\DOC BETA_RULE \TYPE {BETA_RULE : thm -> thm} \SYNOPSIS Beta-reduces all the beta-redexes in the conclusion of a theorem. \KEYWORDS rule. \DESCRIBE When applied to a theorem {A |- t}, the inference rule {BETA_RULE} beta-reduces all beta-redexes, at any depth, in the conclusion {t}. Variables are renamed where necessary to avoid free variable capture. { A |- ....((\x. s1) s2).... ---------------------------- BETA_RULE A |- ....(s1[s2/x]).... } \FAILURE Never fails, but will have no effect if there are no beta-redexes. \EXAMPLE The following example is a simple reduction which illustrates variable renaming: { # let x = ASSUME `f = ((\x y. x + y) y)`;; val x : thm = f = (\x y. x + y) y |- f = (\x y. x + y) y # BETA_RULE x;; val it : thm = f = (\x y. x + y) y |- f = (\y'. y + y') } \SEEALSO BETA_CONV, BETA_TAC, GEN_BETA_CONV. \ENDDOC