(* ========================================================================= *) (* Prove that a congruence x^3 + a * x + b == 0 (mod p) has no solution *) (* (fails with an exception if it does). This is essentually done via a *) (* computation of gcd(x^p - x,x^3 + a * x + b) over F_p[x]. *) (* *) (* This can be used to show that a Weierstrass curve y^2 = x^3 + a * x + b *) (* has no 2-torsion points, since such points would necessarily have y = 0 *) (* because the negation in the curve group of (x,y) is (x,-y). *) (* ========================================================================= *) needs "Library/pocklington.ml";; let num_modinv = let rec gcdex(m,n) = if n let (x,y) = gcdex(n,p) in if mod_num (x */ n) p =/ num_1 then mod_num x p else failwith "num_modinv";; let EXCLUDE_MODULAR_CUBIC_ROOTS = let lemma_flt = prove (`((x pow 3 + a * x + b:int == &0) (mod &p) ==> (x pow p == c2 * x pow 2 + c1 * x + c0) (mod &p)) ==> prime p ==> ~(b rem &p = &0) ==> ((x pow 3 + a * x + b == &0) (mod &p) ==> (&0 == c2 * x pow 2 + (c1 - &1) * x + c0) (mod &p))`, DISCH_THEN(fun th -> REPEAT DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(INTEGER_RULE `(xp == x) (mod p) ==> (xp:int == c2 * x pow 2 + c1 * x + c0) (mod p) ==> (&0 == c2 * x pow 2 + (c1 - &1) * x + c0) (mod p)`) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INTEGER_RULE `(x pow 3 + a * x + b:int == &0) (mod p) ==> coprime(b,p) ==> coprime(x,p)`)) THEN ANTS_TAC THENL [MATCH_MP_TAC(INTEGER_RULE `(b rem p == b) (mod p) /\ coprime(b rem p,p) ==> coprime(b,p)`) THEN REWRITE_TAC[INT_REM_MOD_SELF] THEN UNDISCH_TAC `~(b rem &p = &0)` THEN SUBGOAL_THEN `&0 <= b rem &p /\ b rem &p < &p` MP_TAC THENL [ASM_REWRITE_TAC[INT_REM_POS_EQ; INT_LT_REM_EQ] THEN ASM_SIMP_TAC[INT_OF_NUM_EQ; PRIME_IMP_NZ; INT_OF_NUM_LT; LE_1]; SPEC_TAC(`b rem &p`,`x:int`)] THEN REWRITE_TAC[GSYM INT_FORALL_POS; IMP_CONJ] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[INT_OF_NUM_EQ; INT_OF_NUM_LT] THEN REPEAT DISCH_TAC THEN REWRITE_TAC[GSYM num_coprime] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[PRIME_COPRIME_EQ] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC; DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE `coprime(b,p) ==> (b rem p == b) (mod p) ==> coprime(b rem p,p)`)) THEN REWRITE_TAC[INT_REM_MOD_SELF]] THEN REWRITE_TAC[GSYM INT_REM_EQ] THEN ONCE_REWRITE_TAC[GSYM INT_POW_REM] THEN SUBGOAL_THEN `&0 <= x rem &p /\ x rem &p < &p` MP_TAC THENL [ASM_REWRITE_TAC[INT_REM_POS_EQ; INT_LT_REM_EQ] THEN ASM_SIMP_TAC[INT_OF_NUM_EQ; PRIME_IMP_NZ; INT_OF_NUM_LT; LE_1]; SPEC_TAC(`x rem &p`,`x:int`)] THEN REWRITE_TAC[GSYM INT_FORALL_POS; IMP_CONJ] THEN REWRITE_TAC[INT_POW_REM; GSYM num_coprime; INT_OF_NUM_LT] THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_REM; INT_OF_NUM_EQ] THEN MP_TAC(SPECL [`n:num`; `p:num`] FERMAT_LITTLE_PRIME) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `(x EXP a == 1) (mod p) ==> (x * x EXP a == x) (mod p)`)) THEN ASM_SIMP_TAC[GSYM(CONJUNCT2 EXP); CONG; MOD_LT] THEN ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `~(p = 0) ==> SUC(p - 1) = p`]) and lemma_tolin = prove (`(x pow 3 + a * x + b == &0) (mod p) /\ (&0 == &1 * x pow 2 + c1 * x + c0) (mod p) ==> (&0:int == &0 * x pow 2 + (a + c1 pow 2 - c0) * x + (b + c0 * c1)) (mod p)`, INTEGER_TAC) and lemma_toconst = prove (`(x pow 3 + a * x + b == &0) (mod p) /\ (&0:int == &0 * x pow 2 + &1 * x + c0) (mod p) ==> (&0:int == --c0 pow 3 - a * c0 + b) (mod p)`, INTEGER_TAC) and lemma_3_2 = prove (`(x pow 3 + a * x + b:int == &0) (mod p) ==> (y == c3 * x pow 3 + c2 * x pow 2 + c1 * x + c0) (mod p) ==> (y == c2 * x pow 2 + (c1 - a * c3) * x + (c0 - b * c3)) (mod p)`, INTEGER_TAC) and lemma_4_3 = prove (`(x pow 3 + a * x + b:int == &0) (mod p) ==> (y == c4 * x pow 4 + c3 * x pow 3 + c2 * x pow 2 + c1 * x + c0) (mod p) ==> (y == c3 * x pow 3 + (c2 - a * c4) * x pow 2 + (c1 - b * c4) * x + c0) (mod p)`, INTEGER_TAC) and lemma_rem = prove (`(y:int == c2 * x pow 2 + c1 * x + c0) (mod p) ==> (y == c2 rem p * x pow 2 + c1 rem p * x + c0 rem p) (mod p)`, MATCH_MP_TAC(INTEGER_RULE `(c2:int == c2') (mod p) /\ (c1 == c1') (mod p) /\ (c0 == c0') (mod p) ==> (y:int == c2 * x pow 2 + c1 * x + c0) (mod p) ==> (y:int == c2' * x pow 2 + c1' * x + c0') (mod p)`) THEN REWRITE_TAC[INT_CONG_RREM] THEN CONV_TAC INTEGER_RULE) and lemma_mulx = prove (`((x:int) pow n == c2 * x pow 2 + c1 * x + c0) (mod p) ==> (x pow (n + 1) == c2 * x pow 3 + c1 * x pow 2 + c0 * x + &0) (mod p)`, REWRITE_TAC[INT_POW_ADD] THEN INTEGER_TAC) and lemma_sqr = prove (`((x:int) pow n == c2 * x pow 2 + c1 * x + c0) (mod p) ==> (x pow (2 * n) == (c2 pow 2) * x pow 4 + (&2 * c1 * c2) * x pow 3 + (c1 pow 2 + &2 * c0 * c2) * x pow 2 + (&2 * c0 * c1) * x + c0 pow 2) (mod p)`, REWRITE_TAC[MULT_2; INT_POW_ADD] THEN INTEGER_TAC) and lemma_mulc = prove (`(y:int == c2 * x pow 2 + c1 * x + c0) (mod p) ==> !c. (c * y == (c * c2) * x pow 2 + (c * c1) * x + c * c0) (mod p)`, INTEGER_TAC) and pth0 = INTEGER_RULE `!p. ((x:int) pow 0 == &0 * x pow 2 + &0 * x + &1) (mod &p)` in fun tm primeth -> let th = ASSUME tm in let rule_3_2 = MATCH_MP(MATCH_MP lemma_3_2 th) and rule_4_3 = MATCH_MP(MATCH_MP lemma_4_3 th) and rule_mulx = MATCH_MP lemma_mulx and rule_mulc = MATCH_MP lemma_mulc and rule_sqr = MATCH_MP lemma_sqr and rule_rem = MATCH_MP lemma_rem in let qtm = rand(concl primeth) in let q = dest_numeral qtm in let th0 = SPEC qtm pth0 in let rec power_rule n = if n =/ num_0 then th0 else let m = quo_num n num_2 in let th1 = power_rule m in let th2 = (CONV_RULE INT_REDUCE_CONV o CONV_RULE NUM_REDUCE_CONV o rule_rem o rule_3_2 o rule_4_3 o rule_sqr) th1 in if mod_num n num_2 =/ num_0 then th2 else (CONV_RULE INT_REDUCE_CONV o CONV_RULE NUM_REDUCE_CONV o rule_rem o rule_3_2 o rule_mulx) th2 in let th1 = DISCH tm (power_rule q) in let th2 = MP (MATCH_MP lemma_flt th1) primeth in let th3 = MP th2 (EQT_ELIM(INT_REDUCE_CONV(lhand(concl th2)))) in let th4 = (CONV_RULE INT_REDUCE_CONV o rule_rem) (UNDISCH th3) in let hc = dest_intconst(lhand(lhand(rand(rator(concl th4))))) in let th8 = if hc =/ num_0 then th4 else let th5 = SPEC (mk_intconst(num_modinv q hc)) (rule_mulc th4) in let th6 = (CONV_RULE INT_REDUCE_CONV o rule_rem) th5 in let th7 = MATCH_MP lemma_tolin (CONJ (ASSUME tm) th6) in (CONV_RULE INT_REDUCE_CONV o rule_rem) th7 in let lc = dest_intconst(lhand(lhand(rand(rand(rator(concl th8)))))) in let th9 = SPEC (mk_intconst(num_modinv q lc)) (rule_mulc th8) in let tha = (CONV_RULE INT_REDUCE_CONV o rule_rem) th9 in let thb = MATCH_MP lemma_toconst (CONJ (ASSUME tm) tha) in let thc = CONV_RULE INT_REDUCE_CONV (REWRITE_RULE[GSYM INT_REM_EQ] thb) in NOT_INTRO(DISCH tm thc);; let EXCLUDE_MODULAR_CUBIC_ROOTS_TAC primeth defths = X_GEN_TAC `x:int` THEN GEN_REWRITE_TAC ONCE_DEPTH_CONV [INT_ARITH `x pow 3 - &3 * x + b:int = x pow 3 + (-- &3) * x + b /\ x pow 3 + &c = x pow 3 + &0 * x + &c`] THEN REWRITE_TAC defths THEN W(fun (asl,w) -> ACCEPT_TAC (EXCLUDE_MODULAR_CUBIC_ROOTS (rand w) (ONCE_REWRITE_RULE defths primeth)));;