(* ========================================================================= *) (* Birkhoff's theorem and canonical version for congruence closure. *) (* ========================================================================= *) let ALL2_SYM = prove (`!l1 l2. ALL2 P l1 l2 <=> ALL2 (\x y. P y x) l2 l1`, LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2]);; let MAP_EQ_ALL2 = prove (`!f l1 l2. ALL2 (\x y. f x = f y) l1 l2 ==> (MAP f l1 = MAP f l2)`, GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_SIMP_TAC[ALL2; MAP; CONS_11] THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; let FORMSUBST_EQ = prove (`!i s t. formsubst i (s === t) = (termsubst i s === termsubst i t)`, REWRITE_TAC[Equal_DEF; formsubst; MAP]);; (* ------------------------------------------------------------------------- *) (* Avoid tedious language details, for sake of simplicity. *) (* ------------------------------------------------------------------------- *) let TERMS_UNIV = prove (`terms UNIV = UNIV`, REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[terms_RULES] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN ASM_REWRITE_TAC[IN_UNIV]);; let FUNCTIONS_UNIV = prove (`functions UNIV = UNIV`, REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN EXISTS_TAC `functions_form(Atom p [Fn f (REPLICATE n (V x))])` THEN REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE] THEN EXISTS_TAC `Atom p [Fn f (REPLICATE n (V x))]` THEN REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE]);; let PREDICATES_UNIV = prove (`predicates UNIV = UNIV`, REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN EXISTS_TAC `predicates_form(Atom p (REPLICATE n (V x)))` THEN REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT] THEN EXISTS_TAC `Atom p (REPLICATE n (V x))` THEN REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT]);; let LANGUAGE_UNIV = prove (`language UNIV = UNIV,UNIV`, REWRITE_TAC[language; FUNCTIONS_UNIV; PREDICATES_UNIV]);; (* ------------------------------------------------------------------------- *) (* Trivial properties of object equality. *) (* ------------------------------------------------------------------------- *) let EQUAL_INJ = prove (`!s t u v. ((s === t) = (u === v)) <=> (s = u) /\ (t = v)`, REWRITE_TAC[Equal_DEF; form_INJ; CONS_11]);; let EQUAL_INJ_ALT = prove (`!s t u v. ((s === t) = (u === v)) <=> (u = s) /\ (v = t)`, REWRITE_TAC[EQUAL_INJ; EQ_SYM_EQ]);; (* ------------------------------------------------------------------------- *) (* Provability. *) (* ------------------------------------------------------------------------- *) parse_as_infix("|-",(11,"right"));; let provable_RULES,provable_INDUCT,provable_CASES = new_inductive_definition `(!s t. s === t IN E ==> E |- s === t) /\ (!t. E |- t === t) /\ (!s t. E |- s === t ==> E |- t === s) /\ (!s t u. E |- s === t /\ E |- t === u ==> E |- s === u) /\ (!f a b. ALL2 (\l r. E |- l === r) a b ==> E |- Fn f a === Fn f b) /\ (!s t i. E |- s === t ==> E |- formsubst i (s === t))`;; (* ------------------------------------------------------------------------- *) (* Weakly canonical provability: instantiation and symmetry at leaves. *) (* ------------------------------------------------------------------------- *) parse_as_infix("|--",(11,"right"));; let wcprovable_RULES,wcprovable_INDUCT,wcprovable_CASES = new_inductive_definition `(!s t i. s === t IN E ==> E |-- formsubst i (s === t)) /\ (!s t i. s === t IN E ==> E |-- formsubst i (t === s)) /\ (!t. E |-- t === t) /\ (!s t u. E |-- s === t /\ E |-- t === u ==> E |-- s === u) /\ (!f a b. ALL2 (\l r. E |-- l === r) a b ==> E |-- Fn f a === Fn f b)`;; (* ------------------------------------------------------------------------- *) (* Equivalence (fairly easy). *) (* ------------------------------------------------------------------------- *) let WCPROVABLE_SYM = prove (`!E a. E |-- a ==> !s t. (a = (s === t)) ==> E |-- t === s`, GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[wcprovable_RULES] THEN REPEAT CONJ_TAC THENL [ALL_TAC; ALL_TAC; MESON_TAC[wcprovable_RULES]; ONCE_REWRITE_TAC[GSYM ALL2_SYM] THEN REWRITE_TAC[wcprovable_RULES]] THEN REWRITE_TAC[FORMSUBST_EQ] THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[GSYM FORMSUBST_EQ] THEN REWRITE_TAC[wcprovable_RULES]);; let WCPROVABLE_INST = prove (`!E a. E |-- a ==> !i s t. (a = (s === t)) ==> (E |-- formsubst