(* ------------------------------------------------------------------ *) (* Topological Spaces, Metric Spaces, Connectedness, Totally bounded spaces, compactness, Hausdorff property, completeness, properties of Euclidean space, Author: Thomas Hales 2004 *) (* ------------------------------------------------------------------ *) (* prioritize_real (or num) *) (* ------------------------------------------------------------------ *) (* Logical Preliminaries *) (* ------------------------------------------------------------------ *) let Q_ELIM_THM = prove_by_refinement( `!P Q R . (?(u:B). (?(x:A). (u = P x) /\ (Q x)) /\ (R u)) <=> (?x. (Q x) /\ R( P x))`, (* {{{ proof *) [ DISCH_ALL_TAC; MESON_TAC[]; ]);; (* }}} *) let Q_ELIM_THM' = prove_by_refinement( `!P Q R. (!(t:B). (?(x:A). P x /\ (t = Q x)) ==> R t) <=> (!x. P x ==> R (Q x))`, (* {{{ proof *) [ DISCH_ALL_TAC; MESON_TAC[]; ]);; (* }}} *) let Q_ELIM_THM'' = prove_by_refinement( `!P Q R. (!(t:B). (?(x:A). (t = Q x) /\ P x ) ==> R t) <=> (!x. P x ==> R (Q x))`, (* {{{ proof *) [ DISCH_ALL_TAC; MESON_TAC[]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Set Preliminaries *) (* ------------------------------------------------------------------ *) let DIFF_SUBSET = prove_by_refinement( `!X A (B:A->bool). A SUBSET (X DIFF B) <=> (A SUBSET X) /\ (A INTER B = EMPTY)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[SUBSET;DIFF;INTER;IN]; EQ_TAC; REWRITE_TAC[IN_ELIM_THM']; DISCH_TAC; CONJ_TAC; ASM_MESON_TAC[]; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM';EMPTY]; ASM_MESON_TAC[]; DISCH_ALL_TAC; GEN_TAC; DISCH_ALL_TAC; REWRITE_TAC[IN_ELIM_THM']; CONJ_TAC; ASM_MESON_TAC[]; USE 1 (fun t-> AP_THM t `x:A`); USE 1 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); ASM_MESON_TAC[]; ]);; (* }}} *) let SUBSET_INTERS = prove_by_refinement( `!X (A:A->bool). A SUBSET (INTERS X) <=> (!x. X x ==> (A SUBSET x))`, (* {{{ proof *) [ REP_GEN_TAC; REWRITE_TAC[SUBSET;INTERS]; REWRITE_TAC [IN_ELIM_THM']; MESON_TAC[IN]; ]);; (* }}} *) let EQ_EMPTY = prove_by_refinement( `!P. ({(x:A) | P x} = {}) <=> (!x. ~P x)`, (* {{{ proof *) [ DISCH_ALL_TAC; EQ_TAC; DISCH_TAC; (USE 0 (fun t-> AP_THM t `x:A`)); USE 0 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); USE 0 (GEN_ALL); ASM_REWRITE_TAC[]; DISCH_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM';EMPTY]; ASM_MESON_TAC[]; ]);; (* }}} *) let DIFF_INTER = prove_by_refinement( `!A B (C:A->bool). ((A DIFF B) INTER C = EMPTY) <=> ((A INTER C) SUBSET B)`, (* {{{ proof *) [ REWRITE_TAC[DIFF;INTER;SUBSET;IN_ELIM_THM']; REWRITE_TAC[IN;EQ_EMPTY]; MESON_TAC[]; ]);; (* }}} *) let SUB_IMP_INTER = prove_by_refinement( `!A B (C:A->bool). ((A SUBSET B) ==> (A INTER C) SUBSET B) /\ ((A SUBSET B) ==> (C INTER A) SUBSET B)`, (* {{{ proof *) [ DISCH_ALL_TAC; SUBCONJ_TAC; REWRITE_TAC[INTER;SUBSET;IN;IN_ELIM_THM']; MESON_TAC[]; MESON_TAC[INTER_COMM]; ]);; (* }}} *) let SUBSET_UNIONS_INSERT = prove_by_refinement( `!(A:A->bool) B C. A SUBSET (UNIONS (B INSERT C)) <=> (A DIFF B) SUBSET (UNIONS C)`, (* {{{ proof *) [ DISCH_ALL_TAC; SET_TAC[UNIONS;SUBSET;INSERT]; ]);; (* }}} *) let UNIONS_DELETE2 = prove_by_refinement( `!(A:A->bool) B C. (A SUBSET (UNIONS B)) /\ (A INTER C = EMPTY) ==> (A SUBSET (UNIONS (B DELETE (C))))`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM SET_TAC[SUBSET;UNIONS;INTER;EMPTY;DELETE]; ]);; (* }}} *) (* this generalizes to arbitrary cardinalities *) let finite_subset = prove_by_refinement( `!A (f:A->B) B. (B SUBSET (IMAGE f A)) /\ (FINITE B) ==> (?C. (C SUBSET A) /\ (FINITE C) /\ (B = IMAGE f C))`, (* {{{ proof *) [ DISCH_ALL_TAC; USE 0 (REWRITE_RULE[SUBSET;IN_IMAGE]); USE 0 (CONV_RULE NAME_CONFLICT_CONV); USE 0 (CONV_RULE (quant_left_CONV "x'")); USE 0 (CONV_RULE (quant_left_CONV "x'")); CHO 0; TYPE_THEN `IMAGE x' B` EXISTS_TAC ; SUBCONJ_TAC; REWRITE_TAC[SUBSET;IN_IMAGE]; NAME_CONFLICT_TAC; GEN_TAC; ASM_MESON_TAC[]; DISCH_ALL_TAC; CONJ_TAC; ASM_MESON_TAC[ FINITE_IMAGE]; MATCH_MP_TAC SUBSET_ANTISYM; CONJ_TAC; REWRITE_TAC[SUBSET;IN_IMAGE]; GEN_TAC; TYPE_THEN `x` (USE 0 o SPEC); ASM_MESON_TAC[]; REWRITE_TAC[SUBSET;IN_IMAGE]; NAME_CONFLICT_TAC; GEN_TAC; DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[]; AND 3; CHO 3; ASM_MESON_TAC[]; ]);; (* }}} *) let inters_singleton = prove_by_refinement( `!(A:A->bool). INTERS {A} = A`, (* {{{ proof *) [ REWRITE_TAC[INSERT;INTERS]; REWRITE_TAC[IN_ELIM_THM';NOT_IN_EMPTY]; GEN_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[IN]; ]);; (* }}} *) let delete_empty = prove_by_refinement( `!(A:A->bool) x. (A DELETE x = EMPTY) <=> (~(A = EMPTY) ==> (A = {x}))`, (* {{{ proof *) [ REWRITE_TAC[DELETE]; DISCH_ALL_TAC; EQ_TAC; DISCH_ALL_TAC; USE 1 (fun t-> AP_THM t `u:A`); USE 1 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); REWRITE_TAC[EMPTY;INSERT;IN]; USE 0 (REWRITE_RULE[EMPTY_EXISTS]); USE 1 (GEN `u:A`); MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[IN]; DISCH_ALL_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM';EMPTY]; USE 0 (REWRITE_RULE[EMPTY_EXISTS]); USE 0 (REWRITE_RULE[EMPTY;INSERT;IN]); REWRITE_TAC[IN]; USE 0 (CONV_RULE (quant_left_CONV "u")); USE 0 (SPEC `x':A`); MATCH_MP_TAC (TAUT `(a ==> b) ==> ~(a /\ ~b)`); DISCH_ALL_TAC; REWR 0; UND 1; ASM_REWRITE_TAC[]; REWRITE_TAC[IN_ELIM_THM']; ]);; (* }}} *) let inters_subset = prove_by_refinement( `!A (B:(A->bool)->bool). A SUBSET B ==> INTERS B SUBSET INTERS A`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[INTERS;SUBSET;IN_ELIM_THM']; ASM_MESON_TAC[SUBSET;IN]; ]);; (* }}} *) let delete_inters = prove_by_refinement( `!V (u:A->bool). V u ==> (INTERS V = (INTERS (V DELETE u)) INTER u)`, (* {{{ proof *) [ DISCH_ALL_TAC; MATCH_MP_TAC SUBSET_ANTISYM; CONJ_TAC; REWRITE_TAC[SUBSET_INTER]; CONJ_TAC; MATCH_MP_TAC inters_subset; REWRITE_TAC [DELETE_SUBSET]; USE 0 (ONCE_REWRITE_RULE[GSYM IN]); USE 0 (MATCH_MP INTERS_SUBSET); ASM_REWRITE_TAC[]; TYPE_THEN `INTERS (V DELETE u) INTER u SUBSET u` SUBGOAL_TAC; REWRITE_TAC[INTER_SUBSET]; REWRITE_TAC[SUBSET_INTERS]; DISCH_ALL_TAC; DISCH_ALL_TAC; TYPE_THEN `x = u` ASM_CASES_TAC; ASM_MESON_TAC[]; TYPE_THEN `INTERS (V DELETE u) INTER u SUBSET INTERS (V DELETE u) ` SUBGOAL_TAC; REWRITE_TAC[INTER_SUBSET]; TYPE_THEN `INTERS (V DELETE u) SUBSET x` SUBGOAL_TAC; MATCH_MP_TAC INTERS_SUBSET; ASM_REWRITE_TAC [IN;DELETE;IN_ELIM_THM']; ASM_MESON_TAC[SUBSET_TRANS]; ]);; (* }}} *) let EQ_EMPTY = prove_by_refinement( `!(A:A->bool) . (A = EMPTY) <=> (!x. ~(A x))`, (* {{{ proof *) [ ASM_MESON_TAC[EMPTY_EXISTS;IN]; ]);; (* }}} *) let UNIONS_EQ_EMPTY = prove_by_refinement( `!(U:(A->bool)->bool). (UNIONS U = {}) <=> ((U = EMPTY) \/ (U = {EMPTY}))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[EQ_EMPTY;UNIONS;IN_ELIM_THM';INSERT;EMPTY]; REWRITE_TAC [IN]; EQ_TAC; DISCH_ALL_TAC; TYPE_THEN `!x. ~U x` ASM_CASES_TAC ; ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC; USE 1 (CONV_RULE (quant_left_CONV "x")); CHO 1; USE 0 (CONV_RULE (quant_left_CONV "u")); USE 0 (CONV_RULE (quant_left_CONV "u")); EQ_TAC; DISCH_TAC; TYPE_THEN `x` (USE 0 o SPEC); ASM_MESON_TAC[]; DISCH_TAC; COPY 0; TYPE_THEN `x` (USE 0 o SPEC); TYPE_THEN `x'` (USE 3 o SPEC); PROOF_BY_CONTR_TAC; TYPE_THEN `x' = {}` SUBGOAL_TAC; PROOF_BY_CONTR_TAC; USE 5 (REWRITE_RULE[EMPTY_EXISTS]); CHO 5; USE 5 (REWRITE_RULE[IN]); ASM_MESON_TAC[]; USE 2 (CONV_RULE (quant_right_CONV "x'")); ASM_MESON_TAC[IN;EMPTY_EXISTS]; DISCH_THEN DISJ_CASES_TAC; ASM_MESON_TAC[]; ASM_REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[]; ]);; (* }}} *) let INTERS_EQ_EMPTY = prove_by_refinement( `!((A:(A->bool)->bool)). ((INTERS A) = EMPTY) <=> (!x . ?a. (A a) /\ ~(a x))`, (* {{{ proof *) [ REWRITE_TAC[INTERS;EQ_EMPTY;IN_ELIM_THM']; REWRITE_TAC[IN]; MESON_TAC[]; ]);; (* }}} *) let CARD_SING_CONV = prove_by_refinement( `!X:A->bool. (X HAS_SIZE 1) ==> (SING X)`, (* {{{ proof *) [ REWRITE_TAC[HAS_SIZE ;SING ]; DISCH_ALL_TAC; TYPE_THEN `CHOICE X` EXISTS_TAC; TYPE_THEN `~(X = {})` SUBGOAL_TAC; ASM_MESON_TAC[CARD_CLAUSES;ARITH_RULE`~(0=1)`]; DISCH_ALL_TAC; TYPE_THEN `SUC (CARD (X DELETE (CHOICE X)))=1` SUBGOAL_TAC ; ASM_SIMP_TAC[CARD_DELETE_CHOICE]; REWRITE_TAC[ARITH_RULE`(SUC a = 1) <=> (a=0)`]; ASSUME_TAC HAS_SIZE_0; USE 3 (REWRITE_RULE [HAS_SIZE ]); ASSUME_TAC FINITE_DELETE_IMP; ASM_MESON_TAC[delete_empty]; ]);; (* }}} *) let countable_prod = prove_by_refinement( `!(A:A->bool) (B:B->bool). (COUNTABLE A) /\ (COUNTABLE B) ==> (COUNTABLE {(a,b) | (A a) /\ (B b) })`, (* {{{ proof *) [ DISCH_ALL_TAC; IMATCH_MP_TAC (INST_TYPE [`:num#num`,`:A`] COUNTABLE_IMAGE); USE 0 (REWRITE_RULE [COUNTABLE;GE_C;IN_UNIV]); USE 1 (REWRITE_RULE [COUNTABLE;GE_C;IN_UNIV]); CHO 0; CHO 1; TYPE_THEN `{(m:num,n:num) | T}` EXISTS_TAC; REWRITE_TAC[NUM2_COUNTABLE;SUBSET;IN_IMAGE]; REWRITE_TAC[IN_ELIM_THM]; TYPE_THEN `(\ (u,v) . (f u,f' v))` EXISTS_TAC; DISCH_ALL_TAC; CHO 2; CHO 2; AND 2; TYPE_THEN `a` (USE 0 o SPEC); TYPE_THEN `b` (USE 1 o SPEC); IN_OUT_TAC; REWR 2; REWR 3; CHO 3; CHO 2; TYPE_THEN `(x',x'')` EXISTS_TAC; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); ASM_MESON_TAC[]; ]);; (* }}} *) let IMAGE_I = prove_by_refinement( `!(A:A->bool). IMAGE I A = A`, (* {{{ proof *) [ REWRITE_TAC[IMAGE;IN;I_DEF]; GEN_TAC; MATCH_MP_TAC EQ_EXT THEN GEN_TAC ; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[]; ]);; (* }}} *) let EMPTY_NOT_EXISTS = prove_by_refinement( `!X. (X = {}) <=> (~(?(u:A). X u))`, (* {{{ proof *) [ MESON_TAC [IN;EMPTY_EXISTS]; ]);; (* }}} *) let DIFF_SURJ = prove_by_refinement( `!(f : A->B) X Y. (BIJ f X Y) ==> (! t. (t SUBSET X) ==> ((IMAGE f (X DIFF t)) = (Y DIFF (IMAGE f t))))`, (* {{{ proof *) [ REWRITE_TAC[BIJ;INJ;SURJ;IN ]; DISCH_ALL_TAC; DISCH_ALL_TAC; REWRITE_TAC[IMAGE;IN]; IMATCH_MP_TAC EQ_EXT ; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC; X_GEN_TAC `y:B`; REWRITE_TAC[REWRITE_RULE[IN] IN_DIFF]; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[SUBSET;IN ]; ]);; (* }}} *) let union_subset = prove_by_refinement( `!Z1 Z2 A. ((Z1 UNION Z2) SUBSET (A:A->bool)) <=> (Z1 SUBSET A) /\ (Z2 SUBSET A)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[UNION;SUBSET;IN;IN_ELIM_THM']; ASM_MESON_TAC[]; ]);; (* }}} *) let preimage_disjoint = prove_by_refinement( `!(f:A->B) A B X. (A INTER B = EMPTY) ==> (preimage X f A INTER (preimage X f B) = EMPTY )`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[preimage]; REWRITE_TAC[EQ_EMPTY]; DISCH_ALL_TAC; USE 1( REWRITE_RULE[INTER;IN;IN_ELIM_THM']); USE 0 (REWRITE_RULE[EQ_EMPTY;INTER;IN;IN_ELIM_THM']); ASM_MESON_TAC[]; ]);; (* }}} *) let preimage_union = prove_by_refinement( `!(f:A->B) A B X Z. (Z SUBSET ((preimage X f A) UNION (preimage X f B))) <=> (Z SUBSET X) /\ (IMAGE f Z SUBSET (A UNION B))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[preimage;IMAGE;UNION;SUBSET;IN;IN_ELIM_THM' ]; MESON_TAC[]; ]);; (* }}} *) let subset_preimage = prove_by_refinement( `!(f:A->B) A X Z. (Z SUBSET (preimage X f A)) <=> (Z SUBSET X) /\ (IMAGE f Z SUBSET A)`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;preimage;IMAGE;IN;IN_ELIM_THM']; MESON_TAC[]; ]);; (* }}} *) let preimage_unions = prove_by_refinement( `!dom (f:A->B) C. preimage dom f (UNIONS C) = (UNIONS (IMAGE (preimage dom f) C))`, (* {{{ proof *) [ REWRITE_TAC[preimage;IN_UNIONS ]; REWRITE_TAC[UNIONS;IN_IMAGE ]; REWRITE_TAC[preimage;IN]; DISCH_ALL_TAC; IMATCH_MP_TAC EQ_EXT ; DISCH_ALL_TAC; REWRITE_TAC[IN_ELIM_THM']; REWRITE_TAC[Q_ELIM_THM;IN_ELIM_THM' ]; MESON_TAC[]; ]);; (* }}} *) let preimage_subset = prove_by_refinement( `!(f:A->B) X A B. (A SUBSET B) ==> (preimage X f A SUBSET (preimage X f B))`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;in_preimage]; REWRITE_TAC[IN]; MESON_TAC[]; ]);; (* }}} *) (* to fix two varying descriptions of ((INTER) Y): *) let INTER_THM = prove_by_refinement( `!(X:A->bool). ((\B. B INTER X) = ((INTER) X)) /\ ((\B. X INTER B) = ((INTER) X))`, (* {{{ proof *) [ REWRITE_TAC[INTER_COMM]; GEN_TAC; MATCH_MP_TAC EQ_EXT THEN BETA_TAC; REWRITE_TAC[INTER_COMM]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Real Preliminaries *) (* ------------------------------------------------------------------ *) let REAL_SUM_SQUARE_POS = prove_by_refinement( `!m n x . &.0 <=. sum(m,n) (\i. (x i)*.(x i))`, (* {{{ proof *) [ DISCH_ALL_TAC; MATCH_MP_TAC SUM_POS_GEN; DISCH_ALL_TAC; BETA_TAC; REWRITE_TAC[REAL_LE_SQUARE]; ]);; (* }}} *) (* twopow , DUPLICATE OF TWOPOW_MK_POS *) let twopow_pos = prove_by_refinement( `!n. (&.0 <. twopow(n))`, (* {{{ proof *) [ GEN_TAC; DISJ_CASES_TAC (SPEC `n:int` INT_IMAGE); CHO 0; ASM_REWRITE_TAC[TWOPOW_POS]; REDUCE_TAC; ARITH_TAC; CHO 0; ASM_REWRITE_TAC[TWOPOW_NEG]; REDUCE_TAC; ARITH_TAC; ]);; (* }}} *) let twopow_double = prove_by_refinement( `!n. &.2 * (twopow (--: (&: (n+1)))) = twopow (--: (&:n))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[TWOPOW_NEG;REAL_POW_ADD;POW_1;REAL_INV_MUL ]; REWRITE_TAC [REAL_ARITH `a*b*cc = (a*cc)*b`]; REWRITE_TAC [REAL_RINV_2 ]; REAL_ARITH_TAC ; ]);; (* }}} *) let min_finite = prove_by_refinement( `!X. (FINITE X) /\ (~(X = EMPTY )) ==> (?delta. (X delta) /\ (!x. (X x) ==> (delta <=. x)))`, (* {{{ proof *) [ TYPE_THEN `(!X k. FINITE X /\ (~(X = EMPTY )) /\ (X HAS_SIZE k) ==> (?delta. X delta /\ (!x. X x ==> delta <= x))) ==>(!X. FINITE X /\ (~(X = EMPTY )) ==> (?delta. X delta /\ (!x. X x ==> delta <= x)))` SUBGOAL_TAC ; DISCH_TAC; DISCH_ALL_TAC; TYPE_THEN `X` (USE 0 o SPEC); TYPE_THEN `CARD X` (USE 0 o SPEC); UND 0; DISCH_THEN IMATCH_MP_TAC ; ASM_REWRITE_TAC[HAS_SIZE ]; DISCH_THEN IMATCH_MP_TAC ; CONV_TAC (quant_left_CONV "k"); INDUCT_TAC; REWRITE_TAC[HAS_SIZE_0]; DISCH_ALL_TAC; ASM_REWRITE_TAC[EMPTY]; ASM_MESON_TAC[]; DISCH_ALL_TAC; USE 3(REWRITE_RULE[HAS_SIZE]); TYPE_THEN `X DELETE (CHOICE X)` (USE 0 o SPEC); ASM_CASES_TAC `k=0`; REWR 3; USE 3 (REWRITE_RULE [ARITH_RULE `SUC 0=1`]); TYPE_THEN `SING X` SUBGOAL_TAC ; IMATCH_MP_TAC CARD_SING_CONV; ASM_MESON_TAC [HAS_SIZE]; REWRITE_TAC[SING]; DISCH_TAC ; CHO 5; TYPE_THEN `x` EXISTS_TAC ; ASM_REWRITE_TAC[REWRITE_RULE[IN] IN_SING ]; REAL_ARITH_TAC; TYPE_THEN `FINITE (X DELETE CHOICE X) /\ ~(X DELETE CHOICE X = {}) /\ (X DELETE CHOICE X HAS_SIZE k ) ` SUBGOAL_TAC; REWRITE_TAC[FINITE_DELETE;HAS_SIZE ]; ASM_REWRITE_TAC[]; REWR 3; IMATCH_MP_TAC (TAUT `(a /\ b) ==> (b /\ a)`); SUBCONJ_TAC; IMATCH_MP_TAC (ARITH_RULE `(SUC x = SUC y) ==> (x = y)`); COPY 3; UND 3; DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); IMATCH_MP_TAC CARD_DELETE_CHOICE; ASM_REWRITE_TAC[]; IMATCH_MP_TAC (TAUT `(b ==> ~a ) ==> (a ==> ~b)`); DISCH_THEN (fun t-> ASM_REWRITE_TAC[t;CARD_CLAUSES]); DISCH_TAC; REWR 0; CHO 0; ALL_TAC; (* "ccx" *) TYPE_THEN `if (delta < (CHOICE X)) then delta else (CHOICE X)` EXISTS_TAC; (* REWRITE_TAC[min_real]; *) COND_CASES_TAC ; CONJ_TAC; UND 0; REWRITE_TAC[DELETE;IN ;IN_ELIM_THM' ]; MESON_TAC[]; GEN_TAC; UND 0; REWRITE_TAC[DELETE;IN ;IN_ELIM_THM' ]; DISCH_ALL_TAC; TYPE_THEN `x = CHOICE X` ASM_CASES_TAC ; ASM_REWRITE_TAC[]; UND 6; REAL_ARITH_TAC; ASM_MESON_TAC[]; SUBCONJ_TAC; IMATCH_MP_TAC (REWRITE_RULE[IN ] CHOICE_DEF); ASM_REWRITE_TAC[]; DISCH_TAC; DISCH_ALL_TAC; TYPE_THEN `x = CHOICE X` ASM_CASES_TAC ; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; UND 0; REWRITE_TAC[DELETE;IN ;IN_ELIM_THM' ]; DISCH_ALL_TAC; TYPE_THEN `x` (USE 11 o SPEC); REWR 11; UND 11; UND 6; REAL_ARITH_TAC; ]);; (* }}} *) let min_finite_delta = prove_by_refinement( `!c X. (FINITE X) /\ ( !x. (X x) ==> (c <. x) ) ==> (?delta. (c <. delta) /\ (!x. (X x) ==> (delta <=. x)))`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `~(X = EMPTY)` ASM_CASES_TAC; JOIN 0 2; USE 0 (MATCH_MP min_finite); CHO 0; TYPE_THEN `delta` EXISTS_TAC; ASM_REWRITE_TAC[]; ASM_MESON_TAC[]; REWR 2; ASM_REWRITE_TAC[EMPTY]; TYPE_THEN `c +. (&.1)` EXISTS_TAC; REAL_ARITH_TAC; ]);; (* }}} *) let union_closed_interval = prove_by_refinement( `!a b c. (a <=. b) /\ (b <=. c) ==> ({x | a <= x /\ x < b} UNION {x | b <= x /\ x <= c} = { x | a <= x /\ x <= c})`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[UNION;IN;IN_ELIM_THM']; IMATCH_MP_TAC EQ_EXT ; REWRITE_TAC[IN_ELIM_THM']; UND 0; UND 1; REAL_ARITH_TAC; ]);; (* }}} *) let real_half_LT = prove_by_refinement( `!x y z. ((x < z/(&.2)) /\ (y < z/(&.2)) ==> (x + y < z))`, (* {{{ proof *) [ DISCH_ALL_TAC; (GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; UND 0; UND 1; REAL_ARITH_TAC; ]);; (* }}} *) let real_half_LE = prove_by_refinement( `!x y z. ((x < z/(&.2)) /\ (y <= z/(&.2)) ==> (x + y < z))`, (* {{{ proof *) [ DISCH_ALL_TAC; (GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; UND 0; UND 1; REAL_ARITH_TAC; ]);; (* }}} *) let real_half_EL = prove_by_refinement( `!x y z. ((x <= z/(&.2)) /\ (y < z/(&.2)) ==> (x + y < z))`, (* {{{ proof *) [ DISCH_ALL_TAC; (GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; UND 0; UND 1; REAL_ARITH_TAC; ]);; (* }}} *) let real_half_LLE = prove_by_refinement( `!x y z. ((x <= z/(&.2)) /\ (y <= z/(&.2)) ==> (x + y <= z))`, (* {{{ proof *) [ DISCH_ALL_TAC; (GEN_REWRITE_TAC RAND_CONV) [GSYM REAL_HALF_DOUBLE]; UND 0; UND 1; REAL_ARITH_TAC; ]);; (* }}} *) let interval_finite = prove_by_refinement( `!N. FINITE {x | ?j. (abs x = &.j) /\ (j <=| N)}`, (* {{{ proof *) [ GEN_TAC; ABBREV_TAC `inter = {n | n <=| N}`; SUBGOAL_TAC `FINITE {y | ?x. (x IN inter /\ (y = (&. x)))}`; MATCH_MP_TAC FINITE_IMAGE_EXPAND; EXPAND_TAC "inter"; REWRITE_TAC[FINITE_NUMSEG_LE]; SUBGOAL_TAC `FINITE {y | ?x. (x IN inter /\ (y = --.(&. x)))}`; MATCH_MP_TAC FINITE_IMAGE_EXPAND; EXPAND_TAC "inter"; REWRITE_TAC[FINITE_NUMSEG_LE]; DISCH_ALL_TAC; JOIN 1 2; USE 1 (REWRITE_RULE[GSYM FINITE_UNION]); UND 1; SUBGOAL_TAC `!a b. ((a:real->bool) = b) ==> (FINITE a ==> FINITE b)`; REP_GEN_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); DISCH_THEN (fun t-> MATCH_MP_TAC t); MATCH_MP_TAC EQ_EXT; X_GEN_TAC `c:real`; REWRITE_TAC[IN_ELIM_THM';UNION]; EXPAND_TAC "inter"; REWRITE_TAC[IN_ELIM_THM']; REWRITE_TAC[real_abs]; EQ_TAC; MATCH_MP_TAC (TAUT `(a==>b) /\ (c==>b) ==> (a \/ c ==> b)`); CONJ_TAC; DISCH_THEN CHOOSE_TAC; AND 1; ASM_REWRITE_TAC[]; EXISTS_TAC `x:num`; ASM_REWRITE_TAC [REAL_LE;LE_0]; DISCH_THEN CHOOSE_TAC; AND 1; EXISTS_TAC `x:num`; ASM_REWRITE_TAC[REAL_NEG_NEG]; COND_CASES_TAC; UND 3; REDUCE_TAC; ARITH_TAC; REDUCE_TAC; DISCH_THEN CHOOSE_TAC; AND 1; UND 2; COND_CASES_TAC; ASM_MESON_TAC[]; DISCH_TAC; DISJ2_TAC; EXISTS_TAC `j:num`; ASM_REWRITE_TAC[]; UND 3; REAL_ARITH_TAC; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Euclidean Space *) (* ------------------------------------------------------------------ *) let euclid_add_closure = prove_by_refinement( `!f g n. (euclid n f) /\ (euclid n g) ==> (euclid n (f + g))`, (* {{{ *) [ REWRITE_TAC[euclid;euclid_plus]; ASM_MESON_TAC[REAL_ARITH `&0 +. (&.0) = (&.0)`]; ]);; (* }}} *) let euclid_scale_closure = prove_by_refinement( `!n t f. (euclid n f) ==> (euclid n ((t:real) *# f))`, (* {{{ *) [ REWRITE_TAC[euclid;euclid_scale]; MESON_TAC[REAL_ARITH `t *.(&.0) = (&.0)`]; ]);; (* }}} *) let euclid_neg_closure = prove_by_refinement( `!f n. (euclid n f) ==> (euclid n (-- f))`, (* {{{ *) [ REWRITE_TAC[euclid;euclid_neg]; DISCH_ALL_TAC; ASM_REWRITE_TAC[REAL_ARITH `(--x = &.0) <=> (x = &.0)`]; ]);; (* }}} *) let euclid_sub_closure = prove_by_refinement( `!f g n. (euclid n f ) /\ (euclid n g) ==> (euclid n (f - g))`, (* {{{ *) [ REWRITE_TAC[euclid;euclid_minus]; ASM_MESON_TAC[REAL_ARITH `&.0 -. (&.0) = (&.0)`]; ]);; (* }}} *) let neg_dim = prove_by_refinement( `!f n. (euclid n f) = (euclid n (--f))`, (* {{{ *) [ REPEAT GEN_TAC; EQ_TAC; REWRITE_TAC[euclid_neg_closure]; REWRITE_TAC[euclid;euclid_neg]; DISCH_ALL_TAC; ONCE_REWRITE_TAC[REAL_ARITH `(x = &.0) <=> (--x = &.0)`]; ASM_REWRITE_TAC[]; ]);; (* }}} *) let euclid_updim = prove_by_refinement ( `!f m n. (m <=| n) /\ (euclid m f) ==> (euclid n f)`, (* {{{ *) [ REWRITE_TAC[euclid]; MESON_TAC[LE_TRANS]; ]);; (* }}} *) let euclidean_add_closure = prove_by_refinement( `!f g. (euclidean f) /\ (euclidean g) ==> (euclidean (f+g))`, (* {{{ *) [ REWRITE_TAC[euclidean]; DISCH_ALL_TAC; UNDISCH_FIND_THEN `euclid` CHOOSE_TAC; UNDISCH_FIND_THEN `(?)` CHOOSE_TAC; EXISTS_TAC `n+|n'`; ASSUME_TAC (ARITH_RULE `n <=| n+n'`); ASSUME_TAC (ARITH_RULE `n' <=| n+n'`); ASM_MESON_TAC[euclid_add_closure;euclid_updim]; ]);; (* }}} *) let euclidean_sub_closure = prove_by_refinement( `!f g. (euclidean f) /\ (euclidean g) ==> (euclidean (f-g))`, (* {{{ *) [ REWRITE_TAC[euclidean]; DISCH_ALL_TAC; UNDISCH_FIND_THEN `euclid` CHOOSE_TAC; UNDISCH_FIND_THEN `(?)` CHOOSE_TAC; EXISTS_TAC `n+|n'`; ASSUME_TAC (ARITH_RULE `n <=| n+n'`); ASSUME_TAC (ARITH_RULE `n' <=| n+n'`); ASM_MESON_TAC[euclid_sub_closure;euclid_updim]; ]);; (* }}} *) let euclidean_scale_closure = prove_by_refinement( `!s f. (euclidean f) ==> (euclidean (s *# f))`, (* {{{ *) [ REWRITE_TAC[euclidean]; REPEAT GEN_TAC; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `n:num`; ASM_MESON_TAC[euclid_scale_closure]; ]);; (* }}} *) let euclidean_neg_closure = prove_by_refinement( `!f. (euclidean f) ==> (euclidean (-- f))`, (* {{{ *) [ REWRITE_TAC[euclidean]; GEN_TAC; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `n:num`; ASM_MESON_TAC[euclid_neg_closure]; ]);; (* }}} *) let euclid_add_comm = prove_by_refinement( `!(f:num->real) g. (f + g = g + f)`, (* {{{ *) [ REWRITE_TAC[euclid_plus;REAL_ARITH `a+.b = b+.a`] ]);; (* }}} *) let euclid_add_assoc = prove_by_refinement( `!(f:num->real) g h. (f + g)+h = f + g + h`, (* {{{ *) [ REWRITE_TAC[euclid_plus;REAL_ARITH `(a+.b)+.c = a+b+c`]; ]);; (* }}} *) let euclid_lzero = prove_by_refinement( `!f. euclid0 + f = f`, (* {{{ *) [ REWRITE_TAC[euclid_plus;euclid0;REAL_ARITH `&.0+a=a`]; ACCEPT_TAC (INST_TYPE [(`:num`,`:A`);(`:real`,`:B`)] ETA_AX); ]);; (* }}} *) let euclid_rzero = prove_by_refinement( `!f. f + euclid0 = f`, (* {{{ *) [ REWRITE_TAC[euclid_plus;euclid0;REAL_ARITH `a+(&.0)=a`]; ACCEPT_TAC (INST_TYPE [(`:num`,`:A`);(`:real`,`:B`)] ETA_AX); ]);; (* }}} *) let euclid_ldistrib = prove_by_refinement( `!f g r. r *# (f + g) = (r *# f) + (r *# g)`, (* {{{ *) [ REWRITE_TAC[euclid_plus;euclid_scale;REAL_ARITH `a*(b+.c)=a*b+a*c`]; ]);; (* }}} *) let euclid_rdistrib = prove_by_refinement( `!f r s. (r+s)*# f = (r *# f) + (s *# f)`, (* {{{ *) [ REWRITE_TAC[euclid_plus;euclid_scale;REAL_ARITH `(a+b)*c= a*c+b*c`]; ]);; (* }}} *) let euclid_scale_act = prove_by_refinement( `!r s f. r *# (s *# f) = (r *s) *# f`, (* {{{ *) [ REWRITE_TAC[euclid_scale;REAL_ARITH `(a*b)*c = a*(b*c)`]; ]);; (* }}} *) let euclid_scale_one = prove_by_refinement( `!f. (&.1) *# f = f`, (* {{{ proof *) [ REWRITE_TAC[euclid_scale]; REDUCE_TAC; MESON_TAC[ETA_AX]; ]);; (* }}} *) let euclid_neg_sum = prove_by_refinement( `!x y . euclid_minus (--x) (--y) = -- (euclid_minus x y)`, (* {{{ proof *) [ REWRITE_TAC[euclid_neg;euclid_minus]; DISCH_ALL_TAC; IMATCH_MP_TAC EQ_EXT; BETA_TAC; REAL_ARITH_TAC; ]);; (* }}} *) let trivial_lin_combo = prove_by_refinement( `!x t. ((t *# x) + (&.1 - t) *# x = x)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[euclid_plus;euclid_scale;]; IMATCH_MP_TAC EQ_EXT THEN BETA_TAC; REAL_ARITH_TAC ; ]);; (* }}} *) (* DOT PRODUCT *) let dot_euclid = prove_by_refinement( `!p f g. (euclid p f) /\ (euclid p g) ==> (dot f g = sum (0,p) (\i. (f i)* (g i)))`, (* {{{ *) [ REWRITE_TAC[dot]; LET_TAC; REPEAT GEN_TAC; ABBREV_TAC `(P:num->bool) = \m. (euclid m f) /\ (euclid m g)`; DISCH_ALL_TAC; SUBGOAL_TAC `(P:num->bool) (p:num)`; EXPAND_TAC "P"; ASM_REWRITE_TAC[]; DISCH_TAC; SUBGOAL_TAC `min_num P <=| p`; ASM_MESON_TAC[min_least]; DISCH_TAC; SUBGOAL_TAC `euclid (min_num (P:num->bool)) f /\ (euclid (min_num (P:num->bool)) g)`; ASM_MESON_TAC[min_least]; DISCH_ALL_TAC; ABBREV_TAC `q = min_num P`; MP_TAC (SPECL [`q:num`;`p:num`] LE_EXISTS); ASM_REWRITE_TAC[]; DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[GSYM SUM_TWO]; MATCH_MP_TAC (REAL_ARITH `(u = (&.0)) ==> (x = x + u)`); SUBGOAL_THEN `!n. n>=| q ==> ((\i. f i *. g i) n = (&.0))` (fun th -> MATCH_MP_TAC (MATCH_MP SUM_ZERO th)); GEN_TAC THEN BETA_TAC; DISCH_TAC; SUBGOAL_THEN `(f:num->real) n = (&.0)` (fun th -> REWRITE_TAC[th;REAL_ARITH `(&.0)*.a =(&.0)`]); UNDISCH_TAC `euclid q f`; UNDISCH_TAC `n >=| q`; MESON_TAC[euclid;ARITH_RULE `(a<=|b) <=> (b >=| a)`]; ACCEPT_TAC (ARITH_RULE `q >=| q`); ]);; (* }}} *) let dot_updim = prove_by_refinement ( `!f g m n. (m <=|n) /\ (euclid m f) /\ (euclid m g) ==> (dot f g = sum (0,n) (\i. (f i)* (g i)))`, (* {{{ *) [ REPEAT GEN_TAC; DISCH_ALL_TAC; SUBGOAL_TAC `(euclid n f) /\ (euclid n g)`; ASM_MESON_TAC[euclid_updim]; MATCH_ACCEPT_TAC dot_euclid] );; (* }}} *) let dot_nonneg = prove_by_refinement( `!f. (&.0 <= (dot f f))`, (* {{{ *) [ REWRITE_TAC[dot]; LET_TAC; GEN_TAC; SUBGOAL_TAC `(!n. (&.0 <=. (\(i:num). f i *. f i) n))`; BETA_TAC; REWRITE_TAC[REAL_LE_SQUARE]; ASSUME_TAC(SPEC `\i. (f:num->real) i *. f i` SUM_POS); ASM_MESON_TAC[]]);; (* }}} *) let dot_comm = prove_by_refinement( `!f g. (dot f g = dot g f)`, (* {{{ *) [ REWRITE_TAC[dot]; REWRITE_TAC[REAL_ARITH `a*.b = b*.a`;TAUT `a/\b <=> b/\a`] ]);; (* }}} *) let dot_neg = prove_by_refinement( `!f g. (dot (--f) g) = --. (dot f g)`, (* {{{ *) [ REWRITE_TAC[dot]; LET_TAC; REWRITE_TAC [GSYM neg_dim]; ONCE_REWRITE_TAC[GSYM SUM_NEG]; REWRITE_TAC[euclid_neg]; REPEAT GEN_TAC; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT; BETA_TAC; GEN_TAC; REWRITE_TAC[REAL_ARITH `(--x) * y = --. (x *y)`]; ]);; (* }}} *) let dot_neg2 = prove_by_refinement( `!f g. (dot f (--g)) = --. (dot f g)`, (* {{{ *) [ ONCE_REWRITE_TAC[dot_comm]; REWRITE_TAC[dot_neg]; ]);; (* }}} *) let dot_scale = prove_by_refinement( `!n f g s. (euclid n f) /\ (euclid n g) ==> (dot (s *# f) g = s *. (dot f g))`, (* {{{ *) [ REWRITE_TAC[euclid_scale]; REPEAT GEN_TAC; DISCH_THEN (fun th -> ASSUME_TAC th THEN ASSUME_TAC (MATCH_MP dot_euclid th)); SUBGOAL_THEN (`euclid n (\ (i:num). (s *. f i) ) /\ (euclid n g)`) ASSUME_TAC; ASM_REWRITE_TAC[]; ASSUME_TAC(REWRITE_RULE[euclid_scale](SPECL [`n:num`;`s:real`;`f:num->real`] euclid_scale_closure)); ASM_MESON_TAC[]; IMP_RES_THEN ASSUME_TAC dot_euclid; ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM SUM_CMUL]; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; BETA_TAC; REWRITE_TAC[REAL_ARITH `a*.(b*.c) = (a*b)*c`]; ]);; (* }}} *) let dot_scale_euclidean = prove_by_refinement( `!f g s. (euclidean f) /\ (euclidean g) ==> (dot (s *# f) g = s *. (dot f g))`, (* {{{ *) [ REWRITE_TAC[euclidean]; DISCH_ALL_TAC; REPEAT (UNDISCH_FIND_THEN `euclid` (CHOOSE_THEN MP_TAC)); DISCH_ALL_TAC; ASSUME_TAC (ARITH_RULE `(n' <=| n+n')`); ASSUME_TAC (ARITH_RULE `(n <=| n+n')`); SUBGOAL_TAC `euclid (n+|n') f /\ euclid (n+n') g`; ASM_MESON_TAC[euclid_updim]; MESON_TAC[dot_scale]; ]);; (* }}} *) let dot_scale2 = prove_by_refinement( `!n f g s. (euclid n f) /\ (euclid n g) ==> (dot f (s *# g) = s *. (dot f g))`, (* {{{ *) [ ONCE_REWRITE_TAC[dot_comm]; MESON_TAC[dot_scale] ]);; (* }}} *) let dot_scale2_euclidean = prove_by_refinement( `!f g s. (euclidean f) /\ (euclidean g) ==> (dot f (s *# g) = s *. (dot f g))`, (* {{{ *) [ ONCE_REWRITE_TAC[dot_comm]; MESON_TAC[dot_scale_euclidean]; ]);; (* }}} *) let dot_linear = prove_by_refinement( `!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> ((dot (f + g) h ) = (dot f h) +. (dot g h))`, (* {{{ *) [ DISCH_ALL_TAC; SUBGOAL_TAC `euclid n (f+g)`; ASM_MESON_TAC[euclid_add_closure]; DISCH_TAC; MP_TAC (SPECL [`n:num`;`f:num->real`;`h:num->real`] dot_euclid); MP_TAC (SPECL [`n:num`;`g:num->real`;`h:num->real`] dot_euclid); MP_TAC (SPECL [`n:num`;`(f+g):num->real`;`h:num->real`] dot_euclid); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM SUM_ADD]; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC; REWRITE_TAC[euclid_plus]; REWRITE_TAC[REAL_ARITH `(a+.b)*.c = a*c + b*c`]; ]);; (* }}} *) let dot_minus_linear = prove_by_refinement( `!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> ((dot (f - g) h ) = (dot f h) -. (dot g h))`, (* {{{ *) [ DISCH_ALL_TAC; SUBGOAL_TAC `euclid n (f-g)`; ASM_MESON_TAC[euclid_sub_closure]; DISCH_TAC; MP_TAC (SPECL [`n:num`;`f:num->real`;`h:num->real`] dot_euclid); MP_TAC (SPECL [`n:num`;`g:num->real`;`h:num->real`] dot_euclid); MP_TAC (SPECL [`n:num`;`(f-g):num->real`;`h:num->real`] dot_euclid); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM SUM_SUB]; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC; REWRITE_TAC[euclid_minus]; REWRITE_TAC[REAL_ARITH `(a-.b)*.c = a*c - b*c`]; ]);; (* }}} *) let dot_linear_euclidean = prove_by_refinement( `!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> ((dot (f + g) h ) = (dot f h) +. (dot g h))`, (* {{{ *) [ REWRITE_TAC[euclidean]; DISCH_ALL_TAC; REPEAT (UNDISCH_FIND_THEN `euclid` (CHOOSE_THEN MP_TAC)); DISCH_ALL_TAC; SUBGOAL_TAC `(euclid (n+n'+n'') f)`; ASM_MESON_TAC[ARITH_RULE `n <=| n+n'+n''`;euclid_updim]; SUBGOAL_TAC `(euclid (n+n'+n'') g)`; ASM_MESON_TAC[ARITH_RULE `n' <=| n+n'+n''`;euclid_updim]; SUBGOAL_TAC `(euclid (n+n'+n'') h)`; ASM_MESON_TAC[ARITH_RULE `n'' <=| n+n'+n''`;euclid_updim]; MESON_TAC[dot_linear]]);; (* }}} *) let dot_minus_linear_euclidean = prove_by_refinement( `!