(* ========================================================================= *) (* The Edwards curve commonly known as Goldilocks, edwards448. *) (* ========================================================================= *) needs "EC/edwards.ml";; needs "EC/excluderoots.ml";; needs "EC/computegroup.ml";; add_curve edwards_curve;; add_curvezero edwards_0;; add_curveneg edwards_neg;; add_curveadd edwards_add;; (* ------------------------------------------------------------------------- *) (* Parameters for the edwards448 curve, based on the original Mike Hamburg *) (* paper "Ed448-Goldilocks" (https://eprint.iacr.org/2015/625.pdf). *) (* Here n_448 is the large prime factor of the group order, the full *) (* group order being 4 * n_448. Likewise E_448 is the generator of the *) (* prime order subgroup and EE_448 is a generator for the full group. *) (* We use e_448 instead of a_448 as the name, to reserve the latter for any *) (* Weierstrass variants we might also add. *) (* ------------------------------------------------------------------------- *) let p_448 = define `p_448 = 726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018365439`;; let n_448 = define `n_448 = 181709681073901722637330951972001133588410340171829515070372549795146003961539585716195755291692375963310293709091662304773755859649779`;; let e_448 = define`e_448 = 1`;; let d_448 = define`d_448 = 726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018326358`;; let E_448 = define `E_448 = (&0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa955555555555555555555555555555555555555555555555555555555:int, &0xae05e9634ad7048db359d6205086c2b0036ed7a035884dd7b7e36d728ad8c4b80d6565833a2a3098bbbcb2bed1cda06bdaeafbcdea9386ed:int)`;; let EE_448 = define `EE_448 = (&494088759867433727674302672526735089350544552303727723746126484473087719117037293890093462157703888342865036477787453078312060500281069:int,&242279574765202296849774602629334844784547120229106020093830066393555416020021691321995239242950195063812052916896239502005235079621290:int)`;; (* ------------------------------------------------------------------------- *) (* Some other equally usable basepoints. *) (* *) (* - E_448 above is in the (revised version of) the original paper *) (* https://eprint.iacr.org/2015/625.pdf *) (* *) (* - F_448 is the one standardized here: *) (* https://www.rfc-editor.org/rfc/rfc7748 *) (* https://datatracker.ietf.org/doc/html/ *) (* draft-ietf-lwig-curve-representations-23 *) (* *) (* - H_448 is the one given in Hamburg's own *) (* http://ed448goldilocks.sourceforge.net/spec/ *) (* ------------------------------------------------------------------------- *) let F_448 = define `F_448 = (&0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e:int,&0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14:int)`;; let H_448 = define `H_448 = (&117812161263436946737282484343310064665180535357016373416879082147939404277809514858788439644911793978499419995990477371552926308078495:int,&19:int)`;; (* ------------------------------------------------------------------------- *) (* Primality of the field characteristic and (sub)group order. *) (* ------------------------------------------------------------------------- *) let P_448 = prove (`p_448 = 2 EXP 448 - 2 EXP 224 - 1`, REWRITE_TAC[p_448] THEN ARITH_TAC);; let N_448 = prove (`n_448 = 2 EXP 446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d`, REWRITE_TAC[n_448] THEN ARITH_TAC);; let PRIME_P448 = prove (`prime p_448`, REWRITE_TAC[p_448] THEN (CONV_TAC o PRIME_RULE) ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "37"; "41"; "43"; "59"; "61"; "67"; "109"; "137"; "149"; "151"; "197"; "223"; "229"; "271"; "443"; "463"; "593"; "613"; "641"; "727"; "1481"; "1549"; "1979"; "2437"; "2531"; "2683"; "2963"; "6197"; "9749"; "17449"; "18287"; "47497"; "116989"; "189989"; "196687"; "217003"; "379979"; "411743"; "1466449"; "1609403"; "2916841"; "6700417"; "36753053"; "1255525949"; "1335912079"; "1764234391"; "3402277943"; "32061889897"; "25136521679249"; "97859369123353"; "34741861125639557"; "36131535570665139281"; "1469495262398780123809"; "167773885276849215533569"; "596242599987116128415063"; "37414057161322375957408148834323969"]);; let PRIME_N448 = prove (`prime n_448`, REWRITE_TAC[n_448] THEN (CONV_TAC o PRIME_RULE) ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "31"; "41"; "43"; "53"; "61"; "67"; "71"; "79"; "83"; "89"; "97"; "101"; "113"; "137"; "167"; "173"; "179"; "193"; "197"; "311"; "337"; "347"; "373"; "431"; "691"; "821"; "991"; "1609"; "1933"; "2239"; "3217"; "3449"; "4051"; "6577"; "14221"; "16657"; "34483"; "41389"; "51473"; "64817"; "74551"; "142211"; "227393"; "766223"; "816763"; "894613"; "3009341"; "3578453"; "4847597"; "7156907"; "9801157"; "15643211"; "35796097"; "47840521"; "671065561"; "765448337"; "8464734851"; "342682509629"; "95024118539459"; "760192948315673"; "2746144996771313789"; "163131120638915058577002756917"; "929098197455246849020086750707"; "6730519843040614479184435237013"; "3591893631361984318311655378233263"; "392279121964710096549298451519713063"; "547972593843380542316719287015009101629889568888367769396279985548530313239"]);; (* ------------------------------------------------------------------------- *) (* Definition of the curve group and proof of its key properties. *) (* ------------------------------------------------------------------------- *) let edwards448_group = define `edwards448_group = edwards_group(integer_mod_ring p_448,&e_448,&d_448)`;; let EDWARD_NONSINGULAR_448 = prove (`edwards_nonsingular (integer_mod_ring p_448,&e_448,&d_448)`, REWRITE_TAC[edwards_nonsingular; INTEGER_MOD_RING_ROOT_EXISTS] THEN SIMP_TAC[INTEGER_MOD_RING; INT_OF_NUM_EQ; e_448; d_448; p_448] THEN CONV_TAC NUM_REDUCE_CONV THEN SIMP_TAC[EULER_CRITERION; REWRITE_RULE[p_448] PRIME_P448] THEN CONV_TAC(DEPTH_CONV (NUM_SUB_CONV ORELSEC NUM_DIV_CONV ORELSEC DIVIDES_CONV)) THEN REWRITE_TAC[CONG] THEN CONV_TAC(ONCE_DEPTH_CONV EXP_MOD_CONV) THEN CONV_TAC NUM_REDUCE_CONV);; let EDWARDS448_GROUP = prove (`group_carrier edwards448_group = edwards_curve(integer_mod_ring p_448,&e_448,&d_448) /\ group_id edwards448_group = edwards_0(integer_mod_ring p_448,&e_448,&d_448) /\ group_inv edwards448_group = edwards_neg(integer_mod_ring p_448,&e_448,&d_448) /\ group_mul edwards448_group = edwards_add(integer_mod_ring p_448,&e_448,&d_448)`, REWRITE_TAC[edwards448_group] THEN MATCH_MP_TAC EDWARDS_GROUP THEN REWRITE_TAC[EDWARD_NONSINGULAR_448] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P448] THEN REWRITE_TAC[e_448; d_448; p_448] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER] THEN CONV_TAC INT_REDUCE_CONV);; add_ecgroup [e_448; d_448; p_448] EDWARDS448_GROUP;; let FINITE_GROUP_CARRIER_EDWARDS448 = prove (`FINITE(group_carrier edwards448_group)`, REWRITE_TAC[EDWARDS448_GROUP] THEN MATCH_MP_TAC FINITE_EDWARDS_CURVE THEN REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P448] THEN REWRITE_TAC[p_448] THEN CONV_TAC NUM_REDUCE_CONV);; let GENERATOR_IN_GROUP_CARRIER_EDWARDS448 = prove (`E_448 IN group_carrier edwards448_group`, REWRITE_TAC[E_448] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_EDWARDS448_E448 = prove (`group_element_order edwards448_group E_448 = n_448`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_EDWARDS448; PRIME_N448] THEN