(* ========================================================================= *) (* Projective coordinates, x = X / Z without y for Montgomery curves. *) (* ========================================================================= *) needs "EC/montgomery.ml";; (* ------------------------------------------------------------------------- *) (* The representation is only relational as we throw away the y coordinate. *) (* ------------------------------------------------------------------------- *) let montgomery_xz = define `(montgomery_xz (f:A ring) NONE (X,Z) <=> X IN ring_carrier f /\ Z IN ring_carrier f /\ ~(X = ring_0 f) /\ Z = ring_0 f) /\ (montgomery_xz f (SOME(x,y:A)) (X,Z) <=> X IN ring_carrier f /\ Z IN ring_carrier f /\ ~(Z = ring_0 f) /\ ring_div f X Z = x)`;; (* ------------------------------------------------------------------------- *) (* However, doubling and *differential* addition are calculable. *) (* ------------------------------------------------------------------------- *) let montgomery_xzdouble = define `montgomery_xzdouble (f,a:A,b:A) (X,Z) = ring_pow f (ring_sub f (ring_pow f X 2) (ring_pow f Z 2)) 2, ring_mul f (ring_mul f (ring_of_num f 4) (ring_mul f X Z)) (ring_add f (ring_pow f X 2) (ring_add f (ring_mul f a (ring_mul f X Z)) (ring_pow f Z 2)))`;; let montgomery_xzdiffadd = define `montgomery_xzdiffadd (f:A ring,a:A,b:A) (X,Z) (Xm,Zm) (Xn,Zn) = ring_mul f (ring_mul f (ring_of_num f 4) Z) (ring_pow f (ring_sub f (ring_mul f Xm Xn) (ring_mul f Zm Zn)) 2), ring_mul f (ring_mul f (ring_of_num f 4) X) (ring_pow f (ring_sub f (ring_mul f Xm Zn) (ring_mul f Xn Zm)) 2)`;; let MONTGOMERY_XZDOUBLE = prove (`!f (a:A) b p q. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) /\ montgomery_curve(f,a,b) p /\ montgomery_xz f p q ==> montgomery_xz f (montgomery_add(f,a,b) p p) (montgomery_xzdouble(f,a,b) q)`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_curve; montgomery_add; montgomery_xz; GSYM DE_MORGAN_THM; montgomery_xzdouble; montgomery_nonsingular] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[COND_SWAP] THEN TRY(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REWRITE_TAC[LET_DEF; LET_END_DEF; montgomery_xz] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MONTGOMERY_XZDIFFADD = prove (`!f (a:A) b p q pm qm pn qn. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) /\ montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) pm /\ montgomery_curve(f,a,b) pn /\ montgomery_xz f p q /\ montgomery_xz f pm qm /\ montgomery_xz f pn qn /\ ~(FST q = ring_0 f) /\ ~(SND q = ring_0 f) /\ montgomery_add (f,a,b) pm (montgomery_neg (f,a,b) pn) = p ==> montgomery_xz f (montgomery_add(f,a,b) pm pn) (montgomery_xzdiffadd(f,a,b) q qm qn)`, REWRITE_TAC[FIELD_CHAR_NOT23] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `p = montgomery_add (f,a:A,b) pm (montgomery_neg (f,a,b) pn)` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN W(fun (asl,w) -> MAP_EVERY (fun t -> SPEC_TAC(t,t)) (frees w)) THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_curve; montgomery_add; montgomery_xz; montgomery_neg; LET_DEF; LET_END_DEF; montgomery_xzdiffadd; montgomery_nonsingular] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REWRITE_TAC[COND_SWAP; option_DISTINCT; option_INJ; PAIR_EQ] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ; montgomery_add; LET_DEF; LET_END_DEF; montgomery_xz]) THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; (* ------------------------------------------------------------------------- *) (* The y coordinate can be recovered from any nondegenerate addition (e.g. *) (* differential) where we know the y coordinate of one of the addends. This *) (* formula is from Okeya and Sakurai's paper in CHES 2001 (LNCS 2162, p129). *) (* *) (* Suppose (x1,y1) + (x,y) = (x2,y2). Then *) (* y1 = ((x1 * x + 1) * (x1 + x + 2 * A) - 2 * A - (x1 - x)^2 * x2) / *) (* (2 * B * y) *) (* ------------------------------------------------------------------------- *) let MONTGOMERY_ADD_YRECOVERY = prove (`!f a (b:A) x y x1 y1 x2 y2. field f /\ ~(ring_char f = 2) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ montgomery_curve (f,a,b) (SOME(x,y)) /\ ~(y = ring_0 f) /\ montgomery_curve (f,a,b) (SOME(x1,y1)) /\ montgomery_add(f,a,b) (SOME(x,y)) (SOME(x1,y1)) = SOME(x2,y2) ==> y1 = ring_div f (ring_sub f (ring_sub f (ring_mul f (ring_add f (ring_mul f x1 x) (ring_1 f)) (ring_add f x1 (ring_add f x (ring_mul f (ring_of_num f 2) a)))) (ring_mul f (ring_of_num f 2) a)) (ring_mul f (ring_pow f (ring_sub f x1 x) 2) x2)) (ring_mul f (ring_of_num f 2) (ring_mul f b y))`, REWRITE_TAC[FIELD_CHAR_NOT2] THEN REWRITE_TAC[montgomery_nonsingular] THEN REPEAT GEN_TAC THEN REWRITE_TAC[montgomery_curve; montgomery_add; LET_DEF; LET_END_DEF] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[option_DISTINCT]) THEN REWRITE_TAC[option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN REPLICATE_TAC 2 (FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;