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> ((dot (f - g) h ) = (dot f h) -. (dot g h))`, (* {{{ *) [ REWRITE_TAC[euclidean]; DISCH_ALL_TAC; REPEAT (UNDISCH_FIND_THEN `euclid` (CHOOSE_THEN MP_TAC)); DISCH_ALL_TAC; SUBGOAL_TAC `(euclid (n+n'+n'') f)`; ASM_MESON_TAC[ARITH_RULE `n <=| n+n'+n''`;euclid_updim]; SUBGOAL_TAC `(euclid (n+n'+n'') g)`; ASM_MESON_TAC[ARITH_RULE `n' <=| n+n'+n''`;euclid_updim]; SUBGOAL_TAC `(euclid (n+n'+n'') h)`; ASM_MESON_TAC[ARITH_RULE `n'' <=| n+n'+n''`;euclid_updim]; MESON_TAC[dot_minus_linear]; ]);; (* }}} *) let dot_linear2 = prove_by_refinement( `!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> ((dot h (f + g)) = (dot h f) +. (dot h g))`, (* {{{ *) [ REPEAT GEN_TAC; ONCE_REWRITE_TAC[dot_comm]; MESON_TAC[dot_linear] ]);; (* }}} *) let dot_linear2_euclidean = prove_by_refinement( `!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> ((dot h (f + g)) = (dot h f) +. (dot h g))`, (* {{{ *) [ REPEAT GEN_TAC; ONCE_REWRITE_TAC[dot_comm]; MESON_TAC[dot_linear_euclidean] ]);; (* }}} *) let dot_minus_linear2 = prove_by_refinement( `!n f g h. (euclid n f) /\ (euclid n g) /\ (euclid n h) ==> ((dot h (f - g)) = (dot h f) -. (dot h g))`, (* {{{ *) [ REPEAT GEN_TAC; ONCE_REWRITE_TAC[dot_comm]; MESON_TAC[dot_minus_linear] ]);; (* }}} *) let dot_minus_linear2_euclidean = prove_by_refinement( `!f g h. (euclidean f) /\ (euclidean g) /\ (euclidean h) ==> ((dot h (f - g)) = (dot h f) -. (dot h g))`, (* {{{ *) [ REPEAT GEN_TAC; ONCE_REWRITE_TAC[dot_comm]; MESON_TAC[dot_minus_linear_euclidean] ]);; (* }}} *) let dot_rzero = prove_by_refinement( `!f. (dot f euclid0) = &.0`, (* {{{ *) [ REWRITE_TAC[dot;euclid0]; LET_TAC; GEN_TAC; SUBGOAL_THEN `(\ (i:num). (f i *. (&.0))) = (\ (r:num). (&.0))` (fun t -> REWRITE_TAC[t]); REWRITE_TAC[REAL_ARITH `a*.(&.0) = (&.0)`]; MESON_TAC[SUM_0]; ]);; (* }}} *) let dot_lzero = prove_by_refinement( `!f. (dot euclid0 f ) = &.0`, (* {{{ *) [ ONCE_REWRITE_TAC[dot_comm]; REWRITE_TAC[dot_rzero]; ]);; (* }}} *) let dot_zero = prove_by_refinement( `!f n. (euclid n f) /\ (dot f f = (&.0)) ==> (f = euclid0)`, (* {{{ *) [ DISCH_ALL_TAC; UNDISCH_TAC `dot f f = (&.0)`; MP_TAC (SPECL [`n:num`;`f:num->real`;`f:num->real`] dot_euclid); ASM_REWRITE_TAC[]; DISCH_THEN (fun th -> REWRITE_TAC[th]); REWRITE_TAC[euclid0]; DISCH_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC THEN BETA_TAC; DISJ_CASES_TAC (ARITH_RULE `x <| n \/ (n <=| x)`); CLEAN_ASSUME_TAC (ARITH_RULE `(x <|n) ==> (SUC x <=| n)`); CLEAN_THEN (SPECL [`SUC x`;`n:num`] LE_EXISTS) CHOOSE_TAC; UNDISCH_TAC `sum(0,n) (\ (i:num). f i *. f i) = (&.0)`; ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM SUM_TWO;sum;ARITH_RULE `0+| x = x`]; SUBGOAL_TAC `!a b. (&.0 <=. sum(a,b) (\ (i:num). f i *. f i))`; REPEAT GEN_TAC; MP_TAC (SPEC `\ (i:num). f i *. f i` SUM_POS); BETA_TAC; REWRITE_TAC[REAL_LE_SQUARE]; MESON_TAC[]; DISCH_ALL_TAC; IMP_RES_THEN MP_TAC (REAL_ARITH `(a+.b = &.0) ==> ((&.0 <=. b) ==> (a <=. (&.0)))`); ASM_REWRITE_TAC[]; DISCH_TAC; IMP_RES_THEN MP_TAC (REAL_ARITH `(a+b <=. &.0) ==> ((&.0 <=. a) ==> (b <=. (&.0)))`); ASM_REWRITE_TAC[]; ABBREV_TAC `a = (f:num->real) x`; MESON_TAC[REAL_LE_SQUARE;REAL_ARITH `a <=. (&.0) /\ (&.0 <=. a) ==> (a = (&.0))`;REAL_ENTIRE]; UNDISCH_TAC `euclid n f`; REWRITE_TAC[euclid]; ASM_MESON_TAC[]; ]);; (* }}} *) let dot_zero_euclidean = prove_by_refinement( `!f. (euclidean f) /\ (dot f f = (&.0)) ==> (f = euclid0)`, (* {{{ *) [ REWRITE_TAC[euclidean]; DISCH_ALL_TAC; UNDISCH_FIND_THEN `euclid` CHOOSE_TAC; ASM_MESON_TAC[dot_zero]; ]);; (* }}} *) (* norm *) let norm_nonneg = prove_by_refinement( `!f. (&.0 <=. norm f)`, (* {{{ *) [ REWRITE_TAC[norm]; ONCE_REWRITE_TAC[GSYM SQRT_0]; GEN_TAC; MATCH_MP_TAC SQRT_MONO_LE; REWRITE_TAC[dot_nonneg]; ]);; (* }}} *) let norm_neg = prove_by_refinement( `!f. norm (--f) = norm f`, (* {{{ *) [ REWRITE_TAC[norm;dot_neg;dot_neg2]; REWRITE_TAC[REAL_ARITH `--(--. x) = x`]; ]);; (* }}} *) let cauchy_schwartz = prove_by_refinement( `!f g. (euclidean f) /\ (euclidean g) ==> ((abs(dot f g)) <=. (norm f)*. (norm g))`, (* {{{ *) [ DISCH_ALL_TAC; DISJ_CASES_TAC (TAUT `(f = euclid0 ) \/ ~(f = euclid0)`); ASM_REWRITE_TAC[dot_lzero;norm;SQRT_0;REAL_ARITH`&.0 *. x = (&.0)`]; REWRITE_TAC[ABS_0;REAL_ARITH `x <=. x`]; SUBGOAL_THEN `!a b. (dot (a *# f + b *# g) (a *# f + b *# g)) = a*a*(dot f f) + (&.2)*a*b*(dot f g) + b*b*(dot g g)` ASSUME_TAC; REPEAT GEN_TAC; ASM_SIMP_TAC[euclidean_scale_closure;euclidean_add_closure;dot_linear_euclidean;dot_linear2_euclidean;dot_scale_euclidean;dot_scale2_euclidean]; REWRITE_TAC[REAL_MUL_AC;REAL_ADD_AC;REAL_ADD_LDISTRIB]; MATCH_MP_TAC (REAL_ARITH`(b+. c=e) ==> (a+b+c+d = a+ e+d)`); REWRITE_TAC[GSYM REAL_LDISTRIB]; REPEAT AP_TERM_TAC; MATCH_MP_TAC (REAL_ARITH `(a=b)==> (a+.b = a*(&.2))`); REWRITE_TAC[dot_comm]; FIRST_ASSUM (fun th -> ASSUME_TAC (SPECL[` --. (dot f g)`;`dot f f`] th)); CLEAN_THEN (SPEC `(--.(dot f g)) *# f + (dot f f)*# g` dot_nonneg) ASSUME_TAC; REWRITE_TAC[norm]; ASSUME_TAC(SPEC `f:num->real` dot_nonneg); ASSUME_TAC(SPEC `g:num->real` dot_nonneg); ASM_SIMP_TAC[GSYM SQRT_MUL]; REWRITE_TAC[GSYM POW_2_SQRT_ABS;POW_2]; MATCH_MP_TAC SQRT_MONO_LE; REWRITE_TAC[REAL_LE_SQUARE]; SUBGOAL_TAC `&.0 <. dot f f`; MATCH_MP_TAC (REAL_ARITH `~(x = &.0) /\ (&.0 <=. x) ==> (&.0 <. x)`); ASM_REWRITE_TAC[]; ASM_MESON_TAC[dot_zero_euclidean]; REPEAT (UNDISCH_FIND_TAC `(<=.)` ); ABBREV_TAC `a = dot f f`; ABBREV_TAC `b = dot f g`; ABBREV_TAC `c = dot g g`; POP_ASSUM_LIST (fun t -> ALL_TAC); REWRITE_TAC[REAL_ARITH `(&.2 *. x = x + x)`;REAL_ADD_AC]; REWRITE_TAC[REAL_ARITH `(a *. ((--. b)*.c) = --. (a *. (b*.c)))/\ (--. ((--. a) *. b) = a *.b )`]; REWRITE_TAC[REAL_ARITH `(--. b) *. a*. b + b*.b*.a = (&.0)`]; REWRITE_TAC[REAL_ARITH `x +. (&.0) = x`]; REWRITE_TAC[REAL_ARITH `(&.0 <=. (a*.a*.c +. (--.b)*.a*.b)) <=> (a*b*b <=. a*a*c)`]; DISCH_ALL_TAC; MATCH_MP_TAC (SPEC `a:real` REAL_LE_LCANCEL_IMP); ASM_REWRITE_TAC[]; ]);; (* }}} *) let norm_dot = prove_by_refinement( `!h. norm(h) * norm(h) = (dot h h)`, (* {{{ *) [ REWRITE_TAC[norm]; ONCE_REWRITE_TAC[GSYM POW_2]; REWRITE_TAC[SQRT_POW2;dot_nonneg]; ]);; (* }}} *) let norm_triangle = prove_by_refinement( `!f g. (euclidean f) /\ (euclidean g) ==> (norm (f+g) <=. norm(f) + norm(g))`, (* {{{ *) [ DISCH_ALL_TAC; MATCH_MP_TAC square_le; REWRITE_TAC[norm_nonneg]; CONJ_TAC; MATCH_MP_TAC (REAL_ARITH `(&.0 <=. x) /\ (&.0 <=. y) ==> (&.0 <= x+y)`); REWRITE_TAC[norm_nonneg]; REWRITE_TAC[REAL_ADD_LDISTRIB;REAL_ADD_RDISTRIB;REAL_ADD_AC]; REWRITE_TAC[norm_dot]; ASM_SIMP_TAC[euclidean_add_closure;dot_linear_euclidean;dot_linear2_euclidean]; REWRITE_TAC[REAL_MUL_AC]; REWRITE_TAC[REAL_ADD_AC]; MATCH_MP_TAC (REAL_ARITH `(b<=.c)==>((a+.b) <=. (a+c))`); MATCH_MP_TAC (REAL_ARITH `(a=b)/\ (a<=. e) ==>((a+b+c) <= (c+e+e))`); CONJ_TAC; REWRITE_TAC[dot_comm]; ASM_MESON_TAC[cauchy_schwartz;REAL_LE_TRANS;REAL_ARITH `x <=. ||. x`]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Metric Space *) (* ------------------------------------------------------------------ *) let metric_space_zero = prove_by_refinement( `!(X:A->bool) d a. (metric_space(X,d) /\ (X a) ==> (d a a = (&.0)))`, (* {{{ *) [MESON_TAC[metric_space] ]);; (* }}} *) let metric_space_symm = prove_by_refinement( `!(X:A->bool) d a b. (metric_space(X,d) /\ (X a) /\ (X b) ==> (d a b = d b a))`, (* {{{ *) [ MESON_TAC[metric_space]; ]);; (* }}} *) let metric_space_triangle = prove_by_refinement( `!(X:A->bool) d a b c. (metric_space(X,d) /\ (X a) /\ (X b) /\ (X c) ==> (d a c <=. d a b +. d b c))`, (* {{{ *) [ MESON_TAC[metric_space]; ]);; (* }}} *) let metric_subspace = prove_by_refinement( `!X Y d. (Y SUBSET (X:A->bool)) /\ (metric_space (X,d)) ==> (metric_space (Y,d))`, (* {{{ *) [ REWRITE_TAC[SUBSET;metric_space;IN]; DISCH_ALL_TAC; DISCH_ALL_TAC; UNDISCH_FIND_THEN `( /\ )` (fun t -> MP_TAC (SPECL[`x:A`;`y:A`;`z:A`] t)); ASM_SIMP_TAC[]; ]);; (* }}} *) let metric_euclidean = prove_by_refinement( `metric_space (euclidean,d_euclid)`, (* {{{ *) [ REWRITE_TAC[metric_space;d_euclid]; DISCH_ALL_TAC; CONJ_TAC; REWRITE_TAC[norm_nonneg]; CONJ_TAC; EQ_TAC; REWRITE_TAC[norm]; ONCE_REWRITE_TAC[REAL_ARITH `(&.0 = x) <=> (x = (&.0))`]; ASM_SIMP_TAC[dot_nonneg;SQRT_EQ_0]; DISCH_TAC; SUBGOAL_TAC `x - y = euclid0`; ASM_MESON_TAC[dot_zero_euclidean;euclidean_sub_closure]; REWRITE_TAC[euclid_minus;euclid0]; DISCH_TAC THEN (MATCH_MP_TAC EQ_EXT); X_GEN_TAC `n:num`; FIRST_ASSUM (fun t -> ASSUME_TAC (BETA_RULE (AP_THM t `n:num`))); ASM_MESON_TAC [REAL_ARITH `(a = b) <=> (a-.b = (&.0))`]; DISCH_THEN (fun t->REWRITE_TAC[t]); SUBGOAL_THEN `(y:num->real) - y = euclid0` (fun t-> REWRITE_TAC[t]); REWRITE_TAC[euclid0;euclid_minus]; MATCH_MP_TAC EQ_EXT; GEN_TAC THEN BETA_TAC; REAL_ARITH_TAC; REWRITE_TAC[norm;dot_lzero;SQRT_0]; CONJ_TAC; SUBGOAL_THEN `x - y = (euclid_neg (y-x))` ASSUME_TAC; REWRITE_TAC[euclid_neg;euclid_minus]; MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC; REAL_ARITH_TAC; ASM_MESON_TAC[norm_neg]; SUBGOAL_THEN `(x-z) = euclid_plus(x - y) (y-z)` (fun t -> REWRITE_TAC[t]); REWRITE_TAC[euclid_plus;euclid_minus]; MATCH_MP_TAC EQ_EXT THEN GEN_TAC THEN BETA_TAC THEN REAL_ARITH_TAC; ASM_SIMP_TAC[norm_triangle;euclidean_sub_closure;euclidean_sub_closure]; ]);; (* }}} *) let metric_euclid = prove_by_refinement( `!n. metric_space (euclid n,d_euclid)`, (* {{{ *) [ GEN_TAC; MATCH_MP_TAC (ISPEC `euclidean` metric_subspace); REWRITE_TAC[metric_euclidean;SUBSET;IN]; MESON_TAC[euclidean]; ]);; (* }}} *) let euclid1_abs = prove_by_refinement( `!x y. (euclid 1 x) /\ (euclid 1 y) ==> ((d_euclid x y) = (abs ((x 0) -. (y 0))))`, (* {{{ proof *) [ REWRITE_TAC[d_euclid;norm]; DISCH_ALL_TAC; SUBGOAL_TAC `euclid 1 (x - y)`; ASM_MESON_TAC[euclid_sub_closure]; DISCH_TAC; ASSUME_TAC (prove(`1 <= 1`,ARITH_TAC)); MP_TAC (SPECL[`(x-y):num->real`;`(x-y):num->real`;`1`;`1`] dot_updim); ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[t]); REWRITE_TAC[prove(`1 = SUC 0`,ARITH_TAC)]; REWRITE_TAC[sum]; REWRITE_TAC[REAL_ARITH `&.0 + x = x`]; REWRITE_TAC[ARITH_RULE `0 +| 0 = 0`]; REWRITE_TAC[euclid_minus]; ASM_MESON_TAC[REAL_POW_2;POW_2_SQRT_ABS]; ]);; (* }}} *) let coord_dirac = prove_by_refinement( `!i t. coord i (t *# dirac_delta i ) = t`, (* {{{ proof *) [ REWRITE_TAC[coord;dirac_delta;euclid_scale]; ARITH_TAC; ]);; (* }}} *) let dirac_0 = prove_by_refinement( `!x. (x *# dirac_delta 0) 0 = x`, (* {{{ proof *) [ GEN_TAC; REWRITE_TAC[dirac_delta;euclid_scale;]; REDUCE_TAC; ]);; (* }}} *) let euclid1_dirac = prove_by_refinement( `!x. euclid 1 x <=> (x = (x 0) *# (dirac_delta 0))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[euclid; euclid_scale;dirac_delta ]; EQ_TAC; DISCH_ALL_TAC; IMATCH_MP_TAC EQ_EXT; X_GEN_TAC `n:num`; BETA_TAC; COND_CASES_TAC; REDUCE_TAC; ASM_REWRITE_TAC[]; REDUCE_TAC; ASM_SIMP_TAC[ARITH_RULE `(~(0=m))==>(1<=| m)`]; DISCH_ALL_TAC; DISCH_ALL_TAC; USE 1 (MATCH_MP (ARITH_RULE `1<= m ==> (~(0=m))`)); ASM ONCE_REWRITE_TAC[]; ASM_REWRITE_TAC[]; REDUCE_TAC ; ]);; (* }}} *) (* projection onto the ith coordinate, as a euclidean vector *) let proj = euclid_def `proj i x = (\j. (if (j=0) then (x (i:num)) else (&.0)))`;; let proj_euclid1 = prove_by_refinement( `!i x. euclid 1 (proj i x)`, (* {{{ proof *) [ REWRITE_TAC[proj;euclid]; REPEAT GEN_TAC; COND_CASES_TAC; ASM_REWRITE_TAC[]; ARITH_TAC; ARITH_TAC; ]);; (* }}} *) let d_euclid_n = prove_by_refinement( `!n x y. ((euclid n x) /\ (euclid n y)) ==> ((d_euclid x y) = sqrt(sum (0,n) (\i. (x i - y i) * (x i - y i))))`, (* {{{ proof *) [ REPEAT GEN_TAC; REWRITE_TAC[d_euclid;norm]; DISCH_ALL_TAC; ASSUME_TAC (ARITH_RULE `n <=| n`); SUBGOAL_TAC `euclid n (x - y)`; ASM_SIMP_TAC[euclid_sub_closure]; DISCH_TAC; CLEAN_ASSUME_TAC (SPECL[`(x-y):num->real`;`(x-y):num->real`;`n:num`;`n:num`]dot_updim); ASM_REWRITE_TAC[euclid_minus]; ]);; (* }}} *) let norm_n = prove_by_refinement( `!n x. ((euclid n x) ) ==> ((norm x) = sqrt(sum (0,n) (\i. (x i ) * (x i ))))`, (* {{{ proof *) [ REPEAT GEN_TAC; TYPEL_THEN [`x`;`x`;`n`;`n`] (fun t-> SIMP_TAC [norm;ISPECL t dot_updim;ARITH_RULE `n <=| n`;]); ]);; (* }}} *) let proj_d_euclid = prove_by_refinement( `!i x y. d_euclid (proj i x) (proj i y) = abs (x i -. y i)`, (* {{{ proof *) [ REPEAT GEN_TAC; SIMP_TAC[SPEC `1` d_euclid_n;proj_euclid1]; REWRITE_TAC[ARITH_RULE `1 = SUC 0`;sum]; NUM_REDUCE_TAC; REWRITE_TAC[proj]; REWRITE_TAC[REAL_ARITH `&.0 + x = x`]; MESON_TAC[POW_2_SQRT_ABS;REAL_POW_2]; ]);; (* }}} *) let d_euclid_pos = prove_by_refinement( `!x y n. (euclid n x) /\ (euclid n y) ==> (&.0 <=. d_euclid x y)`, (* {{{ proof *) [ DISCH_ALL_TAC; MP_TAC metric_euclid; REWRITE_TAC[metric_space;euclidean]; ASM_MESON_TAC[]; ]);; (* }}} *) let proj_contraction = prove_by_refinement( `!n x y i. (euclid n x) /\ (euclid n y) ==> abs (x i - (y i)) <=. d_euclid x y`, (* {{{ proof *) [ DISCH_ALL_TAC; MATCH_MP_TAC REAL_POW_2_LE; REWRITE_TAC[REAL_ABS_POS]; CONJ_TAC; ASM_MESON_TAC[d_euclid_pos]; ASM_SIMP_TAC[SPEC `n:num` d_euclid_n]; REWRITE_TAC[REAL_POW2_ABS]; SUBGOAL_TAC `euclid n (x - y)`; (* why does MESON fail here??? *) MATCH_MP_TAC euclid_sub_closure; ASM_MESON_TAC[]; DISCH_TAC; SUBGOAL_TAC `&.0 <=. sum (0,n) (\i. (x i - y i)*. (x i - y i))`; MATCH_MP_TAC SUM_POS_GEN; DISCH_ALL_TAC THEN BETA_TAC; REWRITE_TAC[REAL_LE_SQUARE]; SIMP_TAC[SQRT_POW_2]; DISCH_TAC; ASM_CASES_TAC `n <=| i`; MATCH_MP_TAC (REAL_ARITH `(x = (&.0)) /\ (&.0 <=. y) ==> (x <=. y)`); ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_PROP_ZERO_POW]; NUM_REDUCE_TAC; ASM_MESON_TAC[euclid;euclid_minus]; MP_TAC (ARITH_RULE `~(n <=| i) ==> (i < n) /\ (n = (SUC i) + (n-i-1))`); ASM_REWRITE_TAC[] THEN DISCH_ALL_TAC; ASM ONCE_REWRITE_TAC[]; REWRITE_TAC[GSYM SUM_TWO]; MATCH_MP_TAC (REAL_ARITH `(a <=. b) /\ (&.0 <=. c) ==> (a <=. (b +c))`); CONJ_TAC; REWRITE_TAC[sum_DEF]; REWRITE_TAC[ARITH_RULE `0 +| i = i`]; MATCH_MP_TAC (REAL_ARITH `(a = c) /\ (&.0 <=. b) ==> (a <=. b+c)`); REWRITE_TAC[REAL_POW_2]; MP_TAC (SPECL [`0:num`;`i:num`;`(x:num->real)- y`] REAL_SUM_SQUARE_POS); BETA_TAC; REWRITE_TAC[euclid_minus]; MP_TAC (SPECL [`SUC i`;`(n:num)-i-1`;`(x:num->real)- y`] REAL_SUM_SQUARE_POS); BETA_TAC; REWRITE_TAC[euclid_minus]; ]);; (* }}} *) let euclid_dirac = prove_by_refinement( `!x. (euclid 1 (x *# (dirac_delta 0)))`, (* {{{ proof *) [ REWRITE_TAC[euclid;dirac_delta ;euclid_scale]; DISCH_ALL_TAC; USE 0 (MATCH_MP (ARITH_RULE `1 <=| m ==> (~(0=m))`)); ASM_REWRITE_TAC[]; REDUCE_TAC; ]);; (* }}} *) let d_euclid_pow2 = prove_by_refinement( `!n x y. (euclid n x) /\ (euclid n y) ==> ((d_euclid x y) pow 2 = sum (0,n) (\i. (x i - y i) * (x i - y i)))`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM_SIMP_TAC[d_euclid_n]; REWRITE_TAC[SQRT_POW2]; MATCH_MP_TAC SUM_POS_GEN; BETA_TAC; REDUCE_TAC; ]);; (* }}} *) let D_EUCLID_BOUND = prove_by_refinement( `!n x y eps. ((euclid n x) /\ (euclid n y) /\ (!i. (abs (x i -. y i) <=. eps))) ==> ( d_euclid x y <=. sqrt(&.n)*. eps )`, (* {{{ proof *) [ DISCH_ALL_TAC; SQUARE_TAC; SUBCONJ_TAC; JOIN 0 1; USE 0 (MATCH_MP d_euclid_pos); ASM_REWRITE_TAC[]; DISCH_TAC; WITH 2 (SPEC `0`); USE 4 (MATCH_MP (REAL_ARITH `abs (x) <=. eps ==> &.0 <=. eps`)); SUBCONJ_TAC; ALL_TAC; REWRITE_TAC[REAL_MUL_NN]; DISJ1_TAC; CONJ_TAC; MATCH_MP_TAC SQRT_POS_LE ; REDUCE_TAC; ASM_REWRITE_TAC[]; DISCH_TAC; ASM_SIMP_TAC[d_euclid_pow2]; SUBGOAL_TAC `!i. ((x:num->real) i -. y i) *. (x i -. y i) <=. eps* eps`; GEN_TAC; ALL_TAC; USE 2 (SPEC `i:num`); ABBREV_TAC `t = x i - (y:num->real) i`; UND 2; REWRITE_TAC[ABS_SQUARE_LE]; REWRITE_TAC[REAL_POW_MUL]; ASSUME_TAC (REWRITE_RULE[] ((REDUCE_CONV `&.0 <= &.n`))); USE 6 (REWRITE_RULE[GSYM SQRT_POW2]); ASM_REWRITE_TAC[]; DISCH_TAC; ALL_TAC; MATCH_MP_TAC SUM_BOUND; GEN_TAC; DISCH_TAC; BETA_TAC; REWRITE_TAC[POW_2]; ASM_MESON_TAC[]; ]);; (* }}} *) let metric_translate = prove_by_refinement( `!n x y z . (euclid n x) /\ (euclid n y) /\ (euclid n z) ==> (d_euclid (x + z) (y + z) = d_euclid x y)`, (* {{{ proof *) [ REWRITE_TAC[d_euclid;norm]; DISCH_ALL_TAC; TYPE_THEN `euclid n (euclid_minus x y)` SUBGOAL_TAC; ASM_SIMP_TAC[euclid_sub_closure]; DISCH_TAC; TYPE_THEN `euclid n (euclid_minus (euclid_plus x z) (euclid_plus y z))` SUBGOAL_TAC; ASM_SIMP_TAC[euclid_sub_closure; euclid_add_closure]; DISCH_ALL_TAC; ASM_SIMP_TAC[SPEC `n:num` dot_euclid]; TYPE_THEN `(x + z) - (y + z) = ((x:num->real) - y)` SUBGOAL_TAC; IMATCH_MP_TAC EQ_EXT; X_GEN_TAC `i:num`; REWRITE_TAC[euclid_minus;euclid_plus]; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); ]);; (* }}} *) let metric_translate_LEFT = prove_by_refinement( `!n x y z . (euclid n x) /\ (euclid n y) /\ (euclid n z) ==> (d_euclid (z + x ) (z + y) = d_euclid x y)`, (* {{{ proof *) [ REWRITE_TAC[d_euclid;norm]; DISCH_ALL_TAC; TYPE_THEN `euclid n (euclid_minus x y)` SUBGOAL_TAC; ASM_SIMP_TAC[euclid_sub_closure]; DISCH_TAC; TYPE_THEN `euclid n (euclid_minus (euclid_plus z x) (euclid_plus z y))` SUBGOAL_TAC; ASM_SIMP_TAC[euclid_sub_closure; euclid_add_closure]; DISCH_ALL_TAC; ASM_SIMP_TAC[SPEC `n:num` dot_euclid]; TYPE_THEN `(z + x) - (z + y) = ((x:num->real) - y)` SUBGOAL_TAC; IMATCH_MP_TAC EQ_EXT; X_GEN_TAC `i:num`; REWRITE_TAC[euclid_minus;euclid_plus]; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); ]);; (* }}} *) let norm_scale = prove_by_refinement( `!t t' x . (euclidean x) ==> (d_euclid (t *# x) (t' *# x) = ||. (t - t') * norm(x))`, (* {{{ proof *) [ REWRITE_TAC[euclidean]; LEFT_TAC "n"; DISCH_ALL_TAC; ASM_SIMP_TAC[d_euclid_n;norm_n;euclid_scale_closure;euclid_scale;GSYM REAL_SUB_RDISTRIB;REAL_MUL_AC;]; REWRITE_TAC[GSYM REAL_POW_2 ]; REWRITE_TAC[REAL_ARITH `a * a * b = b * (a * a)`;SUM_CMUL;]; ASM_SIMP_TAC[SQRT_MUL;REAL_SUM_SQUARE_POS;REAL_LE_SQUARE_POW;POW_2_SQRT_ABS ]; REWRITE_TAC[REAL_POW_2]; ]);; (* }}} *) let norm_scale_vec = prove_by_refinement( `!n t x x' . (euclid n x) /\ (euclid n x') ==> (d_euclid (t *# x) (t *# x') = ||. t * d_euclid x x')`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM_SIMP_TAC[d_euclid_n;norm_n;euclid_scale_closure;euclid_scale;GSYM REAL_SUB_LDISTRIB;REAL_MUL_AC;]; REWRITE_TAC[REAL_ARITH `t*t*b = (t*t)*b`]; REWRITE_TAC[GSYM REAL_POW_2 ;SUM_CMUL ]; GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV o ONCE_DEPTH_CONV) [REAL_POW_2]; ASM_SIMP_TAC[SQRT_MUL;REAL_SUM_SQUARE_POS;REAL_LE_SQUARE_POW;POW_2_SQRT_ABS ]; REWRITE_TAC[REAL_POW_2]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Topological Spaces *) (* ------------------------------------------------------------------ *) (* Definitions *) (* underscore is necessary to avoid Harrison's global "topology" *) (* carrier of topology is UNIONS U *) let topology = euclid_def `topology_ (U:(A->bool)->bool) <=> (!A B V. (U EMPTY) /\ ((U A) /\ (U B) ==> (U (A INTER B))) /\ ((V SUBSET U) ==> (U (UNIONS V))))`;; let open_DEF = euclid_def `open_ (U:(A->bool)->bool) A = (U A)`;; let closed = euclid_def `closed_ (U:(A->bool)->bool) B <=> (B SUBSET (UNIONS U)) /\ (open_ U ((UNIONS U) DIFF B))`;; let closure = euclid_def `closure (U:(A->bool)->bool) A = INTERS { B | (closed_ U B) /\ (A SUBSET B) }`;; let induced_top = euclid_def `induced_top U (A:A->bool) = IMAGE ( \B. (B INTER A)) U`;; let open_ball = euclid_def `open_ball(X,d) (x:A) r = { y | (X x) /\ (X y) /\ (d x y <. r) }`;; let closed_ball =euclid_def `closed_ball (X,d) (x:A) r = { y | (X x) /\ (X y) /\ (d x y <=. r) }`;; let open_balls = euclid_def `open_balls (X,d) = { B | ?(x:A) r. B = open_ball (X,d) x r}`;; let top_of_metric = euclid_def `top_of_metric ((X:A->bool),d) = { A | ?F. (F SUBSET (open_balls (X,d)))/\ (A = UNIONS F) }`;; (* basic properties *) let open_EMPTY = prove_by_refinement( `!(U:(A->bool)->bool). (topology_ U ==> open_ U EMPTY)`, (* {{{ proof *) [ REWRITE_TAC[topology;open_DEF]; MESON_TAC[]; ]);; (* }}} *) let open_closed = prove_by_refinement( `!U A. (topology_ (U:(A->bool)->bool)) /\ (open_ U A) ==> (closed_ U ((UNIONS U) DIFF A))`, (* {{{ proof *) [ REWRITE_TAC[closed;open_DEF]; DISCH_ALL_TAC; SUBGOAL_THEN `(A:A->bool) SUBSET (UNIONS U)` ASSUME_TAC; ASM_MESON_TAC[sub_union]; ASM_SIMP_TAC[DIFF_DIFF2]; REWRITE_TAC[SUBSET_DIFF]; ]);; (* }}} *) let closed_UNIV = prove_by_refinement( `!(U:(A->bool)->bool). (topology_ U ==> closed_ U (UNIONS U))`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM_SIMP_TAC[open_closed]; REWRITE_TAC[closed;open_DEF]; TYPE_THEN `a = UNIONS U` ABBREV_TAC; USE 0 (REWRITE_RULE[topology]); CONJ_TAC; MESON_TAC[SUBSET]; USE 0 (CONV_RULE (quant_right_CONV "V")); USE 0 (CONV_RULE (quant_right_CONV "B")); USE 0 (CONV_RULE (quant_right_CONV "A")); AND 0; UND 2; MESON_TAC[DIFF_EQ_EMPTY]; ]);; (* }}} *) let top_univ = prove_by_refinement( `!(U:(A->bool)->bool). (topology_ U) ==> (U (UNIONS U))`, (* {{{ proof *) [ REWRITE_TAC[topology]; DISCH_ALL_TAC; ASM_MESON_TAC[SUBSET_REFL]; ]);; (* }}} *) let empty_closed = prove_by_refinement( `!(U:(A->bool)->bool). (topology_ U) ==> closed_ U EMPTY`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[closed;EMPTY_SUBSET;DIFF_EMPTY;open_DEF]; ASM_MESON_TAC[top_univ]; ]);; (* }}} *) let closed_open = prove_by_refinement( `!(U:(A->bool)->bool) A. (closed_ U A) ==> (open_ U ((UNIONS U) DIFF A))`, (* {{{ proof *) [ MESON_TAC[closed]; ]);; (* }}} *) let closed_inter = prove_by_refinement ( `!U V. (topology_ (U:(A->bool)->bool)) /\ (!a. (V a) ==> (closed_ U a)) /\ ~(V = EMPTY) ==> (closed_ U (INTERS V))`, (* {{{ proof *) [ REWRITE_TAC[closed]; DISCH_ALL_TAC; CONJ_TAC; MATCH_MP_TAC INTERS_SUBSET2; USE 2 (REWRITE_RULE[ EMPTY_EXISTS]); USE 2 (REWRITE_RULE[IN]); CHO 2; EXISTS_TAC `u:A->bool`; ASM_MESON_TAC[ ]; ABBREV_TAC `VCOMP = IMAGE ((DIFF) (UNIONS (U:(A->bool)->bool))) V`; UNDISCH_FIND_THEN `VCOMP` (fun t -> ASSUME_TAC (GSYM t)); SUBGOAL_THEN `(VCOMP:(A->bool)->bool) SUBSET U` ASSUME_TAC; ASM_REWRITE_TAC[SUBSET;IN_ELIM_THM;IMAGE]; REWRITE_TAC[IN]; GEN_TAC; ASM_MESON_TAC[open_DEF]; SUBGOAL_THEN `open_ U (UNIONS (VCOMP:(A->bool)->bool))` ASSUME_TAC; ASM_MESON_TAC[topology;open_DEF]; SUBGOAL_THEN ` (UNIONS U DIFF INTERS V)= (UNIONS (VCOMP:(A->bool)->bool))` (fun t-> (REWRITE_TAC[t])); ASM_REWRITE_TAC[UNIONS_INTERS]; UNDISCH_FIND_TAC `(open_)`; REWRITE_TAC[]; ]);; (* }}} *) let open_nbd = prove_by_refinement( `!U (A:A->bool). (topology_ U) ==> ((U A) = (!x. ?B. (A x ) ==> ((B SUBSET A) /\ (B x) /\ (U B))))`, (* {{{ proof *) [ DISCH_ALL_TAC; EQ_TAC; DISCH_ALL_TAC; GEN_TAC; EXISTS_TAC `A:A->bool`; ASM_MESON_TAC[SUBSET]; CONV_TAC (quant_left_CONV "B"); DISCH_THEN CHOOSE_TAC; USE 1 (CONV_RULE NAME_CONFLICT_CONV); TYPE_THEN `UNIONS (IMAGE B A) = A` SUBGOAL_TAC; MATCH_MP_TAC SUBSET_ANTISYM; CONJ_TAC; MATCH_MP_TAC UNIONS_SUBSET; REWRITE_TAC[IN_IMAGE]; ASM_MESON_TAC[IN]; REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE]; DISCH_ALL_TAC; NAME_CONFLICT_TAC; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); EXISTS_TAC `x:A`; TYPE_THEN `B x` EXISTS_TAC ; ASM_REWRITE_TAC[]; ASM_MESON_TAC[IN]; (* on 1*) TYPE_THEN `(IMAGE B A) SUBSET U` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN_IMAGE;]; REWRITE_TAC[IN]; NAME_CONFLICT_TAC; GEN_TAC; DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[]; ASM_MESON_TAC[]; TYPE_THEN `W = IMAGE B A` ABBREV_TAC; KILL 2; ASM_MESON_TAC[topology]; ]);; (* }}} *) let open_inters = prove_by_refinement( `!U (V:(A->bool)->bool). (topology_ U) /\ (V SUBSET U) /\ (FINITE V) /\ ~(V = EMPTY) ==> (U (INTERS V))`, (* {{{ proof *) [ REP_GEN_TAC; DISCH_ALL_TAC; TYPE_THEN `(?n. V HAS_SIZE n)` SUBGOAL_TAC; REWRITE_TAC[HAS_SIZE]; ASM_MESON_TAC[]; DISCH_ALL_TAC; UND 0; UND 1; UND 2; UND 3; UND 4; CONV_TAC (quant_left_CONV "n"); TYPE_THEN `V` SPEC2_TAC ; TYPE_THEN `U` SPEC2_TAC ; CONV_TAC (quant_left_CONV "n"); CONV_TAC (quant_left_CONV "n"); INDUCT_TAC; DISCH_ALL_TAC; ASM_MESON_TAC[HAS_SIZE_0]; DISCH_ALL_TAC; TYPE_THEN `U` (USE 0 o SPEC); USE 5 (REWRITE_RULE[HAS_SIZE_SUC;EMPTY_EXISTS]); AND 5; CHO 6; TYPE_THEN `u` (USE 5 o SPEC); REWR 5; TYPE_THEN `V DELETE u` (USE 0 o SPEC); REWR 0; TYPE_THEN `V={u}` ASM_CASES_TAC; ASM_REWRITE_TAC[inters_singleton]; UND 6; UND 2; REWRITE_TAC [SUBSET;IN]; MESON_TAC[]; ALL_TAC; (* oi1 *) USE 0 (REWRITE_RULE[delete_empty]); REWR 0; USE 0 (REWRITE_RULE[FINITE_DELETE]); REWR 0; TYPE_THEN `V DELETE u SUBSET U ` SUBGOAL_TAC; ASM_MESON_TAC[DELETE_SUBSET;SUBSET_TRANS]; DISCH_ALL_TAC; REWR 0; ALL_TAC; (* oi2 *) COPY 6; USE 9 (REWRITE_RULE[IN]); USE 9 (MATCH_MP delete_inters); ASM_REWRITE_TAC[]; USE 1 (REWRITE_RULE[topology]); TYPEL_THEN [`(INTERS (V DELETE u))`;`u`;`U`] (USE 1 o ISPECL); AND 1; AND 1; UND 11; DISCH_THEN MATCH_MP_TAC ; ASM_REWRITE_TAC[]; UND 6; UND 2; REWRITE_TAC [SUBSET;IN]; ASM_MESON_TAC[]; ]);; (* }}} *) let top_unions = prove_by_refinement( `!(U:(A->bool)->bool) V. topology_ U /\ (V SUBSET U) ==> U (UNIONS V)`, (* {{{ proof *) [ MESON_TAC[topology]; ]);; (* }}} *) let top_inter = prove_by_refinement( `!(U:(A->bool)-> bool) A B. topology_ U /\ (U A) /\ (U B) ==> (U (A INTER B))`, (* {{{ proof *) [ MESON_TAC[topology]; ]);; (* }}} *) (* open and closed balls in metric spaces *) let open_ball_nonempty = prove_by_refinement( `!(X:A->bool) d a r. (metric_space (X,d)) /\ (&.0 <. r) /\ (X a) ==> (a IN (open_ball(X,d) a r))`, (* {{{ proof *) [ REWRITE_TAC[metric_space;IN_ELIM_THM;open_ball]; DISCH_ALL_TAC; UNDISCH_FIND_THEN `( /\ )` (ASSUME_TAC o (SPECL [`a:A`;`a:A`;`a:A`])); ASM_MESON_TAC[]; ]);; (* }}} *) let open_ball_subset = prove_by_refinement( `!(X:A->bool) d a r. (open_ball (X,d) a r SUBSET X)`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;open_ball;IN_ELIM_THM]; MESON_TAC[IN]; ]);; (* }}} *) let open_ball_subspace = prove_by_refinement( `!(X:A->bool) Y d a r. (Y SUBSET X) ==> (open_ball(Y,d) a r SUBSET open_ball(X,d) a r)`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;open_ball;IN_ELIM_THM]; MESON_TAC[IN]; ]);; (* }}} *) let open_ball_empty = prove_by_refinement( `!(X:A->bool) d a r. ~(a IN X) ==> (EMPTY = open_ball (X,d) a r)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[open_ball]; MATCH_MP_TAC EQ_EXT; REWRITE_TAC[IN_ELIM_THM;EMPTY]; ASM_MESON_TAC[IN]; ]);; (* }}} *) (*** Old proof modified by JRH to avoid GSPEC let open_ball_intersect = prove_by_refinement( `!(X:A->bool) Y d a r. (Y SUBSET X) /\ (a IN Y) ==> (open_ball(Y,d) a r = (open_ball(X,d) a r INTER Y))`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;IN;INTER;open_ball]; REWRITE_TAC[GSPEC_THM]; REWRITE_TAC[IN_ELIM_THM]; REWRITE_TAC[GSPEC]; DISCH_ALL_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; BETA_TAC; ASM_MESON_TAC[]; ]);; (* }}} *) ***) let open_ball_intersect = prove_by_refinement( `!(X:A->bool) Y d a r. (Y SUBSET X) /\ (a IN Y) ==> (open_ball(Y,d) a r = (open_ball(X,d) a r INTER Y))`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;IN;INTER;open_ball]; REWRITE_TAC[EXTENSION; IN_ELIM_THM]; MESON_TAC[] ]);; (* }}} *) let open_ball_center = prove_by_refinement( `!(X:A->bool) d a b r. (metric_space (X,d)) /\ (a IN (open_ball (X,d) b r)) ==> (?r'. (&.0 <. r') /\ ((open_ball(X,d) a r') SUBSET (open_ball(X,d) b r)))`, (* {{{ proof *) [ REWRITE_TAC[metric_space;open_ball]; DISCH_ALL_TAC; EXISTS_TAC `r -. (d (a:A) (b:A))`; REWRITE_TAC[SUBSET;IN_ELIM_THM]; UNDISCH_FIND_TAC `(IN)`; REWRITE_TAC[IN_ELIM_THM]; DISCH_ALL_TAC; CONJ_TAC; REWRITE_TAC[REAL_ARITH `(&.0 < r -. s)= (s <. r)`]; ASM_MESON_TAC[]; GEN_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_ARITH `(u <. v-.w) <=> (w +. u <. v)`]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UNDISCH_FIND_TAC `(!)`; DISCH_THEN (fun t-> (MP_TAC (SPECL [`b:A`;`a:A`;`x:A`] t))); ASM_REWRITE_TAC[]; ASM_MESON_TAC[REAL_LET_TRANS;REAL_LTE_TRANS]; ]);; (* }}} *) let open_ball_nonempty_center = prove_by_refinement( `!(X:A->bool) d a r. (metric_space(X,d)) ==> ((a IN (open_ball(X,d) a r)) = ~(open_ball(X,d) a r = EMPTY))`, (* {{{ proof *) [ REWRITE_TAC[metric_space]; DISCH_ALL_TAC; REWRITE_TAC[open_ball]; REWRITE_TAC[REWRITE_CONV[IN_ELIM_THM] `(a:A) IN { y | X a /\ X y /\ (d a y <. r)}`]; REWRITE_TAC[EXTENSION]; REWRITE_TAC[IN_ELIM_THM;NOT_IN_EMPTY;NOT_FORALL_THM]; EQ_TAC; MESON_TAC[]; DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[]; FIRST_ASSUM (fun t -> MP_TAC (SPECL [`a:A`;`x:A`;`a:A`] t)); UNDISCH_FIND_THEN `(+.)` (fun t -> MP_TAC (SPECL [`a:A`;`a:A`;`a:A`] t)); ASM_MESON_TAC[REAL_LET_TRANS;REAL_LTE_TRANS]; ]);; (* }}} *) (*** Old proof modified by JRH to remove apparent misnamed quantifier let open_ball_neg_radius = prove_by_refinement( `!(X:A->bool) d a r. metric_space(X,d) /\ (r <. (&.0)) ==> (EMPTY = open_ball(X,d) a r)`, (* {{{ proof *) [ REWRITE_TAC[open_ball;metric_space]; DISCH_ALL_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[EMPTY;IN_ELIM_THM]; FIRST_ASSUM (fun t -> MP_TAC (SPECL [`a:A`;`x:A`;`a:A`] t)); ASSUME_TAC (REAL_ARITH `!u r. ~((dd <. r) /\ (r <. (&.0)) /\ (&.0 <=. dd))`); ASM_MESON_TAC[]; ]);; (* }}} *) ***) let open_ball_neg_radius = prove_by_refinement( `!(X:A->bool) d a r. metric_space(X,d) /\ (r <. (&.0)) ==> (EMPTY = open_ball(X,d) a r)`, (* {{{ proof *) [ REWRITE_TAC[open_ball;metric_space]; DISCH_ALL_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[EMPTY;IN_ELIM_THM]; FIRST_ASSUM (fun t -> MP_TAC (SPECL [`a:A`;`x:A`;`a:A`] t)); ASSUME_TAC (REAL_ARITH `!d r. ~((d <. r) /\ (r <. (&.0)) /\ (&.0 <=. d))`); ASM_MESON_TAC[]; ]);; (* }}} *) let open_ball_nest = prove_by_refinement( `!