i (s === t))`, GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; FORMSUBST_EQ; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[TERMSUBST_TERMSUBST] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES]; SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES]; REWRITE_TAC[wcprovable_RULES]; MESON_TAC[wcprovable_RULES]; ALL_TAC] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[termsubst] THEN MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL wcprovable_RULES))) THEN REWRITE_TAC[ALL2_MAP2] THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_ALL2 THEN SIMP_TAC[]);; let WCPROVABLE_PROVABLE = prove (`!E s t. (E |-- s === t) <=> (E |- s === t)`, GEN_TAC THEN SUBGOAL_THEN `(!a. E |- a ==> !s t. (a = (s === t)) ==> E |-- s === t) /\ (!a. E |-- a ==> !s t. (a = (s === t)) ==> E |- s === t)` (fun th -> MESON_TAC[th]) THEN CONJ_TAC THENL [MATCH_MP_TAC provable_INDUCT; MATCH_MP_TAC wcprovable_INDUCT] THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[provable_RULES; wcprovable_RULES] THENL [MESON_TAC[FORMSUBST_TRIV; wcprovable_RULES; Equal_DEF; WCPROVABLE_SYM; WCPROVABLE_INST]; MESON_TAC[FORMSUBST_TRIV; provable_RULES; Equal_DEF]]);; (* ------------------------------------------------------------------------- *) (* R-assoc transitivity chains and congruences maximally pushed down. *) (* ------------------------------------------------------------------------- *) parse_as_infix("|---",(11,"right"));; parse_as_infix("|--_axiom",(11,"right"));; parse_as_infix("|--_cong",(11,"right"));; parse_as_infix("|--_achain",(11,"right"));; parse_as_infix("|--_cchain",(11,"right"));; let aprovable_RULES,aprovable_INDUCT,aprovable_CASES = new_inductive_definition `(!s t i. s === t IN E ==> E |--_axiom formsubst i (s === t)) /\ (!s t i. s === t IN E ==> E |--_axiom formsubst i (t === s))`;; let cprovable_RULES,cprovable_INDUCT,cprovable_CASES = new_inductive_definition `(!s t. E |--_axiom s === t ==> E |--_achain s === t) /\ (!s t. E |--_cong s === t ==> E |--_cchain s === t) /\ (!s t u. E |--_axiom s === t /\ E |--- t === u ==> E |--_achain s === u) /\ (!s t u. E |--_cong s === t /\ E |--_achain t === u ==> E |--_cchain s === u) /\ (!f a b. ALL2 (\l r. E |--- l === r) a b ==> E |--_cong Fn f a === Fn f b) /\ (!s t. (s = t) \/ E |--_achain s === t \/ E |--_cchain s === t ==> E |--- s === t)`;; let CPROVABLE_PROVABLE_LEMMA = prove (`!E a. E |-- a ==> E |-- a /\ E |--- a /\ !u s t. (a = (s === t)) ==> E |--- t === u ==> E |--- s === u`, GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[wcprovable_RULES] THEN REPEAT(CONJ_TAC THENL [MESON_TAC[FORMSUBST_EQ; wcprovable_RULES; cprovable_RULES; aprovable_RULES]; ALL_TAC]) THEN REWRITE_TAC[GSYM AND_ALL2] THEN SIMP_TAC[wcprovable_RULES] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[cprovable_RULES] THEN X_GEN_TAC `u:term` THEN GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN REWRITE_TAC[EQUAL_INJ_ALT] THEN ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN DISCH_THEN (DISJ_CASES_THEN MP_TAC) THENL [DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN DISJ2_TAC THEN MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN DISJ_CASES_TAC THENL [MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN DISJ2_TAC THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN EXISTS_TAC `Fn f b` THEN ASM_SIMP_TAC[cprovable_RULES]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cprovable_CASES]) THEN REWRITE_TAC[EQUAL_INJ_ALT] THEN ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN DISJ2_TAC THEN MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN MAP_EVERY UNDISCH_TAC [`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`; `ALL2 (\l r. E |--- l === r) b c`] THEN REWRITE_TAC[IMP_IMP] THEN MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`c:term list`; `b:term list`; `a:term list`] THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(fun th -> EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC); ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `s:term` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN DISJ2_TAC THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN EXISTS_TAC `Fn f c` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN MAP_EVERY UNDISCH_TAC [`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`; `ALL2 (\l r. E |--- l === r) b c`] THEN REWRITE_TAC[IMP_IMP] THEN MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`c:term list`; `b:term list`; `a:term list`] THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(fun th -> EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC));; let CPROVABLE_PROVABLE = prove (`!E s t. (E |--- s === t) <=> (E |- s === t)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[CPROVABLE_PROVABLE_LEMMA; WCPROVABLE_PROVABLE]] THEN SUBGOAL_THEN `(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\ (!