ring_mul f d (ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2)))) = ring_0 f)`, REPEAT GEN_TAC THEN REWRITE_TAC[edwards_curve; GSYM DE_MORGAN_THM] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN DISCH_TAC THEN UNDISCH_TAC `edwards_nonsingular(f,a:A,d)` THEN ASM_SIMP_TAC[EDWARD_NONSINGULAR_ALT] THEN REWRITE_TAC[TAUT `~(p /\ ~q) <=> p ==> q`; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST_ALL_TAC o SYM)) THEN MATCH_MP_TAC(MESON[] `!a b. P a \/ P b ==> ?x. P x`) THEN EXISTS_TAC `ring_inv f (ring_mul f x1 y2):A` THEN EXISTS_TAC `ring_inv f (ring_mul f e (ring_mul f x1 x2)):A` THEN ASM_SIMP_TAC[RING_INV; RING_MUL] THEN FIELD_TAC);; let EDWARDS_NONSINGULAR_DENOMINATORS_POINTS = GEN_REWRITE_RULE (funpow 4 BINDER_CONV) [FORALL_UNPAIR_THM] (GEN_REWRITE_RULE (funpow 3 BINDER_CONV) [FORALL_UNPAIR_THM] EDWARDS_NONSINGULAR_DENOMINATORS);; let EDWARDS_CURVE_IMP_POINT = prove (`!f a d p. edwards_curve(f,a,d) p ==> edwards_point f p`, REWRITE_TAC[FORALL_PAIR_THM] THEN SIMP_TAC[edwards_curve; edwards_point]);; let EDWARDS_POINT_NEG = prove (`!(f:A ring) a d p. edwards_point f p ==> edwards_point f (edwards_neg (f,a,d) p)`, REWRITE_TAC[FORALL_PAIR_THM] THEN SIMP_TAC[edwards_neg; edwards_point; RING_NEG]);; let EDWARDS_POINT_ADD = prove (`!(f:A ring) a d p q. a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_point f p /\ edwards_point f q ==> edwards_point f (edwards_add (f,a,d) p q)`, REWRITE_TAC[FORALL_PAIR_THM] THEN SIMP_TAC[edwards_add; edwards_point; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[edwards_point]) THEN REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; let EDWARDS_CURVE_0 = prove (`!f a d:A. a IN ring_carrier f /\ d IN ring_carrier f ==> edwards_curve(f,a,d) (edwards_0(f,a,d))`, REWRITE_TAC[edwards_curve; edwards_0] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN RING_TAC);; let EDWARDS_CURVE_NEG = prove (`!f a (d:A) p. integral_domain f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_curve(f,a,d) p ==> edwards_curve(f,a,d) (edwards_neg (f,a,d) p)`, SIMP_TAC[FORALL_PAIR_THM; RING_NEG; edwards_curve; edwards_neg] THEN REPEAT GEN_TAC THEN CONV_TAC INTEGRAL_DOMAIN_RULE);; let EDWARDS_CURVE_ADD = prove (`!f a (d:A) p q. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q ==> edwards_curve(f,a,d) (edwards_add (f,a,d) p q)`, REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN STRIP_TAC THEN MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN ASM_REWRITE_TAC[edwards_curve] THEN FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN RING_PULL_DIV_TAC THEN RING_TAC);; let EDWARDS_ADD_LID = prove (`!f a (d:A) p. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_curve(f,a,d) p ==> edwards_add(f,a,d) (edwards_0 (f,a,d)) p = p`, REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; edwards_0; PAIR_EQ] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let EDWARDS_ADD_LNEG = prove (`!f a (d:A) p. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ edwards_curve(f,a,d) p ==> edwards_add(f,a,d) (edwards_neg (f,a,d) p) p = edwards_0(f,a,d)`, REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; edwards_neg; edwards_0; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`] THEN STRIP_TAC THEN MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `edwards_neg (f,a,d) (x,y):A#A`; `(x,y):A#A`] EDWARDS_NONSINGULAR_DENOMINATORS_POINTS) THEN ASM_REWRITE_TAC[edwards_curve; edwards_neg] THEN FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN ANTS_TAC THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let EDWARDS_ADD_SYM = prove (`!f a (d:A) p q. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q ==> edwards_add (f,a,d) p q = edwards_add (f,a,d) q p`, REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN STRIP_TAC THEN MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `x2:A`; `y2:A`; `x1:A`; `y1:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN ASM_REWRITE_TAC[edwards_curve] THEN FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN RING_PULL_DIV_TAC THEN RING_TAC);; let EDWARDS_ADD_ASSOC = prove (`!f a (d:A) p q r. field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q /\ edwards_curve(f,a,d) r ==> edwards_add (f,a,d) p (edwards_add (f,a,d) q r) = edwards_add (f,a,d) (edwards_add (f,a,d) p q) r`, let lemma = prove (`field f /\ x1 IN ring_carrier f /\ y1 IN ring_carrier f /\ x2 IN ring_carrier f /\ y2 IN ring_carrier f /\ ~(y1 = ring_0 f \/ y2 = ring_0 f) /\ ring_mul f x1 y2 = ring_mul f x2 y1 ==> ring_div f x1 y1 = ring_div f x2 y2`, FIELD_TAC) in REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`; `x3:A`; `y3:A`] THEN STRIP_TAC THEN CONJ_TAC THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN REPLICATE_TAC 4 (CONJ_TAC THENL [RING_CARRIER_TAC; ALL_TAC]) THEN CONJ_TAC THENL [REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) EDWARDS_NONSINGULAR_DENOMINATORS o snd) THEN (ANTS_TAC THENL [ALL_TAC; DISCH_THEN(ACCEPT_TAC o CONJUNCT1)]) THEN REWRITE_TAC[GSYM edwards_add] THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC EDWARDS_CURVE_ADD) THEN ASM_REWRITE_TAC[edwards_curve] THEN ASM_MESON_TAC[DIVIDES_REFL]; ALL_TAC; REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) EDWARDS_NONSINGULAR_DENOMINATORS o snd) THEN (ANTS_TAC THENL [ALL_TAC; DISCH_THEN(ACCEPT_TAC o CONJUNCT2)]) THEN REWRITE_TAC[GSYM edwards_add] THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC EDWARDS_CURVE_ADD) THEN ASM_REWRITE_TAC[edwards_curve] THEN ASM_MESON_TAC[DIVIDES_REFL]; ALL_TAC] THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `(x1,y1):A#A`; `(x2,y2):A#A`] EDWARDS_NONSINGULAR_DENOMINATORS_POINTS) THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `(x2,y2):A#A`; `(x3,y3):A#A`] EDWARDS_NONSINGULAR_DENOMINATORS_POINTS) THEN ASM_REWRITE_TAC[edwards_curve] THEN STRIP_TAC THEN STRIP_TAC THEN RING_PULL_DIV_TAC THEN RING_TAC);; let EDWARDS_GROUP = prove (`!f a (d:A). field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular(f,a,d) ==> group_carrier(edwards_group(f,a,d)) = edwards_curve(f,a,d) /\ group_id(edwards_group(f,a,d)) = edwards_0(f,a,d) /\ group_inv(edwards_group(f,a,d)) = edwards_neg(f,a,d) /\ group_mul(edwards_group(f,a,d)) = edwards_add(f,a,d)`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[group_carrier; group_id; group_inv; group_mul; GSYM PAIR_EQ] THEN REWRITE_TAC[edwards_group; GSYM(CONJUNCT2 group_tybij)] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN] THEN REWRITE_TAC[edwards_curve; edwards_0] THEN REWRITE_TAC[RING_0; RING_1] THEN RING_TAC; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[EDWARDS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[EDWARDS_CURVE_ADD]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[EDWARDS_ADD_ASSOC]; REWRITE_TAC[IN] THEN ASM_MESON_TAC[EDWARDS_ADD_LID; EDWARDS_ADD_SYM; EDWARDS_CURVE_0]; REWRITE_TAC[IN] THEN ASM_MESON_TAC[EDWARDS_ADD_LNEG; EDWARDS_ADD_SYM; EDWARDS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]]);; let ABELIAN_EDWARDS_GROUP = prove (`!f a (d:A). field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular(f,a,d) ==> abelian_group(edwards_group(f,a,d))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[abelian_group; EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN ASM_MESON_TAC[EDWARDS_ADD_SYM]);; (* ------------------------------------------------------------------------- *) (* Characterizing low-order points on an Edwards curve. *) (* ------------------------------------------------------------------------- *) let EDWARDS_GROUP_ORDER_EQ_2 = prove (`!f (a:A) d p. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ p IN group_carrier (edwards_group(f,a,d)) ==> (group_element_order (edwards_group(f,a,d)) p = 2 <=> p = (ring_0 f,ring_neg f (ring_1 f)))`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_2_ALT] THEN ASM_SIMP_TAC[EDWARDS_GROUP; IMP_CONJ] THEN REWRITE_TAC[FORALL_PAIR_THM; edwards_0; edwards_neg; PAIR_EQ; IN] THEN REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; let EDWARDS_GROUP_ORDER_EQ_4_EQUIV = prove (`!f (a:A) d x y. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ (x,y) IN group_carrier (edwards_group(f,a,d)) ==> (group_element_order (edwards_group(f,a,d)) (x,y) = 4 <=> ring_mul f a (ring_pow f x 2) = ring_1 f /\ y = ring_0 f)`, REWRITE_TAC[ARITH_RULE `4 = 2 * 2`] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL; DIVIDES_2; ARITH_EQ; ARITH_EVEN] THEN SIMP_TAC[EDWARDS_GROUP_ORDER_EQ_2; GROUP_POW] THEN REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[GROUP_POW_2; FORALL_PAIR_THM] THEN ASM_SIMP_TAC[EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[edwards_curve; edwards_add; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`; `x:A`; `y:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN ASM_REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; let EDWARDS_GROUP_ORDER_EQ_4 = prove (`!f (a:A) d a' p. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ a' IN ring_carrier f /\ ring_mul f a (ring_pow f a' 2) = ring_1 f /\ edwards_nonsingular (f,a,d) /\ p IN group_carrier (edwards_group(f,a,d)) ==> (group_element_order (edwards_group(f,a,d)) p = 4 <=> p = (a',ring_0 f) \/ p = (ring_neg f a',ring_0 f))`, REWRITE_TAC[ARITH_RULE `4 = 2 * 2`] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL; DIVIDES_2; ARITH_EQ; ARITH_EVEN] THEN SIMP_TAC[EDWARDS_GROUP_ORDER_EQ_2; GROUP_POW] THEN REPLICATE_TAC 4 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[GROUP_POW_2; FORALL_PAIR_THM] THEN ASM_SIMP_TAC[EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[edwards_curve; edwards_add; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`; `x:A`; `y:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN ASM_REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; let EDWARDS_GROUP_ORDER_EQ_8_EQUIV = prove (`!f (a:A) d x y. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ d IN ring_carrier f /\ edwards_nonsingular (f,a,d) /\ (x,y) IN group_carrier (edwards_group(f,a,d)) ==> (group_element_order (edwards_group(f,a,d)) (x,y) = 8 <=> ring_mul f a (ring_pow f x 2) = ring_pow f y 2 /\ ring_mul f (ring_of_num f 4) (ring_mul f (ring_pow f a 2) (ring_pow f x 4)) = ring_pow f (ring_add f (ring_1 f) (ring_mul f a (ring_mul f d (ring_pow f x 4)))) 2)`, REWRITE_TAC[ARITH_RULE `8 = 2 * 4`] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL; DIVIDES_2; ARITH_EQ; ARITH_EVEN] THEN SIMP_TAC[GROUP_POW; REWRITE_RULE[PAIR] (GEN_REWRITE_RULE (funpow 3 BINDER_CONV) [FORALL_UNPAIR_THM] EDWARDS_GROUP_ORDER_EQ_4_EQUIV)] THEN REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[GROUP_POW_2; FORALL_PAIR_THM] THEN ASM_SIMP_TAC[EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[edwards_curve; edwards_add; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`; `x:A`; `y:A`] EDWARDS_NONSINGULAR_DENOMINATORS) THEN ASM_REWRITE_TAC[edwards_curve] THEN FIELD_TAC);;