(X:A->bool) d a r r'. (r <. r') ==> ((open_ball (X,d) a r) SUBSET (open_ball(X,d) a r'))`, (* {{{ proof *) [ REWRITE_TAC[SUBSET;open_ball;IN_ELIM_THM]; MESON_TAC[REAL_ARITH `(r<. r') /\ (a <. r) ==> (a <. r')`]; ]);; (* }}} *) (* intersection of open balls contains an open ball *) let open_ball_inter = prove_by_refinement( `!(X:A->bool) d a b c r r'. (metric_space (X,d)) /\ (X a) /\ (X b) /\ (c IN (open_ball(X,d) a r INTER (open_ball(X,d) b r'))) ==> (?r''. (&.0 <. r'') /\ (open_ball(X,d) c r'') SUBSET (open_ball(X,d) a r INTER (open_ball(X,d) b r')))`, (* {{{ proof *) [ DISCH_ALL_TAC; UNDISCH_FIND_THEN `(INTER)` (fun t-> MP_TAC (REWRITE_RULE[IN_INTER] t) THEN DISCH_ALL_TAC); SUBGOAL_TAC `(X:A->bool) (c:A)`; ASM_MESON_TAC[SUBSET;open_ball_subset;IN]; DISCH_TAC; MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`;`c:A`;`b:A`;`r':real`] open_ball_center) THEN (ASM_REWRITE_TAC[]) THEN (DISCH_THEN CHOOSE_TAC); MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`;`c:A`;`a:A`;`r:real`] open_ball_center) THEN (ASM_REWRITE_TAC[]) THEN (DISCH_THEN CHOOSE_TAC); REWRITE_TAC[SUBSET_INTER]; EXISTS_TAC `(if (r'' <. r''') then (r'') else (r'''))`; COND_CASES_TAC; ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; IMP_RES_THEN DISJ_CASES_TAC (REAL_ARITH `(~(r'' <. r''')) ==> ((r''' <. r'') \/ (r'''=r''))`); ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; ASM_MESON_TAC[]; ]);; (* }}} *) let BALL_DIST = prove_by_refinement( `!X d x y (z:A) r. metric_space(X,d) /\ open_ball(X,d) z r x /\ open_ball(X,d) z r y ==> d x y <. (&.2 * r)`, (* {{{ proof *) [ REWRITE_TAC[metric_space;open_ball;IN_ELIM_THM']; DISCH_ALL_TAC; USE 0 (SPECL [`x:A`;`z:A`;`y:A`]); REWR 0; UND 0 THEN DISCH_ALL_TAC; UND 9; UND 6; ASM_REWRITE_TAC[]; UND 3; REAL_ARITH_TAC; ]);; (* }}} *) let BALL_DIST_CLOSED = prove_by_refinement( `!X d x y (z:A) r. metric_space(X,d) /\ closed_ball(X,d) z r x /\ closed_ball(X,d) z r y ==> d x y <=. (&.2 * r)`, (* {{{ proof *) [ REWRITE_TAC[metric_space;closed_ball;IN_ELIM_THM']; DISCH_ALL_TAC; USE 0 (SPECL [`x:A`;`z:A`;`y:A`]); REWR 0; UND 0 THEN DISCH_ALL_TAC; UND 9; UND 6; ASM_REWRITE_TAC[]; UND 3; REAL_ARITH_TAC; ]);; (* }}} *) let open_ball_sub_closed = prove_by_refinement( `!X d (x:A) r. (open_ball(X,d) x r SUBSET (closed_ball(X,d) x r))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[SUBSET;IN;open_ball;closed_ball;IN_ELIM_THM']; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 2; REAL_ARITH_TAC; ]);; (* }}} *) let ball_symm = prove_by_refinement( `!X d (x:A) y r. metric_space(X,d) /\ (X x) /\ (X y) ==> (open_ball(X,d) x r y = open_ball(X,d) y r x)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC [open_ball;IN_ELIM_THM']; ASM_REWRITE_TAC[]; ASM_MESON_TAC [metric_space_symm]; ]);; (* }}} *) let ball_subset_ball = prove_by_refinement( `!X d (x:A) z r. metric_space(X,d) /\ (open_ball(X,d) x r z ) ==> (open_ball(X,d) z r SUBSET (open_ball(X,d) x (&.2 * r)))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[SUBSET;IN]; DISCH_ALL_TAC; REWRITE_TAC[open_ball;IN_ELIM_THM']; TYPE_THEN `X z /\ X x' /\ X x` SUBGOAL_TAC ; UND 2; UND 1; REWRITE_TAC[open_ball;IN_ELIM_THM']; MESON_TAC[]; DISCH_ALL_TAC; TYPE_THEN `open_ball(X,d) z r x` SUBGOAL_TAC; ASM_MESON_TAC[ball_symm]; ASM_MESON_TAC[BALL_DIST]; ]);; (* }}} *) (* top_of_metric *) let top_of_metric_unions = prove_by_refinement( `!(X:A->bool) d. (metric_space (X,d)) ==> (X = UNIONS (top_of_metric (X,d)))`, (* {{{ proof *) [ REPEAT GEN_TAC; DISCH_TAC; MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC; REWRITE_TAC[SUBSET]; REWRITE_TAC[IN_UNIONS;top_of_metric]; DISCH_ALL_TAC; EXISTS_TAC `open_ball(X,d) (x:A) (&.1)`; UNDISCH_TAC `(x:A) IN X` THEN (REWRITE_TAC[IN_ELIM_THM]); DISCH_ALL_TAC; CONJ_TAC; EXISTS_TAC `{(open_ball(X,d) (x:A) (&.1))}`; REWRITE_TAC[GSYM UNIONS_1;INSERT_SUBSET;EMPTY_SUBSET]; REWRITE_TAC[open_balls;IN_ELIM_THM]; MESON_TAC[]; REWRITE_TAC[IN_ELIM_THM;open_ball]; UNDISCH_FIND_TAC `(IN)`; ASM_REWRITE_TAC[IN]; DISCH_TAC; ASM_REWRITE_TAC[]; UNDISCH_FIND_TAC `metric_space`; REWRITE_TAC[metric_space]; DISCH_THEN (fun t -> MP_TAC (ISPECL [`x:A`;`x:A`;`x:A`] t)); ASM_MESON_TAC[REAL_ARITH `(&.0) <. (&.1)`]; MATCH_MP_TAC UNIONS_SUBSET; GEN_TAC; REWRITE_TAC[top_of_metric;IN_ELIM_THM]; DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[]; MATCH_MP_TAC UNIONS_SUBSET; X_GEN_TAC `B:A->bool`; DISCH_TAC; SUBGOAL_TAC `(B:A->bool) IN open_balls (X,d)`; ASM SET_TAC[]; REWRITE_TAC[open_balls;IN_ELIM_THM]; DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_THEN (CHOOSE_THEN ASSUME_TAC); ASM_REWRITE_TAC[]; REWRITE_TAC[open_ball;SUBSET;IN_ELIM_THM]; MESON_TAC[IN]; ]);; (* }}} *) let top_of_metric_empty = prove_by_refinement( `!(X:A->bool) d. ( (top_of_metric (X,d)) EMPTY)`, (* {{{ proof *) [ REWRITE_TAC[top_of_metric]; REPEAT GEN_TAC; REWRITE_TAC[IN_ELIM_THM]; EXISTS_TAC `EMPTY:(A->bool)->bool`; REWRITE_TAC[UNIONS_0;EMPTY_SUBSET]; ]);; (* }}} *) let top_of_metric_open = prove_by_refinement( `!(X:A->bool) d F. (F SUBSET (open_balls (X,d))) ==> ((UNIONS F) IN (top_of_metric(X,d)))`, (* {{{ proof *) [ REWRITE_TAC[top_of_metric;IN_ELIM_THM]; MESON_TAC[]; ]);; (* }}} *) let top_of_metric_open_balls = prove_by_refinement( `!(X:A->bool) d. (open_balls (X,d)) SUBSET (top_of_metric(X,d))`, (* {{{ proof *) [ REWRITE_TAC[SUBSET]; REWRITE_TAC[top_of_metric;IN_ELIM_THM]; DISCH_ALL_TAC; EXISTS_TAC `{(x:A->bool)}`; ASM SET_TAC[]; ]);; (* }}} *) let open_ball_open = prove_by_refinement( `! (X:A->bool) d x r. (metric_space(X,d)) ==> (top_of_metric (X,d) (open_ball (X,d) x r)) `, (* {{{ proof *) [ DISCH_ALL_TAC; TYPEL_THEN [`X`;`d`] (fun t-> ASSUME_TAC ( ISPECL t top_of_metric_open_balls)); USE 1 (REWRITE_RULE[open_balls;SUBSET;IN_ELIM_THM']); ASM_MESON_TAC[IN]; ]);; (* }}} *) (* a set is open then every point contains a ball *) let top_of_metric_nbd = prove_by_refinement( `!(X:A->bool) d A. (metric_space (X,d)) ==> ((top_of_metric (X,d) A) <=> ((A SUBSET X) /\ (!a. (a IN A) ==> (?r. (&.0 <. r) /\ (open_ball(X,d) a r SUBSET A)))))`, (* {{{ proof *) [ (DISCH_ALL_TAC); EQ_TAC; REWRITE_TAC[top_of_metric;IN_ELIM_THM]; DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_ALL_TAC; CONJ_TAC; IMP_RES_THEN ASSUME_TAC top_of_metric_unions; ASM_REWRITE_TAC[]; IMP_RES_THEN ASSUME_TAC top_of_metric_open; ASM ONCE_REWRITE_TAC[]; MATCH_MP_TAC UNIONS_UNIONS; ASM_MESON_TAC[SUBSET_TRANS;top_of_metric_open_balls]; DISCH_ALL_TAC THEN (ASM_REWRITE_TAC[]); REWRITE_TAC[IN_UNIONS;UNIONS_SUBSET]; UNDISCH_FIND_TAC `(IN)`; ASM_REWRITE_TAC[]; REWRITE_TAC[IN_UNIONS]; DISCH_THEN (CHOOSE_THEN ASSUME_TAC); SUBGOAL_TAC `(t IN open_balls (X:A->bool,d))`; ASM_MESON_TAC[SUBSET]; REWRITE_TAC[open_balls;IN_ELIM_THM]; REPEAT (DISCH_THEN (CHOOSE_THEN MP_TAC)); DISCH_TAC; MP_TAC (SPECL[`(X:A->bool)`; `d:A->A->real`;`a:A`;`x:A`;`r:real`] open_ball_center); ASM_REWRITE_TAC[]; SUBGOAL_TAC `(a:A) IN open_ball(X,d) x r`; ASM_MESON_TAC[]; DISCH_TAC THEN (ASM_REWRITE_TAC[]); DISCH_THEN CHOOSE_TAC; EXISTS_TAC `r':real`; ASM_REWRITE_TAC[]; (* to here *) SUBGOAL_TAC `!s. ((s:A->bool) IN F') ==> (s SUBSET (UNIONS F'))`; SET_TAC[]; ASM_MESON_TAC[SUBSET_TRANS] ; (*second direction: *) DISCH_THEN (fun t -> ASSUME_TAC (CONJUNCT1 t) THEN MP_TAC (CONJUNCT2 t)); DISCH_THEN (fun t -> MP_TAC (REWRITE_RULE[RIGHT_IMP_EXISTS_THM] t)); REWRITE_TAC[SKOLEM_THM]; DISCH_THEN CHOOSE_TAC; REWRITE_TAC[top_of_metric;IN_ELIM_THM]; EXISTS_TAC `IMAGE (\b. (open_ball(X,d) b (r b))) (A:A->bool)`; CONJ_TAC; REWRITE_TAC[IMAGE;SUBSET]; REWRITE_TAC[IN_ELIM_THM;open_balls]; MESON_TAC[IN]; REWRITE_TAC[IMAGE]; GEN_REWRITE_TAC I [EXTENSION]; X_GEN_TAC `a:A`; REWRITE_TAC[IN_UNIONS]; REWRITE_TAC[IN_ELIM_THM]; EQ_TAC; DISCH_TAC; EXISTS_TAC `open_ball (X,d) (a:A) (r a)`; CONJ_TAC; EXISTS_TAC `a:A`; ASM_REWRITE_TAC[]; REWRITE_TAC[IN;open_ball]; REWRITE_TAC[IN_ELIM_THM]; ASM_MESON_TAC[metric_space_zero;IN;SUBSET]; (* last: *) DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_ALL_TAC; UNDISCH_FIND_TAC `(?)` ; DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_ALL_TAC; UNDISCH_FIND_TAC `(!)`; DISCH_THEN (fun t -> MP_TAC(SPEC `x:A` t)); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; ASM_MESON_TAC[SUBSET;IN]; ]);; (* }}} *) let top_of_metric_inter = prove_by_refinement( `!(X:A->bool) d. (metric_space (X,d)) ==> (!A B. (top_of_metric (X,d) A) /\ (top_of_metric (X,d) B) ==> (top_of_metric (X,d) (A INTER B)))`, (* {{{ proof *) [ DISCH_ALL_TAC; DISCH_ALL_TAC; IMP_RES_THEN ASSUME_TAC (SPECL [`X:A->bool`;`d:A->A->real`] top_of_metric_nbd); UNDISCH_TAC `(top_of_metric (X,d) (B:A->bool))`; UNDISCH_TAC `(top_of_metric (X,d) (A:A->bool))`; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; DISCH_ALL_TAC; CONJ_TAC; ASM SET_TAC[]; DISCH_ALL_TAC; UNDISCH_FIND_THEN `(INTER)` (fun t-> (MP_TAC (REWRITE_RULE[IN_INTER]t)) THEN DISCH_ALL_TAC ); UNDISCH_FIND_THEN `(IN)` (fun t-> ANTE_RES_THEN MP_TAC t); UNDISCH_FIND_THEN `(IN)` (fun t-> ANTE_RES_THEN MP_TAC t); DISCH_THEN CHOOSE_TAC; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `if (r<. r') then r else r'`; COND_CASES_TAC; ASM_REWRITE_TAC[SUBSET_INTER]; ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; MP_TAC (ARITH_RULE `~(r<.r') ==> ((r'<. r) \/ (r'=r))`) THEN (ASM_REWRITE_TAC[]); DISCH_THEN DISJ_CASES_TAC; ASM_REWRITE_TAC[SUBSET_INTER]; ASM_MESON_TAC[open_ball_nest;SUBSET_TRANS]; ASM_MESON_TAC[SUBSET_INTER]; ]);; (* }}} *) let top_of_metric_union = prove_by_refinement( `!(X:A->bool) d. (metric_space(X,d)) ==> (!V. (V SUBSET top_of_metric(X,d)) ==> (top_of_metric(X,d) (UNIONS V)))`, (* {{{ proof *) [ DISCH_ALL_TAC; MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`] top_of_metric_nbd); ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[t]); DISCH_ALL_TAC; CONJ_TAC; ASM_MESON_TAC[UNIONS_UNIONS;top_of_metric_unions]; GEN_TAC; REWRITE_TAC[IN_UNIONS]; DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_ALL_TAC; SUBGOAL_TAC `(top_of_metric (X,d)) (t:A->bool)`; ASM_MESON_TAC[IN;SUBSET]; MP_TAC (SPECL[`X:A->bool`;`d:A->A->real`] top_of_metric_nbd); ASM_REWRITE_TAC[]; DISCH_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; UNDISCH_FIND_THEN `(!)` (fun t -> MP_TAC (SPEC `a:A` t)); ASM_REWRITE_TAC[]; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `r:real`; ASM_REWRITE_TAC[]; ASM SET_TAC[UNIONS]; ]);; (* }}} *) let top_of_metric_top = prove_by_refinement( `!(X:A->bool) d. ( (metric_space (X,d))) ==> (topology_ (top_of_metric (X,d)))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[topology]; REPEAT GEN_TAC; ASM_SIMP_TAC[top_of_metric_empty;top_of_metric_inter;top_of_metric_union]; ]);; (* }}} *) let closed_ball_closed = prove_by_refinement( `!X d (x:A) r. (metric_space (X,d)) ==> (closed_ (top_of_metric(X,d)) (closed_ball(X,d) x r))`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `X x` ASM_CASES_TAC ; REWRITE_TAC[closed]; ASM_SIMP_TAC [GSYM top_of_metric_unions]; SUBCONJ_TAC; REWRITE_TAC[closed_ball;SUBSET;IN;IN_ELIM_THM']; MESON_TAC[]; DISCH_ALL_TAC; REWRITE_TAC[open_DEF]; COPY 0; USE 0 (MATCH_MP top_of_metric_top); ONCE_ASM_SIMP_TAC[open_nbd]; GEN_TAC; TYPE_THEN `open_ball(X,d) x' (d x x' -. r)` EXISTS_TAC; TYPE_THEN `R = (d x x' -. r)` ABBREV_TAC; DISCH_ALL_TAC; TYPE_THEN `X x'` SUBGOAL_TAC; USE 5 (REWRITE_RULE[INR IN_DIFF]); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; SUBCONJ_TAC; REWRITE_TAC[DIFF_SUBSET;open_ball_subset;INTER;EQ_EMPTY;IN_ELIM_THM']; X_GEN_TAC `y:A`; REWRITE_TAC[IN]; ASM_REWRITE_TAC[open_ball;closed_ball]; REWRITE_TAC[IN_ELIM_THM';GSYM CONJ_ASSOC]; PROOF_BY_CONTR_TAC; USE 7 (REWRITE_RULE[]); AND 7; REWR 7; COPY 3; USE 3 (REWRITE_RULE[metric_space]); TYPEL_THEN [`x`;`y`;`x'`] (USE 3 o SPECL); REWR 3; ALL_TAC; (* "bb"; *) TYPE_THEN `d x' y = d y x'` SUBGOAL_TAC; TYPEL_THEN [`X`;`d`] (fun t-> MATCH_MP_TAC (SPECL t metric_space_symm)); ASM_REWRITE_TAC[]; DISCH_TAC; UND 7; UND 10; AND 3; AND 3; AND 3; UND 3; EXPAND_TAC "R"; ALL_TAC; (* "cb" *) REAL_ARITH_TAC; ALL_TAC; (* "cbc" *) DISCH_TAC; ASM_SIMP_TAC [open_ball_open]; MATCH_MP_TAC (INR open_ball_nonempty); ASM_REWRITE_TAC[]; EXPAND_TAC "R"; PROOF_BY_CONTR_TAC; USE 8 (MATCH_MP (REAL_ARITH `~(&.0 < d x x' - r) ==> (d x x' <=. r)`)); USE 5 (REWRITE_RULE[INR IN_DIFF;closed_ball;IN_ELIM_THM']); ASM_MESON_TAC[]; TYPE_THEN `(closed_ball (X,d) x r) = EMPTY` SUBGOAL_TAC; (**** Old step changed by JRH for modified set comprehensions ASM_REWRITE_TAC[closed_ball;EMPTY;GSPEC]; ***) ASM_REWRITE_TAC[closed_ball;IN_ELIM_THM; EXTENSION; NOT_IN_EMPTY]; DISCH_THEN (REWRT_TAC); ALL_TAC; (* "cbc1" *) ASM_MESON_TAC[empty_closed;top_of_metric_top]; ]);; (* }}} *) let open_ball_nbd = prove_by_refinement( `!X d C x. ?e. (metric_space((X:A->bool),d)) /\ (C x) /\ (top_of_metric (X,d) C) ==> ((&.0 < e) /\ (open_ball (X,d) x e SUBSET C))`, (* {{{ proof *) [ DISCH_ALL_TAC; RIGHT_TAC "e"; DISCH_ALL_TAC; USE 2 (REWRITE_RULE[top_of_metric;open_balls;IN_ELIM_THM';SUBSET;IN ]); CHO 2; AND 2; ASM_REWRITE_TAC[]; REWR 1; USE 1 (REWRITE_RULE[UNIONS;IN;IN_ELIM_THM' ]); CHO 1; TYPE_THEN `u` (USE 3 o SPEC); REWR 3; CHO 3; CHO 3; REWR 1; TYPEL_THEN [`X`;`d`;`x`;`x'`;`r`] (fun t-> (ASSUME_TAC (ISPECL t open_ball_center))); USE 4 (REWRITE_RULE[IN ]); REWR 4; CHO 4; TYPE_THEN `r'` EXISTS_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[SUBSET;UNIONS;IN;IN_ELIM_THM']; DISCH_ALL_TAC; AND 4; USE 4 (REWRITE_RULE[SUBSET;IN;IN_ELIM_THM']); ASM_MESON_TAC[]; ]);; (* }}} *) (* closure *) let closure_closed = prove_by_refinement( `!U (A:A->bool). (topology_ U) /\ (A SUBSET (UNIONS U)) ==> (closed_ U (closure U A))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[closure]; MATCH_MP_TAC closed_inter; REWRITE_TAC[IN_ELIM_THM]; ASM_REWRITE_TAC[]; CONJ_TAC; MESON_TAC[]; REWRITE_TAC[EMPTY_EXISTS]; TYPE_THEN `UNIONS U` EXISTS_TAC; ASM_REWRITE_TAC[IN_ELIM_THM']; ASM_SIMP_TAC[closed_UNIV]; ]);; (* }}} *) let subset_closure = prove_by_refinement( `!U (A:A->bool). (topology_ U) ==> (A SUBSET (closure U A))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[closure;SUBSET;IN_INTERS;IN_ELIM_THM]; X_GEN_TAC `a:A`; MESON_TAC[IN]; ]);; (* }}} *) let closure_subset = prove_by_refinement( `!U (A:A->bool) B. (topology_ U) /\ (closed_ U B) /\ (A SUBSET B) ==> (closure U A SUBSET B)`, (* {{{ proof *) [ REWRITE_TAC[closure]; DISCH_ALL_TAC; MATCH_MP_TAC INTERS_SUBSET; ASM_REWRITE_TAC[IN_ELIM_THM]; ]);; (* }}} *) let closure_self = prove_by_refinement( `!U (A:A->bool). (topology_ U) /\ (closed_ U A) ==> (closure U A = A)`, (* {{{ proof *) [ DISCH_ALL_TAC; MATCH_MP_TAC SUBSET_ANTISYM; ASM_SIMP_TAC[subset_closure]; ASM_SIMP_TAC[closure_subset;SUBSET_REFL]; ]);; (* }}} *) let closure_close = prove_by_refinement( `!U Z (A:A->bool). (topology_ U) /\ (Z SUBSET (UNIONS U)) ==> ((A = closure U Z) = ((Z SUBSET A) /\ (closed_ U A) /\ (!B. (closed_ U B) /\ ((Z SUBSET B)) ==> (A SUBSET B))))`, (* {{{ proof *) [ DISCH_ALL_TAC; EQ_TAC; DISCH_THEN (REWRT_TAC); ASM_SIMP_TAC[subset_closure;closure_closed;closure_subset]; DISCH_ALL_TAC; REWRITE_TAC [closure]; MATCH_MP_TAC (SUBSET_ANTISYM); CONJ_TAC; REWRITE_TAC[SUBSET_INTERS]; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[]; MATCH_MP_TAC INTERS_SUBSET; REWRITE_TAC[IN_ELIM_THM']; ASM_REWRITE_TAC[]; ]);; (* }}} *) let closure_open = prove_by_refinement( `!U Z (A:A->bool). (topology_ U) /\ (Z SUBSET (UNIONS U)) ==> ((A = closure U Z) = ((Z SUBSET A) /\ (closed_ U A) /\ (!B. (open_ U B) /\ ((B INTER Z) = EMPTY) ==> ((B INTER A) = EMPTY))))`, (* {{{ proof *) [ REP_GEN_TAC; DISCH_TAC; ASM_SIMP_TAC[closure_close]; MATCH_MP_TAC (TAUT `( A ==> (B <=> C)) ==> (A /\ B <=> A /\ C)`); DISCH_TAC; MATCH_MP_TAC (TAUT `( A ==> (B <=> C)) ==> (A /\ B <=> A /\ C)`); DISCH_TAC; EQ_TAC; DISCH_TAC; USE 2 (REWRITE_RULE[closed]); ASM_REWRITE_TAC[]; GEN_TAC; USE 3 (SPEC `(UNIONS U) DIFF (B:A->bool)`); DISCH_ALL_TAC; UND 3; ASM_SIMP_TAC[open_closed]; ASM_REWRITE_TAC[DIFF_SUBSET]; DISCH_TAC; UND 5; UND 3; REWRITE_TAC[INTER_COMM]; ALL_TAC; (* co1 *) DISCH_ALL_TAC; DISCH_ALL_TAC; USE 3 (SPEC `(UNIONS U) DIFF (B:A->bool)`); UND 3; ASM_SIMP_TAC[closed_open]; REWRITE_TAC[DIFF_INTER]; ASM_SIMP_TAC[SUB_IMP_INTER]; TYPE_THEN `A SUBSET (UNIONS U INTER A)` SUBGOAL_TAC; USE 2 (REWRITE_RULE[closed]); AND 2; UND 3; ALL_TAC; (* co2 *) SET_TAC[SUBSET;INTER]; MESON_TAC [SUBSET_TRANS]; ]);; (* }}} *) (* induced topology *) let image_top = prove_by_refinement( `!(U:(A->bool)->bool) (f:(A->bool)->(B->bool)). ((topology_ U) /\ (EMPTY = f EMPTY) /\ (!a b. (a IN U) /\ (b IN U) ==> (((f a) INTER (f b)) = f (a INTER b))) /\ (!V. (V SUBSET U) ==> (UNIONS (IMAGE f V) =f (UNIONS V) ))) ==> (topology_ (IMAGE f U))`, (* {{{ proof *) [ REWRITE_TAC[topology]; DISCH_ALL_TAC; DISCH_ALL_TAC; CONJ_TAC; REWRITE_TAC[IMAGE;IN]; REWRITE_TAC[IN_ELIM_THM]; ASM_MESON_TAC[]; CONJ_TAC; REWRITE_TAC[IMAGE;IN]; REWRITE_TAC[IN_ELIM_THM]; DISCH_ALL_TAC; REPEAT (UNDISCH_FIND_THEN `(?)` CHOOSE_TAC); ASM_REWRITE_TAC[]; EXISTS_TAC `(x:A->bool) INTER x'`; ASM_SIMP_TAC[IN]; DISCH_THEN (fun t-> MP_TAC (MATCH_MP SUBSET_PREIMAGE t)); DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[]; REWRITE_TAC[IMAGE;IN_ELIM_THM]; EXISTS_TAC `UNIONS (Z:(A->bool)->bool)`; ASM_SIMP_TAC[IN]; ]);; (* }}} *) let induced_top_support = prove_by_refinement( `!U (C:A->bool). (UNIONS (induced_top U C) = ((UNIONS U) INTER C))`, (* {{{ proof *) [ REWRITE_TAC[UNIONS_INTER]; DISCH_ALL_TAC; AP_TERM_TAC; REWRITE_TAC[induced_top]; AP_THM_TAC; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT THEN BETA_TAC; SET_TAC[]; ]);; (* }}} *) let induced_top_top = prove_by_refinement( `!U (C:A->bool). (topology_ U) ==> (topology_ (induced_top U C))`, (* {{{ proof *) [ REPEAT GEN_TAC; DISCH_TAC; REWRITE_TAC[induced_top]; MATCH_MP_TAC image_top; ASM_REWRITE_TAC[]; CONJ_TAC; SET_TAC[]; CONJ_TAC; SET_TAC[]; REWRITE_TAC[UNIONS_INTER]; DISCH_ALL_TAC; AP_TERM_TAC; AP_THM_TAC; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT THEN BETA_TAC; SET_TAC[]; ]);; (* }}} *) let induced_top_open = prove_by_refinement( `!U (C:A->bool) A. (topology_ U) ==> (induced_top U C A = (?B. (U B) /\ ((B INTER C) = A)))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[induced_top;IMAGE]; REWRITE_TAC[IN_ELIM_THM]; MESON_TAC[IN]; ]);; (* }}} *) let induced_trans = prove_by_refinement( `! U (A:A->bool) B. (topology_ U) /\ U A /\ (induced_top U A B) ==> (U B)`, (* {{{ proof *) [ REWRITE_TAC[induced_top;IMAGE;IN ;IN_ELIM_THM' ]; DISCH_ALL_TAC; CHO 2; ASM_MESON_TAC[top_inter]; ]);; (* }}} *) let induced_top_unions = prove_by_refinement( `!(U:(A->bool)->bool). (topology_ U) ==> ((induced_top U (UNIONS U)) = U)`, (* {{{ proof *) [ DISCH_ALL_TAC; IMATCH_MP_TAC EQ_EXT; GEN_TAC; ASM_SIMP_TAC[induced_top_open]; EQ_TAC; DISCH_ALL_TAC; CHO 1; USE 0 (REWRITE_RULE[topology]); TYPE_THEN `B SUBSET (UNIONS U)` SUBGOAL_TAC; ASM_MESON_TAC[sub_union ]; REWRITE_TAC[SUBSET_INTER_ABSORPTION]; DISCH_TAC ; ASM_MESON_TAC[]; DISCH_TAC ; TYPE_THEN `x` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `x SUBSET (UNIONS U)` SUBGOAL_TAC; ASM_MESON_TAC[sub_union ]; REWRITE_TAC[SUBSET_INTER_ABSORPTION]; ]);; (* }}} *) (* induced metric *) let gen = euclid_def `gen (X:(A->bool)->bool) = {A | ?Y. (Y SUBSET X) /\ (A = UNIONS Y)}`;; let top_of_metric_gen = prove_by_refinement( `!(X:(A)->bool) d. gen (open_balls(X,d))= (top_of_metric(X,d))`, (* {{{ proof *) [ REWRITE_TAC[gen;top_of_metric]; ]);; (* }}} *) let gen_subset = prove_by_refinement( `!U (V:(A->bool)->bool). (U SUBSET V) /\ (!A. (A IN V) ==> (?Y. (Y SUBSET U) /\ (A = UNIONS Y))) ==> (gen U = (gen V))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[EXTENSION]; GEN_TAC THEN EQ_TAC; REWRITE_TAC[IN_ELIM_THM;gen]; DISCH_THEN CHOOSE_TAC; ASM_MESON_TAC[SUBSET_TRANS]; REWRITE_TAC[IN_ELIM_THM;gen]; DISCH_THEN CHOOSE_TAC; UNDISCH_FIND_THEN `(?)` (fun t-> MP_TAC(REWRITE_RULE[RIGHT_IMP_EXISTS_THM;SKOLEM_THM]t)); DISCH_THEN CHOOSE_TAC; EXISTS_TAC `UNIONS (IMAGE (Y':(A->bool)->((A->bool)->bool)) (Y:(A->bool)->bool))`; CONJ_TAC; MATCH_MP_TAC UNIONS_SUBSET; REWRITE_TAC[IN_IMAGE]; GEN_TAC; DISCH_THEN CHOOSE_TAC; ASM_MESON_TAC[IN;SUBSET]; ASM_REWRITE_TAC[]; REWRITE_TAC[UNIONS_IMAGE_UNIONS]; AP_TERM_TAC; REWRITE_TAC[GSYM IMAGE_o]; REWRITE_TAC[EXTENSION]; X_GEN_TAC `A:(A->bool)`; REWRITE_TAC[IN_IMAGE;o_THM]; ASM_MESON_TAC[SUBSET;IN]; ]);; (* }}} *) let gen_subspace = prove_by_refinement( `!(X:A->bool) Y d. (Y SUBSET X) /\ (metric_space(X,d)) ==> (induced_top (top_of_metric(X,d)) Y = gen (induced_top (open_balls(X,d)) Y))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[induced_top]; REWRITE_TAC[EXTENSION]; X_GEN_TAC `B:A->bool`; REWRITE_TAC[IN_IMAGE]; EQ_TAC; DISCH_THEN (X_CHOOSE_TAC `C:A->bool`); FIRST_ASSUM MP_TAC; REWRITE_TAC[top_of_metric]; REWRITE_TAC[IN_ELIM_THM]; DISCH_ALL_TAC; UNDISCH_FIND_TAC `(?)`; DISCH_THEN (CHOOSE_TAC); UNDISCH_FIND_TAC `(INTER)`; ASM_REWRITE_TAC[UNIONS_INTER]; REWRITE_TAC[gen;IN_ELIM_THM]; EXISTS_TAC `IMAGE ((INTER) Y) (F':(A->bool)->bool)`; CONJ_TAC; REWRITE_TAC[INTER_THM]; MATCH_MP_TAC IMAGE_SUBSET; ASM_REWRITE_TAC[]; REFL_TAC; REWRITE_TAC[gen;IN_ELIM_THM]; DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_ALL_TAC; IMP_RES_THEN MP_TAC SUBSET_PREIMAGE; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `UNIONS (Z:(A->bool)->bool)`; CONJ_TAC; REWRITE_TAC[UNIONS_INTER]; UNDISCH_FIND_THEN `(UNIONS)` (fun t -> REWRITE_TAC[t]); AP_TERM_TAC; UNDISCH_FIND_TAC `(SUBSET)`; REWRITE_TAC[INTER_THM]; ASM_MESON_TAC[]; REWRITE_TAC[top_of_metric;IN_ELIM_THM]; ASM_MESON_TAC[]; ]);; (* }}} *) let gen_induced = prove_by_refinement( `!(X:A->bool) Y d. (Y SUBSET X) /\ (metric_space (X,d)) ==> (gen (open_balls(Y,d)) = gen (induced_top (open_balls(X,d)) Y))`, (* {{{ proof *) [ DISCH_ALL_TAC; MATCH_MP_TAC gen_subset; CONJ_TAC; REWRITE_TAC[induced_top;SUBSET;open_balls]; REWRITE_TAC [IN_IMAGE]; X_GEN_TAC `A:(A->bool)`; REWRITE_TAC[IN_ELIM_THM]; REPEAT (DISCH_THEN (CHOOSE_THEN MP_TAC)); DISCH_TAC; ASM_REWRITE_TAC[]; ASM_CASES_TAC `(Y:A->bool) (x:A)`; CONV_TAC (relabel_bound_conv); EXISTS_TAC `open_ball (X,d) (x:A) r`; CONJ_TAC; MATCH_MP_TAC open_ball_intersect; ASM_MESON_TAC[IN]; MESON_TAC[]; EXISTS_TAC `open_ball (X,d) (x:A) (--. (&.1))`; CONJ_TAC; ASM_MESON_TAC[IN;INTER_EMPTY;open_ball_empty;open_ball_neg_radius;REAL_ARITH `(--.(&.1) <. (&.0))`]; MESON_TAC[]; (* end of first half *) REWRITE_TAC[induced_top;IN_IMAGE]; GEN_TAC; DISCH_THEN (CHOOSE_THEN MP_TAC); NAME_CONFLICT_TAC; REWRITE_TAC[IN;open_balls]; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; FIRST_ASSUM (CHOOSE_THEN ASSUME_TAC); FIRST_ASSUM (CHOOSE_THEN ASSUME_TAC); SUBGOAL_TAC `!(a:A). (a IN x INTER Y) ==> (?r. ((&.0) <. r) /\ open_ball(Y,d) a r SUBSET (x INTER Y))`; DISCH_ALL_TAC; TYPEL_THEN [`X`;`d`;`a`;`x'`;`r'`] (fun t -> (CLEAN_ASSUME_TAC (ISPECL t open_ball_center))); SUBGOAL_TAC `(a:A) IN open_ball(X,d) x' r'`; ASM_MESON_TAC[IN_INTER]; DISCH_THEN (fun t -> ANTE_RES_THEN (MP_TAC) t); DISCH_THEN (CHOOSE_TAC); EXISTS_TAC `r'':real`; ASM_REWRITE_TAC[SUBSET_INTER;open_ball_subset]; ASM_MESON_TAC[open_ball_subspace;SUBSET_TRANS]; DISCH_THEN (fun t -> MP_TAC (REWRITE_RULE[RIGHT_IMP_EXISTS_THM;SKOLEM_THM] t)); DISCH_THEN CHOOSE_TAC; EXISTS_TAC `IMAGE (\t. open_ball(Y,d) t (r t) ) ((x:A->bool) INTER Y)`; REWRITE_TAC[SUBSET_INTER]; CONJ_TAC; REWRITE_TAC[SUBSET;IN_ELIM_THM']; REWRITE_TAC[IN_IMAGE]; GEN_TAC; MESON_TAC[]; MATCH_MP_TAC SUBSET_ANTISYM; CONJ_TAC; REWRITE_TAC[SUBSET]; GEN_TAC; REWRITE_TAC[IN_UNIONS]; DISCH_TAC; EXISTS_TAC `open_ball (Y,d) (x'':A) (r x'')`; REWRITE_TAC[IN_IMAGE]; CONJ_TAC; NAME_CONFLICT_TAC; EXISTS_TAC `x'':A`; ASM_REWRITE_TAC[]; MATCH_MP_TAC open_ball_nonempty; ASM_SIMP_TAC[metric_subspace]; ASM_MESON_TAC[IN_INTER;IN;metric_subspace]; MATCH_MP_TAC UNIONS_SUBSET; GEN_TAC; REWRITE_TAC[IN_IMAGE]; DISCH_THEN CHOOSE_TAC; ASM_MESON_TAC[]; ]);; (* }}} *) let top_of_metric_induced = prove_by_refinement( `!(X:A->bool) Y d. (Y SUBSET X) /\ (metric_space(X,d)) ==> (induced_top (top_of_metric(X,d)) Y = (top_of_metric(Y,d)))`, (* {{{ proof *) [ SIMP_TAC[gen_subspace]; REPEAT GEN_TAC; REWRITE_TAC[GSYM top_of_metric_gen]; MESON_TAC[gen_induced]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Continuity *) (* ------------------------------------------------------------------ *) let continuous = euclid_def `continuous (f:A->B) U V <=> !v. (v IN V) ==> (preimage (UNIONS U) f v) IN U`;; let metric_continuous_pt = euclid_def `metric_continuous_pt (f:A->B) (X,dX) ((Y:B->bool),dY) x = !epsilon. ?delta. (((&.0) < epsilon) ==> ((&.0) <. delta) /\ (!y. ((x IN X) /\ (y IN X) /\ (dX x y) <. delta) ==> (dY (f x) (f y) <. epsilon)))`;; let metric_continuous = euclid_def `metric_continuous (f:A->B) (X,dX) (Y,dY) <=> !x. metric_continuous_pt f (X,dX) (Y,dY) x`;; let metric_continuous_pt_domain = prove_by_refinement(`!f X dX Y dY x . ~(x IN X) ==> (metric_continuous_pt (f:A->B) (X,dX) (Y,dY) x)`, (* {{{ proof *) [ REWRITE_TAC[metric_continuous_pt]; MESON_TAC[]; ]);; (* }}} *) let metric_continuous_continuous = prove_by_refinement( `!f X Y dX dY. (IMAGE f X SUBSET Y) /\ (metric_space(X,dX)) /\ (metric_space(Y,dY)) ==> (continuous (f:A->B) (top_of_metric(X,dX)) (top_of_metric(Y,dY)) <=> (metric_continuous f (X,dX) (Y,dY)))`, (* {{{ proof *) [ DISCH_ALL_TAC; EQ_TAC; REWRITE_TAC[continuous;metric_continuous]; DISCH_TAC; GEN_TAC; ASM_CASES_TAC `(x:A) IN X` THENL[ALL_TAC;ASM_SIMP_TAC[metric_continuous_pt_domain]]; REWRITE_TAC[metric_continuous_pt]; GEN_TAC; SUBGOAL_TAC `(open_ball (Y,dY) ((f:A->B) x) epsilon) IN (top_of_metric(Y,dY))`; MATCH_MP_TAC (prove_by_refinement(`!(x:A) B. (?A. (x IN A /\ A SUBSET B)) ==> (x IN B)`,[SET_TAC[]])); EXISTS_TAC `open_balls((Y:B->bool),dY)`; REWRITE_TAC[top_of_metric_open_balls]; REWRITE_TAC[open_balls;IN_ELIM_THM']; MESON_TAC[]; DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); REWRITE_TAC[GSYM RIGHT_IMP_EXISTS_THM]; DISCH_TAC; SUBGOAL_TAC `(x:A) IN preimage (UNIONS (top_of_metric (X,dX))) f (open_ball (Y,dY) ((f:A->B) x) epsilon)`; REWRITE_TAC[in_preimage]; SUBGOAL_TAC `(Y:B->bool) ((f:A->B) x )`; UNDISCH_FIND_TAC `IMAGE`; UNDISCH_TAC `(x:A) IN X`; REWRITE_TAC[SUBSET;IMAGE]; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC; REWRITE_TAC[IN]; MESON_TAC[]; ASM_MESON_TAC[top_of_metric_unions;open_ball_nonempty]; ABBREV_TAC `B = preimage (UNIONS (top_of_metric (X,dX))) (f:A->B) (open_ball (Y,dY) (f x) epsilon)`; DISCH_TAC; SUBGOAL_TAC `?r. (&.0 <. r) /\ (open_ball(X,dX) (x:A) r SUBSET B)`; ASSUME_TAC top_of_metric_nbd; ASM_MESON_TAC[IN]; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `r:real`; ASM_REWRITE_TAC[]; GEN_TAC; DISCH_ALL_TAC; SUBGOAL_TAC `y:A IN B`; MATCH_MP_TAC (prove_by_refinement(`!(x:A) B. (?A. (x IN A /\ A SUBSET B)) ==> (x IN B)`,[SET_TAC[]])); EXISTS_TAC `open_ball(X,dX) (x:A) r`; ASM_REWRITE_TAC[]; REWRITE_TAC[open_ball;IN_ELIM_THM']; ASM_MESON_TAC[IN]; UNDISCH_FIND_TAC `preimage`; DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); REWRITE_TAC[in_preimage]; REWRITE_TAC[open_ball;IN_ELIM_THM']; MESON_TAC[]; (* first half done *) REWRITE_TAC[metric_continuous]; DISCH_TAC; REWRITE_TAC[continuous]; GEN_TAC; DISCH_TAC; REWRITE_TAC[IN]; ASM_SIMP_TAC[top_of_metric_nbd]; ASM_SIMP_TAC[GSYM top_of_metric_unions]; CONJ_TAC; REWRITE_TAC[SUBSET;in_preimage]; MESON_TAC[]; GEN_TAC; DISCH_THEN (fun t -> ASSUME_TAC t THEN (MP_TAC (REWRITE_RULE[in_preimage] t))); DISCH_ALL_TAC; SUBGOAL_TAC `?eps. (&.0 <. eps) /\ (open_ball(Y,dY) ((f:A->B) a) eps SUBSET v)`; UNDISCH_FIND_TAC `v IN top_of_metric (Y,dY)`; REWRITE_TAC[IN]; ASM_SIMP_TAC[top_of_metric_nbd]; DISCH_THEN CHOOSE_TAC; FIRST_ASSUM (fun t -> MP_TAC (SPEC `a:A` t)); REWRITE_TAC[metric_continuous_pt]; DISCH_THEN (fun t-> MP_TAC (SPEC `eps:real` t)); DISCH_THEN (CHOOSE_THEN MP_TAC); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; EXISTS_TAC `delta:real`; ASM_REWRITE_TAC[SUBSET]; REWRITE_TAC[in_preimage;open_ball]; REWRITE_TAC[IN_ELIM_THM']; X_GEN_TAC `y:A`; DISCH_ALL_TAC; CONJ_TAC THENL [(ASM_REWRITE_TAC[IN]);ALL_TAC]; FIRST_ASSUM (fun t -> (MP_TAC (SPEC `y:A` t))); ASM_REWRITE_TAC[IN]; UNDISCH_FIND_TAC `open_ball`; REWRITE_TAC[open_ball]; DISCH_THEN (fun t -> (MP_TAC (CONJUNCT2 t))); REWRITE_TAC[SUBSET]; DISCH_THEN (fun t-> (MP_TAC (SPEC `(f:A->B) y` t))); ASM_REWRITE_TAC[IN_ELIM_THM']; SUBGOAL_TAC `!x. (X x) ==> (Y ((f:A->B) x))`; UNDISCH_FIND_TAC `IMAGE`; REWRITE_TAC[SUBSET;IN_IMAGE]; NAME_CONFLICT_TAC; ASM_MESON_TAC[IN]; ASM_MESON_TAC[IN]; ]);; (* }}} *) let continuous_induced = prove_by_refinement( `!(f:A->B) U V A. (topology_ V) /\ (continuous f U V) /\ (V A) ==> (continuous f U (induced_top V A)) `, (* {{{ proof *) [ REWRITE_TAC[continuous;induced_top;IN_IMAGE;Q_ELIM_THM'' ]; ASM_MESON_TAC[top_inter;IN ]; ]);; (* }}} *) let metric_cont = prove_by_refinement( `!U X d f. (metric_space(X,d)) /\ (topology_ U) ==> ((continuous (f:A->B) U (top_of_metric(X,d))) = (!