(* ========================================================================= *) (* Montgomery curves in general, B * y^2 = x^3 + A * x^2 + x. *) (* ========================================================================= *) needs "EC/misc.ml";; (* ------------------------------------------------------------------------- *) (* Basic definitions and naive cardinality bounds. *) (* ------------------------------------------------------------------------- *) let montgomery_point = define `(montgomery_point f NONE <=> T) /\ (montgomery_point f (SOME(x:A,y)) <=> x IN ring_carrier f /\ y IN ring_carrier f)`;; let montgomery_curve = define `(montgomery_curve(f:A ring,a:A,b:A) NONE <=> T) /\ (montgomery_curve(f:A ring,a:A,b:A) (SOME(x,y)) <=> x IN ring_carrier f /\ y IN ring_carrier f /\ ring_mul f b (ring_pow f y 2) = ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a (ring_pow f x 2)) x))`;; let montgomery_nonsingular = define `montgomery_nonsingular (f:A ring,a:A,b:A) <=> ~(b = ring_0 f) /\ ~(ring_pow f a 2 = ring_of_num f 4)`;; let montgomery_neg = define `(montgomery_neg (f:A ring,a:A,b:A) NONE = NONE) /\ (montgomery_neg (f:A ring,a:A,b:A) (SOME(x:A,y)) = SOME(x,ring_neg f y))`;; let montgomery_add = define `(!y. montgomery_add (f:A ring,a:A,b:A) NONE y = y) /\ (!x. montgomery_add (f:A ring,a:A,b:A) x NONE = x) /\ (!x1 y1 x2 y2. montgomery_add (f:A ring,a:A,b:A) (SOME(x1,y1)) (SOME(x2,y2)) = if x1 = x2 then if y1 = y2 /\ ~(y1 = ring_0 f) then let l = ring_div f (ring_add f (ring_mul f (ring_of_num f 3) (ring_pow f x1 2)) (ring_add f (ring_mul f (ring_of_num f 2) (ring_mul f a x1)) (ring_of_num f 1))) (ring_mul f (ring_of_num f 2) (ring_mul f b y1)) in let x3 = ring_sub f (ring_sub f (ring_mul f b (ring_pow f l 2)) a) (ring_mul f (ring_of_num f 2) x1) in let y3 = ring_sub f (ring_mul f l (ring_sub f x1 x3)) y1 in SOME(x3,y3) else NONE else let l = ring_div f (ring_sub f y2 y1) (ring_sub f x2 x1) in let x3 = ring_sub f (ring_sub f (ring_mul f b (ring_pow f l 2)) a) (ring_add f x1 x2) in let y3 = ring_sub f (ring_mul f l (ring_sub f x1 x3)) y1 in SOME(x3,y3))`;; let montgomery_group = define `montgomery_group (f:A ring,a:A,b:A) = group(montgomery_curve(f,a,b), NONE, montgomery_neg(f,a,b), montgomery_add(f,a,b))`;; let FINITE_MONTGOMERY_CURVE = prove (`!f a b:A. field f /\ FINITE(ring_carrier f) ==> FINITE(montgomery_curve(f,a,b))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE SOME {(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f} UNION {NONE}` THEN ASM_SIMP_TAC[FINITE_UNION; FINITE_IMAGE; FINITE_SING; FINITE_PRODUCT] THEN REWRITE_TAC[montgomery_curve; SUBSET; FORALL_OPTION_THM; IN_UNION; IN_SING; IN_IMAGE; option_INJ; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; UNWIND_THM1] THEN SIMP_TAC[montgomery_curve; IN]);; let CARD_BOUND_MONTGOMERY_CURVE = prove (`!f a b:A. field f /\ FINITE(ring_carrier f) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) ==> CARD(montgomery_curve(f,a,b)) <= 2 * CARD(ring_carrier f) + 1`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[FINITE_SUBSET; CARD_SUBSET; LE_TRANS] `!s. t SUBSET s /\ FINITE s /\ CARD s <= n ==> CARD t <= n`) THEN EXISTS_TAC `IMAGE SOME {(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f /\ ring_pow f y 2 = ring_div f (ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a (ring_pow f x 2)) x)) b} UNION {NONE}` THEN CONJ_TAC THENL [REWRITE_TAC[montgomery_curve; SUBSET; FORALL_OPTION_THM; IN_UNION; IN_SING; IN_IMAGE; option_INJ; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; UNWIND_THM1] THEN REWRITE_TAC[option_DISTINCT; IN_CROSS] THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN ASM_REWRITE_TAC[montgomery_curve] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIELD_TAC; MATCH_MP_TAC FINITE_CARD_LE_UNION] THEN REWRITE_TAC[FINITE_SING; CARD_SING; LE_REFL] THEN MATCH_MP_TAC FINITE_CARD_LE_IMAGE THEN MATCH_MP_TAC FINITE_QUADRATIC_CURVE THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* A stronger form of nonsingularity, implying not only that the core cubic *) (* doesn't have repeated roots but has no roots at all except for (0,0). *) (* ------------------------------------------------------------------------- *) let montgomery_strongly_nonsingular = define `montgomery_strongly_nonsingular(f,a:A,b:A) <=> ~(b = ring_0 f) /\ ~(?z. z IN ring_carrier f /\ ring_pow f z 2 = ring_sub f (ring_pow f a 2) (ring_of_num f 4))`;; let MONTGOMERY_STRONGLY_NONSINGULAR = prove (`!f a b:A. