\DOC ALPHA \TYPE {ALPHA : term -> term -> thm} \SYNOPSIS Proves equality of alpha-equivalent terms. \KEYWORDS rule, alpha. \DESCRIBE When applied to a pair of terms {t1} and {t1'} which are alpha-equivalent, {ALPHA} returns the theorem {|- t1 = t1'}. { ------------- ALPHA `t1` `t1'` |- t1 = t1' } \FAILURE Fails unless the terms provided are alpha-equivalent. \EXAMPLE { # ALPHA `!x:num. x = x` `!y:num. y = y`;; val it : thm = |- (!x. x = x) <=> (!y. y = y) # ALPHA `\w. w + z` `\z'. z' + z`;; val it : thm = |- (\w. w + z) = (\z'. z' + z) } \SEEALSO aconv, ALPHA_CONV, GEN_ALPHA_CONV. \ENDDOC