(x:B) r. U (preimage (UNIONS U) f (open_ball (X,d) x r))))`, (* {{{ proof *) [ DISCH_ALL_TAC; EQ_TAC; DISCH_ALL_TAC; DISCH_ALL_TAC; USE 2 (REWRITE_RULE[continuous;IN]); UND 2 THEN (DISCH_THEN MATCH_MP_TAC ); ASM_MESON_TAC [open_ball_open]; REWRITE_TAC[continuous;IN]; DISCH_ALL_TAC; REWRITE_TAC[top_of_metric;IN_ELIM_THM' ]; DISCH_ALL_TAC; CHO 3; AND 3; ASM_REWRITE_TAC[]; REWRITE_TAC[preimage_unions]; IMATCH_MP_TAC top_unions ; ASM_REWRITE_TAC[IMAGE;SUBSET;IN;IN_ELIM_THM' ]; NAME_CONFLICT_TAC; REWRITE_TAC[Q_ELIM_THM']; USE 4 (REWRITE_RULE[SUBSET;IN]); DISCH_ALL_TAC; TYPE_THEN `x'` (USE 4 o SPEC); REWR 4; USE 4 (REWRITE_RULE[open_balls;IN_ELIM_THM' ]); CHO 4; CHO 4; ASM_MESON_TAC[]; ]);; (* }}} *) let continuous_sum = prove_by_refinement( `!U (f:A->(num->real)) g n. (topology_ U) /\ (continuous f U (top_of_metric(euclid n,d_euclid))) /\ (continuous g U (top_of_metric(euclid n,d_euclid))) /\ (IMAGE f (UNIONS U) SUBSET (euclid n)) /\ (IMAGE g (UNIONS U) SUBSET (euclid n)) ==> (continuous (\t. (f t + g t)) U (top_of_metric(euclid n,d_euclid)))`, (* {{{ proof *) [ ASSUME_TAC metric_euclid; DISCH_ALL_TAC; ASM_SIMP_TAC[metric_cont]; DISCH_ALL_TAC; ONCE_ASM_SIMP_TAC[open_nbd]; X_GEN_TAC `t:A`; RIGHT_TAC "B"; DISCH_ALL_TAC; USE 6 (REWRITE_RULE[REWRITE_RULE[IN] in_preimage]); USE 2 (REWRITE_RULE[continuous]); USE 3 (REWRITE_RULE[continuous]); AND 6; TYPE_THEN `n` (USE 0 o SPEC); COPY 0; JOIN 8 6; USE 6 (MATCH_MP (REWRITE_RULE[IN] open_ball_center)); CHO 6; AND 6; TYPE_THEN `open_ball(euclid n,d_euclid) (f t) (r'/(&.2))` (USE 2 o SPEC); TYPE_THEN `open_ball(euclid n,d_euclid) (g t) (r'/(&.2))` (USE 3 o SPEC); UND 3; UND 2; REWRITE_TAC[IN]; ASM_SIMP_TAC[open_ball_open]; DISCH_ALL_TAC; TYPE_THEN `B = (preimage (UNIONS U) f (open_ball (euclid n,d_euclid) (f t) (r' / &2))) INTER (preimage (UNIONS U) g (open_ball (euclid n,d_euclid) (g t) (r' / &2)))` ABBREV_TAC ; TYPE_THEN `B` EXISTS_TAC; CONJ_TAC; (* cs1 *) USE 6 (MATCH_MP preimage_subset ); TYPEL_THEN [`(\t. euclid_plus (f t) (g t))`;`UNIONS U`] (USE 6 o ISPECL); UND 6; IMATCH_MP_TAC (prove_by_refinement(`!D B C. ((B:A->bool) SUBSET D) ==> ((D SUBSET C) ==> (B SUBSET C))`,[MESON_TAC [SUBSET_TRANS]])); REWRITE_TAC[subset_preimage]; CONJ_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; EXPAND_TAC "B"; REWRITE_TAC[INTER;in_preimage;IN ;IN_ELIM_THM' ]; ASM_MESON_TAC[]; REWRITE_TAC[IMAGE;SUBSET;IN;IN_ELIM_THM']; REWRITE_TAC[Q_ELIM_THM']; EXPAND_TAC "B"; REWRITE_TAC[INTER;in_preimage;IN ;IN_ELIM_THM' ]; REWRITE_TAC[open_ball;IN_ELIM_THM' ]; DISCH_ALL_TAC; ASM_SIMP_TAC[euclid_add_closure]; TYPE_THEN `d_euclid (f t + (g t)) (f x' + g x') <=. (d_euclid (f t + (g t)) (f x' + g t)) + (d_euclid (f x' + g t) (f x' + g x'))` SUBGOAL_TAC; TYPEL_THEN [`euclid n`;`d_euclid`] (fun t-> ASSUME_TAC (ISPECL t metric_space_triangle)); REWR 17; UND 17 THEN DISCH_THEN IMATCH_MP_TAC ; ASM_SIMP_TAC[euclid_add_closure]; IMATCH_MP_TAC (REAL_ARITH `b + C < d ==> (a <= b + C ==> (a < d))`); (* cs2 *) IMATCH_MP_TAC real_half_LT; CONJ_TAC; ASM_MESON_TAC [euclid_add_closure;SPEC `n:num` metric_translate]; ASM_MESON_TAC[euclid_add_closure;metric_translate_LEFT]; CONJ_TAC; EXPAND_TAC "B"; REWRITE_TAC[INTER;in_preimage ;IN_ELIM_THM]; ASM_REWRITE_TAC[IN]; UND 4; UND 5; REWRITE_TAC[SUBSET;IN;IN_IMAGE ;IN_ELIM_THM']; NAME_CONFLICT_TAC; REWRITE_TAC[Q_ELIM_THM'']; USE 8 (ONCE_REWRITE_RULE [GSYM REAL_LT_HALF1]); ASM_MESON_TAC[REWRITE_RULE[IN] open_ball_nonempty]; EXPAND_TAC "B"; IMATCH_MP_TAC top_inter; ASM_REWRITE_TAC[]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Cauchy sequences and completeness *) (* ------------------------------------------------------------------ *) let sequence = euclid_def `sequence X (f:num->A) <=> (IMAGE f UNIV) SUBSET X`;; let converge = euclid_def `converge (X,d) (f:num -> A) <=> (?x. (x IN (X:A->bool)) /\ (!eps. ?n. (&.0 <. eps) ==> (!i. (n <=| i) ==> (d x (f i) <. eps))))`;; let cauchy_seq = euclid_def `cauchy_seq (X,d) (f:num->A) <=> (sequence X f) /\ (!eps. ?n. !i j. (&.0 <. eps) /\ (n <= i) /\ (n <= j) ==> (d (f i) (f j) <. eps))`;; let complete = euclid_def `complete (X,d) <=> !(f:num->A). cauchy_seq (X,d) f ==> converge (X,d) f`;; let converge_cauchy = prove_by_refinement( `!X d f. metric_space(X,d) /\ (sequence X f) /\ (converge((X:A->bool),d) f) ==> cauchy_seq(X,d) f`, (* {{{ proof *) [ REWRITE_TAC[converge;metric_space]; DISCH_ALL_TAC; REWRITE_TAC[cauchy_seq]; ASM_REWRITE_TAC[]; FIRST_ASSUM CHOOSE_TAC; GEN_TAC; UNDISCH_FIND_TAC `(IN)`; DISCH_ALL_TAC; FIRST_ASSUM (fun t-> MP_TAC (SPEC `eps/(&.2)` t)); DISCH_THEN CHOOSE_TAC; EXISTS_TAC `n:num`; REPEAT GEN_TAC; DISCH_ALL_TAC; SUBGOAL_TAC ` (&.0 <. (eps/(&.2)))`; MATCH_MP_TAC REAL_LT_DIV; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); UNDISCH_TAC `n <=| i`; DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); UNDISCH_TAC `n <=| j`; DISCH_THEN (ANTE_RES_THEN ASSUME_TAC); FIRST_ASSUM (fun t-> MP_TAC (SPECL [`(f:num->A) i`;`x:A`;`(f:num->A) j`] t)); UNDISCH_FIND_TAC `sequence`; REWRITE_TAC[sequence;SUBSET;IN_IMAGE;IN_UNIV]; NAME_CONFLICT_TAC; REWRITE_TAC[IN]; DISCH_TAC; SUBGOAL_TAC `X ((f:num->A) i) /\ X x /\ X (f j)`; ASM_MESON_TAC[IN]; DISCH_THEN (fun t->REWRITE_TAC[t]); DISCH_ALL_TAC; ASM_MESON_TAC[REAL_LET_TRANS;REAL_LT_ADD2;REAL_HALF_DOUBLE]; ]);; (* }}} *) (* relate the metric space version to the real numbers version *) let cauchy_seq_cauchy = prove_by_refinement( `!f. (cauchy_seq(euclid 1,d_euclid) f) ==> (cauchy (\x. (f x 0)))`, (* {{{ proof *) [ GEN_TAC; REWRITE_TAC[cauchy_seq;cauchy;sequence;SUBSET;IN_IMAGE;IN_UNIV]; REWRITE_TAC[IN]; NAME_CONFLICT_TAC; DISCH_ALL_TAC; GEN_TAC; DISCH_TAC; FIRST_ASSUM (fun t -> MP_TAC (SPEC `e':real` t)); DISCH_THEN CHOOSE_TAC; EXISTS_TAC `n':num`; REPEAT GEN_TAC; REWRITE_TAC[ARITH_RULE `a >=| b <=> b <=| a`]; SUBGOAL_TAC `euclid 1 (f (m':num)) /\ euclid 1 (f (n'':num))`; ASM_MESON_TAC[]; ASM_MESON_TAC[euclid1_abs]; ]);; (* }}} *) (* a variant of SEQ_CAUCHY *) let complete_real = prove_by_refinement( `complete (euclid 1,d_euclid)`, (* {{{ proof *) [ REWRITE_TAC[complete;converge]; GEN_TAC; DISCH_THEN (fun t-> ASSUME_TAC t THEN MP_TAC t); DISCH_THEN (fun t -> MP_TAC (MATCH_MP cauchy_seq_cauchy t)); REWRITE_TAC[SEQ_CAUCHY;SEQ_LIM;tends_num_real;SEQ_TENDS]; ABBREV_TAC `z = lim (\x. f x 0)`; REWRITE_TAC[MR1_DEF]; DISCH_TAC; ABBREV_TAC `c = \j. (if (j=0) then (z:real) else (&.0))`; EXISTS_TAC `(c:num->real)`; SUBGOAL_TAC `c IN (euclid 1)`; REWRITE_TAC[IN;euclid]; EXPAND_TAC "c"; GEN_TAC; COND_CASES_TAC; ASM_REWRITE_TAC[]; ARITH_TAC; ARITH_TAC; DISCH_TAC; ASM_REWRITE_TAC[]; GEN_TAC; REWRITE_TAC[GSYM RIGHT_IMP_EXISTS_THM]; DISCH_TAC; FIRST_ASSUM (fun t-> (MP_TAC (SPEC `eps:real` t))); FIRST_ASSUM (fun t-> REWRITE_TAC[t]); DISCH_THEN CHOOSE_TAC; EXISTS_TAC `N:num`; GEN_TAC; SUBGOAL_TAC `euclid 1 (f (i:num))`; UNDISCH_FIND_TAC `cauchy_seq`; REWRITE_TAC[cauchy_seq;sequence;SUBSET;IN_IMAGE;IN_UNIV]; DISCH_THEN (fun t-> MP_TAC (CONJUNCT1 t)); REWRITE_TAC[IN]; MESON_TAC[]; UNDISCH_FIND_TAC `(IN)`; REWRITE_TAC[IN]; SIMP_TAC[euclid1_abs]; DISCH_ALL_TAC; EXPAND_TAC "c"; COND_CASES_TAC; ASM_MESON_TAC[ARITH_RULE `n >=| N <=> N <= n`]; ASM_MESON_TAC[]; ]);; (* }}} *) let sequence_in = prove_by_refinement( `!X (f:num->A) i. sequence X f ==> X (f i)`, (* {{{ proof *) [ REPEAT GEN_TAC; REWRITE_TAC[sequence;SUBSET;IN_IMAGE;IN_UNIV]; REWRITE_TAC[IN]; MESON_TAC[]; ]);; (* }}} *) let proj_cauchy = prove_by_refinement( `!i f n. cauchy_seq (euclid n,d_euclid) f ==> (cauchy_seq (euclid 1,d_euclid) ((proj i) o f))`, (* {{{ proof *) [ REWRITE_TAC[cauchy_seq]; DISCH_ALL_TAC; SUBGOAL_TAC `sequence (euclid 1) (proj (i:num) o f)`; REWRITE_TAC[sequence;SUBSET;IN_IMAGE;o_DEF;IN_UNIV]; NAME_CONFLICT_TAC; MESON_TAC[IN;proj_euclid1]; DISCH_TAC; ASM_REWRITE_TAC[]; GEN_TAC; FIRST_ASSUM (fun t -> CHOOSE_TAC (SPEC `eps:real` t)); EXISTS_TAC `n':num`; DISCH_ALL_TAC; FIRST_ASSUM (fun t-> MP_TAC(SPECL [`i':num`;`j:num`] t)); UNDISCH_FIND_THEN `d_euclid` (fun t-> ALL_TAC); ASM_REWRITE_TAC[]; MATCH_MP_TAC (REAL_ARITH `a <=. b ==> (b <. eps ==> a <. eps)`); REWRITE_TAC[o_DEF;proj_d_euclid]; MATCH_MP_TAC proj_contraction; EXISTS_TAC `n:num`; ASM_MESON_TAC[sequence_in]; ]);; (* }}} *) let complete_euclid = prove_by_refinement( `!n. complete (euclid n,d_euclid)`, (* {{{ proof *) [ REWRITE_TAC[complete;IN]; REPEAT GEN_TAC; DISCH_ALL_TAC; IMP_RES_THEN MP_TAC proj_cauchy; DISCH_TAC; SUBGOAL_TAC `!i. converge (euclid 1,d_euclid) (proj i o f)`; GEN_TAC; ASM_MESON_TAC[complete;complete_real]; REWRITE_TAC[converge;IN]; DISCH_THEN (fun t-> MP_TAC (ONCE_REWRITE_RULE[SKOLEM_THM] t)); DISCH_THEN (X_CHOOSE_TAC `L:num->(num->real)`); EXISTS_TAC `(\j. ((L:num->num->real) j 0))`; SUBCONJ_TAC; REWRITE_TAC[euclid]; GEN_TAC; FIRST_ASSUM (fun t->(MP_TAC (SPEC `m:num` t))); DISCH_ALL_TAC; FIRST_ASSUM (fun t-> (MP_TAC (SPEC `abs((L:num->num->real) m 0)` t))); DISCH_THEN CHOOSE_TAC; PROOF_BY_CONTR_TAC; ASSUME_TAC (REAL_ARITH `!x. ~(x=(&.0)) ==> (&.0 <. abs(x))`); UNDISCH_FIND_TAC `d_euclid`; ASM_SIMP_TAC[]; REWRITE_TAC[GSYM EXISTS_NOT_THM]; EXISTS_TAC `(n:num)+n'`; REWRITE_TAC[o_DEF]; REWRITE_TAC[ARITH_RULE `n' <=| n+| n'`]; MATCH_MP_TAC(REAL_ARITH `(x = y) ==> ~(x (abs(u - x) = abs(u))`); REWRITE_TAC[proj]; SUBGOAL_TAC `euclid n (f (n+| n'))`; ASM_MESON_TAC[cauchy_seq;sequence_in]; REWRITE_TAC[euclid]; DISCH_THEN (fun t-> ASM_SIMP_TAC[t]); ALL_TAC; (* #buffer "CE2"; *) DISCH_TAC; GEN_TAC; CONV_TAC (quant_right_CONV "n"); DISCH_TAC; USE 2 (CONV_RULE (quant_left_CONV "eps")); USE 2 (CONV_RULE (quant_left_CONV "eps")); USE 2 (SPEC `eps/(&.1 +. &. n)`); USE 2 (CONV_RULE (quant_left_CONV "n'")); USE 2 (CONV_RULE (quant_left_CONV "n'")); CHO 2; SUBGOAL_TAC `&.0 <. eps/ (&.1 +. &.n)`; MATCH_MP_TAC REAL_LT_DIV; ASM_REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_LT]; ARITH_TAC; DISCH_THEN (fun t-> (USE 2 (REWRITE_RULE[t]))); SUBGOAL_TAC `!i j. euclid 1 ((proj i o f) (j:num))`; ASM_MESON_TAC[cauchy_seq;sequence_in]; DISCH_TAC; SUBGOAL_TAC `!i. euclid n (f (i:num))`; GEN_TAC; ASM_MESON_TAC[cauchy_seq;sequence_in]; DISCH_TAC; ASM_SIMP_TAC[d_euclid_n]; SUBGOAL_TAC `!(j:num). ?c. !i. (c <=| i) ==> ||. (L j 0 -. f i j) <. eps/(&.1 + &. n)`; CONV_TAC (quant_left_CONV "c"); EXISTS_TAC `n':num->num`; REPEAT GEN_TAC; USE 2 ((SPEC `j:num`)); UND 2; DISCH_ALL_TAC; USE 8 (SPEC `i:num`); UND 8; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[euclid1_abs]; REWRITE_TAC[proj;o_DEF]; CONV_TAC (quant_left_CONV "c"); DISCH_THEN CHOOSE_TAC; ABBREV_TAC `t = (\u. (if (u <| n) then (c u) else (0)))`; SUBGOAL_TAC `?M. (!j. (t:num->num) j <=| M)`; MATCH_MP_TAC max_num_sequence; EXISTS_TAC `n:num`; GEN_TAC; EXPAND_TAC "t"; COND_CASES_TAC; ASM_MESON_TAC[ARITH_RULE `m <| n ==> ~(n <= m)`]; REWRITE_TAC[]; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `M:num`; GEN_TAC; ALL_TAC; (* #set "CE3"; *) DISCH_TAC; MATCH_MP_TAC REAL_POW_2_LT; CONJ_TAC; MATCH_MP_TAC SQRT_POS_LE; REWRITE_TAC[REAL_SUM_SQUARE_POS]; CONJ_TAC; UND 4; REAL_ARITH_TAC; SIMP_TAC[REAL_SUM_SQUARE_POS;SQRT_POW_2]; SUBGOAL_TAC `sum (0,n) (\i'. (L i' 0 - f (i:num) i') * (L i' 0 - f i i')) <=. sum (0,n) (\i'. (eps/(&.1 + &.n)) * (eps/(&.1 + &.n)))`; MATCH_MP_TAC SUM_LE; BETA_TAC; GEN_TAC; DISCH_ALL_TAC; SUBGOAL_TAC `c (r:num) = (t:num->num) r`; EXPAND_TAC "t"; COND_CASES_TAC; REFL_TAC; ASM_MESON_TAC[ARITH_RULE `n +| 0 = n`]; DISCH_TAC; SUBGOAL_TAC `(abs (L r 0 - f (i:num) (r:num)) < eps/(&.1 + &.n))`; USE 7 (SPECL [`r:num`;`i:num`]); UND 7; DISCH_THEN MATCH_MP_TAC; ASM_REWRITE_TAC[]; USE 9 (SPEC `r:num`); JOIN 7 10; UND 7; REWRITE_TAC[LE_TRANS]; ALL_TAC; (* "CE4" *) ABBREV_TAC `b = eps/(&1 + &n)`; ABBREV_TAC `a = (L r 0 - (f:num->num->real) i r)`; REWRITE_TAC[GSYM REAL_POW_2]; REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS]; REAL_ARITH_TAC; MATCH_MP_TAC (REAL_ARITH `(b <. c) ==> ((a <=. b) ==> (a <. c))`); REWRITE_TAC[SUM_CONST]; REWRITE_TAC[REAL_MUL_AC;real_div]; SUBGOAL_TAC `eps pow 2 = eps*eps*(&. 1)`; REWRITE_TAC[REAL_POW_2]; REAL_ARITH_TAC; DISCH_THEN (fun t->REWRITE_TAC[t]); MATCH_MP_TAC REAL_PROP_LT_LMUL; ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_PROP_LT_LMUL; ASM_REWRITE_TAC[]; SUBGOAL_TAC `&.0 <. &.1 + &.n `; REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_LT]; ARITH_TAC; ALL_TAC; (* "CE5" *) SIMP_TAC[REAL_INV_LT]; DISCH_TAC; REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_LT;REAL_OF_NUM_MUL]; REWRITE_TAC[ARITH_RULE `(1+n)*(1+n)*1 = 1+n+n+n*n`]; MATCH_MP_TAC (ARITH_RULE `(0<=a)/\(0<=b) /\(0<1) ==> (a <| 1 + a + a + b)`); CONJ_TAC; ARITH_TAC; CONJ_TAC; ONCE_REWRITE_TAC [ARITH_RULE `0 = n *| 0`]; REWRITE_TAC[LE_MULT_LCANCEL]; ARITH_TAC; ARITH_TAC; ]);; (* }}} *) let subset_sequence = prove_by_refinement( `!(X:A->bool) S f. S SUBSET X /\ sequence S f ==> sequence X f`, (* {{{ proof *) [ REWRITE_TAC[sequence]; SET_TAC[]; ]);; (* }}} *) let subset_cauchy = prove_by_refinement( `!(X:A->bool) S d f. S SUBSET X /\ cauchy_seq(S,d) f ==> cauchy_seq(X,d) f`, (* {{{ proof *) [ REPEAT GEN_TAC; REWRITE_TAC[cauchy_seq]; DISCH_ALL_TAC; ASM_MESON_TAC[subset_sequence]; ]);; (* }}} *) let complete_closed = prove_by_refinement( `!n S. (closed_ (top_of_metric (euclid n,d_euclid)) S) /\ (S SUBSET (euclid n)) ==> (complete (S,d_euclid))`, (* {{{ proof *) [ REWRITE_TAC[complete]; REPEAT GEN_TAC; DISCH_ALL_TAC; GEN_TAC; DISCH_TAC; USE 0 (MATCH_MP closed_open); UND 0; SIMP_TAC[GSYM top_of_metric_unions;metric_euclid]; DISCH_TAC; SUBGOAL_TAC `cauchy_seq(euclid n,d_euclid) f`; ASM_MESON_TAC[subset_cauchy]; DISCH_TAC; SUBGOAL_TAC `converge(euclid n,d_euclid) f`; ASM_MESON_TAC[complete_euclid;complete]; REWRITE_TAC[converge]; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `(x:num->real)`; ASM_REWRITE_TAC[]; PROOF_BY_CONTR_TAC; SUBGOAL_TAC `~(x IN S) ==> (x IN (euclid n DIFF S))`; ASM SET_TAC[]; DISCH_TAC; H_MATCH_MP (HYP "6") (HYP "5"); USE 0 (REWRITE_RULE[open_DEF]); USE 0 (REWRITE_RULE[(MATCH_MP (CONV_RULE (quant_right_CONV "A") top_of_metric_nbd) (SPEC `n:num` metric_euclid))]); USE 0 (CONV_RULE (quant_left_CONV "a")); USE 0 (SPEC `x:num->real`); UND 0; ASM_REWRITE_TAC[SUBSET_DIFF]; ALL_TAC; (* #CC1; *) PROOF_BY_CONTR_TAC; USE 0 (REWRITE_RULE[]); CHO 0; USE 0 (REWRITE_RULE[SUBSET;IN_ELIM_THM';open_ball]); AND 0; AND 4; USE 4 (SPEC `r:real`); CHO 4; H_MATCH_MP (HYP "4") (HYP "8"); USE 10 (SPEC `n':num`); USE 10 (REWRITE_RULE[ARITH_RULE `n <=| n`]); USE 0 (SPEC `(f:num->num->real) n'`); UND 0; USE 9 (REWRITE_RULE[IN]); ASM_REWRITE_TAC[]; SUBGOAL_TAC `(S:(num->real)->bool) ((f:num->num->real) n')`; ASM_MESON_TAC[cauchy_seq;sequence_in]; UND 1; ABBREV_TAC `X = euclid n`; ABBREV_TAC `a = (f:num->num->real) n'`; REWRITE_TAC[IN_DIFF]; REWRITE_TAC[IN;SUBSET]; ASM_MESON_TAC[]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Totally bounded metric spaces *) (* ------------------------------------------------------------------ *) let totally_bounded = euclid_def `totally_bounded ((X:A->bool),d) = (!eps. ?B. (&.0 <. eps) ==> (FINITE B) /\ (!b. (B b) ==> ?x. b = open_ball(X,d) x eps) /\ (X = UNIONS B))`;; let totally_bounded_subset = prove_by_refinement( `!(X:A->bool) d S. (metric_space (X,d)) /\ (totally_bounded(X,d)) /\ (S SUBSET X) ==> (totally_bounded (S,d)) `, (* {{{ proof *) [ REPEAT GEN_TAC; REWRITE_TAC[totally_bounded]; DISCH_ALL_TAC; GEN_TAC; USE 1 (SPEC `eps/(&.2)`); CHO 1; CONV_TAC (quant_right_CONV "B"); DISCH_TAC; SUBGOAL_TAC `&.0 <. eps ==> &.0 <. eps/(&.2)`; DISCH_THEN (fun t-> MP_TAC (ONCE_REWRITE_RULE[GSYM REAL_HALF_DOUBLE] t)); REWRITE_TAC[REAL_DIV_LZERO]; REAL_ARITH_TAC; ASM_REWRITE_TAC[]; DISCH_TAC; (UND 1) THEN (ASM_REWRITE_TAC[]) THEN DISCH_ALL_TAC; SUBGOAL_TAC `!b. ?s. (?t. (t IN (b:A->bool) INTER S)) ==> (s IN b INTER S)`; GEN_TAC; CONV_TAC (quant_left_CONV "t"); MESON_TAC[IN]; CONV_TAC (quant_left_CONV "s"); DISCH_THEN CHOOSE_TAC; ALL_TAC; (* #set "TB1"; *) EXISTS_TAC `IMAGE (\c. (open_ball ((S:A->bool),d) ((s) c) eps)) (B:(A->bool)->bool)`; CONJ_TAC; MATCH_MP_TAC FINITE_IMAGE; ASM_REWRITE_TAC[]; CONJ_TAC; GEN_TAC; REWRITE_TAC[IMAGE;IN_ELIM_THM']; NAME_CONFLICT_TAC; DISCH_THEN (X_CHOOSE_TAC `c:A->bool`); ASM_MESON_TAC[]; MATCH_MP_TAC EQ_EXT; X_GEN_TAC `u:A`; EQ_TAC; DISCH_TAC; SUBGOAL_TAC `(X:A->bool) (u:A)`; ASM_MESON_TAC[SUBSET;IN]; ASM_REWRITE_TAC[]; REWRITE_TAC[REWRITE_RULE[IN] IN_UNIONS]; DISCH_THEN (X_CHOOSE_TAC `b':A->bool`); USE 7 (SPEC `b':A->bool`); REWRITE_TAC[IMAGE]; REWRITE_TAC[IN_ELIM_THM']; CONV_TAC (quant_left_CONV "x"); CONV_TAC (quant_left_CONV "x"); EXISTS_TAC `b':A->bool`; EXISTS_TAC `open_ball((S:A->bool),d) (s (b':A->bool)) eps`; ASM_REWRITE_TAC[IN]; REWRITE_TAC[open_ball]; REWRITE_TAC[IN_ELIM_THM']; ALL_TAC; (* #set "TB2"; *) SUBGOAL_TAC `(u:A) IN (b' INTER S)`; REWRITE_TAC[IN_INTER]; ASM_MESON_TAC[IN]; UND 7; CONV_TAC (quant_left_CONV "t"); CONV_TAC (quant_left_CONV "t"); EXISTS_TAC `u:A`; DISCH_TAC; DISCH_TAC; SUBGOAL_TAC `(S:A->bool) ((s:(A->bool)->A) b')`; UND 7; ASM_REWRITE_TAC[]; REWRITE_TAC[IN_INTER]; MESON_TAC[IN]; DISCH_TAC; ASM_REWRITE_TAC[]; SUBGOAL_TAC `(b':A->bool) ((s:(A->bool)->A) b')`; UND 11; UND 7; REWRITE_TAC[IN_INTER]; ASM_MESON_TAC[IN]; ALL_TAC; (* #set "TB3"; *) DISCH_TAC; AND 9; USE 5 (SPEC `b':A->bool`); H_MATCH_MP (HYP "5") (HYP "13"); CHO 14; ABBREV_TAC `v = (s:(A->bool)->A) b'`; COPY 9; UND 9; UND 12; ASM_REWRITE_TAC[]; REWRITE_TAC[open_ball;IN_ELIM_THM']; DISCH_ALL_TAC; SUBGOAL_TAC `(X x) /\ ((X:A->bool) u) /\ (X v)`; ASM_REWRITE_TAC[]; ASM_MESON_TAC[SUBSET;IN]; DISCH_ALL_TAC; USE 0 (REWRITE_RULE[metric_space]); COPY 16; KILL 1; KILL 7; KILL 11; UND 21; KILL 6; UND 14; DISCH_THEN (fun t-> ASSUME_TAC t THEN (REWRITE_TAC[t])); REWRITE_TAC[open_ball;IN_ELIM_THM']; DISCH_ALL_TAC; USE 0 (SPECL [`v:A`;`x:A`;`u:A`]); UND 0; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; USE 22 (MATCH_MP (REAL_ARITH `(a <=. b + c) ==> !e. (b + c <. e ==> (a <. e))`)); USE 22 (SPEC `eps:real`); UND 22 THEN (DISCH_THEN (MATCH_MP_TAC)); ASM_REWRITE_TAC[]; UND 11; UND 17; MP_TAC (SPEC `eps:real` REAL_HALF_DOUBLE); REAL_ARITH_TAC; REWRITE_TAC[IMAGE;IN_ELIM_THM']; REWRITE_TAC[UNIONS;IN_ELIM_THM']; CONV_TAC (quant_left_CONV "x"); CONV_TAC (quant_left_CONV "x"); NAME_CONFLICT_TAC; CONV_TAC (quant_left_CONV "x'"); X_GEN_TAC `c:A->bool`; CONV_TAC (quant_left_CONV "u'"); GEN_TAC; DISCH_ALL_TAC; UND 10; ASM_REWRITE_TAC[]; REWRITE_TAC[open_ball;IN_ELIM_THM']; MESON_TAC[]; ]);; (* }}} *) let integer_cube_finite = prove_by_refinement( `!n N. FINITE { f | (euclid n f) /\ (!i. (?j. (abs(f i) = &.j) /\ (j <=| N)))}`, (* {{{ proof *) [ REP_GEN_TAC; ABBREV_TAC `fs = FUN {m | m <| n} {x | ?j. (abs x = &.j) /\ (j <=| N)}`; ABBREV_TAC `gs = { f | (euclid n f) /\ (!i. (?j. (abs(f i) = &.j) /\ (j <=| N)))}`; SUBGOAL_TAC `FINITE (fs:(num->real)->bool)`; EXPAND_TAC "fs"; MP_TAC(prove(`!(a:num->bool) (b:real->bool). FINITE a /\ FINITE b ==> (FINITE (FUN a b))`,MESON_TAC[HAS_SIZE;FUN_SIZE])); DISCH_THEN MATCH_MP_TAC; REWRITE_TAC[interval_finite;FINITE_NUMSEG_LT]; DISCH_TAC; ABBREV_TAC `G = (\ u. (\ j. if (n <=| j) then (&.0) else (u j)))`; SUBGOAL_TAC `FINITE { y | ?x. x IN fs /\ (y:(num->real) = G (x:num->real))}`; MATCH_MP_TAC FINITE_IMAGE_EXPAND; ASM_REWRITE_TAC[]; SUBGOAL_TAC `!a b. ((a:(num->real)->bool) = b) ==> (FINITE a ==> FINITE b)`; REP_GEN_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); DISCH_THEN (fun t-> MATCH_MP_TAC t); MATCH_MP_TAC EQ_EXT; GEN_TAC; EXPAND_TAC "gs"; REWRITE_TAC[IN_ELIM_THM']; EXPAND_TAC "fs"; REWRITE_TAC[FUN;IN_ELIM_THM']; NAME_CONFLICT_TAC; EQ_TAC; DISCH_THEN (CHOOSE_TAC ); SUBGOAL_TAC `euclid n x`; REWRITE_TAC[euclid]; GEN_TAC; AND 4; UND 4; EXPAND_TAC "G"; DISCH_THEN (fun t->REWRITE_TAC[t]); DISCH_THEN (fun t->REWRITE_TAC[t]); DISCH_TAC THEN (ASM_REWRITE_TAC[]); GEN_TAC; AND 4; EXPAND_TAC "G"; COND_CASES_TAC; REDUCE_TAC; EXISTS_TAC `0`; REDUCE_TAC; AND 6; USE 8 (SPEC `i':num`); ASM_MESON_TAC[ARITH_RULE `~(n <=| i') ==> (i' <| n)`]; DISCH_ALL_TAC; EXISTS_TAC `\p. (if (p <| n) then ((x:num->real) p) else (CHOICE UNIV))`; CONJ_TAC; REWRITE_TAC[SUPP;SUBSET;IN_ELIM_THM']; NAME_CONFLICT_TAC; CONJ_TAC; GEN_TAC; DISCH_THEN (fun t->REWRITE_TAC[t]); UND 5; MESON_TAC[]; GEN_TAC; COND_CASES_TAC; REWRITE_TAC[]; REWRITE_TAC[]; MATCH_MP_TAC EQ_EXT; X_GEN_TAC `q:num`; EXPAND_TAC "G"; COND_CASES_TAC; ASM_MESON_TAC[euclid]; USE 6 (MATCH_MP (ARITH_RULE `~(n <=| q) ==> (q <| n)`)); ASM_REWRITE_TAC[]; ]);; (* }}} *) let FINITE_scaled_lattice = prove_by_refinement( `!n N s. (&.0 <. s) ==> FINITE {x | euclid n x /\ (!i. (?j. abs(x i) = s*(&.j)) /\ (abs(x i) <=. (&.N) ) ) }`, (* {{{ proof *) [ DISCH_ALL_TAC; ABBREV_TAC `map = ( *# ) s`; ASSUME_TAC REAL_ARCH_SIMPLE; USE 2 (SPEC `inv(s)*(&.N)`); UND 2 THEN (DISCH_THEN (X_CHOOSE_TAC `M:num`)); ASSUME_TAC integer_cube_finite; USE 3 (SPECL [`n:num`;`M:num`]); USE 3 (MATCH_MP (ISPEC `map:(num->real)->(num->real)` FINITE_IMAGE_EXPAND)); UND 3; MATCH_MP_TAC (prove_by_refinement (`!a b. ((b:A->bool) SUBSET a) ==> (FINITE a ==> FINITE b)`,[MESON_TAC[FINITE_SUBSET]])); REWRITE_TAC[SUBSET]; X_GEN_TAC `c:num->real`; REWRITE_TAC[IN_ELIM_THM']; EXPAND_TAC "map"; DISCH_ALL_TAC; EXISTS_TAC `inv(s) *# c`; REWRITE_TAC[euclid_scale_act]; ASM_SIMP_TAC[euclid_scale_closure]; WITH 0 (MATCH_MP (REAL_ARITH `&.0 < s ==> ~(s = &.0)`)); ASM_SIMP_TAC[REAL_MUL_RINV]; CONJ_TAC; GEN_TAC; USE 4 (SPEC `i:num`); AND 4; CHO 6; REWRITE_TAC[euclid_scale;REAL_ABS_MUL;REAL_ABS_INV]; SUBGOAL_TAC `abs s = s`; UND 0; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); EXISTS_TAC `j:num`; ALL_TAC; (* save_goal "C" *) SUBCONJ_TAC; ASM_REWRITE_TAC[]; UND 5; REWRITE_TAC[GSYM (CONJUNCT1 (CONJUNCT2 (REAL_MUL_AC)))]; SIMP_TAC[REAL_MUL_LINV]; REAL_ARITH_TAC; DISCH_TAC; REWRITE_TAC[GSYM REAL_OF_NUM_LE]; USE 7 (GSYM); UND 7 THEN DISCH_THEN (fun t-> REWRITE_TAC[t]); USE 0 (MATCH_MP REAL_LT_INV); ABBREV_TAC `s' = inv(s)`; USE 0 (MATCH_MP (REAL_ARITH `&.0 < s' ==> &.0 <=. s'`)); JOIN 0 4; USE 0 (MATCH_MP REAL_LE_LMUL); JOIN 0 2; UND 0; REAL_ARITH_TAC; REWRITE_TAC[euclid_scale_one]; ]);; (* }}} *) let totally_bounded_cube = prove_by_refinement( `!n N. totally_bounded ({x | euclid n x /\ (!i. abs(x i) <=. (&.N))},d_euclid)`, (* {{{ proof *) [ REP_GEN_TAC; REWRITE_TAC[totally_bounded]; GEN_TAC; CONV_TAC (quant_right_CONV "B"); DISCH_TAC; ABBREV_TAC `cent = {x | euclid n x /\ (!i. (?j. abs(x i) = (eps/(&.n+. &.1))*(&.j)) /\ (abs(x i) <=. (&.N) ) ) }`; SUBGOAL_TAC `&.0 <. (&.n +. &.1)`; REDUCE_TAC; ARITH_TAC; DISCH_TAC; ABBREV_TAC `s = eps/(&.n +. &.1)`; SUBGOAL_TAC `&.0 < s`; EXPAND_TAC "s"; ASM_SIMP_TAC[REAL_LT_DIV]; DISCH_TAC; SUBGOAL_TAC `FINITE (cent:(num->real)->bool)`; EXPAND_TAC "cent"; ASM_SIMP_TAC[FINITE_scaled_lattice]; DISCH_TAC; ABBREV_TAC `cube = {x | euclid n x /\ (!i. abs(x i) <=. (&.N))}`; EXISTS_TAC `IMAGE (\c. open_ball(cube,d_euclid) c eps) cent`; SUBCONJ_TAC; ASM_MESON_TAC[FINITE_IMAGE]; DISCH_TAC; SUBCONJ_TAC; GEN_TAC; REWRITE_TAC[IMAGE;IN_ELIM_THM']; ASM_MESON_TAC[]; DISCH_TAC; ALL_TAC; (* # TB1; *) SUBGOAL_TAC `cent SUBSET (cube:(num->real)->bool)`; REWRITE_TAC[SUBSET]; EXPAND_TAC "cent"; EXPAND_TAC "cube"; REWRITE_TAC[IN_ELIM_THM']; MESON_TAC[]; DISCH_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; EQ_TAC; DISCH_TAC; REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; ASSUME_TAC REAL_ARCH_LEAST; USE 11 (SPEC `s:real`); UND 11 THEN (ASM_REWRITE_TAC[]) THEN DISCH_TAC; USE 11 (CONV_RULE (quant_left_CONV "n")); USE 11 (CONV_RULE (quant_left_CONV "n")); UND 11 THEN (DISCH_THEN (X_CHOOSE_TAC `cs:real->num`)); NAME_CONFLICT_TAC; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); ABBREV_TAC `cx = \ (i:num) . if (&.0 <=. (x i)) then &(cs (x i))* s else --. (&.(cs (--. (x i))) * s )`; EXISTS_TAC `cx:num->real`; EXISTS_TAC `open_ball(cube,d_euclid) cx eps`; ASM_REWRITE_TAC[]; ALL_TAC; (* # TB2; *) SUBGOAL_TAC `euclid n x`; UND 10; EXPAND_TAC "cube"; REWRITE_TAC[IN_ELIM_THM']; MESON_TAC[]; DISCH_TAC; SUBGOAL_TAC `cx IN (euclid n)`; REWRITE_TAC[IN;euclid;]; DISCH_ALL_TAC; EXPAND_TAC "cx"; UND 13; REWRITE_TAC[euclid]; DISCH_THEN (fun t-> MP_TAC(SPEC `m:num` t)); ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[t]); REDUCE_TAC; USE 11 (SPEC `&.0`); UND 11; REDUCE_TAC; ABBREV_TAC `(a:num) = (cs (&.0))`; SUBGOAL_TAC `&.0 <=. &.a *s`; REWRITE_TAC[REAL_MUL_NN]; DISJ1_TAC; REDUCE_TAC; UND 4; REAL_ARITH_TAC; ABBREV_TAC `q = (&.a)*. s`; REAL_ARITH_TAC; DISCH_TAC; ALL_TAC; (* # TB3; *) SUBCONJ_TAC; EXPAND_TAC "cent"; REWRITE_TAC[IN_ELIM_THM']; USE 14 (REWRITE_RULE[IN]); ASM_REWRITE_TAC[]; GEN_TAC; EXPAND_TAC "cx"; BETA_TAC; COND_CASES_TAC; SUBCONJ_TAC; EXISTS_TAC `((cs:real->num) (x (i:num)))`; REWRITE_TAC[REAL_ABS_MUL]; REDUCE_TAC; REWRITE_TAC[REAL_MUL_AC]; AP_THM_TAC; AP_TERM_TAC; UND 4; REAL_ARITH_TAC; DISCH_TAC; ALL_TAC; (* # TB4; *) SUBGOAL_TAC `(&.0 <=. &.(cs ((x:num->real) i)) * s)`; REWRITE_TAC[REAL_MUL_NN]; DISJ1_TAC; REDUCE_TAC; UND 4 THEN REAL_ARITH_TAC; DISCH_THEN (fun t-> MP_TAC (REWRITE_RULE[GSYM REAL_ABS_REFL] t)); DISCH_THEN (fun t-> REWRITE_TAC [t]); USE 11 (SPEC `(x:num->real) i`); UND 11; ASM_REWRITE_TAC []; UND 10; EXPAND_TAC "cube"; REWRITE_TAC [IN_ELIM_THM']; DISCH_THEN (fun t -> ASSUME_TAC (CONJUNCT2 t)); USE 10 (SPEC `i:num`); UND 10; ASSUME_TAC(prove(`&.0 <= x ==> (abs x = x)`,MESON_TAC[REAL_ABS_REFL])); ASM_SIMP_TAC[]; MESON_TAC[REAL_LE_TRANS]; ALL_TAC ; (* #TB5; *) REWRITE_TAC[REAL_ABS_NEG]; SUBCONJ_TAC; EXISTS_TAC `((cs:real->num) (--. (x (i:num))))`; REWRITE_TAC [REAL_ABS_MUL]; REDUCE_TAC; ASSUME_TAC(prove(`&.0 <= x ==> (abs x = x)`,MESON_TAC[REAL_ABS_REFL])); ASSUME_TAC(REAL_ARITH `&.0 < x ==> &. 0 <=. x`); ASM_SIMP_TAC[]; REWRITE_TAC [REAL_MUL_AC]; DISCH_TAC; USE 11 (SPEC `--. (x (i:num))`); UND 11; ASSUME_TAC (REAL_ARITH `!x. ~(&.0 <= x) ==> (&.0 <= --. x)`); ASM_SIMP_TAC[]; UND 10; EXPAND_TAC "cube"; REWRITE_TAC[IN_ELIM_THM']; DISCH_THEN (fun t -> ASSUME_TAC (CONJUNCT2 t)); USE 10 (SPEC `i:num`); UND 10; MP_TAC(prove(`!v. (-- v <=. abs(v))`,REAL_ARITH_TAC)); REWRITE_TAC [REAL_ABS_MUL]; REDUCE_TAC; ASSUME_TAC(prove(`&.0 <= x ==> (abs x = x)`,MESON_TAC[REAL_ABS_REFL])); ASSUME_TAC(REAL_ARITH `&.0 < x ==> &. 0 <=. x`); ASM_SIMP_TAC[]; MESON_TAC[REAL_LE_TRANS]; ALL_TAC; (* #TB6; *) DISCH_TAC; REWRITE_TAC[open_ball;IN_ELIM_THM']; ASM_REWRITE_TAC[]; CONJ_TAC; UND 15; UND 9; REWRITE_TAC[SUBSET;IN]; MESON_TAC[]; SUBGOAL_TAC `d_euclid cx x <= sqrt(&.n)*s`; MATCH_MP_TAC D_EUCLID_BOUND; USE 14 (REWRITE_RULE[IN]); ASM_REWRITE_TAC[]; GEN_TAC; EXPAND_TAC "cx"; BETA_TAC; ASSUME_TAC (REAL_ARITH `!x a b. a <=. x /\ x <. b ==> abs(a - x) <= b -a`); SUBGOAL_TAC `!x. &.0 <=. x ==> abs(&.(cs x)*.s -. x) <=. s`; DISCH_ALL_TAC; USE 11 (SPEC `x':real`); H_MATCH_MP (HYP "11") (HYP "17"); H_MATCH_MP (HYP "16") (HYP "18"); USE 19 (REWRITE_RULE [GSYM REAL_SUB_RDISTRIB]); ALL_TAC; (* # TB7; *) USE 19 (CONV_RULE REDUCE_CONV); ASM_REWRITE_TAC []; DISCH_TAC; COND_CASES_TAC; ASM_MESON_TAC[]; REWRITE_TAC[REAL_ARITH `--x - y = --(x+.y)`;REAL_ABS_NEG]; REWRITE_TAC[REAL_ARITH `x+. y = (x -. (--. y))`]; ASM_MESON_TAC[REAL_ARITH `!u. ~(&.0 <=. u) ==> (&.0 <=. (--. u))`]; ALL_TAC; (* # TB8; *) MATCH_MP_TAC(REAL_ARITH `b < c ==> ((a<=b) ==> (a < c))`); EXPAND_TAC "s"; REWRITE_TAC[real_div;REAL_MUL_AC]; MATCH_MP_TAC(REAL_ARITH`(t < e *(&.1)) ==> (t <. e)`); MATCH_MP_TAC (REAL_LT_LMUL); ASM_REWRITE_TAC[]; ASSUME_TAC REAL_PROP_LT_LCANCEL ; USE 16 (SPEC `&.n +. &.1`); UND 16; DISCH_THEN (MATCH_MP_TAC); REDUCE_TAC; SUBGOAL_TAC `~(&.(n+1) = &.0)`; REDUCE_TAC; ARITH_TAC; REWRITE_TAC[REAL_ARITH`a*b*c = (a*b)*c`]; ALL_TAC; (* # TB8; *) SIMP_TAC[REAL_MUL_RINV]; REDUCE_TAC; DISCH_TAC; CONJ_TAC; ARITH_TAC; SQUARE_TAC; SUBCONJ_TAC; MATCH_MP_TAC SQRT_POS_LE; REDUCE_TAC; DISCH_TAC; SUBCONJ_TAC; REDUCE_TAC; DISCH_TAC; SUBGOAL_TAC `&.0 <=. &.n`; REDUCE_TAC; SIMP_TAC[prove(`!x. (&.0 <=. x) ==> (sqrt(x) pow 2 = x)`,MESON_TAC[SQRT_POW2])]; DISCH_TAC; REWRITE_TAC[REAL_POW_2]; REDUCE_TAC; REWRITE_TAC[LEFT_ADD_DISTRIB;RIGHT_ADD_DISTRIB]; REDUCE_TAC; ABBREV_TAC `m = n*|n +| n`; ARITH_TAC; ALL_TAC; (* # TB9; *) REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; DISCH_THEN CHOOSE_TAC; AND 10; CHO 11; AND 11; UND 10; ASM_REWRITE_TAC[]; MP_TAC (ISPEC `cube:(num->real)->bool` open_ball_subset); REWRITE_TAC[SUBSET]; REWRITE_TAC[IN]; MESON_TAC[]; ]);; (* }}} *) let center_FINITE = prove_by_refinement( `!X d . metric_space ((X:A->bool),d) /\ (totally_bounded (X,d)) ==> (!eps. (&.0 < eps) ==> (?C. (C SUBSET X) /\ (FINITE C) /\ (X = UNIONS (IMAGE (\x. open_ball(X,d) x eps) C))))`, (* {{{ proof *) [ REWRITE_TAC[totally_bounded]; DISCH_ALL_TAC; DISCH_ALL_TAC; USE 1 (SPEC `eps:real`); CHO 1; REWR 1; AND 1; AND 1; USE 4 (CONV_RULE ((quant_left_CONV "x"))); USE 4 (CONV_RULE ((quant_left_CONV "x"))); CHO 4; ABBREV_TAC `C'={z | (X (z:A)) /\ (?b. (B (b:A->bool)) /\ (z = x b))}`; EXISTS_TAC `C':A->bool`; SUBCONJ_TAC; EXPAND_TAC"C'"; REWRITE_TAC[SUBSET;IN_ELIM_THM']; REWRITE_TAC[IN]; MESON_TAC[]; DISCH_TAC; CONJ_TAC; SUBGOAL_TAC `C' SUBSET (IMAGE (x:(A->bool)->A) B)`; EXPAND_TAC"C'"; REWRITE_TAC[SUBSET;IN_IMAGE;IN_ELIM_THM']; NAME_CONFLICT_TAC; MESON_TAC[IN]; DISCH_TAC; SUBGOAL_TAC `FINITE (IMAGE (x:(A->bool)->A) B)`; ASM_MESON_TAC[FINITE_IMAGE]; ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC; (* #g1; *) (ASM (GEN_REWRITE_TAC LAND_CONV)) []; ( (GEN_REWRITE_TAC LAND_CONV)) [UNIONS_DELETE]; AP_TERM_TAC; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[DELETE;IN_ELIM_THM';IMAGE]; EXPAND_TAC "C'"; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC; EQ_TAC; DISCH_ALL_TAC; USE 4 (SPEC `x':A->bool`); CONV_TAC (quant_left_CONV "b'"); CONV_TAC (quant_left_CONV "b'"); CONV_TAC (quant_left_CONV "b'"); EXISTS_TAC `x':(A->bool)`; EXISTS_TAC `(x:(A->bool)->A) x'`; REWRITE_TAC[]; USE 7 (REWRITE_RULE[IN]); H_MATCH_MP (HYP "4") (HYP"7"); ALL_TAC; (* #g2 *) ABBREV_TAC `a = (x:(A->bool)->A) x'`; KILL 1; ASM_REWRITE_TAC[]; UND 8; ASM_REWRITE_TAC[]; MESON_TAC[open_ball_empty;IN]; ALL_TAC; (* #g3 *) DISCH_THEN CHOOSE_TAC; UND 7; DISCH_ALL_TAC; CHO 8; AND 8; CONJ_TAC; KILL 1; ASM_REWRITE_TAC[]; KILL 9; USE 4 (SPEC `b':A->bool`); REWR 1; ASM_MESON_TAC[IN]; KILL 1; ASM_REWRITE_TAC[]; UND 7; ASM_REWRITE_TAC[]; ABBREV_TAC `a = (x:(A->bool)->A) b'`; DISCH_TAC; JOIN 2 7; JOIN 0 2; USE 0 (MATCH_MP open_ball_nonempty); UND 0; ABBREV_TAC `E= open_ball(X,d) (a:A) eps `; MESON_TAC[IN;EMPTY]; ]);; (* }}} *) let open_ball_dist = prove_by_refinement( `!X d x y r. (open_ball(X,d) x r y) ==> (d (x:A) y <. r)`, (* {{{ proof *) [ REWRITE_TAC[open_ball;IN_ELIM_THM']; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; ]);; (* }}} *) let totally_bounded_bounded = prove_by_refinement( `!