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\ (!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |- s === t) /\ (!a. E |--- a ==> !s t. (a = (s === t)) ==> E |- s === t)` (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC cprovable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[provable_RULES] THEN SUBGOAL_THEN `!a. E |--_axiom a ==> !s t. (a = (s === t)) ==> E |- s === t` (fun th -> MESON_TAC[th; provable_RULES]) THEN MATCH_MP_TAC aprovable_INDUCT THEN REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN SIMP_TAC[] THEN MESON_TAC[provable_RULES; FORMSUBST_EQ]);; (* ------------------------------------------------------------------------- *) (* Auxiliary notion of set of subterms in equations. *) (* ------------------------------------------------------------------------- *) let subterms = new_recursive_definition term_RECURSION `(subterms (V x) = {(V x)}) /\ (subterms (Fn f args) = (Fn f args) INSERT (LIST_UNION (MAP subterms args)))`;; let subtermsa = new_recursive_definition form_RECURSION `subtermsa (Atom P args) = LIST_UNION (MAP subterms args)`;; let subtermss = new_definition `subtermss E = UNIONS {subtermsa p | p IN E}`;; let SUBTERMS_REFL = prove (`!t. t IN subterms t`, MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[subterms; IN_INSERT]);; (* ------------------------------------------------------------------------- *) (* Show that this maintains the subterm property for congruence closure. *) (* ------------------------------------------------------------------------- *) let esubterms = new_definition `esubterms E s t = subtermss ((s === t) INSERT {formsubst i p |i,p| p IN E})`;; parse_as_infix("|----",(11,"right"));; parse_as_infix("|--_scong",(11,"right"));; parse_as_infix("|--_sachain",(11,"right"));; parse_as_infix("|--_scchain",(11,"right"));; let scprovable_RULES,scprovable_INDUCT,scprovable_CASES = new_inductive_definition `(!s t. E |--_axiom s === t ==> E |--_sachain s === t) /\ (!s t. E |--_scong s === t ==> E |--_scchain s === t) /\ (!s t u. E |--_axiom s === t /\ E |---- t === u /\ t IN esubterms E s u ==> E |--_sachain s === u) /\ (!s t u. E |--_scong s === t /\ E |--_sachain t === u /\ t IN esubterms E s u ==> E |--_scchain s === u) /\ (!f a b. ALL2 (\l r. E |---- l === r) a b ==> E |--_scong Fn f a === Fn f b) /\ (!s t. (s = t) \/ E |--_sachain s === t \/ E |--_scchain s === t ==> E |---- s === t)`;; let ESUBTERMS_TRIVIAL_L = prove (`!u. u IN subterms s ==> u IN esubterms E s t`, REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN ASM_REWRITE_TAC[IN_UNION] THEN EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN REWRITE_TAC[UNION_EMPTY]);; let ESUBTERMS_TRIVIAL_R = prove (`!u. u IN subterms t ==> u IN esubterms E s t`, REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN ASM_REWRITE_TAC[IN_UNION] THEN EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN REWRITE_TAC[UNION_EMPTY]);; let SCPROVABLE_SUBTERMS = prove (`!a. E |--_sachain a ==> !s t. (a = (s === t)) ==> !u v. s IN esubterms E u v`, GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [scprovable_CASES] THEN SUBGOAL_THEN `!a. E |--_axiom a ==> !s t. (a = (s === t)) ==> !u v. s IN esubterms E u v` (fun th -> STRIP_TAC THEN ASM_REWRITE_TAC[EQUAL_INJ_ALT] THEN ASM_MESON_TAC[th]) THEN GEN_TAC THEN ONCE_REWRITE_TAC[aprovable_CASES] THEN STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN (REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN EXISTS_TAC `subtermsa (formsubst i (s === t))` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN MESON_TAC[IN_UNION; SUBTERMS_REFL]));; let SCPROVABLE_CPROVABLE_LEMMA = prove (`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |--_sachain s === t) /\ (!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |--_scchain s === t) /\ (!