(* ========================================================================= *) (* The general notion of an elliptic curve, in the basic Weierstrass form. *) (* We use the option type to augment it with the "point at infinity" NONE. *) (* Follows Washington "Elliptic Curves, Number Theory and Cryptography" p14. *) (* *) (* y^2 = x^3 + a * x + b over some field F *) (* *) (* This isn't general enough for working over characteristics 2 and 3. *) (* ========================================================================= *) needs "EC/misc.ml";; (* ------------------------------------------------------------------------- *) (* Basic definitions and naive cardinality bounds. *) (* ------------------------------------------------------------------------- *) let weierstrass_point = define `(weierstrass_point f NONE <=> T) /\ (weierstrass_point f (SOME(x:A,y)) <=> x IN ring_carrier f /\ y IN ring_carrier f)`;; let weierstrass_curve = define `(weierstrass_curve(f:A ring,a:A,b:A) NONE <=> T) /\ (weierstrass_curve(f:A ring,a:A,b:A) (SOME(x,y)) <=> x IN ring_carrier f /\ y IN ring_carrier f /\ ring_pow f y 2 = ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a x) b))`;; let weierstrass_neg = define `(weierstrass_neg (f:A ring,a:A,b:A) NONE = NONE) /\ (weierstrass_neg (f:A ring,a:A,b:A) (SOME(x:A,y)) = SOME(x,ring_neg f y))`;; let weierstrass_add = define `(!y. weierstrass_add (f:A ring,a:A,b:A) NONE y = y) /\ (!x. weierstrass_add (f:A ring,a:A,b:A) x NONE = x) /\ (!x1 y1 x2 y2. weierstrass_add (f:A ring,a:A,b:A) (SOME(x1,y1)) (SOME(x2,y2)) = if x1 = x2 then if y1 = y2 /\ ~(y1 = ring_0 f) then let m = ring_div f (ring_add f (ring_mul f (ring_of_num f 3) (ring_pow f x1 2)) a) (ring_mul f (ring_of_num f 2) y1) in let x3 = ring_sub f (ring_pow f m 2) (ring_mul f (ring_of_num f 2) x1) in let y3 = ring_sub f (ring_mul f m (ring_sub f x1 x3)) y1 in SOME(x3,y3) else NONE else let m = ring_div f (ring_sub f y2 y1) (ring_sub f x2 x1) in let x3 = ring_sub f (ring_pow f m 2) (ring_add f x1 x2) in let y3 = ring_sub f (ring_mul f m (ring_sub f x1 x3)) y1 in SOME(x3,y3))`;; let weierstrass_nonsingular = define `weierstrass_nonsingular (f:A ring,a:A,b:A) <=> ~(ring_add f (ring_mul f (ring_of_num f 4) (ring_pow f a 3)) (ring_mul f (ring_of_num f 27) (ring_pow f b 2)) = ring_0 f)`;; let weierstrass_group = define `weierstrass_group (f:A ring,a:A,b:A) = group(weierstrass_curve(f,a,b), NONE, weierstrass_neg(f,a,b), weierstrass_add(f,a,b))`;; let (FINITE_WEIERSTRASS_CURVE,CARD_BOUND_WEIERSTRASS_CURVE) = (CONJ_PAIR o prove) (`(!f a b:A. field f /\ FINITE(ring_carrier f) ==> FINITE(weierstrass_curve(f,a,b))) /\ (!f a b:A. field f /\ FINITE(ring_carrier f) ==> CARD(weierstrass_curve(f,a,b)) <= 2 * CARD(ring_carrier f) + 1)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN STRIP_TAC THEN MATCH_MP_TAC FINITE_CARD_LE_SUBSET THEN EXISTS_TAC `IMAGE SOME {(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f /\ ring_pow f y 2 = ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a x) b)} UNION {NONE}` THEN CONJ_TAC THENL [REWRITE_TAC[weierstrass_curve; SUBSET; FORALL_OPTION_THM; IN_UNION; IN_SING; IN_IMAGE; option_INJ; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; UNWIND_THM1] THEN REWRITE_TAC[option_DISTINCT; IN_CROSS] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[weierstrass_curve] THEN SIMP_TAC[IN]; MATCH_MP_TAC FINITE_CARD_LE_UNION] THEN REWRITE_TAC[FINITE_SING; CARD_SING; LE_REFL] THEN MATCH_MP_TAC FINITE_CARD_LE_IMAGE THEN MATCH_MP_TAC FINITE_QUADRATIC_CURVE THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; (* ------------------------------------------------------------------------- *) (* Proof of the group properties. This is just done by algebraic brute *) (* force except for the use of ASSOCIATIVITY_LEMMA to reduce the explosion *) (* of case distinctions. *) (* ------------------------------------------------------------------------- *) let WEIERSTRASS_CURVE_IMP_POINT = prove (`!f a b p. weierstrass_curve(f,a,b) p ==> weierstrass_point f p`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[weierstrass_curve; weierstrass_point]);; let WEIERSTRASS_POINT_NEG = prove (`!