(X:A->bool) d. metric_space(X,d) /\ totally_bounded (X,d) ==> (?a r. X SUBSET (open_ball(X,d) a r))`, (* {{{ proof *) [ DISCH_ALL_TAC; COPY 0; JOIN 0 1; USE 0 (MATCH_MP center_FINITE); USE 0 (SPEC `&.1`); USE 0 (CONV_RULE REDUCE_CONV); CHO 0; EXISTS_TAC `CHOICE (X:A->bool)`; ASM_CASES_TAC `(X:A->bool) = EMPTY`; ASM_REWRITE_TAC[EMPTY_SUBSET]; USE 1 (MATCH_MP CHOICE_DEF); UND 0 THEN DISCH_ALL_TAC; ABBREV_TAC `(dset:real->bool) = IMAGE (\c. (d (CHOICE (X:A->bool)) (c:A))) C`; SUBGOAL_TAC `FINITE (dset:real->bool)`; EXPAND_TAC"dset"; MATCH_MP_TAC FINITE_IMAGE; ASM_REWRITE_TAC[]; DISCH_TAC; USE 6 (MATCH_MP real_FINITE); CHO 6; EXISTS_TAC `a +. &.1`; REWRITE_TAC[SUBSET]; GEN_TAC; REWRITE_TAC[open_ball;IN_ELIM_THM']; UND 1; REWRITE_TAC[IN]; DISCH_ALL_TAC; UND 4; ASM_REWRITE_TAC[]; DISCH_TAC; (* ASM (GEN_REWRITE_TAC LAND_CONV) []; *) USE 4(REWRITE_RULE[UNIONS;IN_IMAGE;IN_ELIM_THM']); USE 4(fun t -> AP_THM t `x:A`); UND 1; DISCH_THEN (fun t-> ((MP_TAC t) THEN (ASM_REWRITE_TAC[])) THEN ASSUME_TAC t); DISCH_TAC; USE 8 (REWRITE_RULE[IN_ELIM_THM']); CHO 8; AND 8; USE 9 (CONV_RULE NAME_CONFLICT_CONV); CHO 9; ALL_TAC; (* # "tbb"; *) REWR 8; USE 8(REWRITE_RULE[IN]); USE 8 (MATCH_MP open_ball_dist); AND 9; SUBGOAL_TAC `d (CHOICE (X:A->bool)) (x':A) IN (dset:real->bool)`; EXPAND_TAC"dset"; REWRITE_TAC[IN_IMAGE]; ASM_MESON_TAC[]; DISCH_TAC; H_MATCH_MP (HYP"6") (HYP"11"); USE 2 (REWRITE_RULE[metric_space]); USE 2 (SPECL[`(CHOICE (X:A->bool))`;`(x':A)`;`x:A`]); KILL 4; REWR 2; SUBGOAL_TAC `(X:A->bool) x'`; UND 9; UND 0; SET_TAC[IN;SUBSET]; DISCH_TAC; REWR 2; UND 2 THEN DISCH_ALL_TAC; UND 8; UND 12; UND 15; ARITH_TAC; ]);; (* }}} *) let subsequence_rec = prove_by_refinement( `!(X:A->bool) d f C s n r. metric_space(X,d) /\ (totally_bounded(X,d)) /\ (sequence X f) /\ (C SUBSET X) /\ (&.0 < r) /\ (~FINITE{j| C (f j)} /\ C(f s) /\ (!x y. (C x /\ C y) ==> d x y <. r*twopow(--: (&:n)))) ==> (? C' s'. ((C' SUBSET C) /\ (s < s') /\ (~FINITE{j| C' (f j)} /\ C'(f s') /\ (!x y. (C' x /\ C' y) ==> d x y <. r*twopow(--: (&:(SUC n)))))))`, (* {{{ proof *) [ DISCH_ALL_TAC; USE 1 (REWRITE_RULE[totally_bounded]); USE 1 (SPEC `r*twopow(--: (&:(n+| 2)))`); CHO 1; ASSUME_TAC twopow_pos; USE 8 (SPEC `--: (&: (n+| 2))`); ALL_TAC; (* ## need a few lines here to match Z8 with Z1. *) COPY 4; JOIN 9 8; USE 8 (MATCH_MP REAL_LT_MUL); REWR 1; UND 1 THEN DISCH_ALL_TAC; ALL_TAC ; (* "sr1" OK TO HERE *) ASSUME_TAC (ISPECL [`UNIV:num->bool`;`f:num->A`;`B:(A->bool)->bool`;`C:A->bool`] INFINITE_PIGEONHOLE); UND 11; ASM_SIMP_TAC[UNIV]; H_REWRITE_RULE[HYP "10"] (HYP "3"); ASM_REWRITE_TAC []; DISCH_THEN CHOOSE_TAC; EXISTS_TAC `C INTER (b:A->bool)`; CONV_TAC (quant_right_CONV "s'"); SUBCONJ_TAC; REWRITE_TAC[INTER_SUBSET]; DISCH_TAC; AND 12; ASM_REWRITE_TAC[]; SUBGOAL_TAC `~(FINITE ({i | (C INTER b) ((f:num->A) i)} INTER {i | s <| i}))`; PROOF_BY_CONTR_TAC; (USE 15) (REWRITE_RULE[]); USE 15 (MATCH_MP num_above_finite); UND 12; ASM_REWRITE_TAC[]; DISCH_TAC; ABBREV_TAC `J = ({i | (C INTER b) ((f:num->A) i)} INTER {i | s <| i})`; EXISTS_TAC `CHOICE (J:num->bool)`; (* ok to here *) SUBGOAL_TAC `J (CHOICE (J:num->bool))`; MATCH_MP_TAC (REWRITE_RULE [IN] CHOICE_DEF); PROOF_BY_CONTR_TAC; USE 17 (REWRITE_RULE[]); H_REWRITE_RULE[(HYP "17")] (HYP "15"); UND 18; REWRITE_TAC[FINITE_RULES]; ALL_TAC; (* "sr2" *) ABBREV_TAC `s' = (CHOICE (J:num->bool))`; EXPAND_TAC "J"; REWRITE_TAC[INTER;IN_ELIM_THM']; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; KILL 5 THEN (KILL 2) THEN (KILL 1) THEN (KILL 13) THEN (KILL 12); SUBGOAL_TAC `(X x) /\ (X (y:A))`; UND 21 THEN UND 23 THEN UND 3; MESON_TAC[SUBSET;IN]; USE 9 (SPEC `b:A->bool`); H_REWRITE_RULE[HYP "14"] (HYP "1"); CHO 2; ALL_TAC; (* #"gg1" *) JOIN 22 24; JOIN 0 5; H_REWRITE_RULE[(HYP "2")] (HYP "0"); USE 5 (REWRITE_RULE[IN]); USE 5 (MATCH_MP BALL_DIST); DISCH_ALL_TAC; UND 5; MATCH_MP_TAC (REAL_ARITH `(b = c) ==> ((a<. b) ==> (a ~(r = &.0)`)); ASM_REWRITE_TAC[]; REWRITE_TAC[TWOPOW_NEG]; REWRITE_TAC[ARITH_RULE `(n+|2) = 1 + (SUC n)`]; REWRITE_TAC[REAL_POW_ADD;REAL_INV_MUL]; REWRITE_TAC [REAL_MUL_ASSOC]; REWRITE_TAC[REAL_INV2;REAL_POW_1]; REDUCE_TAC; ]);; (* }}} *) let sequence_subseq = prove_by_refinement( `!(X:A->bool) f (ss:num->num). (sequence X f) ==> (sequence X (f o ss))`, (* {{{ proof *) [ REWRITE_TAC[sequence;IMAGE;IN_UNIV;SUBSET;IN_ELIM_THM';o_DEF]; REWRITE_TAC[IN]; MESON_TAC[]; ]);; (* }}} *) let cauchy_subseq = prove_by_refinement( `!(X:A->bool) d f. ((metric_space(X,d))/\(totally_bounded(X,d)) /\ (sequence X f)) ==> (?ss. (subseq ss) /\ (cauchy_seq(X,d) (f o ss)))`, (* {{{ proof *) [ DISCH_ALL_TAC; COPY 0 THEN COPY 1; JOIN 4 3; USE 3 (MATCH_MP totally_bounded_bounded); CHO 3; CHO 3; ALL_TAC; (* {{{ xxx *) ALL_TAC; (* make r pos *) ASSUME_TAC (REAL_ARITH `r <. (&.1 + abs(r))`); ASSUME_TAC (REAL_ARITH `&.0 <. (&.1 + abs(r))`); ABBREV_TAC (`r' = &.1 +. abs(r)`); SUBGOAL_TAC `open_ball(X,d) a r SUBSET open_ball(X,d) (a:A) r'`; ASM_SIMP_TAC[open_ball_nest]; DISCH_TAC; JOIN 3 7; USE 3 (MATCH_MP SUBSET_TRANS); KILL 6; KILL 4; ALL_TAC; (* "cs1" *) SUBGOAL_TAC `( !(x:A) y. (X x) /\ (X y) ==> (d x y <. &.2 *. r'))`; DISCH_ALL_TAC; USE 3 (REWRITE_RULE[SUBSET;IN]); COPY 3; USE 7 (SPEC `x:A`); USE 3 (SPEC `y:A`); H_MATCH_MP (HYP "3") (HYP "6"); H_MATCH_MP (HYP "7") (HYP "4"); JOIN 9 8; JOIN 0 8; USE 0 (MATCH_MP BALL_DIST); ASM_REWRITE_TAC[]; DISCH_TAC; ABBREV_TAC `cond = (\ ((C:A->bool),(s:num)) n. ~FINITE{j| C (f j)} /\ (C(f s)) /\ (!x y. (C x /\ C y) ==> d x y <. (&.2*.r')*. twopow(--: (&:n))))`; ABBREV_TAC `R = (&.2)*r'`; ALL_TAC ; (* 0 case of recursio *) ALL_TAC; (* cs2 *) SUBGOAL_TAC ` (X SUBSET X) /\ (cond ((X:A->bool),0) 0)`; REWRITE_TAC[SUBSET_REFL]; EXPAND_TAC "cond"; CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV); USE 2 (REWRITE_RULE[sequence;SUBSET;IN_IMAGE;IN_UNIV]); USE 2 (REWRITE_RULE[IN]); USE 2 (CONV_RULE (NAME_CONFLICT_CONV)); SUBGOAL_TAC `!x. X((f:num->A) x)`; ASM_MESON_TAC[]; REDUCE_TAC; REWRITE_TAC[TWOPOW_0] THEN REDUCE_TAC; ASM_REWRITE_TAC[]; DISCH_TAC; SUBGOAL_TAC `{ j | (X:A->bool) (f j) } = (UNIV:num->bool)`; MATCH_MP_TAC EQ_EXT; REWRITE_TAC[IN_ELIM_THM;UNIV]; ASM_REWRITE_TAC[]; DISCH_THEN REWRT_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[num_infinite]; ALL_TAC; (* #save_goal "cs3" *) SUBGOAL_TAC `&.0 <. R`; EXPAND_TAC "R"; UND 5; REAL_ARITH_TAC; DISCH_ALL_TAC; SUBGOAL_TAC `!cs n. ?cs' . (FST cs SUBSET X) /\ (cond cs n)==>( (FST cs' SUBSET (FST cs)) /\(SND cs <| ((SND:((A->bool)#num)->num) cs') /\ (cond cs' (SUC n))) )`; DISCH_ALL_TAC; CONV_TAC (quant_right_CONV "cs'"); DISCH_TAC; AND 11; H_REWRITE_RULE[GSYM o (HYP "6")] (HYP "11"); USE 13 (CONV_RULE (SUBS_CONV[GSYM(ISPEC `cs:(A->bool)#num` PAIR)])); USE 13 (CONV_RULE (TOP_DEPTH_CONV GEN_BETA_CONV)); JOIN 10 13; JOIN 12 10; JOIN 2 10; JOIN 1 2; JOIN 0 1; USE 0 (MATCH_MP subsequence_rec); CHO 0; CHO 0; EXISTS_TAC `(C':A->bool,s':num)`; ASM_REWRITE_TAC[FST;SND]; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); ASM_REWRITE_TAC[]; DISCH_TAC; ALL_TAC; (* "cs4" *) USE 11 (REWRITE_RULE[SKOLEM_THM]); CHO 11; ASSUME_TAC (ISPECL[`((X:A->bool),0)`;`cs':(((A->bool)#num)->(num->(A->bool)#num))`] num_RECURSION); CHO 12; EXISTS_TAC `\i. (SND ((fn : num->(A->bool)#num) i))`; USE 11 (CONV_RULE (quant_left_CONV "n")); USE 11 (SPEC `n:num`); USE 11 (SPEC `(fn:num->(A->bool)#num) n`); AND 12; H_REWRITE_RULE[GSYM o (HYP "12")] (HYP "11"); USE 14 (GEN_ALL); ABBREV_TAC `sn = (\i. SND ((fn:num->(A->bool)#num) i))`; ABBREV_TAC `Cn = (\i. FST ((fn:num->(A->bool)#num) i))`; SUBGOAL_TAC `((sn:num->num) 0 = 0) /\ (Cn 0 = (X:A->bool))`; EXPAND_TAC "sn"; EXPAND_TAC "Cn"; UND 13; MESON_TAC[FST;SND]; DISCH_TAC; KILL 13; KILL 11; SUBGOAL_TAC `!(n:num). ((fn n):(A->bool)#num) = (Cn n,sn n)`; EXPAND_TAC "sn"; EXPAND_TAC "Cn"; REWRITE_TAC[PAIR]; DISCH_TAC; H_REWRITE_RULE[(HYP "11")] (HYP"14"); KILL 12; KILL 14; KILL 11; KILL 16; KILL 15; ALL_TAC; (* }}} *) ALL_TAC; (* KILL 10; cs4m *) KILL 8; KILL 7; KILL 3; KILL 5; ALL_TAC; (* cs5 *) TYPE_THEN `!n. (Cn n SUBSET X) /\ (cond (Cn n,sn n) n)` SUBGOAL_TAC; INDUCT_TAC; ASM_REWRITE_TAC[]; SET_TAC[SUBSET]; USE 13 (SPEC `n:num`); REWR 5; ASM_REWRITE_TAC[]; ASM_MESON_TAC[SUBSET_TRANS]; DISCH_TAC; REWR 13; SUBCONJ_TAC; ASM_REWRITE_TAC[SUBSEQ_SUC]; DISCH_TAC; ASM_REWRITE_TAC[cauchy_seq]; ASM_SIMP_TAC[sequence_subseq]; GEN_TAC; TYPE_THEN `!i j. (i <=| j) ==> (Cn j SUBSET (Cn i))` SUBGOAL_TAC; MATCH_MP_TAC SUBSET_SUC2; ASM_REWRITE_TAC[]; DISCH_TAC; ALL_TAC; (* cs6 *) SUBGOAL_TAC `!R e. ?n. (&.0 <. R)/\ (&.0 <. e) ==> R*(twopow(--: (&:n))) <. e`; DISCH_ALL_TAC; REWRITE_TAC[TWOPOW_NEG]; (* cs6b *) ASSUME_TAC (prove(`!n. &.0 < &.2 pow n`,REDUCE_TAC THEN ARITH_TAC)); ONCE_REWRITE_TAC[REAL_MUL_AC]; ASM_SIMP_TAC[REAL_INV_LT]; ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ]; CONV_TAC (quant_right_CONV "n"); DISCH_ALL_TAC; ASSUME_TAC (SPEC `R'/e` REAL_ARCH_SIMPLE); CHO 14; EXISTS_TAC `n:num`; UND 14; MESON_TAC[POW_2_LT;REAL_LET_TRANS]; DISCH_TAC; USE 11 (SPECL [`R:real`;`eps:real`]); CHO 11; EXISTS_TAC `n:num`; DISCH_ALL_TAC; REWR 11; ALL_TAC; (* cs7 *) COPY 3; USE 3 (SPEC `n:num`); AND 3; UND 3; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); DISCH_ALL_TAC; COPY 15; USE 15 (SPEC `i:num`); AND 15; UND 15; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); DISCH_ALL_TAC; COPY 20; USE 20 (SPEC `j:num`); AND 20; UND 20; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); DISCH_ALL_TAC; ABBREV_TAC `e2 = R * twopow (--: (&:n))`; REWRITE_TAC[o_DEF]; TYPEL_THEN [`f (sn i)`;`f (sn j)`] (fun t-> (USE 19 (SPECL t))); KILL 27; KILL 23; KILL 25; KILL 21; KILL 16; KILL 9; KILL 6; KILL 28; COPY 8; USE 8 (SPECL [`n:num`;`i:num`]); USE 6 (SPECL [`n:num`;`j:num`]); UND 11; MATCH_MP_TAC (REAL_ARITH `(c < a) ==> ((a < b) ==> (c < b))`); UND 19; DISCH_THEN (MATCH_MP_TAC); UND 6; UND 8; ASM_REWRITE_TAC[]; UND 22; UND 26; MESON_TAC[IN;SUBSET]; ]);; (* }}} *) let convergent_subseq = prove_by_refinement( `!(X:A->bool) d f. metric_space(X,d) /\ (totally_bounded(X,d)) /\ (complete (X,d)) /\ (sequence X f) ==> ((?(ss:num->num). (subseq ss) /\ (converge (X,d) (f o ss))))`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `?ss. (subseq ss) /\ (cauchy_seq(X,d) (f o ss))` SUBGOAL_TAC; ASM_MESON_TAC[cauchy_subseq]; DISCH_ALL_TAC; CHO 4; EXISTS_TAC `ss:num->num`; USE 2 (REWRITE_RULE[complete]); ASM_REWRITE_TAC[]; ASM_MESON_TAC[]; ]);; (* }}} *) let dense = euclid_def `!U Z. dense U Z <=> (closure U (Z:A->bool) = UNIONS U)`;; let hausdorff = euclid_def `hausdorff U <=> (!x y. (UNIONS U (x:A) /\ UNIONS U y /\ ~(x = y)) ==> (?A B. (U A) /\ (U B) /\ (A x) /\ (B y) /\ (A INTER B = EMPTY)))`;; let dense_subset = prove_by_refinement( `!U Z. (topology_ U) /\ (dense U (Z:A->bool)) ==> (Z SUBSET (UNIONS U))`, (* {{{ proof *) [ REWRITE_TAC[dense]; MESON_TAC[subset_closure]; ]);; (* }}} *) let dense_open = prove_by_refinement( `!U Z. (topology_ U) /\ (Z SUBSET (UNIONS U)) ==> (dense U (Z:A->bool) <=> (!A. (open_ U A) /\ ( (A INTER Z) = EMPTY) ==> (A = EMPTY)))`, (* {{{ proof *) [ DISCH_ALL_TAC; EQ_TAC; DISCH_TAC; DISCH_ALL_TAC; COPY 3; COPY 0; JOIN 0 3; USE 0 (MATCH_MP (open_closed)); TYPE_THEN `Z SUBSET (UNIONS U DIFF A)` SUBGOAL_TAC; ALL_TAC ; (* do1 *) REWRITE_TAC[DIFF_SUBSET]; ONCE_REWRITE_TAC[INTER_COMM]; ASM_REWRITE_TAC[]; DISCH_TAC; JOIN 0 3; JOIN 6 0; USE 0 (MATCH_MP closure_subset); USE 0 (REWRITE_RULE[DIFF_SUBSET]); AND 0; USE 2 (REWRITE_RULE[dense]); H_REWRITE_RULE [(HYP "2")] (HYP "0"); (USE 5 (REWRITE_RULE[open_DEF])); USE 5 (MATCH_MP sub_union); USE 5 (REWRITE_RULE[ SUBSET_INTER_ABSORPTION]); USE 5 (ONCE_REWRITE_RULE[INTER_COMM]); ASM_MESON_TAC[]; REWRITE_TAC[dense]; DISCH_TAC ; MATCH_MP_TAC EQ_SYM; UND 0; UND 1; SIMP_TAC [closure_open]; DISCH_TAC ; SIMP_TAC[closed_UNIV]; DISCH_TAC ; DISCH_ALL_TAC; DISCH_ALL_TAC; USE 2 (SPEC `B:A->bool`); REWR 2; ASM_REWRITE_TAC[]; REWRITE_TAC[INTER_EMPTY]; ]);; (* }}} *) let countable_dense = prove_by_refinement( `!(X:A->bool) d. (metric_space(X,d)) /\ (totally_bounded(X,d)) ==> ?Z. (COUNTABLE Z) /\ (dense (top_of_metric(X,d)) Z)`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `!r. ?z. (COUNTABLE z) /\ (z SUBSET X) /\ (X = UNIONS (IMAGE (\x. open_ball(X,d) x (twopow(--: (&:r)))) z))` SUBGOAL_TAC; GEN_TAC; COPY 0; COPY 1; JOIN 2 3; USE 2 (MATCH_MP center_FINITE); USE 2 (SPEC `twopow (--: (&:r))`); H_MATCH_MP (HYP "2") (THM (SPEC `(--: (&:r))` twopow_pos)); X_CHO 3 `z:A->bool`; EXISTS_TAC `z:A->bool`; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[FINITE_COUNTABLE]; ASM_MESON_TAC[]; CONV_TAC (quant_left_CONV "z"); DISCH_THEN CHOOSE_TAC; TYPE_THEN `UNIONS (IMAGE z (UNIV:num->bool))` EXISTS_TAC; CONJ_TAC; MATCH_MP_TAC COUNTABLE_UNIONS; CONJ_TAC; MATCH_MP_TAC (ISPEC `UNIV:num->bool` COUNTABLE_IMAGE); REWRITE_TAC[NUM_COUNTABLE]; TYPE_THEN `z` EXISTS_TAC ; SET_TAC[]; GEN_TAC; REWRITE_TAC[IN_IMAGE;IN_UNIV]; ASM_MESON_TAC[ ]; TYPE_THEN `U = top_of_metric (X,d)` ABBREV_TAC; TYPE_THEN `Z = UNIONS (IMAGE z UNIV)` ABBREV_TAC; TYPE_THEN `topology_ U /\ (Z SUBSET (UNIONS U))` SUBGOAL_TAC; EXPAND_TAC "U"; KILL 3; ASM_SIMP_TAC[top_of_metric_top;GSYM top_of_metric_unions]; EXPAND_TAC "Z"; MATCH_MP_TAC UNIONS_SUBSET; REWRITE_TAC[IN_IMAGE;IN_UNIV]; ASM_MESON_TAC[]; SIMP_TAC[dense_open]; DISCH_ALL_TAC; GEN_TAC; REWRITE_TAC[open_DEF]; MATCH_MP_TAC (TAUT `( a /\ ~b ==> ~c) ==> (a /\ c ==> b)`); EXPAND_TAC "U"; ASM_SIMP_TAC [top_of_metric_nbd]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY]; DISCH_ALL_TAC; CHO 9; TYPE_THEN `x` (fun t-> (USE 8 (SPEC t))); REWR 8; X_CHO 8 `eps:real`; ALL_TAC; (*"cd5"*) SUBGOAL_TAC `?r. twopow(--: (&:r)) < eps`; ASSUME_TAC (SPECL [`&.1`;`eps:real`] twopow_eps); USE 10 (CONV_RULE REDUCE_CONV); ASM_MESON_TAC[]; DISCH_THEN CHOOSE_TAC; USE 2 (SPEC `r:num`); AND 2; AND 2; TYPE_THEN `x IN X` SUBGOAL_TAC; ASM SET_TAC[IN;SUBSET]; ASM ONCE_REWRITE_TAC[]; REWRITE_TAC[UNIONS;IN_ELIM_THM';IN_IMAGE]; DISCH_THEN CHOOSE_TAC; AND 13; X_CHO 14 `z0:A`; REWR 13; AND 14; EXISTS_TAC `z0:A`; REWRITE_TAC[IN_INTER]; USE 13 (REWRITE_RULE[IN]); USE 13 (MATCH_MP open_ball_dist); CONJ_TAC; USE 8 (REWRITE_RULE [open_ball;SUBSET]); AND 8; USE 8 (SPEC `z0:A`); USE 8 (REWRITE_RULE [IN_ELIM_THM']); UND 8; DISCH_THEN (MATCH_MP_TAC ); ALL_TAC; (* "cd6" *) SUBCONJ_TAC; ASM SET_TAC[IN;SUBSET]; DISCH_TAC; SUBCONJ_TAC; ASM SET_TAC[IN;SUBSET]; DISCH_TAC; UND 13; UND 10; USE 0 (REWRITE_RULE[metric_space]); TYPEL_THEN [`z0`;`x`;`z0`] (fun t-> USE 0 (SPECL t)); REWR 0; UND 0; REAL_ARITH_TAC; EXPAND_TAC "Z"; REWRITE_TAC[IN_UNIONS;IN_IMAGE;IN_UNIV]; UND 14; MESON_TAC[]; ]);; (* }}} *) let metric_hausdorff = prove_by_refinement( `! (X:A->bool) d. (metric_space(X,d))==> (hausdorff (top_of_metric(X,d)))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[hausdorff;]; ASM_SIMP_TAC [GSYM top_of_metric_unions]; DISCH_ALL_TAC; COPY 0; USE 4 (REWRITE_RULE[metric_space]); TYPEL_THEN [`x`;`y`;`x`] (USE 4 o SPECL); REWR 4; TYPE_THEN `r = d x y` ABBREV_TAC; SUBGOAL_TAC `&.0 <. r`; UND 4; ARITH_TAC; DISCH_TAC; TYPE_THEN `open_ball(X,d) x (r/(&.2))` EXISTS_TAC; TYPE_THEN `open_ball(X,d) y (r/(&.2))` EXISTS_TAC; ALL_TAC; (* mh1 *) KILL 4; ASM_SIMP_TAC[open_ball_open]; COPY 6; USE 4 (ONCE_REWRITE_RULE[GSYM REAL_LT_HALF1]); ASM_SIMP_TAC[REWRITE_RULE[IN] open_ball_nonempty]; PROOF_BY_CONTR_TAC; USE 7 (REWRITE_RULE[EMPTY_EXISTS]); CHO 7; USE 7 (REWRITE_RULE[IN_INTER]); USE 7 (REWRITE_RULE[IN]); ALL_TAC; (* mh2 *) AND 7; COPY 7; COPY 8; USE 7 (MATCH_MP open_ball_dist); USE 8 (MATCH_MP open_ball_dist); USE 0 (REWRITE_RULE[metric_space]); COPY 0; TYPEL_THEN [`x`;`u`;`y`] (fun t-> (USE 0 (ISPECL t))); TYPEL_THEN [`y`;`u`;`y`] (fun t-> (USE 11 (ISPECL t))); UND 11; UND 0; ASM_REWRITE_TAC[]; TYPE_THEN `X u` SUBGOAL_TAC; ASM_MESON_TAC[ open_ball_subset;IN;SUBSET]; DISCH_THEN (REWRT_TAC); DISCH_ALL_TAC; UND 14; UND 0; DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); JOIN 7 8; USE 0 (MATCH_MP (REAL_ARITH `(a <. c) /\ (b < c) ==> b+a < c + c`)); USE 0 (CONV_RULE REDUCE_CONV); ASM_MESON_TAC[real_lt]; ]);; (* }}} *) (* compactness *) let compact = euclid_def `compact U (K:A->bool) <=> (K SUBSET UNIONS U) /\ (!V. (K SUBSET UNIONS V ) /\ (V SUBSET U) ==> (?W. (W SUBSET V) /\ (FINITE W) /\ (K SUBSET UNIONS W )))`;; let closed_compact = prove_by_refinement( `!U K (S:A->bool). ((topology_ U) /\ (compact U K) /\ (closed_ U S) /\ (S SUBSET K)) ==> (compact U S)`, (* {{{ proof *) [ REWRITE_TAC[compact]; DISCH_ALL_TAC; DISCH_ALL_TAC; SUBCONJ_TAC; ASM_MESON_TAC[ SUBSET_TRANS]; DISCH_ALL_TAC; DISCH_ALL_TAC; TYPE_THEN `A = UNIONS U DIFF S` ABBREV_TAC; TYPE_THEN `open_ U A` SUBGOAL_TAC ; ASM_MESON_TAC[ closed_open]; TYPE_THEN `V' = (A INSERT V)` ABBREV_TAC; DISCH_ALL_TAC; TYPE_THEN `V'` (USE 2 o SPEC); ALL_TAC; (* cc1 *) TYPE_THEN `K SUBSET UNIONS V'` SUBGOAL_TAC; EXPAND_TAC "V'"; EXPAND_TAC "A"; UND 6; UND 4; UND 1; TYPE_THEN `X = UNIONS U ` ABBREV_TAC; ALL_TAC; (* cc2 *) REWRITE_TAC[SUBSET_UNIONS_INSERT]; SET_TAC[SUBSET;UNIONS;DIFF]; DISCH_ALL_TAC; TYPE_THEN `V' SUBSET U` SUBGOAL_TAC; EXPAND_TAC "V'"; EXPAND_TAC "A"; REWRITE_TAC[INSERT_SUBSET]; ASM_REWRITE_TAC[]; ASM_MESON_TAC[IN;open_DEF]; DISCH_ALL_TAC; REWR 2; CHO 2; TYPE_THEN `W DELETE A` EXISTS_TAC; CONJ_TAC; AND 2; UND 13; EXPAND_TAC "V'"; SET_TAC[SUBSET;INSERT;DELETE]; ASM_REWRITE_TAC[FINITE_DELETE]; AND 2; AND 2; UND 2; UND 4; UND 1; EXPAND_TAC "A"; TYPE_THEN `X = UNIONS U ` ABBREV_TAC; ALL_TAC; (* cc3 *) DISCH_ALL_TAC; MATCH_MP_TAC UNIONS_DELETE2; CONJ_TAC; ASM_MESON_TAC[SUBSET_TRANS]; SET_TAC[INTER;DIFF]; ]);; (* }}} *) let compact_closed = prove_by_refinement( `!U (K:A->bool). (topology_ U) /\ (hausdorff U) /\ (compact U K) ==> (closed_ U K)`, (* {{{ proof *) [ REWRITE_TAC[hausdorff;compact;closed]; DISCH_ALL_TAC; ASM_REWRITE_TAC[open_DEF]; ONCE_ASM_SIMP_TAC[open_nbd]; TYPE_THEN `C = UNIONS U DIFF K` ABBREV_TAC; GEN_TAC; CONV_TAC (quant_right_CONV "B"); DISCH_ALL_TAC; (* cc1 *) TYPE_THEN `!y. (K y) ==> (?A B. (U A /\ U B /\ A x /\ B y /\ (A INTER B = {})))` SUBGOAL_TAC; DISCH_ALL_TAC; UND 1; DISCH_THEN MATCH_MP_TAC; CONJ_TAC; UND 5; EXPAND_TAC "C"; REWRITE_TAC[DIFF;IN_ELIM_THM']; REWRITE_TAC [IN]; MESON_TAC[]; CONJ_TAC; UND 6; UND 2; REWRITE_TAC[SUBSET;IN]; MESON_TAC[]; PROOF_BY_CONTR_TAC; REWR 1; REWR 5; UND 5; UND 6; EXPAND_TAC "C"; REWRITE_TAC[DIFF;IN_ELIM_THM']; MESON_TAC[IN]; (* cc2 *) DISCH_ALL_TAC; USE 6 (CONV_RULE (quant_left_CONV "B")); USE 6 (CONV_RULE (quant_left_CONV "B")); USE 6 (CONV_RULE (quant_left_CONV "B")); CHO 6; TYPE_THEN `IMAGE B K` (USE 3 o SPEC); TYPE_THEN `K SUBSET UNIONS (IMAGE B K) /\ IMAGE B K SUBSET U` SUBGOAL_TAC; CONJ_TAC; REWRITE_TAC[SUBSET;UNIONS;IN_IMAGE;IN_ELIM_THM']; X_GEN_TAC `y:A`; REWRITE_TAC[IN]; ASM_MESON_TAC[]; REWRITE_TAC[SUBSET;IN_IMAGE]; NAME_CONFLICT_TAC; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); ASM_MESON_TAC[IN]; DISCH_TAC; REWR 3; CHO 3; (* cc3 *) AND 3; AND 3; JOIN 8 9; USE 8 (MATCH_MP finite_subset); X_CHO 8 `kc:A->bool`; USE 6 (CONV_RULE (quant_left_CONV "A")); USE 6 (CONV_RULE (quant_left_CONV "A")); CHO 6; (* cc4 *) TYPE_THEN `K = EMPTY` ASM_CASES_TAC; REWR 4; USE 4 (REWRITE_RULE[DIFF_EMPTY]); EXISTS_TAC `C:A->bool`; ASM_REWRITE_TAC[SUBSET_REFL]; EXPAND_TAC "C"; USE 0 (REWRITE_RULE[topology]); UND 0; MESON_TAC[topology;IN;SUBSET_REFL]; TYPE_THEN `~(kc = EMPTY)` SUBGOAL_TAC; PROOF_BY_CONTR_TAC; USE 10 (REWRITE_RULE[]); REWR 8; USE 8 (REWRITE_RULE[IMAGE_CLAUSES]); REWR 3; USE 3 (REWRITE_RULE[UNIONS_0;SUBSET_EMPTY]); ASM_MESON_TAC[ ]; REWRITE_TAC[EMPTY_EXISTS]; DISCH_THEN CHOOSE_TAC; ALL_TAC; (* cc5 *) TYPE_THEN `INTERS (IMAGE A kc)` EXISTS_TAC; TYPE_THEN `INTERS (IMAGE A kc) INTER (UNIONS (IMAGE B kc)) = EMPTY` SUBGOAL_TAC; REWRITE_TAC[INTER;UNIONS]; MATCH_MP_TAC EQ_EXT; GEN_TAC; REWRITE_TAC[IN_ELIM_THM';EMPTY]; MATCH_MP_TAC (TAUT `(a ==> ~b )==> ~(a /\ b)`); REWRITE_TAC[IN_INTERS;IN_IMAGE]; DISCH_ALL_TAC; CHO 11; AND 11; CHO 13; IN_ELIM 13; REWR 11; USE 12 (CONV_RULE (quant_left_CONV "x")); USE 12 (CONV_RULE (quant_left_CONV "x")); TYPE_THEN `x''` (USE 12 o SPEC); TYPE_THEN `A x''` (USE 12 o SPEC); IN_ELIM 12; REWR 12; TYPE_THEN `x''` (USE 6 o SPEC); TYPE_THEN `K x''` SUBGOAL_TAC; UND 13; AND 8; UND 13; MESON_TAC[SUBSET;IN]; DISCH_TAC; REWR 6; USE 6 (REWRITE_RULE [INTER]); (AND 6); (AND 6); (AND 6); (AND 6); USE 6 (fun t-> AP_THM t `x':A`); USE 6 (REWRITE_RULE[IN_ELIM_THM';EMPTY]); ASM_MESON_TAC[IN]; DISCH_TAC; ALL_TAC; (* cc6 *) SUBCONJ_TAC; EXPAND_TAC "C"; REWRITE_TAC[DIFF_SUBSET]; CONJ_TAC; MATCH_MP_TAC INTERS_SUBSET2; TYPE_THEN `A u` EXISTS_TAC ; REWRITE_TAC[IMAGE;IN_ELIM_THM']; CONJ_TAC; TYPE_THEN `u` EXISTS_TAC; ASM_REWRITE_TAC[]; MATCH_MP_TAC sub_union; TYPE_THEN `u` (USE 6 o SPEC); AND 8; USE 12 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[IN]; UND 3; ASM_REWRITE_TAC[]; UND 11; TYPE_THEN `a' = INTERS (IMAGE A kc)` ABBREV_TAC; TYPE_THEN `b' = UNIONS (IMAGE B kc)` ABBREV_TAC; SET_TAC[INTER;SUBSET;EMPTY]; DISCH_TAC; ALL_TAC; (* cc7 *) CONJ_TAC; REWRITE_TAC[INTERS;IN_IMAGE;IN_ELIM_THM']; GEN_TAC; DISCH_THEN CHOOSE_TAC; TYPE_THEN `x'` (USE 6 o SPEC); ASM_REWRITE_TAC[]; USE 8 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[IN]; MATCH_MP_TAC open_inters; ASM_REWRITE_TAC[]; CONJ_TAC; REWRITE_TAC[SUBSET;IN_IMAGE;]; NAME_CONFLICT_TAC; GEN_TAC; DISCH_THEN CHOOSE_TAC; USE 6 (SPEC `x':A`); USE 8 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[IN]; CONJ_TAC; ASM_MESON_TAC[FINITE_IMAGE]; REWRITE_TAC[EMPTY_EXISTS]; TYPE_THEN `A u` EXISTS_TAC; REWRITE_TAC[IN_IMAGE]; ASM_MESON_TAC[]; ]);; (* }}} *) let compact_totally_bounded = prove_by_refinement( `!(X:A->bool) d.( metric_space(X,d)) /\ (compact (top_of_metric(X,d)) X) ==> (totally_bounded (X,d))`, (* {{{ proof *) [ REWRITE_TAC[totally_bounded;compact]; DISCH_ALL_TAC; DISCH_ALL_TAC; CONV_TAC (quant_right_CONV "B"); DISCH_TAC; TYPE_THEN `IMAGE (\x. open_ball(X,d) x eps) X` (USE 2 o SPEC); TYPE_THEN `X SUBSET UNIONS (IMAGE (\x. open_ball (X,d) x eps) X)` SUBGOAL_TAC; (REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE]); GEN_TAC; NAME_CONFLICT_TAC; REWRITE_TAC[IN]; DISCH_TAC; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); TYPE_THEN `x` EXISTS_TAC; TYPE_THEN `open_ball (X,d) x eps` EXISTS_TAC; ASM_REWRITE_TAC[]; ASM_MESON_TAC[open_ball_nonempty;IN]; DISCH_TAC; REWR 2; ALL_TAC; (* ctb1 *) TYPE_THEN `IMAGE (\x. open_ball (X,d) x eps) X SUBSET top_of_metric (X,d)` SUBGOAL_TAC; TYPE_THEN `IMAGE (\x. open_ball (X,d) x eps) X SUBSET open_balls(X,d)` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN_IMAGE;open_balls;IN_ELIM_THM']; MESON_TAC[IN]; MESON_TAC[SUBSET_TRANS;top_of_metric_open_balls]; DISCH_TAC; REWR 2; CHO 2; TYPE_THEN `W` EXISTS_TAC; ASM_REWRITE_TAC[]; CONJ_TAC; DISCH_ALL_TAC; AND 2; USE 7 (REWRITE_RULE [SUBSET;IN_IMAGE]); ASM_MESON_TAC[IN]; MATCH_MP_TAC SUBSET_ANTISYM; ASM_REWRITE_TAC[]; TYPE_THEN `W SUBSET top_of_metric (X,d)` SUBGOAL_TAC; ASM_MESON_TAC[SUBSET_TRANS]; DISCH_ALL_TAC; USE 6 (MATCH_MP UNIONS_UNIONS); ASM_MESON_TAC[top_of_metric_unions]; ]);; (* }}} *) (* If W is empty then INTERS W = UNIV, rather than EMPTY. Thus, extra arguments must be provided for this case. *) let finite_inters = prove_by_refinement( `!U V . (topology_ U) /\ (compact U (UNIONS U)) /\ (INTERS V = EMPTY) /\ (!(u:A->bool). (V u) ==> (closed_ U u)) ==> (?W. (W SUBSET V) /\ (FINITE W) /\ (INTERS W = EMPTY))`, (* {{{ proof *) [ REWRITE_TAC[compact;SUBSET_REFL]; DISCH_ALL_TAC; (* {{{ proof *) TYPE_THEN `IMAGE (\r. ((UNIONS U) DIFF r)) V` (USE 1 o SPEC); TYPE_THEN `IMAGE (\r. UNIONS U DIFF r) V SUBSET U` SUBGOAL_TAC; REWRITE_TAC[IMAGE;SUBSET;IN_ELIM_THM']; GEN_TAC; DISCH_THEN CHOOSE_TAC; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[top_univ;IN;SUBSET_DIFF]; IN_ELIM 4; TYPE_THEN `x'` (USE 3 o SPEC); REWR 3; USE 3 (REWRITE_RULE[closed;open_DEF]); ASM_REWRITE_TAC[]; DISCH_TAC; REWR 1; ALL_TAC; (* fi1 *) TYPE_THEN `UNIONS U SUBSET UNIONS (IMAGE (\r. UNIONS U DIFF r) V)` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE]; GEN_TAC; DISCH_THEN CHOOSE_TAC; NAME_CONFLICT_TAC; USE 2 (REWRITE_RULE[INTERS_EQ_EMPTY]); TYPE_THEN `x` (USE 2 o SPEC); CHO 2; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); TYPE_THEN `a` EXISTS_TAC; TYPE_THEN `UNIONS U DIFF a` EXISTS_TAC ; ASM_REWRITE_TAC[IN]; REWRITE_TAC[DIFF;IN_ELIM_THM';IN_UNIONS]; ASM_MESON_TAC[IN]; DISCH_TAC; REWR 1; CHO 1; AND 1; AND 1; JOIN 7 6; (*** Modified by JRH for changed theorem name USE 6 (MATCH_MP FINITE_SUBSET_IMAGE); ****) USE 6 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); CHO 6; ALL_TAC; (* fi2*) TYPE_THEN `s'={}` ASM_CASES_TAC ; REWR 6; USE 6 (REWRITE_RULE[IMAGE_CLAUSES;SUBSET_EMPTY]); REWR 1; USE 1 (REWRITE_RULE[UNIONS_0;SUBSET_EMPTY]); USE 1 (REWRITE_RULE [UNIONS_EQ_EMPTY]); UND 1; DISCH_THEN DISJ_CASES_TAC; REWR 4; USE 4 (REWRITE_RULE[SUBSET_EMPTY;IMAGE;EQ_EMPTY;IN_ELIM_THM']); TYPE_THEN `V = {}` SUBGOAL_TAC; PROOF_BY_CONTR_TAC; USE 8 (REWRITE_RULE[EMPTY_EXISTS]); CHO 8; USE 4 (CONV_RULE (quant_left_CONV "x'")); USE 4 (CONV_RULE (quant_left_CONV "x'")); TYPE_THEN `u` (USE 4 o SPEC); TYPE_THEN `UNIONS {} DIFF u` (USE 4 o SPEC); ASM_MESON_TAC[]; USE 2 (REWRITE_RULE[INTERS_EQ_EMPTY]); REWRITE_TAC[EQ_EMPTY]; ASM_MESON_TAC[]; ALL_TAC; (* fi3*) TYPE_THEN `V` EXISTS_TAC; ASM_REWRITE_TAC[SUBSET_REFL]; USE 3 (REWRITE_RULE[closed;open_DEF]); REWR 3; USE 3 (REWRITE_RULE[REWRITE_RULE[IN] IN_SING]); TYPE_THEN `!u. V u ==> (u = EMPTY)` SUBGOAL_TAC; DISCH_ALL_TAC; TYPE_THEN `u` (USE 3 o SPEC); REWR 3; AND 3; ASM_MESON_TAC[ SUBSET_EMPTY;UNIONS_EQ_EMPTY]; DISCH_TAC; TYPE_THEN `V SUBSET {EMPTY}` SUBGOAL_TAC; REWRITE_TAC[INSERT_DEF]; REWRITE_TAC[IN_ELIM_THM']; REWRITE_TAC[IN;EMPTY;SUBSET]; ASM_MESON_TAC[IN;EMPTY]; (* }}} *) MESON_TAC[FINITE_SING;FINITE_SUBSET]; ALL_TAC; (* fi4*) TYPE_THEN `s'` EXISTS_TAC; ASM_REWRITE_TAC[INTERS_EQ_EMPTY]; GEN_TAC; USE 7 (REWRITE_RULE[EMPTY_EXISTS]); CHO 7; TYPE_THEN `UNIONS U x` ASM_CASES_TAC ; TYPE_THEN `UNIONS W x` SUBGOAL_TAC; USE 1 (REWRITE_RULE[SUBSET;IN]); UND 8; UND 1; MESON_TAC[]; DISCH_ALL_TAC; TYPE_THEN `UNIONS (IMAGE (\r. UNIONS U DIFF r) s') x` SUBGOAL_TAC; AND 6; AND 6; USE 6 (MATCH_MP UNIONS_UNIONS); USE 6 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[]; REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; REWRITE_TAC[IN]; DISCH_ALL_TAC; LEFT 10 "x"; LEFT 10 "x"; TYPE_THEN `S:A->bool` (X_CHO 10) ; CHO 10; AND 10; REWR 10; TYPE_THEN `S` EXISTS_TAC; ASM_REWRITE_TAC[]; USE 10(REWRITE_RULE[REWRITE_RULE[IN] IN_DIFF]); ASM_REWRITE_TAC[]; TYPE_THEN `u` EXISTS_TAC; IN_ELIM 7; ASM_REWRITE_TAC[]; PROOF_BY_CONTR_TAC; USE 9 (REWRITE_RULE[]); TYPE_THEN `V u` SUBGOAL_TAC; AND 6; AND 6; USE 11 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[]; DISCH_TAC; H_MATCH_MP (HYP "3") (HYP "10"); USE 11(REWRITE_RULE[closed;open_DEF]); USE 11 (REWRITE_RULE [SUBSET;IN]); ASM_MESON_TAC[]; ]);; (* }}} *) (* first part of the proof of cauchy_subseq *) let cauchy_subseq_sublemma = prove_by_refinement( `!(X:A->bool) d f. ((metric_space(X,d))/\(totally_bounded(X,d)) /\ (sequence X f)) ==> (?R Cn sn cond. (&0 < R) /\ (!x y. X x /\ X y ==> d x y < R) /\ (cond (X,0) 0) /\ (sn 0 = 0) /\ (Cn 0 = X) /\ (!n. Cn n SUBSET X /\ cond (Cn n,sn n) n) /\ (!n. Cn (SUC n) SUBSET Cn n /\ sn n <| sn (SUC n)) /\ (((\ (C,s). \n. (~FINITE {j | C (f j)}) /\ (C (f s)) /\ (!x y. (C x /\ C y) ==> d x y < R * (twopow (--: (&:n))))) = cond) ))`, (* {{{ proof *) [ DISCH_ALL_TAC; COPY 0 THEN COPY 1; JOIN 4 3; USE 3 (MATCH_MP totally_bounded_bounded); CHO 3; CHO 3; ALL_TAC; (* {{{ xxx *) ALL_TAC; (* make r pos *) ASSUME_TAC (REAL_ARITH `r <. (&.1 + abs(r))`); ASSUME_TAC (REAL_ARITH `&.0 <. (&.1 + abs(r))`); ABBREV_TAC (`r' = &.1 +. abs(r)`); SUBGOAL_TAC `open_ball(X,d) a r SUBSET open_ball(X,d) (a:A) r'`; ASM_SIMP_TAC[open_ball_nest]; DISCH_TAC; JOIN 3 7; USE 3 (MATCH_MP SUBSET_TRANS); KILL 6; KILL 4; ALL_TAC; (* "cs1" *) SUBGOAL_TAC `( !