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |--_scong s === t) /\ (!a. E |--- a ==> !s t. (a = (s === t)) ==> E |---- s === t)`, MATCH_MP_TAC cprovable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[scprovable_RULES] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC(el 2 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [aprovable_CASES]) THEN REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN (REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:term`; `w:term`; `i:num->term`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN EXISTS_TAC `subtermsa (formsubst i (v === w))` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN MESON_TAC[IN_UNION; SUBTERMS_REFL]); ALL_TAC] THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SCPROVABLE_SUBTERMS]);; let SCPROVABLE_CPROVABLE = prove (`!E s t. (E |--- s === t) <=> (E |---- s === t)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[SCPROVABLE_CPROVABLE_LEMMA]; ALL_TAC] THEN SUBGOAL_THEN `(!a. E |--_sachain a ==> !s t. (a = (s === t)) ==> E |--_achain s === t) /\ (!a. E |--_scchain a ==> !s t. (a = (s === t)) ==> E |--_cchain s === t) /\ (!a. E |--_scong a ==> !s t. (a = (s === t)) ==> E |--_cong s === t) /\ (!a. E |---- a ==> !s t. (a = (s === t)) ==> E |--- s === t)` (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC scprovable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[cprovable_RULES] THEN MESON_TAC[cprovable_RULES]);; let SCPROVABLE_PROVABLE = prove (`!E s t. (E |--- s === t) <=> (E |- s === t)`, MESON_TAC[SCPROVABLE_CPROVABLE; CPROVABLE_PROVABLE]);; (* ------------------------------------------------------------------------- *) (* Clausal version of equality properties. *) (* ------------------------------------------------------------------------- *) let Eqclause_Func = new_definition `Eqclause_Func (f,n) = set_of_list (CONS (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) (MAP (\(s,t). Not(s === t)) (Varpairs n)))`;; let Eqclause_Pred = new_definition `Eqclause_Pred (p,n) = set_of_list (CONS (Atom p (MAP SND (Varpairs n))) (CONS (Not(Atom p (MAP FST (Varpairs n)))) (MAP (\(s,t). Not(s === t)) (Varpairs n))))`;; let Eqclauses_DEF = new_definition `Eqclauses L = {(V 0 === V 0)} INSERT {(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} INSERT ({Eqclause_Func fa | fa IN FST L} UNION {Eqclause_Pred pa | pa IN SND L})`;; let EQCLAUSE_EQAXIOM_FUNC = prove (`!M f n. ~(Dom M :A->bool = {}) ==> (M satisfies {(interp(Eqclause_Func (f,n)))} <=> M satisfies {(Eqaxiom_Func (f,n))})`, REPEAT GEN_TAC THEN REWRITE_TAC[Eqclause_Func; Eqaxiom_Func] THEN SIMP_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_REFL] THEN SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN DISCH_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(~a <=> b) ==> (c \/ a <=> b ==> c)`) THEN SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[HOLDS]);; let Eqaxiom_Pred_imp = new_definition `Eqaxiom_Pred_imp (p,n) = uclose (ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True --> Atom p (MAP FST (Varpairs n)) --> Atom p (MAP SND (Varpairs n)))`;; let lemma = prove(`a INSERT s = {a} UNION s`,SET_TAC[]);; let EQCLAUSES_EQAXIOMS = prove (`!M L. ~(Dom M :A->bool = {}) ==> (M satisfies (IMAGE interp (Eqclauses L)) <=> M satisfies (Eqaxioms L))`, REPEAT STRIP_TAC THEN REWRITE_TAC[Eqclauses_DEF; Eqaxioms_DEF; IMAGE_CLAUSES; IMAGE_UNION] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [lemma] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [lemma] THEN REWRITE_TAC[SATISFIES_UNION] THEN MATCH_MP_TAC(TAUT `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN CONJ_TAC THENL [REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN REWRITE_TAC[IN_SING] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN CONJ_TAC THENL [REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; HOLDS] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN REWRITE_TAC[HOLDS] THEN AP_TERM_TAC THEN ABS_TAC THEN CONV_TAC TAUT; ALL_TAC] THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN CONJ_TAC THENL [REWRITE_TAC[SATISFIES_IMAGE] THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN SIMP_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN FIRST_ASSUM(MP_TAC o MATCH_MP EQCLAUSE_EQAXIOM_FUNC) THEN REWRITE_TAC[SATISFIES_1] THEN ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[SATISFIES_IMAGE] THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN SUBGOAL_THEN `!p n. (!v:num->A. valuation M v ==> holds M v (interp(Eqclause_Pred(p,n)))) <=> (!v:num->A. valuation M v ==> holds M v (Eqaxiom_Pred(p,n)))` (fun th -> MESON_TAC[th]) THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `!v:num->A. valuation M v ==> holds M v (Eqaxiom_Pred_imp(p,n))` THEN CONJ_TAC THENL [REWRITE_TAC[Eqclause_Pred; Eqaxiom_Pred_imp] THEN ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN DISCH_TAC THEN REWRITE_TAC[HOLDS] THEN MATCH_MP_TAC(TAUT `(~c <=> d) ==> (a \/ ~b \/ c <=> d ==> b ==> a)`) THEN SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[HOLDS]; ALL_TAC] THEN REWRITE_TAC[Eqaxiom_Pred_imp; Eqaxiom_Pred; HOLDS] THEN ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ; HOLDS] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x. if EVEN(x) then v(x + 1):A else v(x - 1)`) THEN REWRITE_TAC[GSYM MAP_o] THEN MAP_EVERY UNDISCH_TAC [`Pred M p (MAP (termval M (v:num->A)) (MAP SND (Varpairs n)))`; `holds M (v:num->A) (ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True)`] THEN MATCH_MP_TAC(TAUT `a /\ (x <=> b) /\ (y <=> c) /\ (d <=> e) ==> x ==> y ==> (a ==> b ==> c ==> d) ==> e`) THEN CONJ_TAC THENL [REWRITE_TAC[valuation] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[valuation]; ALL_TAC] THEN SUBGOAL_THEN `!v:num->A x y. valuation M v ==> (holds M v (V x === V y) <=> holds M v (V y === V x))` ASSUME_TAC THENL [X_GEN_TAC `w:num->A` THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SATISFIES_1])) THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(y) else w(x)` th) THEN MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(x) else w(y)` th)) THEN REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ; valuation] THEN RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_REWRITE_TAC[COND_ID] THEN CONV_TAC TAUT; ALL_TAC] THEN CONJ_TAC THENL [SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP; ITLIST; HOLDS] THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `holds M (v:num->A) (V(2 * n + 1) === V(2 * n))` THEN CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ] THEN REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN REWRITE_TAC[ADD_SUB]; ALL_TAC] THEN CONJ_TAC THEN (AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP] THEN REWRITE_TAC[CONS_11] THEN REWRITE_TAC[ADD_SUB; o_THM; termval; EVEN_ADD; EVEN_MULT; ARITH]));; let FUNCTIONS_VAREQLIST = prove (`!n. functions(set_of_list (MAP (\(s,t). Not(s === t)) (Varpairs n))) = {}`, INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; set_of_list] THENL [REWRITE_TAC[functions; NOT_IN_EMPTY; IN_ELIM_THM; EXTENSION; IN_UNIONS]; ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_EMPTY] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[Equal_DEF; functions_form; Not_DEF; MAP; functions_term] THEN REWRITE_TAC[LIST_UNION; UNION_EMPTY]]);; let FUNCTIONS_TERM_FN_VARPAIRS = prove (`(!f n. functions_term(Fn f (MAP FST (Varpairs n))) = {(f,n)}) /\ (!f n. functions_term(Fn f (MAP SND (Varpairs n))) = {(f,n)})`, REWRITE_TAC[functions_term; LENGTH_VARPAIRS; LENGTH_MAP] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\ (LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})` (fun th -> REWRITE_TAC[th]) THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN ASM_REWRITE_TAC[UNION_EMPTY]);; let FUNCTIONS_FORM_PRED_VARPAIRS = prove (`(!p n. functions_form(Atom p (MAP FST (Varpairs n))) = {}) /\ (!p n. functions_form(Atom p (MAP SND (Varpairs n))) = {})`, REWRITE_TAC[functions_form; LENGTH_VARPAIRS; LENGTH_MAP] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\ (LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})` (fun th -> REWRITE_TAC[th]) THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN ASM_REWRITE_TAC[UNION_EMPTY]);; let FUNCTIONS_FORM_EQCLAUSE_FUNC = prove (`!fn. functions_form(interp(Eqclause_Func fn)) = {fn}`, GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN REWRITE_TAC[Eqclause_Func] THEN SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN REWRITE_TAC[functions_form; Equal_DEF; MAP; FUNCTIONS_TERM_FN_VARPAIRS] THEN REWRITE_TAC[GSYM Equal_DEF; FUNCTIONS_VAREQLIST] THEN REWRITE_TAC[LIST_UNION; UNION_EMPTY; UNION_ACI]);; let FUNCTIONS_FORM_EQCLAUSE_PRED = prove (`!pn. functions_form(interp(Eqclause_Pred pn)) = {}`, GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN REWRITE_TAC[Eqclause_Pred] THEN SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN REWRITE_TAC[FUNCTIONS_VAREQLIST; UNION_EMPTY] THEN