REWRITE_TAC[E_448; el 1 (CONJUNCTS EDWARDS448_GROUP)] THEN REWRITE_TAC[edwards_0; PAIR_EQ; INTEGER_MOD_RING] THEN REWRITE_TAC[n_448; p_448] THEN CONV_TAC INT_REDUCE_CONV THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC);; let GENERATOR_IN_GROUP_CARRIER_F448 = prove (`F_448 IN group_carrier edwards448_group`, REWRITE_TAC[F_448] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_EDWARDS448_F448 = prove (`group_element_order edwards448_group F_448 = n_448`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_F448; PRIME_N448] THEN REWRITE_TAC[F_448; el 1 (CONJUNCTS EDWARDS448_GROUP)] THEN REWRITE_TAC[edwards_0; PAIR_EQ; INTEGER_MOD_RING] THEN REWRITE_TAC[n_448; p_448] THEN CONV_TAC INT_REDUCE_CONV THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC);; let GENERATOR_IN_GROUP_CARRIER_H448 = prove (`H_448 IN group_carrier edwards448_group`, REWRITE_TAC[H_448] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_EDWARDS448_H448 = prove (`group_element_order edwards448_group H_448 = n_448`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_H448; PRIME_N448] THEN REWRITE_TAC[H_448; el 1 (CONJUNCTS EDWARDS448_GROUP)] THEN REWRITE_TAC[edwards_0; PAIR_EQ; INTEGER_MOD_RING] THEN REWRITE_TAC[n_448; p_448] THEN CONV_TAC INT_REDUCE_CONV THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC);; let EDWARDS448_ORDER_1 = prove (`{p | p IN group_carrier edwards448_group /\ group_element_order edwards448_group p = 1} = {(&0,&1)}`, REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM; IN_SING] THEN MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN MATCH_MP_TAC(MESON[] `!a'. a' IN G /\ (x IN G ==> (P x <=> x = a')) /\ a' = a ==> (x IN G /\ P x <=> x = a)`) THEN EXISTS_TAC `group_id edwards448_group` THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_EQ_1; GROUP_ID] THEN REWRITE_TAC[EDWARDS448_GROUP; edwards_0; INTEGER_MOD_RING_CLAUSES] THEN REWRITE_TAC[p_448; PAIR_EQ] THEN CONV_TAC INT_REDUCE_CONV);; let EDWARDS448_ORDER_2 = prove (`{p | p IN group_carrier edwards448_group /\ group_element_order edwards448_group p = 2} = {(&0,&p_448 - &1)}`, REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM; IN_SING] THEN MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN MATCH_MP_TAC(MESON[] `a IN G /\ (x IN G ==> (P x <=> x = a)) ==> (x IN G /\ P x <=> x = a)`) THEN CONJ_TAC THENL [REWRITE_TAC[EDWARDS448_GROUP; IN] THEN REWRITE_TAC[edwards_curve] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; p_448; d_448] THEN CONV_TAC(DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)); DISCH_TAC] THEN REWRITE_TAC[edwards448_group] THEN W(MP_TAC o PART_MATCH (lhand o rand) EDWARDS_GROUP_ORDER_EQ_2 o lhand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[EDWARD_NONSINGULAR_448] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P448] THEN ASM_REWRITE_TAC[GSYM edwards448_group; INTEGER_MOD_RING_CHAR] THEN REWRITE_TAC[e_448; d_448; p_448; GSYM INT_OF_NUM_EQ] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER] THEN CONV_TAC INT_REDUCE_CONV; DISCH_THEN SUBST1_TAC] THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ; p_448] THEN CONV_TAC(DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)));; let EDWARDS448_ORDER_4 = prove (`{p | p IN group_carrier edwards448_group /\ group_element_order edwards448_group p = 4} = {(&1,&0), (&p_448 - &1,&0)}`, REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN MATCH_MP_TAC(MESON[] `(a IN G /\ b IN G) /\ (x IN G ==> (P x <=> x = a \/ x = b)) ==> (x IN G /\ P x <=> x = a \/ x = b)`) THEN CONJ_TAC THENL [REWRITE_TAC[EDWARDS448_GROUP; IN] THEN