(x:A) y. (X x) /\ (X y) ==> (d x y <. &.2 *. r'))`; DISCH_ALL_TAC; USE 3 (REWRITE_RULE[SUBSET;IN]); COPY 3; USE 7 (SPEC `x:A`); USE 3 (SPEC `y:A`); H_MATCH_MP (HYP "3") (HYP "6"); H_MATCH_MP (HYP "7") (HYP "4"); JOIN 9 8; JOIN 0 8; USE 0 (MATCH_MP BALL_DIST); ASM_REWRITE_TAC[]; DISCH_TAC; ABBREV_TAC `cond = (\ ((C:A->bool),(s:num)) n. ~FINITE{j| C (f j)} /\ (C(f s)) /\ (!x y. (C x /\ C y) ==> d x y <. (&.2*.r')*. twopow(--: (&:n))))`; ABBREV_TAC `R = (&.2)*r'`; ALL_TAC ; (* 0 case of recursio *) ALL_TAC; (* cs2 *) SUBGOAL_TAC ` (X SUBSET X) /\ (cond ((X:A->bool),0) 0)`; REWRITE_TAC[SUBSET_REFL]; EXPAND_TAC "cond"; CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV); USE 2 (REWRITE_RULE[sequence;SUBSET;IN_IMAGE;IN_UNIV]); USE 2 (REWRITE_RULE[IN]); USE 2 (CONV_RULE (NAME_CONFLICT_CONV)); SUBGOAL_TAC `!x. X((f:num->A) x)`; ASM_MESON_TAC[]; REDUCE_TAC; REWRITE_TAC[TWOPOW_0] THEN REDUCE_TAC; ASM_REWRITE_TAC[]; DISCH_TAC; SUBGOAL_TAC `{ j | (X:A->bool) (f j) } = (UNIV:num->bool)`; MATCH_MP_TAC EQ_EXT; REWRITE_TAC[IN_ELIM_THM;UNIV]; ASM_REWRITE_TAC[]; DISCH_THEN REWRT_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[num_infinite]; ALL_TAC; (* #save_goal "cs3" *) SUBGOAL_TAC `&.0 <. R`; EXPAND_TAC "R"; UND 5; REAL_ARITH_TAC; DISCH_ALL_TAC; SUBGOAL_TAC `!cs n. ?cs' . (FST cs SUBSET X) /\ (cond cs n)==>( (FST cs' SUBSET (FST cs)) /\(SND cs <| ((SND:((A->bool)#num)->num) cs') /\ (cond cs' (SUC n))) )`; DISCH_ALL_TAC; CONV_TAC (quant_right_CONV "cs'"); DISCH_TAC; AND 11; H_REWRITE_RULE[GSYM o (HYP "6")] (HYP "11"); USE 13 (CONV_RULE (SUBS_CONV[GSYM(ISPEC `cs:(A->bool)#num` PAIR)])); USE 13 (CONV_RULE (TOP_DEPTH_CONV GEN_BETA_CONV)); JOIN 10 13; JOIN 12 10; JOIN 2 10; JOIN 1 2; JOIN 0 1; USE 0 (MATCH_MP subsequence_rec); CHO 0; CHO 0; EXISTS_TAC `(C':A->bool,s':num)`; ASM_REWRITE_TAC[FST;SND]; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); ASM_REWRITE_TAC[]; DISCH_TAC; ALL_TAC; (* "cs4" *) USE 11 (REWRITE_RULE[SKOLEM_THM]); CHO 11; ASSUME_TAC (ISPECL[`((X:A->bool),0)`;`cs':(((A->bool)#num)->(num->(A->bool)#num))`] num_RECURSION); CHO 12; ALL_TAC;(* EXISTS_TAC `\i. (SND ((fn : num->(A->bool)#num) i))`; *) USE 11 (CONV_RULE (quant_left_CONV "n")); USE 11 (SPEC `n:num`); USE 11 (SPEC `(fn:num->(A->bool)#num) n`); AND 12; H_REWRITE_RULE[GSYM o (HYP "12")] (HYP "11"); USE 14 (GEN_ALL); ABBREV_TAC `sn = (\i. SND ((fn:num->(A->bool)#num) i))`; ABBREV_TAC `Cn = (\i. FST ((fn:num->(A->bool)#num) i))`; SUBGOAL_TAC `((sn:num->num) 0 = 0) /\ (Cn 0 = (X:A->bool))`; EXPAND_TAC "sn"; EXPAND_TAC "Cn"; UND 13; MESON_TAC[FST;SND]; DISCH_TAC; KILL 13; KILL 11; SUBGOAL_TAC `!(n:num). ((fn n):(A->bool)#num) = (Cn n,sn n)`; EXPAND_TAC "sn"; EXPAND_TAC "Cn"; REWRITE_TAC[PAIR]; DISCH_TAC; H_REWRITE_RULE[(HYP "11")] (HYP"14"); KILL 12; KILL 14; KILL 11; KILL 16; KILL 15; ALL_TAC; (* }}} *) ALL_TAC; (* KILL 10; cs4m *) KILL 8; KILL 7; KILL 3; KILL 5; ALL_TAC; (* cs5 *) TYPE_THEN `!n. (Cn n SUBSET X) /\ (cond (Cn n,sn n) n)` SUBGOAL_TAC; INDUCT_TAC; ASM_REWRITE_TAC[]; SET_TAC[SUBSET]; USE 13 (SPEC `n:num`); REWR 5; ASM_REWRITE_TAC[]; ASM_MESON_TAC[SUBSET_TRANS]; DISCH_TAC; REWR 13; ALL_TAC; (* TO HERE EVERYTHING WORKS GENERALLY *) TYPE_THEN `R` EXISTS_TAC; TYPE_THEN `Cn` EXISTS_TAC; TYPE_THEN `sn` EXISTS_TAC; TYPE_THEN `cond` EXISTS_TAC; ASM_REWRITE_TAC[]; ]);; (* }}} *) (* more on metric spaces and topology *) let subseq_cauchy = prove_by_refinement( `!(X:A->bool) d f s. (metric_space(X,d)) /\ (cauchy_seq (X,d) f) /\ (subseq s) /\ (converge(X,d) (f o s)) ==> (converge(X,d) f)`, (* {{{ proof *) [ REWRITE_TAC[cauchy_seq;converge;sequence_in]; DISCH_ALL_TAC; CHO 4; TYPE_THEN `x` EXISTS_TAC ; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; AND 4; TYPE_THEN `eps/(&.2)` (USE 2 o SPEC); TYPE_THEN `eps/(&.2)` (USE 4 o SPEC); CHO 4; CHO 2; CONV_TAC (quant_right_CONV "n"); DISCH_ALL_TAC; USE 2 (REWRITE_RULE[REAL_LT_HALF1]); USE 4 (REWRITE_RULE[REAL_LT_HALF1]); REWR 2; REWR 4; TYPE_THEN `n'` EXISTS_TAC ; DISCH_ALL_TAC; TYPE_THEN `n +| n'` (USE 4 o SPEC); USE 4 (REWRITE_RULE[ARITH_RULE `n <=| n +| n'`]); TYPE_THEN `s(n +| n')` (USE 2 o SPEC); TYPE_THEN `i` (USE 2 o SPEC); TYPE_THEN `n' <=| s (n +| n')` SUBGOAL_TAC; USE 3 (MATCH_MP SEQ_SUBLE); TYPE_THEN `n +| n'` (USE 3 o SPEC); ASM_MESON_TAC[ LE_TRANS; ARITH_RULE `n' <=| n +| n'`]; DISCH_TAC; REWR 2; USE 4 (REWRITE_RULE[o_DEF]); (* save_goal"sc1"; *) TYPEL_THEN [`X`;`d`;`x`;`f (s(n +| n'))`;`f i`] (fun t-> ASSUME_TAC (ISPECL t metric_space_triangle)); USE 5 (REWRITE_RULE[IN]); REWR 9; USE 1 (MATCH_MP sequence_in); REWR 9; UND 9; UND 4; UND 2; MP_TAC (SPEC `eps:real` REAL_HALF_DOUBLE); TYPE_THEN `a = d (f (s (n +| n'))) (f i)` ABBREV_TAC ; TYPE_THEN `b = d x (f (s (n +| n')))` ABBREV_TAC ; TYPE_THEN `c = d x (f i)` ABBREV_TAC ; REAL_ARITH_TAC; ]);; (* }}} *) let compact_complete = prove_by_refinement( `!(X:A->bool) d. metric_space(X,d) /\ (compact (top_of_metric(X,d)) X) ==> (complete(X,d))`, (* {{{ proof *) [ REWRITE_TAC [complete]; DISCH_ALL_TAC; DISCH_ALL_TAC; COPY 0; COPY 1; JOIN 3 4; USE 3 (MATCH_MP compact_totally_bounded); COPY 2; USE 4 (REWRITE_RULE[cauchy_seq]); AND 4; COPY 0; COPY 3; COPY 5; JOIN 7 8; JOIN 6 7; USE 6 (MATCH_MP cauchy_subseq_sublemma); CHO 6; CHO 6; CHO 6; CHO 6; (AND 6); (AND 6); (AND 6); (AND 6); (AND 6); (AND 6); (AND 6); ALL_TAC ; (* cc1 *) MATCH_MP_TAC subseq_cauchy; TYPE_THEN `sn` EXISTS_TAC; ASM_REWRITE_TAC [converge]; SUBCONJ_TAC; REWRITE_TAC[SUBSEQ_SUC]; ASM_MESON_TAC[ ]; DISCH_ALL_TAC; TYPE_THEN `~(INTERS {z | ?n. z = closed_ball(X,d) (f (sn n)) (R* twopow(--: (&:n)))} =EMPTY)` SUBGOAL_TAC; PROOF_BY_CONTR_TAC ; REWR 15; TYPEL_THEN [`top_of_metric(X,d)`;`{z | ?n. z = closed_ball (X,d) (f(sn n)) (R * twopow (--: (&:n)))}`] (fun t-> ASSUME_TAC (ISPECL t finite_inters)); REWR 16; TYPE_THEN `topology_ (top_of_metric (X,d)) /\ compact (top_of_metric (X,d)) (UNIONS (top_of_metric (X,d))) /\ (!u. {z | ?n. z = closed_ball (X,d) (f(sn n)) (R * twopow (--: (&:n)))} u ==> closed_ (top_of_metric (X,d)) u)` SUBGOAL_TAC ; ASM_SIMP_TAC[GSYM top_of_metric_unions;]; ASM_SIMP_TAC[top_of_metric_top]; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[closed_ball_closed]; DISCH_TAC; REWR 16; CHO 16; ALL_TAC ; (* cc2 *) TYPE_THEN `{z | ?n. z = closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))} = IMAGE (\n. closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))) (UNIV)` SUBGOAL_TAC ; MATCH_MP_TAC EQ_EXT; GEN_TAC ; REWRITE_TAC[IN_ELIM_THM';INR IN_IMAGE;UNIV]; DISCH_TAC; REWR 16; AND 16; AND 16; JOIN 20 19; (*** Modified by JRH for new theorem name USE 19 (MATCH_MP FINITE_SUBSET_IMAGE); ***) USE 19 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); CHO 19; AND 19; AND 19; (*** JRH --- originally for implicational num_FINITE: USE 20 (MATCH_MP num_FINITE); ***) USE 20 (CONV_RULE (REWR_CONV num_FINITE)); CHO 20; TYPE_THEN `f (sn a) IN (INTERS W)` SUBGOAL_TAC ; REWRITE_TAC[IN_INTERS]; REWRITE_TAC[IN]; DISCH_ALL_TAC; USE 19 (REWRITE_RULE [SUBSET;IN_IMAGE]); TYPE_THEN `t` (USE 19 o SPEC); USE 19 (REWRITE_RULE [IN]); REWR 19; X_CHO 19 `m:num`; USE 20 (SPEC `m:num`); USE 20 (REWRITE_RULE[IN]); REWR 20; TYPE_THEN `Cn m SUBSET closed_ball (X,d) (f (sn m)) (R * twopow (--: (&:m)))` SUBGOAL_TAC ; REWRITE_TAC[SUBSET;closed_ball;IN_ELIM_THM']; USE 12 (SPEC `m:num`); UND 12; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); REWRITE_TAC[SUBSET]; MESON_TAC[IN;REAL_ARITH `x <. y ==> x <=. y`]; REWRITE_TAC[SUBSET;IN]; DISCH_THEN (MATCH_MP_TAC ); ALL_TAC ; (* cc3 *) TYPE_THEN `Cn a SUBSET Cn m` SUBGOAL_TAC ; UND 13; UND 20; MESON_TAC [SUBSET_SUC2]; REWRITE_TAC[SUBSET;IN]; DISCH_THEN (MATCH_MP_TAC ); USE 12 (SPEC `a:num`); AND 12; UND 12; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); MESON_TAC[]; ASM_REWRITE_TAC [NOT_IN_EMPTY]; DISCH_TAC; ALL_TAC ; (* cc4 *) USE 15 (REWRITE_RULE[EMPTY_EXISTS]); CHO 15; TYPE_THEN `u` EXISTS_TAC ; REWRITE_TAC[IN]; SUBCONJ_TAC; USE 15 (REWRITE_RULE [IN_INTERS]); TYPE_THEN `closed_ball (X,d) (f (sn 0)) (R * twopow (--: (&:0)))` (USE 15 o SPEC); USE 15 (REWRITE_RULE[IN_ELIM_THM']); LEFT 15 "n"; TYPE_THEN `0` (USE 15 o SPEC); USE 15 (REWRITE_RULE[IN;closed_ball]); USE 15 (REWRITE_RULE [IN_ELIM_THM']); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; DISCH_ALL_TAC; CONV_TAC (quant_right_CONV "n"); DISCH_ALL_TAC; TYPEL_THEN [`(&.2)*R`;`eps`] (fun t-> ASSUME_TAC (ISPECL t twopow_eps)); CHO 18; REWR 18; TYPE_THEN `n` EXISTS_TAC; DISCH_ALL_TAC; TYPE_THEN `&0 < &2 * R ` SUBGOAL_TAC; MATCH_MP_TAC REAL_PROP_POS_MUL2; REDUCE_TAC; ASM_REWRITE_TAC[]; ARITH_TAC; DISCH_ALL_TAC; REWR 18; UND 18; MATCH_MP_TAC (REAL_ARITH `x <= a ==> ((a < b) ==> (x < b))`); USE 15 (REWRITE_RULE[IN_INTERS]); TYPE_THEN `closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))` (USE 15 o SPEC); USE 15 (REWRITE_RULE[IN_ELIM_THM']); LEFT 15 "n'"; USE 15 (SPEC `n:num`); REWR 15; TYPE_THEN `Cn n SUBSET closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))` SUBGOAL_TAC ; REWRITE_TAC[SUBSET;closed_ball;IN_ELIM_THM']; USE 12 (SPEC `n:num`); UND 12; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); REWRITE_TAC[SUBSET]; MESON_TAC[IN;REAL_ARITH `x <. y ==> x <=. y`]; DISCH_TAC; TYPE_THEN `Cn i SUBSET Cn n` SUBGOAL_TAC ; UND 13; UND 19; MESON_TAC [SUBSET_SUC2]; ALL_TAC ; (* REWRITE_TAC[SUBSET;IN];*) DISCH_ALL_TAC; USE 12 (SPEC `i:num`); AND 12; UND 12; EXPAND_TAC "cond"; (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV)); DISCH_ALL_TAC; TYPE_THEN `((f o sn) i) IN closed_ball (X,d) (f (sn n)) (R * twopow (--: (&:n)))` SUBGOAL_TAC; KILL 1; KILL 0; KILL 2; KILL 3; KILL 5; KILL 4; JOIN 21 18; USE 0 (MATCH_MP SUBSET_TRANS); ALL_TAC; (* "CC5"; *) ASM_MESON_TAC[IN;o_DEF;SUBSET]; REWRITE_TAC[GSYM REAL_MUL_ASSOC]; UND 15; TYPE_THEN `r = R * twopow (--: (&:n))` ABBREV_TAC; UND 0; REWRITE_TAC[IN]; MESON_TAC[BALL_DIST_CLOSED]; ]);; (* }}} *) let countable_cover = prove_by_refinement( `!(X:A->bool) d U. (metric_space(X,d)) /\ (totally_bounded(X,d)) /\ (X SUBSET (UNIONS U)) /\ (U SUBSET (top_of_metric(X,d))) ==> (?V. (V SUBSET U) /\ (X SUBSET (UNIONS V)) /\ (COUNTABLE V))`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `(?Z. COUNTABLE Z /\ dense (top_of_metric (X,d)) Z)` SUBGOAL_TAC; ASM_MESON_TAC[countable_dense]; DISCH_ALL_TAC; CHO 4; TYPE_THEN `S = {(z,n) | ?A. (Z z) /\ (open_ball(X,d) z (twopow(--: (&:n))) SUBSET A) /\ U A}` ABBREV_TAC ; TYPE_THEN `COUNTABLE S` SUBGOAL_TAC; IMATCH_MP_TAC (INST_TYPE [`:A#num`,`:A`] COUNTABLE_IMAGE); TYPE_THEN `{(z,(n:num)) | (Z z) /\ (UNIV n)}` EXISTS_TAC ; CONJ_TAC ; IMATCH_MP_TAC countable_prod; ASM_REWRITE_TAC [NUM_COUNTABLE]; TYPE_THEN `I:(A#num) -> (A#num)` EXISTS_TAC; REWRITE_TAC[IMAGE_I;UNIV;SUBSET]; IN_OUT_TAC; EXPAND_TAC "S"; GEN_TAC; REWRITE_TAC[IN_ELIM_THM']; ASM_MESON_TAC[GSPEC]; DISCH_TAC; TYPE_THEN `!z n. (S (z,n) ==> ?A. Z z /\ open_ball (X,d) z (twopow (--: (&:n))) SUBSET A /\ U A)` SUBGOAL_TAC; EXPAND_TAC "S"; REWRITE_TAC[IN_ELIM_THM']; DISCH_ALL_TAC; CHO 7; CHO 7; AND 7; CHO 8; TYPE_THEN `A` EXISTS_TAC; ASM_MESON_TAC[PAIR_EQ]; DISCH_TAC ; LEFT 7 "A"; LEFT 7 "A"; LEFT 7 "A"; CHO 7; ALL_TAC ; (* "cc1"; *) TYPE_THEN `IMAGE (\ (z,n). A z n) S` EXISTS_TAC; SUBCONJ_TAC ; REWRITE_TAC[SUBSET;IN_IMAGE]; NAME_CONFLICT_TAC; TYPE_THEN `Azn:A->bool` X_GEN_TAC; DISCH_THEN (X_CHOOSE_TAC `zn:A#num`); USE 8 (SUBS [(ISPEC `zn:A#num` (GSYM PAIR))]); USE 8 (GBETA_RULE); TYPE_THEN `z = FST zn` ABBREV_TAC ; TYPE_THEN `n = SND zn` ABBREV_TAC ; IN_OUT_TAC; ASM_MESON_TAC[]; DISCH_TAC; CONJ_TAC ; REWRITE_TAC[SUBSET]; USE 2 (REWRITE_RULE[SUBSET;IN_UNIONS]); IN_OUT_TAC; DISCH_ALL_TAC; TYPE_THEN `x` ( USE 6 o SPEC); REWR 6; CHO 6; TYPE_THEN `top_of_metric (X,d) t` SUBGOAL_TAC; AND 6; UND 10; UND 5; REWRITE_TAC[SUBSET;IN]; MESON_TAC[]; ASM_SIMP_TAC[top_of_metric_nbd]; DISCH_ALL_TAC; TYPE_THEN `x` (USE 11 o SPEC); IN_OUT_TAC; REWR 0; CHO 0; AND 0; ASSUME_TAC (SPECL[`&.1`;`r:real`] twopow_eps); CHO 13; USE 13 (CONV_RULE REDUCE_CONV); REWR 13; TYPEL_THEN [`X`;`d`;`x`] (fun t-> USE 13 (MATCH_MP (SPECL t open_ball_nest))); JOIN 13 0; USE 0 (MATCH_MP SUBSET_TRANS); ASSUME_TAC (SPEC `(--: (&:n))` twopow_pos); WITH 3 (MATCH_MP top_of_metric_top); AND 7; COPY 7; COPY 14; JOIN 14 7; USE 7 (MATCH_MP dense_subset); UND 16; ASM_SIMP_TAC [dense_open]; DISCH_TAC ; TYPE_THEN `(open_ball(X,d) x (twopow (--: (&:(n+1)))))` (USE 14 o SPEC); ALL_TAC ; (* "cc2"; *) TYPE_THEN `open_ball (X,d) x (twopow (--: (&:(n +| 1)))) x` SUBGOAL_TAC; IMATCH_MP_TAC open_ball_nonempty; ASM_REWRITE_TAC[]; DISCH_TAC; TYPE_THEN `?z. (Z z) /\ (open_ball(X,d) x (twopow (--: (&:(n+1)))) z)` SUBGOAL_TAC; UND 14; REWRITE_TAC[open_DEF]; ASM_SIMP_TAC[open_ball_open]; UND 16; TYPE_THEN `B = open_ball (X,d) x (twopow (--: (&:(n +| 1))))` ABBREV_TAC ; REWRITE_TAC[INTER;IN]; POP_ASSUM_LIST (fun t->ALL_TAC); REWRITE_TAC[EMPTY_NOT_EXISTS]; REWRITE_TAC[IN_ELIM_THM']; MESON_TAC[]; DISCH_TAC; CHO 18; AND 18; WITH 3 (MATCH_MP top_of_metric_unions); USE 20 (SYM); REWR 7; TYPE_THEN `X z` SUBGOAL_TAC; UND 7; UND 19; MESON_TAC[SUBSET;IN]; DISCH_TAC; TYPE_THEN `open_ball (X,d) z (twopow (--: (&:(n +| 1)))) x` SUBGOAL_TAC; ASM_MESON_TAC[ball_symm]; DISCH_TAC; ALL_TAC ; (* "cc3"; *) REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM']; REWRITE_TAC[IN]; LEFT_TAC "x"; LEFT_TAC "x"; TYPE_THEN `(z,n+1)` EXISTS_TAC; TYPE_THEN `A z (n+1)` EXISTS_TAC; GBETA_TAC; EXPAND_TAC "S"; REWRITE_TAC[IN_ELIM_THM']; LEFT_TAC "z'"; TYPE_THEN `z` EXISTS_TAC; LEFT_TAC "n'"; TYPE_THEN `n + 1` EXISTS_TAC; REWRITE_TAC[]; LEFT_TAC "A"; TYPE_THEN `t` EXISTS_TAC; ASM_REWRITE_TAC[]; ALL_TAC ; (* "cc4"; *) SUBCONJ_TAC ; TYPE_THEN `open_ball (X,d) z (twopow (--: (&:(n +| 1)))) SUBSET (open_ball (X,d) x (twopow (--: (&:n))))` SUBGOAL_TAC ; CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV [(GSYM twopow_double)])); IMATCH_MP_TAC ball_subset_ball; ASM_REWRITE_TAC[]; UND 0; MESON_TAC[SUBSET_TRANS]; DISCH_TAC ; TYPEL_THEN [`z`;`n+1`] (fun t -> USE 10 (SPECL t)); USE 10 (REWRITE_RULE [SUBSET ]); IN_OUT_TAC ; ALL_TAC ; (* "cc5" *) TYPE_THEN `S (z,n +| 1)` SUBGOAL_TAC ; EXPAND_TAC "S"; REWRITE_TAC[IN_ELIM_THM' ]; TYPE_THEN `z` EXISTS_TAC ; TYPE_THEN `n + 1` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `t` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_TAC ; REWR 13; AND 13; TYPE_THEN `x` (USE 25 o SPEC ); UND 25; ASM_REWRITE_TAC[]; TYPE_THEN `S` ( fun t-> IMATCH_MP_TAC ( ISPEC t COUNTABLE_IMAGE)) ; ASM_REWRITE_TAC[]; TYPE_THEN `\ (z,n). A z n` EXISTS_TAC; REWRITE_TAC[SUBSET_REFL ]; ]);; (* }}} *) let complete_compact = prove_by_refinement( `!(X:A->bool) d . (metric_space(X,d)) /\ (totally_bounded(X,d)) /\ (complete (X,d)) ==> (compact (top_of_metric(X,d)) X)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[compact]; CONJ_TAC ; UND 0; SIMP_TAC[GSYM top_of_metric_unions ]; REWRITE_TAC[SUBSET_REFL]; GEN_TAC; DISCH_ALL_TAC; TYPE_THEN `(?V'. (V' SUBSET V) /\ (X SUBSET (UNIONS V')) /\ (COUNTABLE V'))` SUBGOAL_TAC ; IMATCH_MP_TAC countable_cover; TYPE_THEN `d` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_THEN (CHOOSE_THEN MP_TAC); DISCH_ALL_TAC; ALL_TAC; (* ASM_MESON_TAC[]; *) ALL_TAC; (* DISCH_THEN (CHOOSE_THEN MP_TAC); *) ALL_TAC; (* DISCH_ALL_TAC; *) USE 7 (REWRITE_RULE[COUNTABLE;GE_C;UNIV]); IN_OUT_TAC; CHO 0; TYPE_THEN `B = \i. (IMAGE f { u | (u <=| i ) /\ V' (f u)}) ` ABBREV_TAC ; TYPE_THEN `?i . UNIONS (B i ) = X ` ASM_CASES_TAC; CHO 9; TYPE_THEN `B i ` EXISTS_TAC; EXPAND_TAC "B"; CONJ_TAC; REWRITE_TAC[IMAGE;SUBSET ;IN ]; GEN_TAC; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC; UND 2; REWRITE_TAC[SUBSET;IN ]; MESON_TAC[]; CONJ_TAC ; IMATCH_MP_TAC FINITE_IMAGE; IMATCH_MP_TAC FINITE_SUBSET; TYPE_THEN `{u | u <=| i }` EXISTS_TAC; REWRITE_TAC[FINITE_NUMSEG_LE;SUBSET;IN ;IN_ELIM_THM' ]; MESON_TAC[]; UND 9; DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); EXPAND_TAC "B"; REWRITE_TAC[SUBSET_REFL ]; ALL_TAC ; (* "sv1" *) LEFT 9 "i"; TYPE_THEN `UNIONS V' SUBSET X` SUBGOAL_TAC; JOIN 2 3; USE 2 (MATCH_MP SUBSET_TRANS ); USE 2 (MATCH_MP UNIONS_UNIONS ); UND 2; ASM_MESON_TAC[top_of_metric_unions ]; DISCH_TAC ; TYPE_THEN `!i. UNIONS (B i) SUBSET X` SUBGOAL_TAC; GEN_TAC; UND 10; EXPAND_TAC "B"; REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE ]; REWRITE_TAC[IN;IN_ELIM_THM' ]; MESON_TAC[]; DISCH_TAC ; COPY 11; COPY 9; JOIN 12 13; LEFT 12 "i"; USE 12 (REWRITE_RULE [GSYM PSUBSET ;PSUBSET_ALT;IN ]); LEFT 12 "a"; LEFT 12 "a"; CHO 12; ALL_TAC ; (* "sv2" *) TYPE_THEN `(?ss. subseq ss /\ converge (X,d) (a o ss))` SUBGOAL_TAC; IMATCH_MP_TAC convergent_subseq ; ASM_REWRITE_TAC[sequence]; REWRITE_TAC[SUBSET;UNIV;IN_IMAGE ]; REWRITE_TAC[IN]; ASM_MESON_TAC[]; DISCH_TAC; CHO 13; AND 13; COPY 13; USE 13 (REWRITE_RULE[converge;IN ]); CHO 13; AND 13; USE 1 (REWRITE_RULE[SUBSET;UNIONS;IN;IN_ELIM_THM' ]); TYPE_THEN `x` (USE 1 o SPEC); REWR 1; CHO 1; TYPE_THEN `u` (USE 0 o SPEC); REWR 0; X_CHO 0 `j:num`; TYPE_THEN `(UNIONS (B j)) x` SUBGOAL_TAC; EXPAND_TAC "B"; REWRITE_TAC[UNIONS;IN_IMAGE ]; REWRITE_TAC[IN;IN_ELIM_THM' ]; TYPE_THEN `u` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `j` EXISTS_TAC; ASM_MESON_TAC[ARITH_RULE `j <=| j`]; DISCH_TAC; TYPE_THEN `u SUBSET (UNIONS (B j))` SUBGOAL_TAC; IMATCH_MP_TAC sub_union; EXPAND_TAC "B"; REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; TYPE_THEN `j` EXISTS_TAC; ASM_MESON_TAC[ARITH_RULE `j <=| j`]; DISCH_TAC; JOIN 2 3; USE 2 (MATCH_MP SUBSET_TRANS); ALL_TAC ; (* "sv3" *) TYPE_THEN `top_of_metric(X,d) u` SUBGOAL_TAC; USE 2 (REWRITE_RULE[SUBSET;IN ]); ASM_MESON_TAC[]; ASM_SIMP_TAC[top_of_metric_nbd]; REWRITE_TAC[IN ]; DISCH_ALL_TAC; TYPE_THEN `x` (USE 19 o SPEC); REWR 1; REWR 19; CHO 19; TYPE_THEN `r` (USE 13 o SPEC); CHO 13; REWR 13; REWR 0; TYPE_THEN `n +| (j)` (USE 13 o SPEC); USE 13 (REWRITE_RULE[ARITH_RULE `n<=| (n+| a)`]); AND 19; TYPE_THEN `u ((a o ss) (n +| j) )` SUBGOAL_TAC; USE 19 (REWRITE_RULE[SUBSET;open_ball;IN ;IN_ELIM_THM' ]); TYPE_THEN `((a o ss) (n +| j))` (USE 19 o SPEC); ASM_REWRITE_TAC[]; UND 19; DISCH_THEN IMATCH_MP_TAC ; ASM_REWRITE_TAC[]; TYPE_THEN `(ss (n +| j))` (USE 12 o SPEC); ASM_REWRITE_TAC[o_DEF ]; DISCH_TAC; TYPE_THEN `z = ((a o ss) (n +| j))` ABBREV_TAC; TYPE_THEN `UNIONS (B (ss (n+| j))) ((a o ss) (n +| j))` SUBGOAL_TAC; EXPAND_TAC "B"; ASM_REWRITE_TAC[]; REWRITE_TAC[UNIONS;IN_IMAGE]; REWRITE_TAC[IN; IN_ELIM_THM']; TYPE_THEN `u` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `j` EXISTS_TAC; ASM_REWRITE_TAC[]; IMATCH_MP_TAC (ARITH_RULE `j <= a /\ a <= ss(a) ==> (j <=| (ss (a)))`); ASM_SIMP_TAC[SEQ_SUBLE]; ARITH_TAC; REWRITE_TAC[o_DEF]; TYPE_THEN `ss(n +| j)` (USE 12 o SPEC); UND 12; MESON_TAC[]; ]);; (* }}} *) let uniformly_continuous = euclid_def `uniformly_continuous (f:A->B) ((X:A->bool),dX) ((Y:B->bool),dY) <=> (!epsilon. ?delta. (&.0 < epsilon) ==> (&.0 <. delta) /\ (!x y. (X x) /\ (X y) /\ (dX x y < delta) ==> (dY (f x) (f y) < epsilon)))`;; (* NB. It is not part of the hypothesis on metric_continuous that the IMAGE of f on X is contained in Y. Hence the extra hypothesis. *) let compact_uniformly_continuous = prove_by_refinement( `!f X dX Y dY. metric_continuous f (X,dX) (Y,dY) /\ (metric_space(X,dX)) /\ (metric_space(Y,dY)) /\ (compact(top_of_metric(X,dX)) X) /\ (IMAGE f X SUBSET Y) ==> uniformly_continuous (f:A->B) ((X:A->bool),dX) ((Y:B->bool),dY)`, (* {{{ proof *) [ REWRITE_TAC[uniformly_continuous;metric_continuous;metric_continuous_pt]; DISCH_ALL_TAC; GEN_TAC; LEFT 0 "epsilon"; TYPE_THEN `epsilon/(&.2)` (USE 0 o SPEC); LEFT 0 "delta"; CHO 0; TYPE_THEN `cov = IMAGE (\x. open_ball (X,dX) x ((delta x)/(&.2))) X` ABBREV_TAC; USE 3 (REWRITE_RULE[compact]); UND 3; ASM_SIMP_TAC[GSYM top_of_metric_unions;SUBSET_REFL ]; DISCH_TAC; TYPE_THEN `cov` (USE 3 o SPEC); CONV_TAC (quant_right_CONV "delta"); DISCH_TAC; WITH 6 (ONCE_REWRITE_RULE [GSYM REAL_LT_HALF1]); REWR 0; TYPE_THEN `!x. (&.0 < (delta x)/(&.2))` SUBGOAL_TAC; ASM_MESON_TAC[REAL_LT_HALF1]; DISCH_TAC; TYPE_THEN `X SUBSET UNIONS cov /\ cov SUBSET top_of_metric (X,dX)` SUBGOAL_TAC; SUBCONJ_TAC; REWRITE_TAC[SUBSET;UNIONS;IN;IN_ELIM_THM' ]; DISCH_ALL_TAC; TYPE_THEN `open_ball (X,dX) x ((delta x)/(&.2))` EXISTS_TAC; CONJ_TAC; EXPAND_TAC "cov"; REWRITE_TAC[IMAGE;IN ;IN_ELIM_THM' ]; ASM_MESON_TAC[]; IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); ASM_REWRITE_TAC[]; DISCH_TAC ; REWRITE_TAC[SUBSET;IN ]; EXPAND_TAC "cov"; REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; NAME_CONFLICT_TAC; DISCH_ALL_TAC; CHO 10; AND 10; ASM_REWRITE_TAC[]; ASM_MESON_TAC[open_ball_open]; DISCH_TAC; REWR 3; CHO 3; ALL_TAC; (* "cc1"; *) AND 3; AND 3; JOIN 11 10; UND 10; EXPAND_TAC "cov"; DISCH_TAC; (*** Modified by JRH for changed theorem name USE 10 (MATCH_MP FINITE_SUBSET_IMAGE); ***) USE 10 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); X_CHO 10 `S:A->bool`; TYPE_THEN `ds = IMAGE delta S` ABBREV_TAC ; TYPE_THEN `(FINITE ds) /\ ( !x. (ds x) ==> (&.0 <. x) )` SUBGOAL_TAC; EXPAND_TAC "ds"; CONJ_TAC; IMATCH_MP_TAC FINITE_IMAGE ; ASM_REWRITE_TAC[]; REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; NAME_CONFLICT_TAC ; DISCH_ALL_TAC; CHO 12; ASM_REWRITE_TAC[]; DISCH_TAC; USE 12 (MATCH_MP min_finite_delta); CHO 12; TYPE_THEN `delta'/(&.2)` EXISTS_TAC; ASM_REWRITE_TAC[]; ALL_TAC ; (* "cc2" *) ASM_REWRITE_TAC[REAL_LT_HALF1]; DISCH_ALL_TAC; AND 10; AND 10; USE 10( MATCH_MP UNIONS_UNIONS ); JOIN 3 10; USE 3 (MATCH_MP SUBSET_TRANS); USE 3 (REWRITE_RULE [SUBSET;IN;UNIONS;IN_ELIM_THM' ]); USE 3 (REWRITE_RULE[IMAGE;IN ;IN_ELIM_THM' ]); TYPE_THEN `x` (WITH 3 o SPEC); TYPE_THEN `y` (WITH 3 o SPEC); KILL 3; (* start of yest *) H_MATCH_MP (HYP "18")(HYP "14"); H_MATCH_MP (HYP "10") (HYP "13"); CHO 19; CHO 3; AND 19; CHO 20; AND 20; USE 20 (REWRITE_RULE [open_ball]); REWR 19; USE 19 (REWRITE_RULE [IN_ELIM_THM']); AND 19; AND 19; TYPE_THEN `dX x' x < delta x'` SUBGOAL_TAC; UND 19; IMATCH_MP_TAC (REAL_ARITH `((u <. v) ==> (a< u)==>(a (dX x' y <. u + u)`); ASM_REWRITE_TAC[]; CONJ_TAC; UND 15; IMATCH_MP_TAC (REAL_ARITH `((u <=. v) ==> (a< u)==>(a (u <= v)`); REWRITE_TAC[REAL_HALF_DOUBLE]; AND 12; UND 12; DISCH_THEN (MATCH_MP_TAC); EXPAND_TAC "ds"; REWRITE_TAC[IMAGE;IN; IN_ELIM_THM' ]; UND 21; MESON_TAC[]; IMATCH_MP_TAC metric_space_triangle; TYPE_THEN `X` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV [GSYM REAL_HALF_DOUBLE])); TYPE_THEN `(dY (f x) (f x') <. u0) /\ (dY (f x') (f y) <. u0) /\ (dY (f x) (f y) <= (dY (f x) (f x')) + (dY (f x') (f y))) ==> ((dY (f x) (f y)) < u0 + u0)` (fun t-> (IMATCH_MP_TAC (REAL_ARITH t))); TYPE_THEN `x'` (USE 0 o SPEC); AND 0; USE 0 (REWRITE_RULE[IN ]); TYPE_THEN `y` (WITH 0 o SPEC); TYPE_THEN `x` (USE 0 o SPEC); ALL_TAC; (* cc4 *) TYPE_THEN `Y (f x) /\ Y (f y) /\ Y (f x')` SUBGOAL_TAC; UND 4; REWRITE_TAC[SUBSET;IN_IMAGE; ]; REWRITE_TAC[IN ]; UND 13; UND 14; UND 22; MESON_TAC[]; DISCH_ALL_TAC; CONJ_TAC; TYPE_THEN `dY (f x) (f x') = dY (f x') (f x)` SUBGOAL_TAC; UND 2; UND 28; UND 30; TYPEL_THEN [`Y`;`dY`;`f x`;`f x'`] (fun t-> MP_TAC(ISPECL t metric_space_symm)); MESON_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[t]); UND 0; DISCH_THEN IMATCH_MP_TAC ; ASM_REWRITE_TAC[]; CONJ_TAC; UND 27; DISCH_THEN IMATCH_MP_TAC ; ASM_REWRITE_TAC[]; TYPEL_THEN [`Y`;`dY`;`f x`;`f x'`;`f y`] (fun t-> MP_TAC(ISPECL t metric_space_triangle)); DISCH_THEN IMATCH_MP_TAC ; ASM_REWRITE_TAC[]; ]);; (* }}} *) (* I'm rather surprised that this lemma did not need the hypothesis that U and- V are topologies. *) let image_compact = prove_by_refinement( `!U V (f:A->B) K. (continuous f U V ) /\ (compact U K) /\ (IMAGE f K SUBSET (UNIONS V)) ==> (compact V (IMAGE f K))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[compact]; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; TYPE_THEN `cov = IMAGE (\v. preimage (UNIONS U) f v ) V'` ABBREV_TAC ; TYPE_THEN `cov SUBSET U` SUBGOAL_TAC ; EXPAND_TAC "cov"; REWRITE_TAC[SUBSET;IN_IMAGE ]; NAME_CONFLICT_TAC; GEN_TAC; DISCH_ALL_TAC; CHO 6; AND 6; ASM_REWRITE_TAC[]; USE 4 (REWRITE_RULE[SUBSET]); TYPE_THEN `x'` (USE 4 o SPEC); REWR 4; UND 4; UND 0; REWRITE_TAC[continuous]; MESON_TAC[]; TYPE_THEN `K SUBSET UNIONS cov` SUBGOAL_TAC; ALL_TAC; (* ic1 *) UND 3; REWRITE_TAC[SUBSET;IN_IMAGE ]; NAME_CONFLICT_TAC; REWRITE_TAC[IN]; DISCH_ALL_TAC; LEFT 3 "x'"; DISCH_ALL_TAC; LEFT 3 "x'"; TYPE_THEN `x'` (USE 3 o SPEC); TYPE_THEN `f x'` (USE 3 o SPEC); REWR 3; UND 3; REWRITE_TAC[UNIONS;IN;IN_ELIM_THM' ]; USE 5 (REWRITE_RULE[IMAGE]); EXPAND_TAC "cov"; REWRITE_TAC[IN_ELIM_THM';IN ]; DISCH_ALL_TAC; CHO 5; CONV_TAC (quant_left_CONV "x"); CONV_TAC (quant_left_CONV "x"); TYPE_THEN `u` EXISTS_TAC; NAME_CONFLICT_TAC; TYPE_THEN `preimage (UNIONS U) f u` EXISTS_TAC; ASM_REWRITE_TAC[preimage;IN_ELIM_THM' ;IN ]; USE 1 (REWRITE_RULE[compact;SUBSET;IN ]); AND 1; UND 7; UND 6; MESON_TAC[]; DISCH_ALL_TAC; USE 1 (REWRITE_RULE[compact]); AND 1; TYPE_THEN `cov` (USE 1 o SPEC); REWR 1; CHO 1; ALL_TAC ; (* ic2 *) TYPE_THEN `(?V''. V'' SUBSET V' /\ FINITE V'' /\ (W = IMAGE (\v. preimage (UNIONS U) f v) V''))` SUBGOAL_TAC; IMATCH_MP_TAC finite_subset ; ASM_MESON_TAC[]; DISCH_ALL_TAC; CHO 9; TYPE_THEN `V''` EXISTS_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[SUBSET;IN_IMAGE]; REWRITE_TAC[IN;UNIONS;IN_ELIM_THM' ]; NAME_CONFLICT_TAC; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); DISCH_ALL_TAC; ASM_REWRITE_TAC[]; AND 1; AND 1; USE 1 (REWRITE_RULE[SUBSET;UNIONS;IN;IN_ELIM_THM' ]); TYPE_THEN `x'` (USE 1 o SPEC); REWR 1; CHO 1; AND 1; USE 14 (REWRITE_RULE[IMAGE;IN ;IN_ELIM_THM' ]); TYPE_THEN `u':B->bool` (X_CHO 14); TYPE_THEN `u'` EXISTS_TAC; ASM_REWRITE_TAC[]; UND 1; ASM_REWRITE_TAC[preimage;IN;IN_ELIM_THM' ]; MESON_TAC []; ]);; (* }}} *) let metric_bounded = euclid_def `metric_bounded (X,d) <=> ?(x:A) r. X SUBSET (open_ball(X,d) x r)`;; let euclid_ball_cube = prove_by_refinement( `!n x r. ?N. (open_ball(euclid n,d_euclid) x r) SUBSET {x | euclid n x /\ (!i. abs (x i) <= &N)}`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM';open_ball; ]; ASSUME_TAC REAL_ARCH_SIMPLE; TYPE_THEN ` (d_euclid x (\i. &.0) +. r)` (USE 0 o SPEC); X_CHO 0 `N:num`; TYPE_THEN `N` EXISTS_TAC; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; GEN_TAC ; ASSUME_TAC proj_contraction; TYPEL_THEN [`n`;`x'`;`(\(i :num). &.0)`;`i`] (USE 4 o SPECL); USE 4 BETA_RULE ; USE 4 (CONV_RULE REDUCE_CONV ); TYPE_THEN `euclid n (\i. &.0)` SUBGOAL_TAC ; REWRITE_TAC[euclid]; DISCH_TAC; REWR 4; ASSUME_TAC metric_euclid; TYPE_THEN `n` (USE 6 o SPEC); TYPE_THEN `d_euclid x' (\i. &.0) <=. d_euclid x' x + d_euclid x (\i. &0)` SUBGOAL_TAC; IMATCH_MP_TAC metric_space_triangle; TYPE_THEN `euclid n` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `d_euclid x' x = d_euclid x x'` SUBGOAL_TAC; IMATCH_MP_TAC metric_space_symm; TYPE_THEN `euclid n` EXISTS_TAC; ASM_REWRITE_TAC[]; UND 0; UND 3; UND 4; REAL_ARITH_TAC; ]);; (* }}} *) let totally_bounded_euclid = prove_by_refinement( `!X n. (metric_bounded (X,d_euclid) /\ (X SUBSET (euclid n))) ==> (totally_bounded (X,d_euclid))`, (* {{{ proof *) [ REWRITE_TAC[metric_bounded]; DISCH_ALL_TAC; IMATCH_MP_TAC totally_bounded_subset; CHO 0; CHO 0; ASSUME_TAC euclid_ball_cube; TYPEL_THEN [`n`;`x`;`r`] (USE 2 o SPECL); CHO 2; ASSUME_TAC open_ball_subspace; TYPEL_THEN [`euclid n`;`X`;`d_euclid`;`x`;`r`] (USE 3 o ISPECL); REWR 3; JOIN 0 3; USE 0 (MATCH_MP SUBSET_TRANS); JOIN 0 2; USE 0 (MATCH_MP SUBSET_TRANS); TYPE_THEN `{x | euclid n x /\ (!i. abs (x i) <= &N)}` EXISTS_TAC; ASM_REWRITE_TAC[totally_bounded_cube ]; IMATCH_MP_TAC metric_subspace; TYPE_THEN `euclid n` EXISTS_TAC; REWRITE_TAC[metric_euclid]; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM' ]; MESON_TAC[]; ]);; (* }}} *) (* topology is not needed as an assumption here! *) let induced_compact = prove_by_refinement( `!U (K:A->bool). (K SUBSET (UNIONS U)) ==> (compact U K <=> (compact (induced_top U K) K))`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM_REWRITE_TAC[compact]; EQ_TAC; DISCH_ALL_TAC; ASM_REWRITE_TAC[induced_top_support;SUBSET_INTER;SUBSET_REFL ]; DISCH_ALL_TAC; USE 3 (REWRITE_RULE[induced_top;SUBSET;IN_IMAGE ]); LEFT 3 "x'"; LEFT 3 "x'"; X_CHO 3 `u:(A->bool)->(A->bool)`; TYPE_THEN `IMAGE u V` (USE 1 o SPEC); TYPE_THEN `K SUBSET UNIONS (IMAGE u V) /\ IMAGE u V SUBSET U` SUBGOAL_TAC; REWRITE_TAC[IMAGE;SUBSET;IN_UNIONS;IN_ELIM_THM' ]; CONJ_TAC; REWRITE_TAC[IN]; DISCH_ALL_TAC; USE 2 (REWRITE_RULE[SUBSET;IN_UNIONS ]); USE 2 (REWRITE_RULE[IN ]); TYPE_THEN `x` (USE 2 o SPEC); REWR 2; X_CHO 2 `v:A->bool`; NAME_CONFLICT_TAC; CONV_TAC (quant_left_CONV "x'"); CONV_TAC (quant_left_CONV "x'"); TYPE_THEN `v` EXISTS_TAC; TYPE_THEN `u v` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `v` (USE 3 o SPEC); USE 3 (REWRITE_RULE[IN]); REWR 3; ASSUME_TAC INTER_SUBSET; USE 5 (CONJUNCT1); TYPEL_THEN [`u v`;`K`] (USE 5 o ISPECL); ASM_MESON_TAC[SUBSET;IN]; NAME_CONFLICT_TAC; REWRITE_TAC[IN ]; ASM_MESON_TAC[IN]; DISCH_TAC; REWR 1; CHO 1; AND 1; AND 1; JOIN 6 5; (*** Modified by JRH for changed theorem name USE 5 (MATCH_MP FINITE_SUBSET_IMAGE); ***) USE 5 (MATCH_MP FINITE_SUBSET_IMAGE_IMP); X_CHO 5 `W':(A->bool)->bool`; TYPE_THEN `W'` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `K SUBSET UNIONS (IMAGE u W')` SUBGOAL_TAC; ASM_MESON_TAC[UNIONS_UNIONS ;SUBSET_TRANS]; REWRITE_TAC[SUBSET;IN_UNIONS;IN_IMAGE; ]; NAME_CONFLICT_TAC; REWRITE_TAC[IN]; DISCH_ALL_TAC; DISCH_ALL_TAC; TYPE_THEN `x'` (USE 6 o SPEC); REWR 6; CHO 6; AND 6; CHO 8; AND 5; AND 5; USE 10 (REWRITE_RULE[SUBSET;IN ]); TYPE_THEN `x''` (USE 10 o SPEC); REWR 10; USE 3 (REWRITE_RULE[IN]); TYPE_THEN `x''` (USE 3 o SPEC); REWR 3; TYPE_THEN `x''` EXISTS_TAC; ASM_REWRITE_TAC[]; ASM ONCE_REWRITE_TAC[]; REWRITE_TAC[INTER;IN;IN_ELIM_THM' ]; ASM_MESON_TAC[]; ALL_TAC ; (* dd1*) DISCH_ALL_TAC; DISCH_ALL_TAC; TYPE_THEN `VK = IMAGE (\b. (b INTER K)) V` ABBREV_TAC ; TYPE_THEN `VK` (USE 2 o SPEC); TYPE_THEN `K SUBSET UNIONS VK /\ VK SUBSET induced_top U K` SUBGOAL_TAC; CONJ_TAC; EXPAND_TAC "VK"; REWRITE_TAC[INTER_THM;GSYM UNIONS_INTER ]; ASM_REWRITE_TAC[SUBSET_INTER;SUBSET_REFL ]; (* end of branch *) REWRITE_TAC[induced_top]; EXPAND_TAC "VK"; REWRITE_TAC[INTER_THM ]; IMATCH_MP_TAC IMAGE_SUBSET; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; REWR 2; X_CHO 2 `WK:(A->bool)->bool`; TYPEL_THEN [`V`;`(INTER) K`;`WK`] (fun t-> MP_TAC (ISPECL t finite_subset )); ASM_REWRITE_TAC[]; AND 2; UND 8; EXPAND_TAC "VK"; REWRITE_TAC[INTER_THM]; DISCH_ALL_TAC; REWR 8; CHO 8; TYPE_THEN `C` EXISTS_TAC; ASM_REWRITE_TAC[]; REWR 2; AND 2; USE 2 (REWRITE_RULE[GSYM UNIONS_INTER]); UND 2; TYPE_THEN `R = UNIONS C` ABBREV_TAC; SET_TAC[]; ]);; (* }}} *) let compact_euclid = prove_by_refinement( `!X n. (X SUBSET euclid n) ==> (compact (top_of_metric(euclid n,d_euclid)) X <=> (closed_ (top_of_metric(euclid n,d_euclid)) X /\ (metric_bounded(X,d_euclid))))`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `top_of_metric (X,d_euclid) = induced_top (top_of_metric(euclid n,d_euclid)) X` SUBGOAL_TAC; IMATCH_MP_TAC (GSYM top_of_metric_induced); ASM_REWRITE_TAC[metric_euclid]; DISCH_TAC; TYPE_THEN `metric_space (X,d_euclid)` SUBGOAL_TAC ; ASM_MESON_TAC [metric_euclid;metric_subspace]; DISCH_TAC ; EQ_TAC; DISCH_ALL_TAC; CONJ_TAC; IMATCH_MP_TAC compact_closed; SIMP_TAC [metric_euclid;metric_hausdorff;top_of_metric_top ]; ASM_REWRITE_TAC[]; REWRITE_TAC[metric_bounded]; IMATCH_MP_TAC totally_bounded_bounded; ASM_REWRITE_TAC[]; IMATCH_MP_TAC compact_totally_bounded ; ASM_REWRITE_TAC[]; ASM_MESON_TAC[induced_compact;top_of_metric_unions;metric_euclid ]; DISCH_ALL_TAC; TYPE_THEN `X SUBSET (UNIONS (top_of_metric (euclid n,d_euclid)))` SUBGOAL_TAC; ASM_MESON_TAC[top_of_metric_unions ; metric_euclid]; ASM_SIMP_TAC [induced_compact ]; ASSUME_TAC metric_euclid; DISCH_TAC; TYPE_THEN `induced_top (top_of_metric(euclid n,d_euclid)) X = top_of_metric(X,d_euclid)` SUBGOAL_TAC; IMATCH_MP_TAC top_of_metric_induced; ASM_REWRITE_TAC[]; DISCH_THEN REWRT_TAC; IMATCH_MP_TAC complete_compact; ASM_REWRITE_TAC[]; CONJ_TAC ; ASM_MESON_TAC[totally_bounded_euclid]; IMATCH_MP_TAC complete_closed; TYPE_THEN `n` EXISTS_TAC; ASM_REWRITE_TAC[]; ]);; (* }}} *) let neg_continuous = prove_by_refinement( `!n. metric_continuous (euclid_neg) (euclid n,d_euclid) (euclid n,d_euclid)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[metric_continuous;metric_continuous_pt]; DISCH_ALL_TAC; RIGHT_TAC "delta"; DISCH_TAC; TYPE_THEN `epsilon` EXISTS_TAC; ASM_REWRITE_TAC[IN ]; DISCH_ALL_TAC; REWRITE_TAC[d_euclid]; REWRITE_TAC[euclid_neg_sum]; REWRITE_TAC[norm_neg]; REWRITE_TAC[GSYM d_euclid]; ASM_REWRITE_TAC[]; ]);; (* }}} *) let continuous_comp = prove_by_refinement( `!