REWRITE_TAC[Not_DEF; FUNCTIONS_FORM_PRED_VARPAIRS] THEN ONCE_REWRITE_TAC[functions_form] THEN REWRITE_TAC[FUNCTIONS_FORM_PRED_VARPAIRS] THEN REWRITE_TAC[functions_form; UNION_EMPTY]);; let FUNCTIONS_EQCLAUSES = prove (`functions(IMAGE interp (Eqclauses(language s))) = functions s`, REWRITE_TAC[functions; Eqclauses_DEF] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_UNIONS] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[IN_INSERT; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN REWRITE_TAC[functions_form; Not_DEF; Equal_DEF; MAP; functions_term] THEN REWRITE_TAC[LIST_UNION; UNION_EMPTY] THEN REWRITE_TAC[UNWIND_THM2; NOT_IN_EMPTY] THEN ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN REWRITE_TAC[UNWIND_THM2] THEN ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN REWRITE_TAC[Eqclause_Func; Eqclause_Pred; FINITE_SET_OF_LIST; FUNCTIONS_FORM_INTERP] THEN REWRITE_TAC[GSYM Eqclause_Func; GSYM Eqclause_Pred] THEN REWRITE_TAC[FUNCTIONS_FORM_EQCLAUSE_PRED; FUNCTIONS_FORM_EQCLAUSE_FUNC] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ ~(b ==> ~c)`] THEN SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[language] THEN REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[PAIR_EQ; NOT_IMP] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Completeness. *) (* ------------------------------------------------------------------------- *) let FUNCTIONS_FORM_NOT_UCLOSE = prove (`functions_form(Not(uclose p)) = functions_form p`, REWRITE_TAC[Not_DEF; functions_form; FUNCTIONS_FORM_UCLOSE; UNION_EMPTY]);; let PREDICATES_FORM_NOT_UCLOSE = prove (`predicates_form(Not(uclose p)) = predicates_form p`, REWRITE_TAC[Not_DEF; predicates_form; PREDICATES_FORM_UCLOSE; UNION_EMPTY]);; let FUNCTIONS_INSERT_NOT_UCLOSE = prove (`functions(p INSERT s) = functions(Not(uclose p) INSERT s)`, ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[IN_INSERT] THEN MESON_TAC[FUNCTIONS_FORM_NOT_UCLOSE]);; let PREDICATES_INSERT_NOT_UCLOSE = prove (`predicates(p INSERT s) = predicates(Not(uclose p) INSERT s)`, ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[IN_INSERT] THEN MESON_TAC[PREDICATES_FORM_NOT_UCLOSE]);; let LANGUAGE_INSERT_NOT_UCLOSE = prove (`language(p INSERT s) = language (Not(uclose p) INSERT s)`, REWRITE_TAC[language; GSYM FUNCTIONS_INSERT_NOT_UCLOSE; GSYM PREDICATES_INSERT_NOT_UCLOSE]);; let lemma1 = prove (`(!m. p m /\ q m /\ r m /\ s m ==> t m) <=> ~(?m. p m /\ q m /\ r m /\ s m /\ ~(t m))`, MESON_TAC[]);; let lemma2 = prove (`(x INSERT s) UNION t = x INSERT (s UNION t)`, SET_TAC[]);; let EQCLAUSES_DEFINITE = prove (`!L cl. cl IN Eqclauses L ==> definite cl`, REPEAT GEN_TAC THEN REWRITE_TAC[Eqclauses_DEF] THEN REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL [REWRITE_TAC[definite; IN_SING] THEN SUBGOAL_THEN `{p | (p = V 0 === V 0) /\ positive p} = {(V 0 === V 0)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING; positive; negative; Equal_DEF; Not_DEF] THEN MESON_TAC[form_DISTINCT]; ALL_TAC] THEN SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_SING] THEN SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL [REWRITE_TAC[definite; IN_SING] THEN SUBGOAL_THEN `{p | p IN {(Not (V 0 === V 1)), (Not (V 2 === V 1)), (V 0 === V 2)} /\ positive p} = {(V 0 === V 2)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[Equal_DEF; positive; negative] THEN MESON_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_INSERT] THEN SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[Eqclause_Pred; Eqclause_Func; definite; set_of_list] THENL [SUBGOAL_THEN `{p | p IN (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) INSERT set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\ positive p} = {(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN REWRITE_TAC[NOT_IN_EMPTY] THEN MATCH_MP_TAC(TAUT `(a ==> c) /\ (b ==> ~c) ==> ((a \/ b) /\ c <=> a)`) THEN CONJ_TAC THEN SIMP_TAC[] THENL [DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT]; ALL_TAC] THEN REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[positive; negative] THEN MESON_TAC[]; ALL_TAC] THEN SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[LITERAL; Equal_DEF]; ALL_TAC] THEN SUBGOAL_THEN `{p | p IN Atom f (MAP SND (Varpairs n)) INSERT Not (Atom f (MAP FST (Varpairs n))) INSERT set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\ positive p} = {(Atom f (MAP SND (Varpairs