REWRITE_TAC[edwards_curve] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; p_448; d_448; e_448] THEN CONV_TAC(DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)); DISCH_TAC] THEN REWRITE_TAC[edwards448_group] THEN MP_TAC(ISPECL [`integer_mod_ring p_448`; `&e_448:int`; `&d_448:int`; `&1:int`; `(x,y):int#int`] EDWARDS_GROUP_ORDER_EQ_4) THEN ANTS_TAC THENL [REWRITE_TAC[EDWARD_NONSINGULAR_448] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P448] THEN ASM_REWRITE_TAC[GSYM edwards448_group; INTEGER_MOD_RING_CHAR] THEN REWRITE_TAC[e_448; d_448; p_448; GSYM INT_OF_NUM_EQ] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER] THEN CONV_TAC(DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)); DISCH_THEN SUBST1_TAC] THEN BINOP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ; p_448] THEN CONV_TAC(DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)));; let EDWARDS448_ORDER_8 = prove (`{p | p IN group_carrier edwards448_group /\ group_element_order edwards448_group p = 8} = {}`, REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM; NOT_IN_EMPTY] THEN MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`] THEN DISCH_TAC THEN REWRITE_TAC[edwards448_group] THEN W(MP_TAC o PART_MATCH (lhand o rand) EDWARDS_GROUP_ORDER_EQ_8_EQUIV o rand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[EDWARD_NONSINGULAR_448] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P448] THEN ASM_REWRITE_TAC[GSYM edwards448_group; INTEGER_MOD_RING_CHAR] THEN REWRITE_TAC[e_448; d_448; p_448; GSYM INT_OF_NUM_EQ] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER] THEN CONV_TAC INT_REDUCE_CONV; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[INTEGER_MOD_RING_CLAUSES] THEN CONV_TAC INT_REM_DOWN_CONV THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[INT_REM_EQ] THEN ABBREV_TAC `z:int = x pow 4` THEN REWRITE_TAC[e_448; d_448; INT_MUL_ASSOC] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[GSYM d_448] THEN DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE `(&4 * z:int == (&1 + d * z) pow 2) (mod p) ==> ((d pow 2 * z + (d - &2)) pow 2 == &4 * (p + &1 - d)) (mod p)`)) THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM INT_POW2_ABS] THEN SPEC_TAC(`&d_448 pow 2 * z + &d_448 - &2:int`,`w:int`) THEN REWRITE_TAC[GSYM INT_FORALL_ABS] THEN REWRITE_TAC[GSYM NOT_EXISTS_THM] THEN REWRITE_TAC[p_448; d_448] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[INT_OF_NUM_CLAUSES; GSYM num_congruent] THEN SIMP_TAC[EULER_CRITERION; REWRITE_RULE[p_448] PRIME_P448] THEN CONV_TAC(DEPTH_CONV (NUM_SUB_CONV ORELSEC NUM_DIV_CONV ORELSEC DIVIDES_CONV)) THEN REWRITE_TAC[CONG] THEN CONV_TAC(ONCE_DEPTH_CONV EXP_MOD_CONV) THEN CONV_TAC NUM_REDUCE_CONV);; let FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS448 = prove (`EE_448 IN group_carrier edwards448_group`, REWRITE_TAC[EE_448] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_EDWARDS448_EE448 = prove (`group_element_order edwards448_group EE_448 = 4 * n_448`, ABBREV_TAC `h = (&1,&0):int#int` THEN SUBGOAL_THEN `h IN group_carrier edwards448_group /\ group_element_order edwards448_group h = 4` STRIP_ASSUME_TAC THENL [ONCE_REWRITE_TAC[SET_RULE `h IN s /\ P h <=> h IN {x | x IN s /\ P x}`] THEN EXPAND_TAC "h" THEN REWRITE_TAC[EDWARDS448_ORDER_4; IN_INSERT]; ALL_TAC] THEN SUBGOAL_THEN `EE_448 = group_mul edwards448_group h E_448` SUBST1_TAC THENL [EXPAND_TAC "h" THEN REWRITE_TAC[E_448; EE_448] THEN CONV_TAC(RAND_CONV ECGROUP_MUL_CONV) THEN REFL_TAC; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ELEMENT_ORDER_MUL_EQ o lhand o snd) THEN ASM_REWRITE_TAC[GROUP_ELEMENT_ORDER_EDWARDS448_E448] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_EDWARDS448] THEN CONJ_TAC