(f:A->B) (g:B->C) U V W. continuous f U V /\ continuous g V W /\ (IMAGE f (UNIONS U) SUBSET (UNIONS V)) ==> continuous (g o f) U W`, (* {{{ proof *) [ REWRITE_TAC[continuous;IN;preimage]; DISCH_ALL_TAC; X_GEN_TAC `w :C->bool`; DISCH_TAC; TYPE_THEN `w ` (USE 1 o SPEC); REWR 1; TYPE_THEN `{x | UNIONS V x /\ w (g x)}` (USE 0 o SPEC); REWR 0; USE 0 (REWRITE_RULE[IN_ELIM_THM' ]); REWRITE_TAC[o_DEF ]; TYPE_THEN `U {x | UNIONS U x /\ UNIONS V (f x) /\ w (g (f x))} = U {x | UNIONS U x /\ w (g (f x))}` SUBGOAL_TAC; AP_TERM_TAC; IMATCH_MP_TAC EQ_EXT; DISCH_ALL_TAC; REWRITE_TAC[IN_ELIM_THM']; IMATCH_MP_TAC (TAUT `(a ==> b) ==> ((a /\ b /\ c) <=> (a /\ c ))`); TYPE_THEN `UU = UNIONS U ` ABBREV_TAC; TYPE_THEN `VV = UNIONS V` ABBREV_TAC ; USE 2 (REWRITE_RULE[SUBSET;IN_IMAGE ]); ASM_MESON_TAC[IN]; DISCH_THEN (fun t-> (USE 0 ( REWRITE_RULE[t]))); ASM_REWRITE_TAC[]; ]);; (* }}} *) let compact_max = prove_by_refinement( `!(f:A->(num->real)) U K. (continuous f U (top_of_metric(euclid 1,d_euclid))) /\ (IMAGE f K SUBSET (euclid 1)) /\ (compact U K) /\ ~(K=EMPTY)==> (?x. K x /\ (!y. (K y) ==> (f y 0 <= f x 0)))`, (* {{{ proof *) [ DISCH_ALL_TAC; COPY 2; COPY 1; TYPE_THEN `euclid 1 = UNIONS (top_of_metric (euclid 1,d_euclid))` SUBGOAL_TAC; MESON_TAC[top_of_metric_unions;metric_euclid]; DISCH_THEN (fun t-> USE 5 (ONCE_REWRITE_RULE[t])); JOIN 4 5; COPY 0; JOIN 0 4; WITH 0 (MATCH_MP image_compact); UND 4; ASM_SIMP_TAC[compact_euclid]; DISCH_ALL_TAC; TYPE_THEN `P = (IMAGE (coord 0) (IMAGE f K))` ABBREV_TAC ; TYPE_THEN `(?s. !y. (?x. P x /\ y <. x) <=> y <. s)` SUBGOAL_TAC; IMATCH_MP_TAC REAL_SUP_EXISTS; CONJ_TAC; USE 3 (REWRITE_RULE[EMPTY_EXISTS;IN ]); CHO 3; TYPE_THEN `f u 0` EXISTS_TAC; EXPAND_TAC "P"; REWRITE_TAC[IMAGE;IN;IN_ELIM_THM';coord ]; NAME_CONFLICT_TAC; LEFT_TAC "x'"; LEFT_TAC "x'"; TYPE_THEN `u` EXISTS_TAC; ASM_MESON_TAC[]; USE 6 (REWRITE_RULE[metric_bounded;open_ball;SUBSET;IN_IMAGE ]); X_CHO 6 `x0:num->real`; X_CHO 6 `r:real`; USE 6 (REWRITE_RULE[IN;IN_ELIM_THM' ]); EXPAND_TAC "P"; REWRITE_TAC[IMAGE;IN;IN_ELIM_THM';coord]; NAME_CONFLICT_TAC; TYPE_THEN `x0 0 +. r` EXISTS_TAC; DISCH_ALL_TAC; X_CHO 8 `fx:num->real`; AND 8; ASM_REWRITE_TAC[]; KILL 8; X_CHO 9 `x:A`; LEFT 6 "x"; LEFT 6 "x"; TYPE_THEN `x` (USE 6 o SPEC); TYPE_THEN `fx` (USE 6 o SPEC); REWR 6; TYPE_THEN `(d_euclid x0 (f x) = abs (x0 0 - (f x 0)))` SUBGOAL_TAC; IMATCH_MP_TAC euclid1_abs; USE 1 (REWRITE_RULE[SUBSET;IN ]); ASM_MESON_TAC[]; AND 6; AND 6; DISCH_TAC; REWR 6; UND 6; REAL_ARITH_TAC; DISCH_TAC; ALL_TAC ; (* cc1 *) TYPE_THEN `(!u. (P u) ==> (u <=. sup P)) /\ (P (sup P))` SUBGOAL_TAC; REWRITE_TAC[sup]; SELECT_TAC; CHO 8; ASM_REWRITE_TAC[]; DISCH_TAC; TYPE_THEN `s = t` SUBGOAL_TAC; PROOF_BY_CONTR_TAC; USE 10 (MATCH_MP (REAL_ARITH `~(s=t) ==> (s<. t) \/ (t <. s)`)); TYPE_THEN `s ` (WITH 9 o SPEC); TYPE_THEN `t` (WITH 9 o SPEC); ASM_MESON_TAC[REAL_ARITH `~(x <. x)`]; DISCH_TAC; REWR 8; SUBCONJ_TAC; DISCH_ALL_TAC; TYPE_THEN `t` (USE 8 o SPEC); UND 8; REWRITE_TAC[REAL_ARITH `~(x <. x)`]; LEFT_TAC "x"; LEFT_TAC "x"; TYPE_THEN `u` EXISTS_TAC; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_ALL_TAC; PROOF_BY_CONTR_TAC; TYPE_THEN `~ (IMAGE f K) (t *# (dirac_delta 0))` SUBGOAL_TAC; PROOF_BY_CONTR_TAC; REWR 13; UND 12; EXPAND_TAC "P"; ONCE_REWRITE_TAC[IMAGE]; ONCE_REWRITE_TAC[IMAGE]; ONCE_REWRITE_TAC[IMAGE]; REWRITE_TAC[IN_ELIM_THM';IN]; TYPE_THEN `t *# (dirac_delta 0)` EXISTS_TAC; ASM_REWRITE_TAC[]; ALL_TAC ; (* cc2 *) REWRITE_TAC[coord_dirac]; DISCH_TAC; USE 4 (MATCH_MP closed_open); ASSUME_TAC (SPEC `1` metric_euclid); WITH 14 (MATCH_MP top_of_metric_unions); WITH 15 (GSYM); REWR 4; TYPE_THEN `z = t *# dirac_delta 0` ABBREV_TAC ; TYPE_THEN `(euclid 1 DIFF (IMAGE f K)) z` SUBGOAL_TAC ; REWRITE_TAC[REWRITE_RULE[IN] IN_DIFF]; ASM_REWRITE_TAC[]; EXPAND_TAC "z"; REWRITE_TAC[euclid;euclid_scale;dirac_delta]; DISCH_ALL_TAC; ASSUME_TAC (ARITH_RULE `1 <=| m ==> (~(0=m))`); REWR 19; ASM_REWRITE_TAC[]; REDUCE_TAC; REWRITE_TAC[]; UND 16; DISCH_THEN (fun t-> ONCE_REWRITE_TAC [GSYM t]); UND 4; REWRITE_TAC[open_DEF]; ASM_SIMP_TAC[top_of_metric_nbd]; DISCH_ALL_TAC; IN_OUT_TAC ; TYPE_THEN `z` (USE 0 o SPEC); KILL 12; KILL 13; KILL 9; UND 14; UND 3; REWRITE_TAC[]; DISCH_THEN (fun t-> ONCE_REWRITE_TAC[GSYM t]); DISCH_ALL_TAC; REWR 0; CHO 0; AND 0; USE 0 (REWRITE_RULE[SUBSET;IN; open_ball;IN_ELIM_THM' ]); COPY 0; TYPE_THEN `(t- (r/(&.2)))*# (dirac_delta 0)` (USE 0 o SPEC); TYPE_THEN `euclid 1 z /\ euclid 1 ((t - r / &2) *# dirac_delta 0) /\ d_euclid z ((t - r / &2) *# dirac_delta 0) < r` SUBGOAL_TAC; EXPAND_TAC "z"; SUBCONJ_TAC; REWRITE_TAC[euclid;dirac_delta;euclid_scale]; GEN_TAC; SIMP_TAC [ (ARITH_RULE `1 <=| m ==> (~(0=m))`)]; REWRITE_TAC[REAL_ARITH `t*(&.0) = (&.0)`]; DISCH_ALL_TAC; SUBCONJ_TAC; REWRITE_TAC[euclid;dirac_delta;euclid_scale]; GEN_TAC; SIMP_TAC [ (ARITH_RULE `1 <=| m ==> (~(0=m))`)]; REWRITE_TAC[REAL_ARITH `t*(&.0) = (&.0)`]; ALL_TAC ; (* cc3 *) UND 13 ; SIMP_TAC[euclid1_abs]; DISCH_ALL_TAC; REWRITE_TAC[euclid_minus ; euclid_scale;dirac_delta ]; REDUCE_TAC ; REWRITE_TAC[REAL_ARITH `t - (t - (r/(&.2))) = r/(&.2)`]; WITH 9 (ONCE_REWRITE_RULE[GSYM REAL_LT_HALF1]); WITH 19 (MATCH_MP (REAL_ARITH `&.0 < x ==> (&.0 <= x)`)); WITH 20 (REWRITE_RULE[GSYM REAL_ABS_REFL]); ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_LT_HALF2]; ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> (USE 0 (REWRITE_RULE[t]))); ALL_TAC ; (* cc4 *) TYPE_THEN `t - (r/(&.2)) ` (USE 10 o SPEC); TYPE_THEN `t - r / &2 < t` SUBGOAL_TAC; IMATCH_MP_TAC (REAL_ARITH `&.0 < x ==> (t - x < t)`); WITH 9 (ONCE_REWRITE_RULE[GSYM REAL_LT_HALF1]); ASM_REWRITE_TAC[]; DISCH_TAC ; REWR 10; X_CHO 10 `u:real`; TYPE_THEN `u` (USE 7 o SPEC); REWR 7; TYPE_THEN `(euclid 1 DIFF IMAGE f K) (u *# (dirac_delta 0))` SUBGOAL_TAC ; UND 12; DISCH_THEN (IMATCH_MP_TAC ); EXPAND_TAC "z"; SUBCONJ_TAC; REWRITE_TAC[euclid;euclid_scale;dirac_delta]; REWRITE_TAC[ (ARITH_RULE `1 <=| m <=> (~(0=m))`)]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_ALL_TAC; SUBCONJ_TAC; REWRITE_TAC[euclid;euclid_scale;dirac_delta]; REWRITE_TAC[ (ARITH_RULE `1 <=| m <=> (~(0=m))`)]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_ALL_TAC; ASM_SIMP_TAC[euclid1_abs]; EXPAND_TAC "z"; REWRITE_TAC[dirac_delta;euclid_scale;euclid_minus]; REDUCE_TAC; AND 10; REWRITE_TAC[GSYM ABS_BETWEEN]; ASM_REWRITE_TAC[]; CONJ_TAC; UND 7; UND 9; REAL_ARITH_TAC; UND 10; IMATCH_MP_TAC (REAL_ARITH `y <. x ==> ((t - y <. u) ==> (t <. u + x))`); REWRITE_TAC[REAL_LT_HALF2]; ASM_REWRITE_TAC[]; REWRITE_TAC[REWRITE_RULE[IN] IN_DIFF]; IMATCH_MP_TAC (TAUT `B ==> (~(A /\ ~B))`); AND 10; UND 14; EXPAND_TAC "P"; TYPE_THEN `B = IMAGE f K` ABBREV_TAC ; ALL_TAC ; (* cc5 *) REWRITE_TAC[IMAGE;coord;IN;IN_ELIM_THM' ]; DISCH_TAC; CHO 19; AND 19; ASM_REWRITE_TAC[]; USE 17 (REWRITE_RULE[SUBSET;IN]); TYPE_THEN `x` (USE 17 o SPEC); REWR 17; USE 17 (REWRITE_RULE[euclid1_dirac]); ASM_MESON_TAC[]; ASM_MESON_TAC[]; TYPE_THEN `t = sup P` ABBREV_TAC; DISCH_ALL_TAC; UND 11; EXPAND_TAC "P"; REWRITE_TAC[]; ONCE_REWRITE_TAC[IMAGE]; REWRITE_TAC[IN_IMAGE;IN_ELIM_THM';IN ]; NAME_CONFLICT_TAC; DISCH_ALL_TAC; CHO 11; AND 11; CHO 12; REWR 11; TYPE_THEN `x'` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; UND 10; EXPAND_TAC "P"; REWRITE_TAC[]; ONCE_REWRITE_TAC[IMAGE]; REWRITE_TAC[IN_IMAGE;IN_ELIM_THM' ]; REWRITE_TAC[IN]; ASM_REWRITE_TAC[]; REWRITE_TAC[coord]; NAME_CONFLICT_TAC; DISCH_ALL_TAC; TYPE_THEN `f y' 0` (USE 10 o SPEC); UND 10; DISCH_THEN IMATCH_MP_TAC ; LEFT_TAC "x'"; LEFT_TAC "x'"; ASM_MESON_TAC[]; (* finish *) ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* homeomorphisms *) (* ------------------------------------------------------------------ *) let homeomorphism = euclid_def `homeomorphism (f:A->B) U V <=> (BIJ f (UNIONS U) (UNIONS V) ) /\ (continuous f U V) /\ (!A. (U A) ==> (V (IMAGE f A)))`;; let INV_homeomorphism = prove_by_refinement( `!f U V. homeomorphism (f:A-> B) U V ==> (continuous (INV f (UNIONS U) (UNIONS V)) V U)`, (* {{{ proof *) [ REWRITE_TAC[continuous;IN;preimage]; REWRITE_TAC[homeomorphism]; DISCH_ALL_TAC; X_GEN_TAC `u:A->bool`; DISCH_ALL_TAC; TYPE_THEN `{ x | UNIONS V x /\ u (INV f (UNIONS U) (UNIONS V) x)} = IMAGE f u` SUBGOAL_TAC; IMATCH_MP_TAC EQ_EXT ; X_GEN_TAC `t:B`; REWRITE_TAC[IN_ELIM_THM';IMAGE ;IN ]; EQ_TAC ; DISCH_ALL_TAC; TYPE_THEN `(INV f (UNIONS U) (UNIONS V) t)` EXISTS_TAC; ASM_REWRITE_TAC[]; ASM_MESON_TAC[INVERSE_DEF;IN;BIJ ]; DISCH_ALL_TAC; CHO 4; SUBCONJ_TAC; USE 0 (REWRITE_RULE[BIJ;INJ]); IN_OUT_TAC ; ASM_REWRITE_TAC[]; AND 4; AND 5; TYPE_THEN `x` (USE 6 o SPEC); UND 6; DISCH_THEN (IMATCH_MP_TAC ); REWRITE_TAC[UNIONS;IN;IN_ELIM_THM' ]; ASM_MESON_TAC[]; DISCH_TAC ; TYPE_THEN `INV f (UNIONS U) (UNIONS V) t = x` SUBGOAL_TAC; (* stop here this is an example that ASM_MESON_TAC should catch *) (* ASM_MESON_TAC[INVERSE_XY;IN ;UNIONS ]; *) TYPE_THEN `(UNIONS U x)` SUBGOAL_TAC; REWRITE_TAC[UNIONS;IN_ELIM_THM';IN ]; ASM_MESON_TAC[]; ASM_MESON_TAC[INVERSE_XY;IN ]; DISCH_THEN (fun t-> REWRITE_TAC[t]); ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[t]); UND 2; DISCH_THEN IMATCH_MP_TAC ; ASM_REWRITE_TAC[]; ]);; (* }}} *) let bicont_homeomorphism = prove_by_refinement( `!f U V. (BIJ (f:A->B) (UNIONS U) (UNIONS V)) /\ (continuous f U V) /\ (continuous (INV f (UNIONS U) (UNIONS V)) V U) ==> (homeomorphism f U V)`, (* {{{ proof *) [ REWRITE_TAC[homeomorphism]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; UND 2; REWRITE_TAC[continuous;IN;preimage ]; DISCH_ALL_TAC; TYPE_THEN `A` (USE 2 o SPEC); REWR 2; TYPE_THEN `{x | UNIONS V x /\ A (INV f (UNIONS U) (UNIONS V) x)}= (IMAGE f A) ` SUBGOAL_TAC; IMATCH_MP_TAC EQ_EXT ; X_GEN_TAC `t:B`; REWRITE_TAC[IN_ELIM_THM';IMAGE ;IN ]; EQ_TAC ; DISCH_ALL_TAC; TYPE_THEN `(INV f (UNIONS U) (UNIONS V) t)` EXISTS_TAC; ASM_REWRITE_TAC[]; ASM_MESON_TAC[INVERSE_DEF;IN;BIJ ]; DISCH_ALL_TAC; CHO 4; SUBCONJ_TAC; USE 0 (REWRITE_RULE[BIJ;INJ]); IN_OUT_TAC ; ASM_REWRITE_TAC[]; AND 4; AND 5; TYPE_THEN `x` (USE 6 o SPEC); UND 6; DISCH_THEN (IMATCH_MP_TAC ); REWRITE_TAC[UNIONS;IN;IN_ELIM_THM' ]; ASM_MESON_TAC[]; DISCH_TAC ; TYPE_THEN `INV f (UNIONS U) (UNIONS V) t = x` SUBGOAL_TAC; TYPE_THEN `(UNIONS U x)` SUBGOAL_TAC; REWRITE_TAC[UNIONS;IN_ELIM_THM';IN ]; ASM_MESON_TAC[]; ASM_MESON_TAC[INVERSE_XY;IN ]; DISCH_THEN (fun t-> REWRITE_TAC[t]); ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); ASM_REWRITE_TAC[]; ]);; (* }}} *) let open_and_closed = prove_by_refinement( `!(f:A->B) U V. (topology_ U) /\ (topology_ V) /\ (BIJ f (UNIONS U) (UNIONS V)) ==> ((!A. (U A ==> V (IMAGE f A))) <=> (!B. (closed_ U B) ==> (closed_ V (IMAGE f B))))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[closed]; EQ_TAC; DISCH_ALL_TAC; DISCH_ALL_TAC; SUBCONJ_TAC; UND 4; UND 2; (* should have worked: ASM_MESON_TAC[SUBSET;IN;BIJ;INJ;IMAGE;IN_ELIM_THM' ]; bug found? *) REWRITE_TAC[BIJ;IN;INJ;SUBSET;IMAGE;IN_ELIM_THM' ]; DISCH_ALL_TAC; NAME_CONFLICT_TAC; TYPE_THEN `y:B` X_GEN_TAC; ASM_MESON_TAC[]; DISCH_ALL_TAC; REWRITE_TAC[open_DEF]; USE 5 (REWRITE_RULE[open_DEF]); TYPE_THEN `UNIONS U DIFF B` (USE 3 o SPEC); REWR 3; TYPE_THEN `IMAGE f (UNIONS U DIFF B) = (UNIONS V DIFF IMAGE f B)` SUBGOAL_TAC; ASM_MESON_TAC[DIFF_SURJ]; ASM_MESON_TAC[]; REWRITE_TAC[open_DEF]; DISCH_ALL_TAC; DISCH_ALL_TAC; TYPE_THEN `UNIONS U DIFF A` (USE 3 o SPEC); TYPE_THEN `UNIONS U DIFF A SUBSET UNIONS U /\ U (UNIONS U DIFF (UNIONS U DIFF A))` SUBGOAL_TAC; ASM_SIMP_TAC[sub_union ; DIFF_DIFF2 ]; ASM_REWRITE_TAC[SUBSET_DIFF]; DISCH_TAC ; REWR 3; TYPE_THEN `UNIONS V DIFF IMAGE f (UNIONS U DIFF A) = IMAGE f A` SUBGOAL_TAC; ASM_MESON_TAC[DIFF_SURJ; sub_union; DIFF_DIFF2]; ASM_MESON_TAC[]; ]);; (* }}} *) let hausdorff_homeomorphsim = prove_by_refinement( `!f U V. (BIJ (f:A->B) (UNIONS U) (UNIONS V)) /\ (continuous f U V) /\ (compact U (UNIONS U)) /\ (hausdorff V) /\ (topology_ U) /\ (topology_ V) ==> (homeomorphism f U V)`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM_REWRITE_TAC[homeomorphism]; ASM_SIMP_TAC[open_and_closed]; DISCH_ALL_TAC; TYPEL_THEN [`U`;`UNIONS U`;`B`] (fun t-> ASSUME_TAC (SPECL t closed_compact)); REWR 7; WITH 6 (REWRITE_RULE[closed]); REWR 7; IMATCH_MP_TAC compact_closed ; ASM_REWRITE_TAC[]; IMATCH_MP_TAC image_compact; TYPE_THEN `U` EXISTS_TAC; ASM_REWRITE_TAC[]; AND 8; USE 0 (REWRITE_RULE[BIJ;INJ;IN ]); AND 0; AND 10; REWRITE_TAC[SUBSET;IN_IMAGE]; REWRITE_TAC[IN]; USE 9 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[]; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* the metric and topology on the real numbers *) (* ------------------------------------------------------------------ *) let d_real = euclid_def `d_real x y = ||. (x -. y)`;; (* let real_topology = euclid_def `real_topology = top_of_metric (UNIV,d_real)`;; *) let metric_real = prove_by_refinement( `metric_space (UNIV,d_real)`, (* {{{ proof *) [ REWRITE_TAC[metric_space;UNIV;d_real ]; REAL_ARITH_TAC; ]);; (* }}} *) let continuous_euclid1 = prove_by_refinement( `!i n. continuous (coord i) (top_of_metric (euclid n,d_euclid)) (top_of_metric (UNIV,d_real))`, (* {{{ proof *) [ TYPE_THEN `!i n . IMAGE (coord i) (euclid n) SUBSET (UNIV) /\ metric_space (euclid n,d_euclid) /\ metric_space (UNIV,d_real)` SUBGOAL_TAC; REP_GEN_TAC; REWRITE_TAC[UNIV ;SUBSET;IN]; REWRITE_TAC[metric_euclid;metric_real;GSYM UNIV]; DISCH_TAC; DISCH_ALL_TAC; TYPEL_THEN [`i`;`n`] (USE 0 o SPECL); USE 0 (IMATCH_MP metric_continuous_continuous); ASM_REWRITE_TAC[]; REWRITE_TAC[metric_continuous;metric_continuous_pt]; DISCH_ALL_TAC; RIGHT_TAC "delta"; DISCH_ALL_TAC; REWRITE_TAC[d_real;IN;coord]; TYPE_THEN `epsilon` EXISTS_TAC; ASM_REWRITE_TAC[]; GEN_TAC; DISCH_ALL_TAC; UND 4; IMATCH_MP_TAC (REAL_ARITH `(a <=. b) ==> ((b <. e) ==> (a <. e))`); ASM_MESON_TAC[proj_contraction]; ]);; (* }}} *) let interval_closed_ball = prove_by_refinement( `!a b . ? x r. (a <=. b) ==> ({x | euclid 1 x /\ a <= x 0 /\ x 0 <= b} = (closed_ball(euclid 1,d_euclid)) x r)`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `((a +b)/(&.2)) *# (dirac_delta 0)` EXISTS_TAC; TYPE_THEN `((b -a)/(&.2))` EXISTS_TAC; DISCH_ALL_TAC; IMATCH_MP_TAC EQ_EXT; REWRITE_TAC[closed_ball;IN_ELIM_THM']; DISCH_ALL_TAC; IMATCH_MP_TAC (TAUT `(a ==> (b <=> d /\ c)) ==> (a /\ b <=> d /\ a /\ c)`); DISCH_ALL_TAC; TYPE_THEN `z = ((a + b) / &2 *# dirac_delta 0)` ABBREV_TAC; TYPE_THEN `euclid 1 z` SUBGOAL_TAC; EXPAND_TAC "z"; MESON_TAC[euclid_dirac]; DISCH_TAC; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[euclid1_abs]; EXPAND_TAC "z"; TYPE_THEN `t = x 0` ABBREV_TAC ; REWRITE_TAC[dirac_delta;euclid_scale]; REDUCE_TAC ; REWRITE_TAC[GSYM INTERVAL_ABS ]; IMATCH_MP_TAC (TAUT `((a = d) /\ (b = C)) ==> ((a /\ b) <=> (C /\ d))`); ONCE_REWRITE_TAC[REAL_ARITH `((x <=. u + v) <=> (x - v <=. u)) /\ ((x - u <= v) <=> (x <=. v + u))`]; CONJ_TAC; TYPE_THEN `(a + b) / &2 - (b - a) / &2 = a` SUBGOAL_TAC ; REWRITE_TAC[real_div]; REWRITE_TAC[REAL_ARITH `(a+b)*C - (b-a)*C = a*(&.2*C) `]; REDUCE_TAC ; DISCH_THEN (fun t-> REWRITE_TAC[t]); TYPE_THEN `(a+ b) /(&.2) + (b - a)/(&.2) = b` SUBGOAL_TAC; REWRITE_TAC[real_div]; REWRITE_TAC[REAL_ARITH `(a+b) * C + (b - a) * C = b *(&.2*C)`]; REDUCE_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); ]);; (* }}} *) let interval_euclid1_closed = prove_by_refinement( `!a b. closed_ (top_of_metric (euclid 1,d_euclid)) {x | euclid 1 x /\ a <= x 0 /\ x 0 <= b}`, (* {{{ proof *) [ DISCH_ALL_TAC; ASM_CASES_TAC `a <=. b`; ASSUME_TAC interval_closed_ball; TYPEL_THEN [`a`;`b`] (USE 1 o SPECL); (CHO 1); CHO 1; REWR 1; ASM_REWRITE_TAC[]; IMATCH_MP_TAC closed_ball_closed; REWRITE_TAC[metric_euclid]; TYPE_THEN `{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b}= EMPTY ` SUBGOAL_TAC ; REWRITE_TAC[EQ_EMPTY;IN_ELIM_THM' ]; GEN_TAC; TYPE_THEN `t = x 0 ` ABBREV_TAC; KILL 1; IMATCH_MP_TAC (TAUT `~(b /\ C) ==> ~( a /\ b/\ C)`); UND 0; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); IMATCH_MP_TAC empty_closed; IMATCH_MP_TAC top_of_metric_top ; REWRITE_TAC[metric_euclid]; ]);; (* }}} *) let interval_euclid1_bounded = prove_by_refinement( `!a b. metric_bounded ({x | euclid 1 x /\ a <= x 0 /\ x 0 <= b},d_euclid)`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[metric_bounded]; ASSUME_TAC interval_closed_ball; TYPEL_THEN [`a`;`b`] (USE 0 o SPECL); CHO 0; CHO 0; ASM_CASES_TAC `a <=. b`; REWR 0; ASM_REWRITE_TAC[]; TYPE_THEN `x` EXISTS_TAC; TYPE_THEN `r + (&.1) ` EXISTS_TAC; REWRITE_TAC[open_ball;SUBSET;IN ;IN_ELIM_THM' ]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 2; REWRITE_TAC[closed_ball;IN_ELIM_THM' ]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 4; ASM_SIMP_TAC[euclid1_abs ]; TYPE_THEN `t = x 0` ABBREV_TAC; TYPE_THEN `s = x' 0` ABBREV_TAC; DISCH_ALL_TAC; TYPE_THEN `&.0 <=. r` SUBGOAL_TAC; UND 6; REAL_ARITH_TAC; DISCH_ALL_TAC; REDUCE_TAC; ASM_REWRITE_TAC[]; UND 6; UND 7; REAL_ARITH_TAC ; TYPE_THEN `{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b} = EMPTY` SUBGOAL_TAC; REWRITE_TAC[EQ_EMPTY;IN_ELIM_THM' ]; GEN_TAC; TYPE_THEN `t = x 0 ` ABBREV_TAC; KILL 2; IMATCH_MP_TAC (TAUT `~(b /\ C) ==> ~( a /\ b/\ C)`); UND 1; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); REWRITE_TAC[EMPTY_SUBSET]; ]);; (* }}} *) let interval_euclid1_compact = prove_by_refinement( `!a b. compact (top_of_metric(euclid 1,d_euclid)) {x | (euclid 1 x) /\ (a <=. (x 0)) /\ (x 0 <= b)}`, (* {{{ proof *) [ DISCH_ALL_TAC; TYPE_THEN `{x | euclid 1 x /\ a <= x 0 /\ x 0 <= b} SUBSET (euclid 1)` SUBGOAL_TAC; REWRITE_TAC [SUBSET;IN;IN_ELIM_THM' ]; MESON_TAC[]; DISCH_TAC; ASM_SIMP_TAC[compact_euclid]; CONJ_TAC; MATCH_ACCEPT_TAC interval_euclid1_closed; MATCH_ACCEPT_TAC interval_euclid1_bounded; ]);; (* }}} *) let interval_image = prove_by_refinement( `!a b. {x | a <=. x /\ (x <= b)} = IMAGE (coord 0) {x | euclid 1 x /\ a <= x 0 /\ x 0 <= b}`, (* {{{ proof *) [ DISCH_ALL_TAC; IMATCH_MP_TAC EQ_EXT; REWRITE_TAC[IN_ELIM_THM';IMAGE]; GEN_TAC; EQ_TAC; DISCH_ALL_TAC; TYPE_THEN `x *# (dirac_delta 0)` EXISTS_TAC; REWRITE_TAC[coord_dirac;euclid_dirac;dirac_0]; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; CHO 0; USE 0 (REWRITE_RULE[coord]); ASM_REWRITE_TAC[]; ]);; (* }}} *) let interval_compact = prove_by_refinement( `!a b. compact (top_of_metric (UNIV,d_real)) {x | a <=. x /\ (x <=. b)} `, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[interval_image]; IMATCH_MP_TAC image_compact; TYPE_THEN `(top_of_metric (euclid 1,d_euclid))` EXISTS_TAC; REWRITE_TAC[continuous_euclid1;interval_euclid1_compact]; SIMP_TAC[GSYM top_of_metric_unions;metric_real]; REWRITE_TAC[UNIV;SUBSET;IN]; ]);; (* }}} *) let half_open = prove_by_refinement( `!a. top_of_metric(UNIV,d_real ) { x | x <. a}`, (* {{{ proof *) [ GEN_TAC; ASSUME_TAC open_nbd ; TYPEL_THEN [`top_of_metric (UNIV,d_real)`;` {x | x < a}`] (USE 0 o ISPECL); USE 0 (SIMP_RULE[top_of_metric_top;metric_real ]); ASM_REWRITE_TAC[]; GEN_TAC; TYPE_THEN `open_ball (UNIV,d_real) x (a - x)` EXISTS_TAC; REWRITE_TAC[IN_ELIM_THM']; DISCH_ALL_TAC; CONJ_TAC; REWRITE_TAC[open_ball;d_real ;IN;IN_ELIM_THM';UNIV ;SUBSET ]; GEN_TAC ; UND 1; REAL_ARITH_TAC; CONJ_TAC; IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); REWRITE_TAC[metric_real; UNIV ]; UND 1; REAL_ARITH_TAC; IMATCH_MP_TAC open_ball_open; REWRITE_TAC[metric_real]; ]);; (* }}} *) let half_open_above = prove_by_refinement( `!a. top_of_metric(UNIV,d_real ) { x | a <. x}`, (* {{{ proof *) [ GEN_TAC; ASSUME_TAC open_nbd ; TYPEL_THEN [`top_of_metric (UNIV,d_real)`;` {x | a <. x}`] (USE 0 o ISPECL); USE 0 (SIMP_RULE[top_of_metric_top;metric_real ]); ASM_REWRITE_TAC[]; GEN_TAC; TYPE_THEN `open_ball (UNIV,d_real) x (x -. a)` EXISTS_TAC; REWRITE_TAC[IN_ELIM_THM']; DISCH_ALL_TAC; CONJ_TAC; REWRITE_TAC[open_ball;d_real ;IN;IN_ELIM_THM';UNIV ;SUBSET ]; GEN_TAC ; UND 1; REAL_ARITH_TAC; CONJ_TAC; IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); REWRITE_TAC[metric_real; UNIV ]; UND 1; REAL_ARITH_TAC; IMATCH_MP_TAC open_ball_open; REWRITE_TAC[metric_real]; ]);; (* }}} *) let joinf = euclid_def `joinf (f:real -> A) g a = (\ x . (if (x <. a) then (f x) else (g x)))`;; let joinf_cont = prove_by_refinement( `!U a (f:real -> A) g. (continuous f (top_of_metric(UNIV,d_real)) U) /\ (continuous g (top_of_metric(UNIV,d_real)) U) /\ (f a = (g a)) ==> ( (continuous (joinf f g a) (top_of_metric(UNIV,d_real)) U))`, (* {{{ proof *) [ REWRITE_TAC[continuous]; DISCH_ALL_TAC; DISCH_ALL_TAC; REWRITE_TAC[IN ]; ASSUME_TAC open_nbd; TYPEL_THEN [`top_of_metric (UNIV,d_real)`;`(preimage (UNIONS (top_of_metric (UNIV,d_real))) (joinf f g a) v)`] (USE 4 o ISPECL); USE 4 (SIMP_RULE [top_of_metric_top;metric_real ]); ASM_REWRITE_TAC[]; GEN_TAC; REWRITE_TAC[subset_preimage]; RIGHT_TAC "B"; DISCH_TAC; SIMP_TAC[GSYM top_of_metric_unions; metric_real]; REWRITE_TAC[SUBSET_UNIV]; MP_TAC (REAL_ARITH `(x = a) \/ (x <. a) \/ (a <. x)`); REP_CASES_TAC; TYPE_THEN `B = (preimage (UNIONS (top_of_metric (UNIV,d_real))) f v) INTER (preimage (UNIONS (top_of_metric (UNIV,d_real))) g v)` ABBREV_TAC ; TYPE_THEN `B` EXISTS_TAC; CONJ_TAC; REWRITE_TAC[SUBSET;IN_IMAGE;IN ]; GEN_TAC; LEFT_TAC "x"; GEN_TAC ; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 9; EXPAND_TAC "B"; REWRITE_TAC[INTER;IN_ELIM_THM';IN ]; REWRITE_TAC[REWRITE_RULE[IN] in_preimage;joinf ]; COND_CASES_TAC; MESON_TAC[]; MESON_TAC[]; CONJ_TAC ; ASM_REWRITE_TAC[]; UND 5; EXPAND_TAC "B"; REWRITE_TAC[INTER;IN;IN_ELIM_THM']; REWRITE_TAC[REWRITE_RULE[IN] in_preimage]; ASM_REWRITE_TAC[]; REWRITE_TAC[joinf]; REWRITE_TAC[REAL_ARITH `~(a<. a)`]; ASSUME_TAC top_of_metric_top; TYPEL_THEN [`UNIV:real -> bool`;`d_real `] (USE 8 o ISPECL); USE 8 (REWRITE_RULE[metric_real ]); USE 8 (REWRITE_RULE[topology]); EXPAND_TAC "B"; KILL 7; TYPE_THEN `v` (USE 0 o SPEC); TYPE_THEN `v` (USE 1 o SPEC); ASM_MESON_TAC[IN ]; (* 2nd case x < a *) TYPE_THEN `B = { x | x <. a } INTER (preimage (UNIONS (top_of_metric (UNIV,d_real))) f v)` ABBREV_TAC ; TYPE_THEN `B` EXISTS_TAC; CONJ_TAC; ASM_REWRITE_TAC[SUBSET;IN_IMAGE ; IN;joinf ]; GEN_TAC ; LEFT_TAC "x"; GEN_TAC ; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 9; EXPAND_TAC "B"; REWRITE_TAC[INTER ;IN ;IN_ELIM_THM']; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; USE 10 (REWRITE_RULE[REWRITE_RULE[IN] in_preimage]); ASM_REWRITE_TAC[]; CONJ_TAC; UND 5; EXPAND_TAC "B"; REWRITE_TAC[INTER;IN;IN_ELIM_THM']; REWRITE_TAC[REWRITE_RULE[IN] in_preimage]; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 8; REWRITE_TAC[joinf]; ASM_REWRITE_TAC[]; ASSUME_TAC top_of_metric_top; TYPEL_THEN [`UNIV:real -> bool`;`d_real `] (USE 8 o ISPECL); USE 8 (REWRITE_RULE[metric_real ]); USE 8 (REWRITE_RULE[topology]); TYPE_THEN `v` (USE 0 o SPEC); TYPE_THEN `v` (USE 1 o SPEC); EXPAND_TAC "B"; KILL 7; KILL 5; KILL 4; KILL 1; KILL 6; TYPEL_THEN [`{x | x < a}`;`preimage (UNIONS (top_of_metric (UNIV,d_real))) f v`] (USE 8 o ISPECL); RIGHT 1 "V"; RIGHT 1 "V"; AND 1; AND 1; REWR 0; USE 0 (REWRITE_RULE[IN]); REWR 5; USE 5 (REWRITE_RULE[half_open]); ASM_REWRITE_TAC[]; (* case 3 a < x *) TYPE_THEN `B = { x | a <. x } INTER (preimage (UNIONS (top_of_metric (UNIV,d_real))) g v)` ABBREV_TAC ; TYPE_THEN `B` EXISTS_TAC; CONJ_TAC; ASM_REWRITE_TAC[SUBSET;IN_IMAGE ; IN;joinf ]; GEN_TAC ; LEFT_TAC "x"; GEN_TAC ; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 9; EXPAND_TAC "B"; REWRITE_TAC[INTER ;IN ;IN_ELIM_THM']; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; USE 10 (REWRITE_RULE[REWRITE_RULE[IN] in_preimage]); ASM_REWRITE_TAC[]; USE 9 (MATCH_MP (REAL_ARITH `a < x'' ==> (~(x'' <. a))`)); ASM_REWRITE_TAC[]; CONJ_TAC; UND 5; EXPAND_TAC "B"; REWRITE_TAC[INTER;IN;IN_ELIM_THM']; REWRITE_TAC[REWRITE_RULE[IN] in_preimage]; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; UND 8; REWRITE_TAC[joinf]; USE 6 (MATCH_MP (REAL_ARITH `a < x'' ==> (~(x'' <. a))`)); ASM_REWRITE_TAC[]; ASSUME_TAC top_of_metric_top; TYPEL_THEN [`UNIV:real -> bool`;`d_real `] (USE 8 o ISPECL); USE 8 (REWRITE_RULE[metric_real ]); USE 8 (REWRITE_RULE[topology]); TYPE_THEN `v` (USE 0 o SPEC); TYPE_THEN `v` (USE 1 o SPEC); EXPAND_TAC "B"; KILL 7; KILL 5; KILL 4; KILL 0; KILL 6; TYPEL_THEN [`{x | a < x}`;`preimage (UNIONS (top_of_metric (UNIV,d_real))) g v`] (USE 8 o ISPECL); RIGHT 0 "V"; RIGHT 0 "V"; AND 0; AND 0; REWR 1; USE 1 (REWRITE_RULE[IN]); REWR 5; USE 5 (REWRITE_RULE[half_open_above]); ASM_REWRITE_TAC[]; ]);; (* }}} *) let neg_cont = prove_by_refinement( `continuous ( --.) (top_of_metric(UNIV,d_real)) (top_of_metric(UNIV,d_real)) `, (* {{{ proof *) [ TYPE_THEN `IMAGE ( --. ) (UNIV) SUBSET (UNIV)` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN;UNION;UNIV ]; DISCH_TAC; ASM_SIMP_TAC[metric_continuous_continuous;metric_real ]; REWRITE_TAC[metric_continuous;metric_continuous_pt]; DISCH_ALL_TAC; TYPE_THEN `epsilon` EXISTS_TAC; DISCH_ALL_TAC; ASM_REWRITE_TAC[UNIV;IN;d_real ]; REAL_ARITH_TAC; ]);; (* }}} *) let add_cont = prove_by_refinement( `!u. (continuous ( (+.) u)) (top_of_metric(UNIV,d_real)) (top_of_metric(UNIV,d_real)) `, (* {{{ proof *) [ GEN_TAC; TYPE_THEN `IMAGE ( (+.) u ) (UNIV) SUBSET (UNIV)` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN;UNION;UNIV ]; DISCH_TAC; ASM_SIMP_TAC[metric_continuous_continuous;metric_real ]; REWRITE_TAC[metric_continuous;metric_continuous_pt]; DISCH_ALL_TAC; TYPE_THEN `epsilon` EXISTS_TAC; DISCH_ALL_TAC; ASM_REWRITE_TAC[UNIV;IN;d_real ]; REAL_ARITH_TAC; ]);; (* }}} *) let continuous_scale = prove_by_refinement( `!x n. (euclid n x) ==> (continuous (\t. (t *# x)) (top_of_metric(UNIV,d_real)) (top_of_metric(euclid n,d_euclid)))`, (* {{{ proof *) [ DISCH_ALL_TAC; ASSUME_TAC metric_euclid; ASSUME_TAC metric_real ; TYPE_THEN `IMAGE (\t. (t *# x)) (UNIV) SUBSET (euclid n)` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN_IMAGE;IN_ELIM_THM']; REWRITE_TAC[Q_ELIM_THM'';IN ; UNIV ]; ASM_MESON_TAC[euclid_scale_closure]; ASM_SIMP_TAC[metric_continuous_continuous]; DISCH_TAC; REWRITE_TAC[metric_continuous;metric_continuous_pt]; DISCH_ALL_TAC; REWRITE_TAC[IN;UNIV]; TYPE_THEN `euclidean x` SUBGOAL_TAC; ASM_MESON_TAC[euclidean]; ASM_SIMP_TAC[norm_scale;d_real]; DISCH_TAC; TYPE_THEN `norm x <=. &.1` ASM_CASES_TAC ; TYPE_THEN `epsilon` EXISTS_TAC; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; MP_TAC (SPEC `x' -. y` REAL_ABS_POS); DISCH_TAC ; USE 5 (MATCH_MP (SPEC `x' -. y` REAL_PROP_LE_LABS)); USE 5 (CONV_RULE REDUCE_CONV); UND 5; UND 7; REAL_ARITH_TAC ; TYPE_THEN `epsilon / norm x` EXISTS_TAC; DISCH_ALL_TAC; CONJ_TAC; IMATCH_MP_TAC REAL_LT_DIV; ASM_REWRITE_TAC[]; UND 5; REAL_ARITH_TAC; DISCH_ALL_TAC; ASM_MESON_TAC[REAL_ARITH `~(x <= &.1) ==> (&.0 <. x)`;REAL_LT_RDIV_EQ]; ]);; (* }}} *) let continuous_lin_combo = prove_by_refinement( `! x y n. (euclid n x) /\ (euclid n y) ==> (continuous (\t. (t *# x + (&.1 - t) *# y)) (top_of_metric(UNIV,d_real)) (top_of_metric(euclid n,d_euclid)))`, (* {{{ proof *) let comp_elim_tac = ( IMATCH_MP_TAC continuous_comp THEN TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC THEN ASM_SIMP_TAC[add_cont;neg_cont;continuous_scale] THEN REWRITE_TAC[SUBSET;IN_IMAGE;Q_ELIM_THM''] THEN SIMP_TAC[GSYM top_of_metric_unions ;metric_real;IN_UNIV ] ) in [ DISCH_ALL_TAC; IMATCH_MP_TAC continuous_sum; ASM_SIMP_TAC[metric_real;metric_euclid;top_of_metric_top;continuous_scale;SUBSET ;IN_IMAGE;Q_ELIM_THM'' ]; ASM_SIMP_TAC[IN;euclid_scale_closure;continuous_scale]; TYPE_THEN `(\t . (&. 