n)))}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN REWRITE_TAC[NOT_IN_EMPTY] THEN MATCH_MP_TAC(TAUT `(a ==> c) /\ (b ==> ~c) /\ (d ==> ~c) ==> ((a \/ b \/ d) /\ c <=> a)`) THEN CONJ_TAC THEN SIMP_TAC[] THENL [DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT]; ALL_TAC] THEN CONJ_TAC THENL [MESON_TAC[positive; negative]; ALL_TAC] THEN REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[positive; negative] THEN MESON_TAC[]; ALL_TAC] THEN SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[LITERAL; Equal_DEF]);; let EQLOGIC_COMPLETE = prove (`!E s t. (!e. e IN E ==> ?s t. e = (s === t)) /\ (!M. interpretation (language((s === t) INSERT E)) M /\ ~(Dom M :term->bool = {}) /\ normal (functions ((s === t) INSERT E)) M /\ M satisfies E ==> M satisfies {(s === t)}) ==> E |- s === t`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[lemma1] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> a /\ b /\ c /\ (b ==> d)`] THEN SIMP_TAC[SATISFIES_NOT] THEN REWRITE_TAC[TAUT `a /\ b /\ c /\ (b ==> d) <=> a /\ b /\ c /\ d`] THEN ONCE_REWRITE_TAC[FUNCTIONS_INSERT_NOT_UCLOSE; LANGUAGE_INSERT_NOT_UCLOSE] THEN REWRITE_TAC[NORMAL_THM] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ b /\ (b ==> c)`] THEN REWRITE_TAC[lemma2] THEN SIMP_TAC[GSYM SATISFIES_NOT] THEN REWRITE_TAC[TAUT `a /\ b /\ (b ==> c) <=> a /\ b /\ c`] THEN REWRITE_TAC[SATISFIES_UNION; GSYM CONJ_ASSOC; GSYM lemma1] THEN REWRITE_TAC[GSYM FUNCTIONS_INSERT_NOT_UCLOSE; GSYM LANGUAGE_INSERT_NOT_UCLOSE] THEN DISCH_TAC THEN SUBGOAL_THEN `?n. ibackchain ({{e} | e IN E} UNION Eqclauses(language ((s === t) INSERT E))) n (s === t)` MP_TAC THENL [MP_TAC(SPECL [`{{e} | e IN E} UNION Eqclauses(language ((s === t) INSERT E))`; `s === t`] IBACKCHAIN_MINIMAL) THEN MATCH_MP_TAC(TAUT `b /\ c /\ a ==> (a /\ b ==> (c <=> d)) ==> d`) THEN CONJ_TAC THENL [REWRITE_TAC[Equal_DEF; atom]; ALL_TAC] THEN SUBGOAL_THEN `functions (IMAGE interp {{e} | e IN E}) = functions E` ASSUME_TAC THENL [MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `UNIONS {functions p | p IN {{e} | e IN E}}` THEN CONJ_TAC THENL [MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FINITE_RULES]; ALL_TAC] THEN GEN_REWRITE_TAC RAND_CONV [functions] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[UNWIND_THM2] THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[IN_UNIONS; IN_SING; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `functions(IMAGE interp ({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))) = functions((s === t) INSERT E)` ASSUME_TAC THENL [REWRITE_TAC[IMAGE_UNION; FUNCTIONS_UNION; FUNCTIONS_EQCLAUSES] THEN REWRITE_TAC[FUNCTIONS_INSERT] THEN ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_ACI]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN SUBGOAL_THEN `atom(s === t)` MP_TAC THENL [REWRITE_TAC[atom; Equal_DEF]; ALL_TAC] THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC MONO_FORALL) THEN X_GEN_TAC `C:(term->bool)# ((num->((term)list->term))#(num->((term)list->bool)))` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC (TAUT `(w /\ x ==> a1) /\ (w ==> b1) /\ (w ==> b1 ==> y ==> c1 /\ d1) /\ (w ==> e1 ==> z) ==> (a1 /\ b1 /\ c1 /\ d1 ==> e1) ==> w /\ x /\ y ==> z`) THEN CONJ_TAC THENL [SIMP_TAC[interpretation; language; Dom_DEF] THEN DISCH_THEN(K ALL_TAC) THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM language] THEN REWRITE_TAC[FUNCTIONS_UNION; FUNCTIONS_EQAXIOM] THEN ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN CONJ_TAC THENL [DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN EXISTS_TAC `V 0` THEN REWRITE_TAC[IN; terms_RULES]; ALL_TAC] THEN CONJ_TAC THENL [DISCH_TAC THEN SIMP_TAC[IMAGE_UNION; GSYM EQCLAUSES_EQAXIOMS] THEN DISCH_TAC THEN ASM_REWRITE_TAC[satisfies; valuation] THEN REWRITE_TAC[IN_UNION; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_SING] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN REWRITE_TAC[IN_SING; UNWIND_THM2] THEN MESON_TAC[]; ALL_TAC] THEN SIMP_TAC[satisfies; valuation; IN_SING] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_UNION; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN REWRITE_TAC[EQCLAUSES_DEFINITE] THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `e:form` THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP (CONJUNCT1 th))) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:term`; `v:term`] THEN DISCH_THEN SUBST1_TAC THEN