\DOC BINDER_CONV \TYPE {BINDER_CONV : conv -> term -> thm} \SYNOPSIS Applies conversion to the body of a binder. \DESCRIBE If {c} is a conversion such that {c `t`} returns {|- t = t'}, then {BINDER_CONV c `b (\x. t)`} returns {|- b (\x. t) = b (\x. t')}, i.e. applies the core conversion to the body of a `binder'. In fact, {b} here can be any term, but it is typically a binder constant such as a quantifier. \FAILURE Fails if the core conversion does, or if the theorem returned by it is not of the right form. \EXAMPLE { # BINDER_CONV SYM_CONV `@n. n = m + 1`;; val it : thm = |- (@n. n = m + 1) = (@n. m + 1 = n) # BINDER_CONV (REWR_CONV SWAP_FORALL_THM) `!x y z. x + y + z = y + x + z`;; val it : thm = |- (!x y z. x + y + z = y + x + z) <=> (!x z y. x + y + z = y + x + z) } \SEEALSO ABS_CONV, RAND_CONV, RATOR_CONV. \ENDDOC