1 - t) *# y) = (\t. t *# y) o ((--.) o ((+.) (--. (&.1))))` SUBGOAL_TAC; IMATCH_MP_TAC EQ_EXT; REWRITE_TAC[o_DEF;REAL_ARITH `--.(--. u +. v) = (u -. v)`]; DISCH_THEN (fun t-> REWRITE_TAC [t]); REPEAT comp_elim_tac; ]);; (* }}} *) (* ------------------------------------------------------------------ *) (* Connected Sets *) (* ------------------------------------------------------------------ *) let connected = euclid_def `connected U (Z:A->bool) <=> (Z SUBSET (UNIONS U)) /\ (!A B. (U A) /\ (U B) /\ (A INTER B = EMPTY ) /\ (Z SUBSET (A UNION B)) ==> ((Z SUBSET A) \/ (Z SUBSET B)))`;; let connected_unions = prove_by_refinement( `!U (Z1:A->bool) Z2. (connected U Z1) /\ (connected U Z2) /\ ~(Z1 INTER Z2 = EMPTY) ==> (connected U (Z1 UNION Z2))`, (* {{{ proof *) [ REWRITE_TAC[connected]; DISCH_ALL_TAC; DISCH_ALL_TAC; SUBCONJ_TAC; REWRITE_TAC[UNION;SUBSET;IN;IN_ELIM_THM' ]; ASM_MESON_TAC[SUBSET ;IN]; DISCH_TAC ; DISCH_ALL_TAC; TYPEL_THEN [`A`;`B`] (USE 1 o SPECL); REWR 1; TYPEL_THEN [`A`;`B`] (USE 3 o SPECL); REWR 3; WITH 9 (REWRITE_RULE[union_subset]); REWR 1; REWR 3; IMATCH_MP_TAC (TAUT `(~b ==> a) ==> (a \/ b)`); DISCH_ALL_TAC; USE 11 (REWRITE_RULE[union_subset]); (* start a case *) USE 4 (REWRITE_RULE[EMPTY_EXISTS]); CHO 4; USE 4 (REWRITE_RULE[IN;INTER;IN_ELIM_THM' ]); REWRITE_TAC[union_subset]; TYPE_THEN `~((Z1 SUBSET A) /\ (Z2 SUBSET B))` SUBGOAL_TAC; DISCH_ALL_TAC; USE 8 (REWRITE_RULE[EQ_EMPTY]); USE 8 (REWRITE_RULE[INTER;IN;IN_ELIM_THM' ]); ASM_MESON_TAC[SUBSET;IN]; TYPE_THEN `~((Z2 SUBSET A) /\ (Z1 SUBSET B))` SUBGOAL_TAC; DISCH_ALL_TAC; USE 8 (REWRITE_RULE[EQ_EMPTY]); USE 8 (REWRITE_RULE[INTER;IN;IN_ELIM_THM' ]); ASM_MESON_TAC[SUBSET;IN]; ASM_MESON_TAC[]; ]);; (* }}} *) let component_DEF = euclid_def `component U (x:A) y <=> (?Z. (connected U Z) /\ (Z x) /\ (Z y))`;; let connected_sing = prove_by_refinement( `!U (x:A). (UNIONS U x) ==> (connected U {x})`, (* {{{ proof *) [ REWRITE_TAC[connected]; DISCH_ALL_TAC; CONJ_TAC; REWRITE_TAC[SUBSET;IN_SING ]; ASM_MESON_TAC[IN]; DISCH_ALL_TAC; UND 4; SET_TAC[]; ]);; (* }}} *) let component_refl = prove_by_refinement( `!U x. (UNIONS U x) ==> (component U x (x:A))`, (* {{{ proof *) [ REWRITE_TAC[component_DEF]; ASM_MESON_TAC[IN_SING;IN;connected_sing]; ]);; (* }}} *) let component_symm = prove_by_refinement( `!U x y. (component U x y) ==> (component U (y:A) x)`, (* {{{ proof *) [ MESON_TAC[component_DEF]; ]);; (* }}} *) let component_trans = prove_by_refinement( `!U (x:A) y z. (component U x y) /\ (component U y z) ==> (component U x z)`, (* {{{ proof *) [ REWRITE_TAC[component_DEF]; DISCH_ALL_TAC; CHO 0; CHO 1; TYPE_THEN `connected U (Z UNION Z')` SUBGOAL_TAC; IMATCH_MP_TAC connected_unions; ASM_REWRITE_TAC[]; REWRITE_TAC[EMPTY_EXISTS ]; REWRITE_TAC[IN;INTER;IN_ELIM_THM' ]; TYPE_THEN `y` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; TYPE_THEN `Z UNION Z'` EXISTS_TAC; ASM_REWRITE_TAC[]; REWRITE_TAC[UNION;IN;IN_ELIM_THM' ]; ASM_REWRITE_TAC[]; ]);; (* }}} *) (* based on the Bolzano lemma *) let connect_real = prove_by_refinement( `!a b. connected (top_of_metric (UNIV,d_real)) {x | a <=. x /\ x <=. b }`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[connected]; ASSUME_TAC metric_real; ASM_SIMP_TAC[GSYM top_of_metric_unions]; SUBCONJ_TAC; REWRITE_TAC[UNIV;SUBSET;IN ]; DISCH_TAC; DISCH_ALL_TAC; TYPE_THEN `\ (u ,v ). ( u <. a) \/ (b <. v) \/ ({x | u <=. x /\ x <=. v } SUBSET A) \/ ({x | u <=. x /\ x <=. v } SUBSET B)` (fun t-> ASSUME_TAC (SPEC t BOLZANO_LEMMA )); UND 6; GBETA_TAC ; IMATCH_MP_TAC (TAUT `((b ==> c ) /\ a ) ==> ((a ==> b) ==> c )`); CONJ_TAC; DISCH_ALL_TAC; TYPEL_THEN [`a`;`b`] ((USE 6 o SPECL)); USE 6 (REWRITE_RULE[ARITH_RULE `~(a <. a)`]); ASM_CASES_TAC `a <=. b`; REWR 6; TYPE_THEN `{x | a <=. x /\ x <=. b} = EMPTY ` SUBGOAL_TAC; IMATCH_MP_TAC EQ_EXT; REWRITE_TAC[IN_ELIM_THM';EMPTY]; GEN_TAC; UND 7; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); REWRITE_TAC[EMPTY_SUBSET]; CONJ_TAC; DISCH_ALL_TAC; UND 8; UND 9; (* c1 *) USE 4 (REWRITE_RULE[EQ_EMPTY;INTER;IN;IN_ELIM_THM' ]); TYPE_THEN `b'` (USE 4 o SPEC); TYPE_THEN `{x | a' <=. x /\ x <=. b' } b'` SUBGOAL_TAC; ASM_REWRITE_TAC[IN_ELIM_THM']; REAL_ARITH_TAC; DISCH_TAC; TYPE_THEN `{x | b' <=. x /\ x <=. c } b'` SUBGOAL_TAC; ASM_REWRITE_TAC[IN_ELIM_THM']; REAL_ARITH_TAC; DISCH_TAC; TYPE_THEN `{x | a' <=. x /\ x <=. b' } UNION {x | b' <=. x /\ x <= c } = { x | a' <=. x /\ x <=. c }` SUBGOAL_TAC; REWRITE_TAC[UNION;IN;IN_ELIM_THM']; IMATCH_MP_TAC EQ_EXT ; GEN_TAC; REWRITE_TAC[IN_ELIM_THM']; UND 6; UND 7; REAL_ARITH_TAC; DISCH_TAC; (* cr 1*) REPEAT (DISCH_THEN (REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC)) THEN ASM_REWRITE_TAC[] THEN (TRY (GEN_MESON_TAC 0 7 1[REAL_ARITH `(b < b' /\ b' <=. c ==> b <. c ) /\ (a' <=. b' /\ b' <. a ==> a' <. a)`])); IMATCH_MP_TAC (TAUT `c ==> (a \/ b \/ c \/ d)`); UND 10; DISCH_THEN (fun t-> REWRITE_TAC [GSYM t]); ASM_REWRITE_TAC[union_subset]; (* ASM_MESON_TAC[SUBSET;IN]; should have worked *) PROOF_BY_CONTR_TAC; UND 11; UND 12; UND 9; UND 8; UND 4; REWRITE_TAC[SUBSET;IN]; TYPE_THEN `R ={x | a' <=. x /\ x <=. b'}` ABBREV_TAC; TYPE_THEN `S = {x | b' <=. x /\ x <=. c}` ABBREV_TAC; MESON_TAC[]; (* ok now it works *) PROOF_BY_CONTR_TAC; UND 11; UND 12; UND 9; UND 8; UND 4; REWRITE_TAC[SUBSET;IN]; TYPE_THEN `R ={x | a' <=. x /\ x <=. b'}` ABBREV_TAC; TYPE_THEN `S = {x | b' <=. x /\ x <=. c}` ABBREV_TAC; MESON_TAC[]; (* ok now it works *) IMATCH_MP_TAC (TAUT `d ==> (a \/ b \/ c \/ d)`); UND 10; DISCH_THEN (fun t-> REWRITE_TAC [GSYM t]); ASM_REWRITE_TAC[union_subset]; (* cr 2*) DISCH_ALL_TAC; ASM_CASES_TAC `x <. a`; TYPE_THEN `&.1` EXISTS_TAC; REDUCE_TAC; DISCH_ALL_TAC; DISJ1_TAC ; UND 7; UND 6; REAL_ARITH_TAC; ASM_CASES_TAC `b <. x`; TYPE_THEN `&.1` EXISTS_TAC; REDUCE_TAC; DISCH_ALL_TAC; DISJ2_TAC; DISJ1_TAC; UND 9; UND 7; REAL_ARITH_TAC; TYPE_THEN ` (A UNION B) x` SUBGOAL_TAC; USE 5 (REWRITE_RULE[SUBSET;IN]); UND 5; DISCH_THEN (IMATCH_MP_TAC ); REWRITE_TAC[IN_ELIM_THM']; UND 7; UND 6; REAL_ARITH_TAC; DISCH_TAC; (* cr3 *) TYPEL_THEN [`UNIV:real -> bool`;`d_real`] (fun t-> (ASSUME_TAC (ISPECL t open_ball_nbd))); (* --//-- *) USE 8 (REWRITE_RULE[REWRITE_RULE[IN] IN_UNION]); TYPE_THEN `A x` ASM_CASES_TAC; (* *) TYPE_THEN `A` (USE 9 o SPEC); TYPE_THEN `x` (USE 9 o SPEC); (* --//-- *) CHO 9; REWR 9; USE 9 (REWRITE_RULE[open_ball;d_real;UNIV ]); TYPE_THEN `e` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; IMATCH_MP_TAC (TAUT `C ==> (a \/ b \/ C\/ d)`); AND 9; UND 9; TYPE_THEN `{x | a' <=. x /\ x <=. b'} SUBSET {y | abs (x - y) <. e}` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; GEN_TAC; UND 11; UND 12; UND 13; REAL_ARITH_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM' ]; MESON_TAC[]; REWR 8; TYPE_THEN `B` (USE 9 o SPEC); TYPE_THEN `x` (USE 9 o SPEC); (* --//-- *) CHO 9; REWR 9; USE 9 (REWRITE_RULE[open_ball;d_real;UNIV ]); TYPE_THEN `e` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; IMATCH_MP_TAC (TAUT `d ==> (a \/ b \/ C\/ d)`); AND 9; UND 9; TYPE_THEN `{x | a' <=. x /\ x <=. b'} SUBSET {y | abs (x - y) <. e}` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; GEN_TAC; UND 11; UND 12; UND 13; REAL_ARITH_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM' ]; MESON_TAC[]; ]);; (* }}} *) let connect_image = prove_by_refinement( `!f U V Z. (continuous (f:A->B) U V) /\ (IMAGE f Z SUBSET (UNIONS V)) /\ (connected U Z) ==> (connected V (IMAGE f Z))`, (* {{{ proof *) [ REWRITE_TAC[connected]; DISCH_ALL_TAC; ASM_REWRITE_TAC[]; DISCH_ALL_TAC; USE 0 (REWRITE_RULE[continuous;IN ]); TYPE_THEN `A` (WITH 0 o SPEC); TYPE_THEN `B` (USE 0 o SPEC); TYPE_THEN `(preimage (UNIONS U) f A)` (USE 3 o SPEC); TYPE_THEN `(preimage (UNIONS U) f B)` (USE 3 o SPEC); USE 6 (MATCH_MP preimage_disjoint ); TYPE_THEN `Z SUBSET preimage (UNIONS U) f A UNION preimage (UNIONS U) f B` SUBGOAL_TAC; REWRITE_TAC[preimage_union]; ASM_REWRITE_TAC[]; USE 3 (REWRITE_RULE[subset_preimage ]); ASM_MESON_TAC[]; ]);; (* }}} *) let path = euclid_def `path U x y <=> (?f a b. (continuous f (top_of_metric(UNIV,d_real )) U ) /\ (f a = (x:A)) /\ (f b = y))`;; (**** Old proof modified by JRH to avoid use of GSPEC let const_continuous = prove_by_refinement( `!U V y. (topology_ U) ==> (continuous (\ (x:A). (y:B)) U V)`, (* {{{ proof *) [ REWRITE_TAC[continuous]; DISCH_ALL_TAC; REWRITE_TAC[IN]; DISCH_ALL_TAC; REWRITE_TAC[preimage;IN ]; TYPE_THEN `v y` ASM_CASES_TAC ; ASM_REWRITE_TAC[IN_ELIM_THM;GSPEC ]; USE 0 (MATCH_MP top_univ); TYPE_THEN`t = UNIONS U` ABBREV_TAC; UND 0; REWRITE_TAC[ETA_AX]; ASM_REWRITE_TAC[GSPEC ]; USE 0 (MATCH_MP open_EMPTY); USE 0 (REWRITE_RULE[open_DEF ;EMPTY]); ASM_REWRITE_TAC[]; ]);; (* }}} *) ****) let const_continuous = prove_by_refinement( `!U V y. (topology_ U) ==> (continuous (\ (x:A). (y:B)) U V)`, (* {{{ proof *) [ REWRITE_TAC[continuous]; DISCH_ALL_TAC; REWRITE_TAC[IN]; DISCH_ALL_TAC; REWRITE_TAC[preimage;IN ]; TYPE_THEN `v y` ASM_CASES_TAC ; ASM_REWRITE_TAC[IN_ELIM_THM]; USE 0 (MATCH_MP top_univ); TYPE_THEN`t = UNIONS U` ABBREV_TAC; UND 0; MATCH_MP_TAC(TAUT `(a <=> b) ==> a ==> b`); AP_TERM_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN]; USE 0 (MATCH_MP open_EMPTY); USE 0 (REWRITE_RULE[open_DEF ;EMPTY]); ASM_REWRITE_TAC[]; SUBGOAL_THEN `{x:A | F} = \x. F` SUBST1_TAC; REWRITE_TAC[EXTENSION; IN; IN_ELIM_THM]; ASM_REWRITE_TAC[] ]);; (* }}} *) let path_component = euclid_def `path_component U x y <=> (?f a b. (continuous f (top_of_metric(UNIV,d_real )) U ) /\ (a <. b) /\ (f a = (x:A)) /\ (f b = y) /\ (IMAGE f { t | a <=. t /\ t <=. b } SUBSET (UNIONS U)))`;; let path_refl = prove_by_refinement( `!U x. (UNIONS U x) ==> (path_component U x (x:A))`, (* {{{ proof *) [ DISCH_ALL_TAC; ASSUME_TAC (top_of_metric_top ); TYPEL_THEN [`UNIV:real ->bool`;`d_real`] (USE 1 o ISPECL); USE 1 (REWRITE_RULE[metric_real ]); USE 1 (MATCH_MP const_continuous); REWRITE_TAC[path_component]; TYPE_THEN `(\ (t:real). x)` EXISTS_TAC; ASM_REWRITE_TAC[IMAGE;IN;]; TYPE_THEN `&.0` EXISTS_TAC; TYPE_THEN `&.1` EXISTS_TAC; CONJ_TAC; REAL_ARITH_TAC; REWRITE_TAC[SUBSET;IN;IN_ELIM_THM']; ASM_MESON_TAC[]; ]);; (* }}} *) let path_symm = prove_by_refinement( `!U x y . (path_component U x (y:A)) ==> (path_component U y (x:A))`, (* {{{ proof *) [ REWRITE_TAC[path_component]; DISCH_ALL_TAC; (CHO 0); (CHO 0); (CHO 0); TYPE_THEN `f o (--.)` EXISTS_TAC; TYPE_THEN `--. b` EXISTS_TAC; TYPE_THEN `--. a` EXISTS_TAC; CONJ_TAC; IMATCH_MP_TAC continuous_comp; TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC; REWRITE_TAC[neg_cont]; SIMP_TAC[top_of_metric_top; metric_real; metric_euclidean; metric_euclid; metric_hausdorff; GSYM top_of_metric_unions; open_ball_open;]; ASM_REWRITE_TAC[]; REWRITE_TAC[UNIV;IN;SUBSET ]; CONJ_TAC ; AND 0; AND 0; UND 2; REAL_ARITH_TAC ; REWRITE_TAC[o_DEF ;]; REDUCE_TAC ; ASM_REWRITE_TAC[]; UND 0; REWRITE_TAC[IMAGE;IN;SUBSET;IN_ELIM_THM']; DISCH_ALL_TAC; DISCH_ALL_TAC; CHO 5; USE 4 (CONV_RULE NAME_CONFLICT_CONV ); TYPE_THEN `x'` (USE 4 o SPEC); UND 4; DISCH_THEN IMATCH_MP_TAC ; NAME_CONFLICT_TAC; TYPE_THEN `--. x''` EXISTS_TAC; ASM_REWRITE_TAC[]; UND 5; REAL_ARITH_TAC ; ]);; (* }}} *) let path_symm_eq = prove_by_refinement( `!U x y . (path_component U x (y:A)) <=> (path_component U y (x:A))`, (* {{{ proof *) [ MESON_TAC[path_symm]; ]);; (* }}} *) let path_trans = prove_by_refinement( `!U x y (z:A). (path_component U x y) /\ (path_component U y z) ==> (path_component U x z)`, (* {{{ proof *) [ REWRITE_TAC[path_component]; DISCH_ALL_TAC; CHO 0; CHO 0; CHO 0; CHO 1; CHO 1; CHO 1; TYPE_THEN `joinf f (f' o ((+.) (a' -. b))) b` EXISTS_TAC; TYPE_THEN `a` EXISTS_TAC; TYPE_THEN `b' +. (b - a')` EXISTS_TAC; CONJ_TAC; (* start of continuity *) IMATCH_MP_TAC joinf_cont; ASM_REWRITE_TAC[]; CONJ_TAC; IMATCH_MP_TAC continuous_comp; TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC; ASM_REWRITE_TAC [top_of_metric_top; metric_real; metric_euclidean; metric_euclid; metric_hausdorff; GSYM top_of_metric_unions; open_ball_open;]; REWRITE_TAC[add_cont]; ASM_SIMP_TAC [top_of_metric_top; metric_real; metric_euclidean; metric_euclid; metric_hausdorff; GSYM top_of_metric_unions; open_ball_open;]; REWRITE_TAC[SUBSET;UNIV;IN;IN_ELIM_THM']; REWRITE_TAC[o_DEF]; REDUCE_TAC; ASM_REWRITE_TAC[]; (* end of continuity *) CONJ_TAC; (* start real ineq *) AND 1; AND 1; AND 0; AND 0; UND 5; UND 3; REAL_ARITH_TAC; (* end of real ineq *) CONJ_TAC; REWRITE_TAC[joinf;o_DEF]; ASM_REWRITE_TAC[]; (* end of JOIN statement *) CONJ_TAC; (* next JOIN statement *) REWRITE_TAC[joinf;o_DEF]; TYPE_THEN `~(b' +. b -. a' <. b)` SUBGOAL_TAC; TYPE_THEN `(a' <. b') /\ (a <. b)` SUBGOAL_TAC; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_THEN (fun t-> REWRITE_TAC[t]); TYPE_THEN ` a' -. b +. b' +. b -. a' = b'` SUBGOAL_TAC; REAL_ARITH_TAC ; DISCH_THEN (fun t-> REWRITE_TAC[t]); ASM_REWRITE_TAC[]; (* end of next joinf *) TYPE_THEN `(a <=. b) /\ (b <=. (b' + b - a'))` SUBGOAL_TAC; (* subreal *) TYPE_THEN `(a' <. b') /\ (a <. b)` SUBGOAL_TAC; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_TAC; (* end of subreal *) USE 2 (MATCH_MP union_closed_interval); UND 2; DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]); REWRITE_TAC[IMAGE_UNION;union_subset]; CONJ_TAC; (* start of FIRST interval *) TYPE_THEN `IMAGE (joinf f (f' o (+.) (a' -. b)) b) {t | a <=. t /\ t <. b} = IMAGE f {t | a <=. t /\ t <. b}` SUBGOAL_TAC; REWRITE_TAC[joinf;IMAGE;IN_IMAGE ]; IMATCH_MP_TAC EQ_EXT; X_GEN_TAC `t:A`; REWRITE_TAC[IN_ELIM_THM']; EQ_TAC; DISCH_ALL_TAC; CHO 2; UND 2; DISCH_ALL_TAC; REWR 4; ASM_MESON_TAC[]; DISCH_ALL_TAC; CHO 2; UND 2; DISCH_ALL_TAC; TYPE_THEN `x'` EXISTS_TAC; ASM_REWRITE_TAC[]; DISCH_THEN (fun t-> REWRITE_TAC[t]); (* FIRST interval still *) TYPE_THEN `IMAGE f {t | a <=. t /\ t <. b} SUBSET IMAGE f {t | a <=. t /\ t <=. b} ` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN_IMAGE ;IN_ELIM_THM']; GEN_TAC; DISCH_THEN (CHOOSE_THEN MP_TAC); MESON_TAC[REAL_ARITH `a <. b ==> a<=. b`]; KILL 1; UND 0; DISCH_ALL_TAC; JOIN 0 5; USE 0 (MATCH_MP SUBSET_TRANS ); ASM_REWRITE_TAC[]; (* end of FIRST interval *) (* lc 1*) TYPE_THEN `IMAGE (joinf f (f' o (+.) (a' -. b)) b) {t | b <=. t /\ t <=. b' + b -. a'} = IMAGE f' {t | a' <=. t /\ t <=. b'}` SUBGOAL_TAC; REWRITE_TAC[joinf;IMAGE;IN_IMAGE ]; IMATCH_MP_TAC EQ_EXT; REWRITE_TAC[IN_ELIM_THM']; NAME_CONFLICT_TAC ; X_GEN_TAC `t:A`; EQ_TAC; DISCH_ALL_TAC; CHO 2; UND 2; DISCH_ALL_TAC; TYPE_THEN `~(x' <. b)` SUBGOAL_TAC; UND 2; REAL_ARITH_TAC ; DISCH_TAC ; REWR 4; USE 4 (REWRITE_RULE[o_DEF]); TYPE_THEN `a' -. b +. x'` EXISTS_TAC; (* * *) ASM_REWRITE_TAC[]; TYPE_THEN `(a' <. b') /\ (a <. b) /\ (b <=. x') /\ (x' <=. b' +. b -. a')` SUBGOAL_TAC; ASM_REWRITE_TAC[]; REAL_ARITH_TAC; DISCH_ALL_TAC; CHO 2; UND 2; DISCH_ALL_TAC; TYPE_THEN `x' +. b -. a'` EXISTS_TAC; ASM_REWRITE_TAC[]; SUBCONJ_TAC; UND 2; UND 3; REAL_ARITH_TAC; DISCH_ALL_TAC; TYPE_THEN `~(x' +. b -. a' <. b)` SUBGOAL_TAC; UND 5; REAL_ARITH_TAC ; DISCH_THEN (fun t-> REWRITE_TAC[t]); REWRITE_TAC[o_DEF]; AP_TERM_TAC; REAL_ARITH_TAC ; DISCH_THEN (fun t -> REWRITE_TAC [t]); ASM_REWRITE_TAC[]; ]);; (* }}} *) let loc_path_conn = euclid_def `loc_path_conn U <=> !A x. (U A) /\ (A (x:A)) ==> (U (path_component (induced_top U A) x))`;; let path_eq_conn = prove_by_refinement( `!U (x:A). (loc_path_conn U) /\ (topology_ U) ==> (path_component U x = component U x)`, (* {{{ proof *) [ DISCH_ALL_TAC; MATCH_MP_TAC EQ_EXT; X_GEN_TAC `y:A`; EQ_TAC ; REWRITE_TAC[path_component]; DISCH_ALL_TAC; CHO 2; CHO 2; CHO 2; UND 2 THEN DISCH_ALL_TAC; REWRITE_TAC[component_DEF]; TYPE_THEN `IMAGE f {t | a <= t /\ t <= b}` EXISTS_TAC; CONJ_TAC; IMATCH_MP_TAC connect_image ; NAME_CONFLICT_TAC; TYPE_THEN `(top_of_metric (UNIV,d_real))` EXISTS_TAC ; ASM_REWRITE_TAC[connect_real ]; REWRITE_TAC[IMAGE;IN;IN_ELIM_THM' ]; CONJ_TAC; TYPE_THEN `a` EXISTS_TAC; ASM_REWRITE_TAC[]; UND 3; REAL_ARITH_TAC ; TYPE_THEN `b` EXISTS_TAC; ASM_REWRITE_TAC[]; UND 3; REAL_ARITH_TAC; REWRITE_TAC[component_DEF]; DISCH_ALL_TAC; CHO 2; UND 2 THEN DISCH_ALL_TAC; USE 2 (REWRITE_RULE[connected]); UND 2 THEN DISCH_ALL_TAC; TYPE_THEN `path_component U x` (USE 5 o SPEC); TYPE_THEN `A = path_component U x` ABBREV_TAC; TYPE_THEN `B = UNIONS (IMAGE (\z. (path_component U z)) (Z DIFF A))` ABBREV_TAC ; TYPE_THEN `B` (USE 5 o SPEC); TYPE_THEN `U A /\ U B /\ (A INTER B = {}) /\ Z SUBSET A UNION B` SUBGOAL_TAC; WITH 0 (REWRITE_RULE[loc_path_conn]); TYPE_THEN `(UNIONS U)` (USE 8 o SPEC); TYPE_THEN `x` (USE 8 o SPEC); UND 8; ASM_SIMP_TAC[induced_top_unions]; ASM_SIMP_TAC[top_univ]; TYPE_THEN `UNIONS U x` SUBGOAL_TAC; USE 2 (REWRITE_RULE[SUBSET;IN;]); ASM_MESON_TAC[]; DISCH_ALL_TAC; REWR 8; ASM_REWRITE_TAC[]; (* dd *) CONJ_TAC; EXPAND_TAC "B"; WITH 1 (REWRITE_RULE[topology]); TYPEL_THEN [`EMPTY:A->bool`;`EMPTY:A->bool`;`(IMAGE (\z. path_component U z) (Z DIFF A))`] (USE 10 o ISPECL); UND 10 THEN DISCH_ALL_TAC; UND 12 THEN (DISCH_THEN IMATCH_MP_TAC ); REWRITE_TAC[SUBSET;IN_IMAGE]; REWRITE_TAC[IN]; NAME_CONFLICT_TAC; DISCH_ALL_TAC; CHO 12; ASM_REWRITE_TAC[]; USE 0 (REWRITE_RULE[loc_path_conn]); TYPE_THEN `(UNIONS U)` (USE 0 o SPEC); USE 0 ( CONV_RULE NAME_CONFLICT_CONV); TYPE_THEN `x'` (USE 0 o SPEC); UND 0; ASM_SIMP_TAC[induced_top_unions]; DISCH_THEN MATCH_MP_TAC; ASM_SIMP_TAC[top_univ]; AND 12; USE 2 (REWRITE_RULE[SUBSET;IN]); USE 0 (REWRITE_RULE[DIFF;IN;IN_ELIM_THM' ]); ASM_MESON_TAC[]; CONJ_TAC; REWRITE_TAC[EQ_EMPTY]; DISCH_ALL_TAC; USE 10 (REWRITE_RULE[INTER;IN;IN_ELIM_THM' ]); AND 10; UND 10; EXPAND_TAC "B"; REWRITE_TAC[UNIONS;IN_IMAGE ;IN_ELIM_THM' ]; REWRITE_TAC[IN]; LEFT_TAC "u"; DISCH_ALL_TAC; AND 10; CHO 12; AND 12; REWR 10; UND 11; EXPAND_TAC "A"; USE 10 (ONCE_REWRITE_RULE [path_symm_eq]); DISCH_TAC; JOIN 11 10; USE 10 (MATCH_MP path_trans); REWR 10; UND 10; UND 12; REWRITE_TAC[DIFF;IN;IN_ELIM_THM']; MESON_TAC[]; REWRITE_TAC[SUBSET;IN;UNION;IN_ELIM_THM']; DISCH_ALL_TAC; TYPE_THEN `A x'` ASM_CASES_TAC; ASM_REWRITE_TAC[]; DISJ2_TAC ; EXPAND_TAC "B"; REWRITE_TAC[UNIONS;IN_IMAGE;IN_ELIM_THM' ]; REWRITE_TAC[IN]; LEFT_TAC "x"; LEFT_TAC "x"; TYPE_THEN `x'` EXISTS_TAC; TYPE_THEN `path_component U x'` EXISTS_TAC; ASM_REWRITE_TAC[DIFF;IN;IN_ELIM_THM' ]; IMATCH_MP_TAC path_refl; USE 2 (REWRITE_RULE[SUBSET;IN]); ASM_MESON_TAC[]; DISCH_TAC ; REWR 5; UND 5; DISCH_THEN DISJ_CASES_TAC ; USE 5 (REWRITE_RULE[SUBSET;IN ;]); ASM_MESON_TAC[]; UND 8 THEN DISCH_ALL_TAC; USE 10 (REWRITE_RULE[EQ_EMPTY]); TYPE_THEN `x` (USE 10 o SPEC); USE 10 (REWRITE_RULE[INTER;IN;IN_ELIM_THM']); USE 5 (REWRITE_RULE[SUBSET;IN;IN_ELIM_THM']); TYPE_THEN `A x` SUBGOAL_TAC; EXPAND_TAC "A"; IMATCH_MP_TAC path_refl ; USE 2 (REWRITE_RULE[SUBSET;IN;IN_ELIM_THM']); ASM_MESON_TAC[]; ASM_MESON_TAC[]; ]);; (* }}} *) let open_ball_star = prove_by_refinement( `!x r y t n. (open_ball(euclid n,d_euclid) x r y) /\ (&.0 <=. t) /\ (t <=. &.1) ==> (open_ball(euclid n,d_euclid) x r ((t *# x + (&.1-t)*#y)))`, (* {{{ proof *) [ REWRITE_TAC[open_ball;IN_ELIM_THM' ]; DISCH_ALL_TAC; ASM_SIMP_TAC[euclid_scale_closure;euclid_add_closure]; GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM trivial_lin_combo]; ASSUME_TAC (SPEC `n:num` metric_translate_LEFT); TYPEL_THEN [`(&.1 - t) *# x`;`(&.1 - t)*# y`;`t *# x`] (USE 5 o ISPECL); UND 5; ASM_SIMP_TAC [euclid_scale_closure]; ASM_MESON_TAC[norm_scale_vec;REAL_ARITH `(&.0 <=. t) /\ (t <=. (&.1)) ==> (||. (&.1 - t) <=. &.1)`;REAL_ARITH `(b <= a) ==> ((a < C) ==> (b < C))`;GSYM REAL_MUL_LID;REAL_LE_RMUL;d_euclid_pos]; ]);; (* }}} *) let open_ball_path = prove_by_refinement( `!x r y n. (open_ball(euclid n,d_euclid) x r y) ==> (path_component (top_of_metric(open_ball(euclid n,d_euclid) x r,d_euclid)) y x)`, (* {{{ proof *) [ REWRITE_TAC[path_component ;]; DISCH_ALL_TAC; TYPE_THEN `(\t. (t *# x + (&.1 - t) *# y))` EXISTS_TAC; EXISTS_TAC `&.0`; EXISTS_TAC `&.1`; REDUCE_TAC; TYPE_THEN `top_of_metric (open_ball (euclid n,d_euclid) x r,d_euclid) = (induced_top(top_of_metric(euclid n,d_euclid)) (open_ball (euclid n,d_euclid) x r))` SUBGOAL_TAC; ASM_MESON_TAC[open_ball_subset;metric_euclid;top_of_metric_induced ]; DISCH_TAC ; TYPE_THEN `euclid n x /\ euclid n y` SUBGOAL_TAC; USE 0 (REWRITE_RULE[open_ball;IN_ELIM_THM' ]); ASM_REWRITE_TAC[]; DISCH_ALL_TAC; CONJ_TAC; ASM_REWRITE_TAC[]; IMATCH_MP_TAC continuous_induced; ASM_SIMP_TAC [top_of_metric_top;metric_euclid;open_ball_open]; IMATCH_MP_TAC continuous_lin_combo ; ASM_REWRITE_TAC[]; CONJ_TAC; REWRITE_TAC[euclid_plus;euclid_scale]; IMATCH_MP_TAC EQ_EXT THEN BETA_TAC ; REDUCE_TAC; CONJ_TAC; REWRITE_TAC[euclid_plus;euclid_scale]; IMATCH_MP_TAC EQ_EXT THEN BETA_TAC ; REDUCE_TAC; REWRITE_TAC[SUBSET;IN_IMAGE;Q_ELIM_THM'' ]; REWRITE_TAC[IN;IN_ELIM_THM']; TYPE_THEN `(UNIONS (top_of_metric (open_ball (euclid n,d_euclid) x r,d_euclid))) = (open_ball(euclid n,d_euclid) x r)` SUBGOAL_TAC; IMATCH_MP_TAC (GSYM top_of_metric_unions); IMATCH_MP_TAC metric_subspace; ASM_MESON_TAC[metric_euclid;open_ball_subset]; DISCH_THEN (fun t->REWRITE_TAC[t]); ASM_MESON_TAC [open_ball_star]; ]);; (* }}} *) let path_domain = prove_by_refinement( `!U x (y:A). path_component U x y <=> (?f a b. (continuous f (top_of_metric(UNIV,d_real )) U ) /\ (a <. b) /\ (f a = (x:A)) /\ (f b = y) /\ (IMAGE f UNIV SUBSET (UNIONS U)))`, (* {{{ proof *) [ REWRITE_TAC[path_component]; DISCH_ALL_TAC; EQ_TAC; DISCH_TAC ; CHO 0; CHO 0; CHO 0; TYPE_THEN `joinf (\t. (f a)) (joinf f (\t. (f b)) b) a` EXISTS_TAC; TYPE_THEN `a` EXISTS_TAC; TYPE_THEN `b` EXISTS_TAC; ASM_REWRITE_TAC[]; CONJ_TAC; IMATCH_MP_TAC joinf_cont; ASM_SIMP_TAC[const_continuous;top_of_metric_top;metric_real]; CONJ_TAC; IMATCH_MP_TAC joinf_cont; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[const_continuous;top_of_metric_top;metric_real]; REWRITE_TAC[joinf]; ASM_REWRITE_TAC[]; CONJ_TAC; ASM_REWRITE_TAC[joinf;REAL_ARITH `~(a (~(b < a))`)); ASM_REWRITE_TAC [joinf;REAL_ARITH `~(b < b)`]; REWRITE_TAC[SUBSET;IN_IMAGE;Q_ELIM_THM'';joinf ]; REWRITE_TAC[IN_UNIV]; GEN_TAC; UND 0; DISCH_ALL_TAC; USE 4 (REWRITE_RULE[SUBSET;IN_IMAGE;Q_ELIM_THM'';]); USE 4 (REWRITE_RULE[IN;IN_ELIM_THM' ]); (* cc1 *) TYPE_THEN `a` (WITH 4 o SPEC); TYPE_THEN `b` (WITH 4 o SPEC); TYPE_THEN `x'` (USE 4 o SPEC); DISJ_CASES_TAC (REAL_ARITH `x' < a \/ (a <= x')`); ASM_REWRITE_TAC[IN]; ASM_MESON_TAC[REAL_ARITH `(a <=a) /\ ((a < b) ==> (a <= b))`]; DISJ_CASES_TAC (REAL_ARITH `x' < b \/ (b <= x')`); REWR 4; USE 7 (MATCH_MP (REAL_ARITH `a <= x' ==> (~(x' < a))`)); ASM_REWRITE_TAC[IN ]; ASM_MESON_TAC[REAL_ARITH `x' < b ==> x' <= b`]; USE 7 (MATCH_MP (REAL_ARITH `a <= x' ==> (~(x' < a))`)); ASM_REWRITE_TAC[]; USE 8 (MATCH_MP (REAL_ARITH `b <= x' ==> ~(x' < b)`)); ASM_REWRITE_TAC[IN]; ASM_MESON_TAC[REAL_ARITH `b <=b /\ ((a < b) ==> (a <= b))`]; DISCH_TAC ; CHO 0; CHO 0; CHO 0; TYPE_THEN `f` EXISTS_TAC; TYPE_THEN `a ` EXISTS_TAC; TYPE_THEN `b` EXISTS_TAC; ASM_REWRITE_TAC[]; UND 0; REWRITE_TAC[SUBSET;IN_IMAGE ;Q_ELIM_THM'']; REWRITE_TAC[IN_UNIV]; REWRITE_TAC[IN;IN_ELIM_THM']; ASM_MESON_TAC[]; ]);; (* }}} *) let path_component_subspace = prove_by_refinement( `!X Y d (y:A). ((Y SUBSET X) /\ (metric_space(X,d) /\ (Y y))) ==> ((path_component(top_of_metric(Y,d)) y) SUBSET (path_component(top_of_metric(X,d)) y))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[SUBSET;IN;path_domain]; DISCH_ALL_TAC; CHO 3; CHO 3; CHO 3; TYPE_THEN `f` EXISTS_TAC; TYPE_THEN `a` EXISTS_TAC; TYPE_THEN `b` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `metric_space(Y,d)` SUBGOAL_TAC; ASM_MESON_TAC[metric_subspace]; DISCH_TAC; UND 3; ASM_SIMP_TAC[GSYM top_of_metric_unions]; DISCH_ALL_TAC; CONJ_TAC; UND 3; TYPE_THEN `IMAGE f UNIV SUBSET X /\ IMAGE f UNIV SUBSET Y` SUBGOAL_TAC; ASM_MESON_TAC[SUBSET;IN]; DISCH_TAC; ASM_SIMP_TAC[metric_continuous_continuous;metric_real]; REWRITE_TAC[metric_continuous;metric_continuous_pt]; ASM_MESON_TAC[SUBSET;IN]; ]);; (* }}} *) let path_component_in = prove_by_refinement( `!x (y:A) U. (path_component U x y) ==> (UNIONS U y)`, (* {{{ proof *) [ REWRITE_TAC[path_component]; DISCH_ALL_TAC; CHO 0; CHO 0; CHO 0; UND 0; DISCH_ALL_TAC; USE 4 (REWRITE_RULE[SUBSET;IN_IMAGE;Q_ELIM_THM'']); USE 4 (REWRITE_RULE[IN_ELIM_THM';IN]); TYPE_THEN `b` (USE 4 o SPEC); ASM_MESON_TAC[REAL_ARITH `(a < b) ==> ((a<=. b) /\ (b <= b))`]; ]);; (* }}} *) let loc_path_conn_euclid = prove_by_refinement( `!n A. (top_of_metric(euclid n,d_euclid)) A ==> (loc_path_conn (top_of_metric(A,d_euclid)))`, (* {{{ proof *) [ DISCH_ALL_TAC; REWRITE_TAC[loc_path_conn]; DISCH_ALL_TAC; TYPE_THEN `metric_space (A,d_euclid)` SUBGOAL_TAC; IMATCH_MP_TAC metric_subspace; TYPE_THEN `euclid n` EXISTS_TAC; REWRITE_TAC[metric_euclid]; USE 0 (MATCH_MP sub_union); ASM_MESON_TAC[top_of_metric_unions;metric_euclid]; DISCH_ALL_TAC; WITH 3 (MATCH_MP top_of_metric_nbd); UND 4; DISCH_THEN (fun t-> REWRITE_TAC[t]); TYPE_THEN `A' SUBSET A` SUBGOAL_TAC; USE 1 (MATCH_MP sub_union); ASM_MESON_TAC[top_of_metric_unions]; DISCH_TAC; ASM_SIMP_TAC[top_of_metric_induced]; TYPE_THEN `metric_space(A',d_euclid)` SUBGOAL_TAC; ASM_MESON_TAC[metric_subspace]; DISCH_TAC ; SUBCONJ_TAC; REWRITE_TAC[SUBSET;IN]; REWRITE_TAC[path_component]; DISCH_ALL_TAC; CHO 6; CHO 6; CHO 6; USE 6 (REWRITE_RULE[SUBSET;IN_IMAGE ;IN_ELIM_THM';Q_ELIM_THM'']); UND 6; DISCH_ALL_TAC; TYPE_THEN `b` (USE 10 o SPEC); USE 4 (REWRITE_RULE[SUBSET;IN]); UND 4; DISCH_THEN IMATCH_MP_TAC ; USE 5 (MATCH_MP top_of_metric_unions); UND 10; UND 4; DISCH_THEN (fun t -> ONCE_REWRITE_TAC[GSYM t]); ASM_REWRITE_TAC[IN]; ASM_MESON_TAC[REAL_ARITH `b <=. b /\ ((a < b)==> (a <=. b))`]; DISCH_TAC; REWRITE_TAC[IN]; DISCH_ALL_TAC; (* c2 *) WITH 7 (MATCH_MP path_component_in); TYPE_THEN `A' a` SUBGOAL_TAC; UND 8; ASM_SIMP_TAC[GSYM top_of_metric_unions;]; DISCH_TAC; TYPE_THEN `A SUBSET (euclid n)` SUBGOAL_TAC; USE 0 (MATCH_MP sub_union); UND 0; ASM_SIMP_TAC[GSYM top_of_metric_unions;metric_euclid]; DISCH_TAC; TYPE_THEN `top_of_metric(euclid n,d_euclid) A'` SUBGOAL_TAC; IMATCH_MP_TAC induced_trans; TYPE_THEN `A` EXISTS_TAC; ASM_REWRITE_TAC[]; ASM_SIMP_TAC[top_of_metric_top;metric_euclid;top_of_metric_induced ]; DISCH_TAC; COPY 11; UND 12; SIMP_TAC[top_of_metric_nbd;metric_euclid]; DISCH_ALL_TAC; TYPE_THEN `a` (USE 13 o SPEC); USE 13 (REWRITE_RULE[IN]); REWR 13; CHO 13; TYPE_THEN `r` EXISTS_TAC; ASM_REWRITE_TAC[]; TYPE_THEN `open_ball (A,d_euclid) a r SUBSET path_component (top_of_metric (A',d_euclid)) a` SUBGOAL_TAC ; TYPE_THEN `open_ball (euclid n,d_euclid) a r SUBSET path_component (top_of_metric (A',d_euclid)) a` SUBGOAL_TAC ; TYPE_THEN `open_ball (euclid n,d_euclid) a r SUBSET path_component (top_of_metric ((open_ball(euclid n,d_euclid) a r),d_euclid)) a` SUBGOAL_TAC; REWRITE_TAC[SUBSET;IN]; MESON_TAC[open_ball_path;SUBSET;IN;path_symm]; IMATCH_MP_TAC (prove_by_refinement(`!A B C. (B:A->bool) SUBSET C ==> (A SUBSET B ==> A SUBSET C)`,[MESON_TAC[SUBSET_TRANS]])); IMATCH_MP_TAC path_component_subspace; ASM_REWRITE_TAC[]; IMATCH_MP_TAC (REWRITE_RULE[IN] open_ball_nonempty); ASM_SIMP_TAC[metric_euclid]; ASM_MESON_TAC[SUBSET;IN]; IMATCH_MP_TAC (prove_by_refinement (`!A B C. (A:A->bool) SUBSET B ==> (B SUBSET C ==> A SUBSET C)`,[MESON_TAC[SUBSET_TRANS]])); ASM_SIMP_TAC[open_ball_subspace]; IMATCH_MP_TAC (prove_by_refinement(`!A B C. (B:A->bool) SUBSET C ==> (A SUBSET B ==> A SUBSET C)`,[MESON_TAC[SUBSET_TRANS]])); REWRITE_TAC[SUBSET;IN]; GEN_TAC; UND 7; MESON_TAC[path_trans]; ]);; (* }}} *) let loc_path_euclid_cor = prove_by_refinement( `!n A . (top_of_metric(euclid n,d_euclid)) A ==> (path_component (top_of_metric(A,d_euclid)) = component (top_of_metric(A,d_euclid)))`, (* {{{ proof *) [ DISCH_ALL_TAC; WITH 0 (MATCH_MP loc_path_conn_euclid); IMATCH_MP_TAC EQ_EXT; GEN_TAC; IMATCH_MP_TAC path_eq_conn; ASM_REWRITE_TAC[]; IMATCH_MP_TAC top_of_metric_top; USE 0 (MATCH_MP sub_union); UND 0; ASM_SIMP_TAC[GSYM top_of_metric_unions ;metric_euclid]; ASM_MESON_TAC[metric_subspace;metric_euclid]; ]);; (* }}} *)