(f:A ring) a b p. weierstrass_point f p ==> weierstrass_point f (weierstrass_neg (f,a,b) p)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[weierstrass_neg; weierstrass_point; RING_NEG]);; let WEIERSTRASS_POINT_ADD = prove (`!(f:A ring) a b p q. a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_point f p /\ weierstrass_point f q ==> weierstrass_point f (weierstrass_add (f,a,b) p q)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN SIMP_TAC[weierstrass_add; weierstrass_point; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_point]) THEN REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; let WEIERSTRASS_CURVE_0 = prove (`!f a b:A. weierstrass_curve(f,a,b) NONE`, REWRITE_TAC[weierstrass_curve]);; let WEIERSTRASS_CURVE_NEG = prove (`!f a (b:A) p. integral_domain f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve(f,a,b) p ==> weierstrass_curve(f,a,b) (weierstrass_neg (f,a,b) p)`, SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_NEG; weierstrass_curve; weierstrass_neg] THEN REPEAT GEN_TAC THEN CONV_TAC INTEGRAL_DOMAIN_RULE);; let WEIERSTRASS_CURVE_ADD = prove (`!f a (b:A) p q. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve(f,a,b) p /\ weierstrass_curve(f,a,b) q ==> weierstrass_curve(f,a,b) (weierstrass_add (f,a,b) p q)`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPLICATE_TAC 3 GEN_TAC THEN SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; weierstrass_curve; weierstrass_add] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THENL [CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[weierstrass_curve] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN SUBGOAL_THEN `~(ring_of_num f 2:A = ring_0 f)` ASSUME_TAC THENL [FIELD_TAC; RING_PULL_DIV_TAC THEN RING_TAC]; ALL_TAC; ALL_TAC; ALL_TAC] THEN REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_curve] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let WEIERSTRASS_ADD_LNEG = prove (`!f a (b:A) p. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve(f,a,b) p ==> weierstrass_add(f,a,b) (weierstrass_neg (f,a,b) p) p = NONE`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPLICATE_TAC 3 GEN_TAC THEN SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; weierstrass_curve; weierstrass_neg; weierstrass_add] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let WEIERSTRASS_ADD_SYM = prove (`!f a (b:A) p q. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve(f,a,b) p /\ weierstrass_curve(f,a,b) q ==> weierstrass_add (f,a,b) p q = weierstrass_add (f,a,b) q p`, REPLICATE_TAC 3 GEN_TAC THEN SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; weierstrass_curve; weierstrass_add] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; let WEIERSTRASS_ADD_ASSOC = prove (`!f a (b:A) p q r. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ weierstrass_nonsingular(f,a,b) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve(f,a,b) p /\ weierstrass_curve(f,a,b) q /\ weierstrass_curve(f,a,b) r ==> weierstrass_add (f,a,b) p (weierstrass_add (f,a,b) q r) = weierstrass_add (f,a,b) (weierstrass_add (f,a,b) p q) r`, let assoclemma = prove (`!f (a:A) b x1 y1 x2 y2. field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_curve(f,a,b) (SOME(x1,y1)) /\ weierstrass_curve(f,a,b) (SOME(x2,y2)) ==> (~(SOME(x2,y2) = SOME(x1,y1)) /\ ~(SOME(x2,y2) = weierstrass_neg (f,a,b) (SOME(x1,y1))) <=> ~(x1 = x2))`, REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_INJ; PAIR_EQ] THEN FIELD_TAC) in REWRITE_TAC[FIELD_CHAR_NOT23] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `f:A ring` THEN REPEAT DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN REPEAT DISCH_TAC THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; RIGHT_IMP_FORALL_THM] THEN MATCH_MP_TAC ASSOCIATIVITY_LEMMA THEN MAP_EVERY EXISTS_TAC [`weierstrass_neg(f,a:A,b)`; `NONE:(A#A)option`] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC(CONJUNCT1 weierstrass_curve :: CONJUNCT1 weierstrass_neg :: fst(chop_list 2 (CONJUNCTS weierstrass_add))) THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL [REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`] THEN TRY(MAP_EVERY X_GEN_TAC [`x2:A`; `y2:A`]) THEN TRY(MAP_EVERY X_GEN_TAC [`x3:A`; `y3:A`]); MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`; `x3:A`; `y3:A`] THEN ASM_SIMP_TAC[assoclemma; DE_MORGAN_THM] THEN REWRITE_TAC[option_DISTINCT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[weierstrass_curve] THEN