(* ========================================================================= *) (* Specific formulas for evaluating projective coordinate point operations. *) (* ========================================================================= *) needs "EC/projective.ml";; (* ------------------------------------------------------------------------- *) (* Point doubling in projective coordinates. *) (* *) (* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3 ***) let pr_dbl_2007_bl = new_definition `pr_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) = let xx = ring_pow f x1 2 in let zz = ring_pow f z1 2 in let t0 = ring_mul f (ring_of_num f 3) xx in let t1 = ring_mul f a zz in let w = ring_add f t1 t0 in let t2 = ring_mul f y1 z1 in let s = ring_mul f (ring_of_num f 2) t2 in let ss = ring_pow f s 2 in let sss = ring_mul f s ss in let r = ring_mul f y1 s in let rr = ring_pow f r 2 in let t3 = ring_add f x1 r in let t4 = ring_pow f t3 2 in let t5 = ring_sub f t4 xx in let b = ring_sub f t5 rr in let t6 = ring_pow f w 2 in let t7 = ring_mul f (ring_of_num f 2) b in let h = ring_sub f t6 t7 in let x3 = ring_mul f h s in let t8 = ring_sub f b h in let t9 = ring_mul f (ring_of_num f 2) rr in let t10 = ring_mul f w t8 in let y3 = ring_sub f t10 t9 in let z3 = sss in (x3,y3,z3)`;; let PR_DBL_2007_BL = prove (`!f a b x1 y1 z1:A. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f (x1,y1,z1) ==> projective_eq f (pr_dbl_2007_bl (f,a,b) (x1,y1,z1)) (projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN REWRITE_TAC[pr_dbl_2007_bl; projective_add; projective_eq; projective_neg; projective_0] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[projective_add; projective_eq; projective_neg; projective_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Point doubling in projective coordinates assuming a = -3. *) (* *) (* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective-3/doubling/dbl-2007-bl-2.op3 ***) let p3_dbl_2007_bl_2 = new_definition `p3_dbl_2007_bl_2 (f:A ring,a:A,b:A) (x1,y1,z1) = let t0 = ring_sub f x1 z1 in let t1 = ring_add f x1 z1 in let t2 = ring_mul f t0 t1 in let w = ring_mul f (ring_of_num f 3) t2 in let t3 = ring_mul f y1 z1 in let s = ring_mul f (ring_of_num f 2) t3 in let ss = ring_pow f s 2 in let sss = ring_mul f s ss in let r = ring_mul f y1 s in let rr = ring_pow f r 2 in let t4 = ring_mul f x1 r in let b = ring_mul f (ring_of_num f 2) t4 in let t5 = ring_pow f w 2 in let t6 = ring_mul f (ring_of_num f 2) b in let h = ring_sub f t5 t6 in let x3 = ring_mul f h s in let t7 = ring_sub f b h in let t8 = ring_mul f (ring_of_num f 2) rr in let t9 = ring_mul f w t7 in let y3 = ring_sub f t9 t8 in let z3 = sss in (x3,y3,z3)`;; let P3_DBL_2007_BL_2 = prove (`!f a b x1 y1 z1:A. field f /\ a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\ projective_point f (x1,y1,z1) ==> projective_eq f (p3_dbl_2007_bl_2 (f,a,b) (x1,y1,z1)) (projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[p3_dbl_2007_bl_2; projective_add; projective_eq; projective_neg; projective_0] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[projective_add; projective_eq; projective_neg; projective_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Point doubling in projective coordinates assuming a = 0. *) (* *) (* Source: Bernstein-Lange [2007] "Faster addition and doubling..." with *) (* trivial constant propagation from a = 0. *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3 *** plus trivial constant propagation ***) let p0_dbl_2007_bl = new_definition `p0_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) = let xx = ring_pow f x1 2 in let zz = ring_pow f z1 2 in let w = ring_mul f (ring_of_num f 3) xx in let t2 = ring_mul f y1 z1 in let s = ring_mul f (ring_of_num f 2) t2 in let ss = ring_pow f s 2 in let sss = ring_mul f s ss in let r = ring_mul f y1 s in let rr = ring_pow f r 2 in let t3 = ring_add f x1 r in let t4 = ring_pow f t3 2 in let t5 = ring_sub f t4 xx in let b = ring_sub f t5 rr in let t6 = ring_pow f w 2 in let t7 = ring_mul f (ring_of_num f 2) b in let h = ring_sub f t6 t7 in let x3 = ring_mul f h s in let t8 = ring_sub f b h in let t9 = ring_mul f (ring_of_num f 2) rr in let t10 = ring_mul f w t8 in let y3 = ring_sub f t10 t9 in let z3 = sss in (x3,y3,z3)`;; let P0_DBL_2007_BL = prove (`!f a b x1 y1 z1:A. field f /\ a = ring_0 f /\ b IN ring_carrier f /\ projective_point f (x1,y1,z1) ==> projective_eq f (p0_dbl_2007_bl (f,a,b) (x1,y1,z1)) (projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[p0_dbl_2007_bl; projective_add; projective_eq; projective_neg; projective_0] THEN ASM_CASES_TAC `z1:A = ring_0 f` THEN ASM_REWRITE_TAC[projective_add; projective_eq; projective_neg; projective_0] THEN ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Pure point addition in projective coordinates. This sequence never uses *) (* the value of "a" so there's no special optimized version for special "a". *) (* *) (* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation" *) (* *) (* Note the correctness is not proved in cases where the points are equal *) (* (or projectively equivalent), or either input is 0 (point at infinity). *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/add-1998-cmo-2.op3 ***) let pr_add_1998_cmo_2 = new_definition `pr_add_1998_cmo_2 (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) = let y1z2 = ring_mul f y1 z2 in let x1z2 = ring_mul f x1 z2 in let z1z2 = ring_mul f z1 z2 in let t0 = ring_mul f y2 z1 in let u = ring_sub f t0 y1z2 in let uu = ring_pow f u 2 in let t1 = ring_mul f x2 z1 in let v = ring_sub f t1 x1z2 in let vv = ring_pow f v 2 in let vvv = ring_mul f v vv in let r = ring_mul f vv x1z2 in let t2 = ring_mul f (ring_of_num f 2) r in let t3 = ring_mul f uu z1z2 in let t4 = ring_sub f t3 vvv in let a = ring_sub f t4 t2 in let x3 = ring_mul f v a in let t5 = ring_sub f r a in let t6 = ring_mul f vvv y1z2 in let t7 = ring_mul f u t5 in let y3 = ring_sub f t7 t6 in let z3 = ring_mul f vvv z1z2 in (x3,y3,z3)`;; let PR_ADD_1998_CMO_2 = prove (`!f a b x1 y1 z1 x2 y2 z2:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\ ~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\ ~(projective_eq f (x1,y1,z1) (x2,y2,z2)) ==> projective_eq f (pr_add_1998_cmo_2 (f,a,b) (x1,y1,z1) (x2,y2,z2)) (projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`, REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[projective_eq; pr_add_1998_cmo_2; projective_add] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[projective_add; projective_eq; projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN FIELD_TAC);; (* ------------------------------------------------------------------------- *) (* Mixed point addition in projective coordinates. Here "mixed" means *) (* assuming z2 = 1, which holds if the second point was directly injected *) (* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses *) (* the value of "a" so there's no special optimized version for special "a". *) (* *) (* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation" *) (* *) (* Note the correctness is not proved in the case where the points are equal *) (* or projectively equivalent, nor where the first is the group identity *) (* (i.e. the point at infinity, anything with z1 = 0 in projective coords). *) (* ------------------------------------------------------------------------- *) (*** *** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/madd-1998-cmo.op3 ***) let pr_madd_1998_cmo = new_definition `pr_madd_1998_cmo (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) = let t0 = ring_mul f y2 z1 in let u = ring_sub f t0 y1 in let uu = ring_pow f u 2 in let t1 = ring_mul f x2 z1 in let v = ring_sub f t1 x1 in let vv = ring_pow f v 2 in let vvv = ring_mul f v vv in let r = ring_mul f vv x1 in let t2 = ring_mul f (ring_of_num f 2) r in let t3 = ring_mul f uu z1 in let t4 = ring_sub f t3 vvv in let a = ring_sub f t4 t2 in let x3 = ring_mul f v a in let t5 = ring_sub f r a in let t6 = ring_mul f vvv y1 in let t7 = ring_mul f u t5 in let y3 = ring_sub f t7 t6 in let z3 = ring_mul f vvv z1 in (x3,y3,z3)`;; let PR_MADD_1998_CMO = prove (`!f a b x1 y1 z1 x2 y2 z2:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\ z2 = ring_1 f /\ ~(z1 = ring_0 f) /\ ~(projective_eq f (x1,y1,z1) (x2,y2,z2)) ==> projective_eq f (pr_madd_1998_cmo (f,a,b) (x1,y1,z1) (x2,y2,z2)) (projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`, REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[projective_eq; pr_madd_1998_cmo; projective_add] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[projective_add; projective_eq; projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN FIELD_TAC);;