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f ==> (montgomery_strongly_nonsingular(f,a,b) <=> !x y. montgomery_curve(f,a,b) (SOME(x,y)) ==> (y = ring_0 f <=> x = ring_0 f))`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[montgomery_strongly_nonsingular] THEN REWRITE_TAC[FORALL_AND_THM; TAUT `p ==> (q <=> r) <=> (r ==> p ==> q) /\ (q ==> p ==> r)`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN REWRITE_TAC[montgomery_curve] THEN BINOP_TAC THENL [MATCH_MP_TAC(TAUT `(~p ==> q) /\ (p ==> ~q) ==> (~p <=> q)`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC; DISCH_THEN SUBST1_TAC THEN DISCH_THEN(MP_TAC o SPEC `ring_1 f:A`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC]; REWRITE_TAC[GSYM NOT_EXISTS_THM; montgomery_curve; TAUT `p ==> q <=> ~(p /\ ~q)`] THEN AP_TERM_TAC THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_div f (ring_sub f z a) (ring_of_num f 2):A`; DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ring_add f (ring_mul f (ring_of_num f 2) x) a:A`] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC]);; let MONTGOMERY_STRONGLY_NONSINGULAR_IMP_NONSINGULAR = prove (`!f a b:A. a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_strongly_nonsingular(f,a,b) ==> montgomery_nonsingular(f,a,b)`, REWRITE_TAC[montgomery_strongly_nonsingular; montgomery_nonsingular] THEN REPEAT GEN_TAC THEN REWRITE_TAC[NOT_EXISTS_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ring_0 f:A`) THEN ASM_REWRITE_TAC[RING_0] THEN RING_TAC);; (* ------------------------------------------------------------------------- *) (* Proof of the group properties. This is just done by algebraic brute *) (* force except for the use of ASSOCIATIVITY_LEMMA to reduce the explosion *) (* of case distinctions. *) (* ------------------------------------------------------------------------- *) let MONTGOMERY_CURVE_IMP_POINT = prove (`!f a b p. montgomery_curve(f,a,b) p ==> montgomery_point f p`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[montgomery_curve; montgomery_point]);; let MONTGOMERY_POINT_NEG = prove (`!(f:A ring) a b p. montgomery_point f p ==> montgomery_point f (montgomery_neg (f,a,b) p)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[montgomery_neg; montgomery_point; RING_NEG]);; let MONTGOMERY_POINT_ADD = prove (`!(f:A ring) a b p q. a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_point f p /\ montgomery_point f q ==> montgomery_point f (montgomery_add (f,a,b) p q)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[montgomery_add; montgomery_point; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_point]) THEN REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; let MONTGOMERY_CURVE_0 = prove (`!f a b:A. montgomery_curve(f,a,b) NONE`, REWRITE_TAC[montgomery_curve]);; let MONTGOMERY_CURVE_NEG = prove (`!f a (b:A) p. integral_domain f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) p ==> montgomery_curve(f,a,b) (montgomery_neg (f,a,b) p)`, SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_NEG; montgomery_curve; montgomery_neg] THEN REPEAT GEN_TAC THEN CONV_TAC INTEGRAL_DOMAIN_RULE);; let MONTGOMERY_CURVE_ADD = prove (`!f a (b:A) p q. field f /\ ~(ring_char f = 2) /\ montgomery_nonsingular(f,a,b) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q ==> montgomery_curve(f,a,b) (montgomery_add (f,a,b) p q)`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPLICATE_TAC 3 GEN_TAC THEN SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; montgomery_nonsingular; montgomery_curve; montgomery_add] THEN REWRITE_TAC[GSYM DE_MORGAN_THM] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN REPEAT LET_TAC THEN REWRITE_TAC[montgomery_curve] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MONTGOMERY_ADD_LNEG = prove (`!f a (b:A) p. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) p ==> montgomery_add(f,a,b) (montgomery_neg (f,a,b) p) p = NONE`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPLICATE_TAC 3 GEN_TAC THEN SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; montgomery_curve; montgomery_neg; montgomery_add] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let MONTGOMERY_ADD_SYM = prove (`!f a (b:A) p q. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q ==> montgomery_add (f,a,b) p q = montgomery_add (f,a,b) q p`, REPLICATE_TAC 3 GEN_TAC THEN SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; montgomery_curve; montgomery_add] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let MONTGOMERY_ADD_ASSOC = prove (`!f a (b:A) p q r. field f /\ ~(ring_char f = 2) /\ montgomery_nonsingular(f,a,b) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q /\ montgomery_curve(f,a,b) r ==> montgomery_add (f,a,b) p (montgomery_add (f,a,b) q r) = montgomery_add (f,a,b) (montgomery_add (f,a,b) p q) r`, let assoclemma = prove (`!f (a:A) b x1 y1 x2 y2. field f /\ montgomery_nonsingular(f,a,b) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) (SOME(x1,y1)) /\ montgomery_curve(f,a,b) (SOME(x2,y2)) ==> (~(SOME(x2,y2) = SOME(x1,y1)) /\ ~(SOME(x2,y2) = montgomery_neg (f,a,b) (SOME(x1,y1))) <=> ~(x1 = x2))`, REWRITE_TAC[montgomery_nonsingular] THEN REWRITE_TAC[montgomery_curve; montgomery_neg; option_INJ; PAIR_EQ] THEN FIELD_TAC) in REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `f:A ring` THEN REPEAT DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN REPEAT DISCH_TAC THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; RIGHT_IMP_FORALL_THM] THEN MATCH_MP_TAC ASSOCIATIVITY_LEMMA THEN MAP_EVERY EXISTS_TAC [`montgomery_neg(f,a:A,b)`; `NONE:(A#A)option`] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC(CONJUNCT1 montgomery_curve :: CONJUNCT1 montgomery_neg :: fst(chop_list 2 (CONJUNCTS montgomery_add))) THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL [REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`] THEN REPEAT CONJ_TAC THEN TRY(MAP_EVERY X_GEN_TAC [`x2:A`; `y2:A`]) THEN REPEAT CONJ_TAC THEN TRY(MAP_EVERY X_GEN_TAC [`x3:A`; `y3:A`]) THEN REPEAT CONJ_TAC; MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`; `x3:A`; `y3:A`] THEN ASM_SIMP_TAC[assoclemma; DE_MORGAN_THM] THEN REWRITE_TAC[option_DISTINCT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[montgomery_curve] THEN STRIP_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[montgomery_add]] THEN REWRITE_TAC[montgomery_curve; montgomery_add; montgomery_neg] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[montgomery_curve; montgomery_add; montgomery_neg] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o check (fun th -> is_eq(concl th) && is_var(lhand(concl th)) && is_var(rand(concl th))))) THEN TRY RING_CARRIER_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[montgomery_nonsingular]) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MONTGOMERY_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> group_carrier(montgomery_group(f,a,b)) = montgomery_curve(f,a,b) /\ group_id(montgomery_group(f,a,b)) = NONE /\ group_inv(montgomery_group(f,a,b)) = montgomery_neg(f,a,b) /\ group_mul(montgomery_group(f,a,b)) = montgomery_add(f,a,b)`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[group_carrier; group_id; group_inv; group_mul; GSYM PAIR_EQ] THEN REWRITE_TAC[montgomery_group; GSYM(CONJUNCT2 group_tybij)] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN; montgomery_curve]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[MONTGOMERY_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[MONTGOMERY_CURVE_ADD]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[MONTGOMERY_ADD_ASSOC]; REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; montgomery_add]; REWRITE_TAC[IN] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[] `x = a /\ x = y ==> x = a /\ y = a`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[MONTGOMERY_ADD_LNEG]; MATCH_MP_TAC MONTGOMERY_ADD_SYM THEN ASM_SIMP_TAC[MONTGOMERY_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]]]);; let ABELIAN_MONTGOMERY_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> abelian_group(montgomery_group(f,a,b))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[abelian_group; MONTGOMERY_GROUP] THEN REWRITE_TAC[IN] THEN ASM_MESON_TAC[MONTGOMERY_ADD_SYM]);;