THENL [EXPAND_TAC "h" THEN REWRITE_TAC[E_448] THEN CONV_TAC(BINOP_CONV ECGROUP_MUL_CONV) THEN REFL_TAC; REWRITE_TAC[n_448] THEN CONV_TAC COPRIME_CONV]);; let SIZE_EDWARDS448_GROUP = prove (`group_carrier edwards448_group HAS_SIZE (4 * n_448)`, REWRITE_TAC[HAS_SIZE; FINITE_GROUP_CARRIER_EDWARDS448] THEN MP_TAC(ISPECL [`edwards448_group`; `EE_448`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN REWRITE_TAC[FINITE_GROUP_CARRIER_EDWARDS448; FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS448] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM; GROUP_ELEMENT_ORDER_EDWARDS448_EE448] THEN X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN ASM_SIMP_TAC[CARD_EQ_0; MULT_CLAUSES; GROUP_CARRIER_NONEMPTY; FINITE_GROUP_CARRIER_EDWARDS448] THEN ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN ASM_CASES_TAC `d = 2` THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC(ARITH_RULE `~(s = 8 * n) ==> s = (4 * n) * 2 ==> u:num = v`) THEN DISCH_TAC THEN MP_TAC(ISPECL [`edwards448_group`; `2`; `3`] SYLOW_THEOREM) THEN ASM_REWRITE_TAC[FINITE_GROUP_CARRIER_EDWARDS448; PRIME_2; NOT_IMP] THEN REWRITE_TAC[n_448] THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(LAND_CONV DIVIDES_CONV) THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `h:int#int->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `CARD(h:int#int->bool) <= 4` MP_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[] THEN ARITH_TAC] THEN TRANS_TAC LE_TRANS `CARD{(&0:int,&1:int), (&0,&p_448 - &1), (&1,&0), (&p_448 - &1,&0)}` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY]; SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `p:int#int` THEN DISCH_TAC THEN MP_TAC(ISPECL [`subgroup_generated edwards448_group h`; `p:int#int`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN ASM_SIMP_TAC[FINITE_SUBGROUP_GENERATED; FINITE_GROUP_CARRIER_EDWARDS448; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_SUBGROUP_GENERATED] THEN SIMP_TAC[GSYM(NUM_REDUCE_CONV `2 EXP 3`); DIVIDES_PRIMEPOW; PRIME_2] THEN REWRITE_TAC[ARITH_RULE `i <= 3 <=> i < 4`; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[IMP_CONJ] THEN CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `x IN group_carrier G /\ {y | y IN group_carrier G /\ group_element_order G y = n} SUBSET s ==> group_element_order G x = n ==> x IN s`) THEN REWRITE_TAC[EDWARDS448_ORDER_1; EDWARDS448_ORDER_2; EDWARDS448_ORDER_4; EDWARDS448_ORDER_8] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC(ARITH_RULE `n * 3 <= n * d /\ s < 3 * n ==> s = n * d ==> u:num = v`) THEN REWRITE_TAC[n_448] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM n_448; EDWARDS448_GROUP] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_BOUND_EDWARDS_CURVE o lhand o snd) THEN REWRITE_TAC[EDWARD_NONSINGULAR_448] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P448] THEN SIMP_TAC[FINITE_INTEGER_MOD_RING; CARD_INTEGER_MOD_RING; IN_INTEGER_MOD_RING_CARRIER; n_448; p_448; d_448; INTEGER_MOD_RING; e_448; INT_OF_NUM_CLAUSES; ARITH_EQ] THEN ARITH_TAC]);; let GENERATED_EDWARDS448_GROUP = prove (`subgroup_generated edwards448_group {EE_448} = edwards448_group`, SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS448; FINITE_GROUP_CARRIER_EDWARDS448] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_EDWARDS448_EE448; REWRITE_RULE[HAS_SIZE] SIZE_EDWARDS448_GROUP]);; let CYCLIC_EDWARDS448_GROUP = prove (`cyclic_group edwards448_group`, MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_EDWARDS448_GROUP]);; let ABELIAN_EDWARDS448_GROUP = prove (`abelian_group edwards448_group`, MESON_TAC[CYCLIC_EDWARDS448_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;