STRIP_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[weierstrass_add]] THEN REWRITE_TAC[weierstrass_curve; weierstrass_add; weierstrass_neg] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[weierstrass_curve; weierstrass_add; weierstrass_neg] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o check (fun th -> is_eq(concl th) && is_var(lhand(concl th)) && is_var(rand(concl th))))) THEN TRY RING_CARRIER_TAC THEN (FIELD_TAC ORELSE (RULE_ASSUM_TAC(REWRITE_RULE[weierstrass_nonsingular]) THEN FIELD_TAC)) THEN NOT_RING_CHAR_DIVIDES_TAC);; let WEIERSTRASS_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_nonsingular(f,a,b) ==> group_carrier(weierstrass_group(f,a,b)) = weierstrass_curve(f,a,b) /\ group_id(weierstrass_group(f,a,b)) = NONE /\ group_inv(weierstrass_group(f,a,b)) = weierstrass_neg(f,a,b) /\ group_mul(weierstrass_group(f,a,b)) = weierstrass_add(f,a,b)`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[group_carrier; group_id; group_inv; group_mul; GSYM PAIR_EQ] THEN REWRITE_TAC[weierstrass_group; GSYM(CONJUNCT2 group_tybij)] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN; weierstrass_curve]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[WEIERSTRASS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[WEIERSTRASS_CURVE_ADD]; REWRITE_TAC[IN] THEN ASM_SIMP_TAC[WEIERSTRASS_ADD_ASSOC]; REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; weierstrass_add]; REWRITE_TAC[IN] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[] `x = a /\ x = y ==> x = a /\ y = a`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[WEIERSTRASS_ADD_LNEG]; MATCH_MP_TAC WEIERSTRASS_ADD_SYM THEN ASM_SIMP_TAC[WEIERSTRASS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]]]);; (* ------------------------------------------------------------------------- *) (* Easily computable endomorphisms in some special Weierstrass curves. *) (* (x,y) |-> (c * x,y) where c^3 = 1 for curves y^2 = x^3 + b. *) (* (x,y) |-> (-x, c * y) where c^4 = 1 for curves y^2 = x^3 + a * x. *) (* ------------------------------------------------------------------------- *) let weierstrass_triplex = define `weierstrass_triplex f (c:A) NONE = NONE /\ weierstrass_triplex f c (SOME(x:A,y:A)) = SOME(ring_mul f c x,y)`;; let GROUP_ENDOMORPHISM_TRIPLEX = prove (`!f a b c:A. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_nonsingular (f,a,b) /\ c IN ring_carrier f /\ ring_pow f c 3 = ring_1 f /\ a = ring_0 f ==> group_endomorphism (weierstrass_group(f,a,b)) (weierstrass_triplex f c)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `a:A = ring_0 f` THEN ASM_SIMP_TAC[group_endomorphism; GROUP_HOMOMORPHISM] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; WEIERSTRASS_GROUP; GROUP_ID] THEN POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN STRIP_TAC THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; IN] THEN REWRITE_TAC[weierstrass_curve; weierstrass_triplex; weierstrass_add] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_triplex] THEN TRY RING_CARRIER_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[weierstrass_nonsingular]) THEN FIELD_TAC);; let weierstrass_quady = define `weierstrass_quady f (c:A) NONE = NONE /\ weierstrass_quady f c (SOME(x:A,y:A)) = SOME(ring_neg f x,ring_mul f c y)`;; let GROUP_ENDOMORPHISM_QUADY = prove (`!f a b c:A. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ weierstrass_nonsingular (f,a,b) /\ c IN ring_carrier f /\ b = ring_0 f /\ ring_pow f c 4 = ring_1 f /\ ~(ring_pow f c 2 = ring_1 f) ==> group_endomorphism (weierstrass_group(f,a,b)) (weierstrass_quady f c)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `b:A = ring_0 f` THEN ASM_SIMP_TAC[group_endomorphism; GROUP_HOMOMORPHISM] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; WEIERSTRASS_GROUP; GROUP_ID] THEN POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN STRIP_TAC THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; IN] THEN REWRITE_TAC[weierstrass_curve; weierstrass_quady; weierstrass_add] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_quady] THEN TRY RING_CARRIER_TAC THEN REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[weierstrass_nonsingular]) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;