SIMP_TAC[FINITE_RULES; definite; clause; IN_SING; LITERAL; Equal_DEF] THEN REWRITE_TAC[GSYM Equal_DEF] THEN SUBGOAL_THEN `{p | (p = u === v) /\ positive p} = {(u === v)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN MESON_TAC[Equal_DEF; positive; negative; Not_DEF; form_DISTINCT]; ALL_TAC] THEN SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `!n p. ibackchain ({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))) n p ==> !s t. (p = (s === t)) ==> E |- s === t` MP_TAC THENL [ALL_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `s === t`) THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[]] THEN MATCH_MP_TAC ibackchain_INDUCT THEN MAP_EVERY X_GEN_TAC [`cl:form->bool`; `i:num->term`; `ns:num list`] THEN MATCH_MP_TAC(TAUT `(a /\ c ==> d) ==> a /\ b /\ c ==> d`) THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`si:term`; `ti:term`] THEN DISCH_TAC THEN UNDISCH_TAC `cl IN {{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))` THEN REWRITE_TAC[IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:form` THEN STRIP_TAC THEN UNDISCH_TAC `formsubst i (conclusion cl) = si === ti` THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:form`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s0:term`; `t0:term`] THEN DISCH_THEN SUBST_ALL_TAC THEN SUBGOAL_THEN `conclusion {(s0 === t0)} = (s0 === t0)` SUBST1_TAC THENL [MATCH_MP_TAC CONCLUSION_DEFINITE THEN REWRITE_TAC[definite; IN_SING] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF] THEN MESON_TAC[form_DISTINCT]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[clause] THEN SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_SING] THEN SUBGOAL_THEN `{p | (p = s0 === t0) /\ positive p} = {(s0 === t0)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[Equal_DEF; NOT_IN_EMPTY; ARITH; LITERAL]; ALL_TAC] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[provable_RULES]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP EQCLAUSES_DEFINITE th) THEN MP_TAC th) THEN REWRITE_TAC[Eqclauses_DEF; IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL [SUBGOAL_THEN `conclusion {(V 0 === V 0)} = (V 0 === V 0)` SUBST_ALL_TAC THENL [MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[IN_SING] THEN REWRITE_TAC[positive; Equal_DEF; negative; Not_DEF; form_DISTINCT]; ALL_TAC] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN ASM_MESON_TAC[provable_RULES]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL [SUBGOAL_THEN `conclusion {(Not (V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} = (V 0 === V 2)` (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL [MATCH_MP_TAC CONCLUSION_DEFINITE_ALT THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[clause; FINITE_INSERT; FINITE_RULES] THEN SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN SIMP_TAC[Equal_DEF; LITERAL] THEN REWRITE_TAC[positive; negative] THEN MESON_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN SUBGOAL_THEN `IMAGE ~~ ({(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} DELETE (V 0 === V 2)) = {(V 0 === V 1), (V 2 === V 1)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[Equal_DEF] THEN MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal; Not_DEF; form_DISTINCT]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN SIMP_TAC[o_THM] THEN REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Pred] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN SUBGOAL_THEN `conclusion cl = Atom p (MAP SND (Varpairs n))` (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL [MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM]; ALL_TAC] THEN MP_TAC(ASSUME `formsubst i (Atom p (MAP SND (Varpairs n))) = si === ti`) THEN REWRITE_TAC[Equal_DEF; formsubst; form_INJ] THEN ASM_CASES_TAC `n = 2` THENL [ALL_TAC; DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(term)list->num` o CONJUNCT2) THEN ASM_REWRITE_TAC[LENGTH; LENGTH_MAP; LENGTH_VARPAIRS; ARITH]] THEN UNDISCH_THEN `n = 2` SUBST_ALL_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN ASM_REWRITE_TAC[Varpairs_DEF; num_CONV `2`; num_CONV `1`] THEN REWRITE_TAC[ARITH; MAP; CONS_11] THEN DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN SUBGOAL_THEN `IMAGE (~~) (cl DELETE (Atom 0 (MAP SND (Varpairs 2)))) = {(V 2 === V 0), (V 2 === V 3), (V 0 === V 1)}` SUBST1_TAC THENL [EXPAND_TAC "cl" THEN REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; Varpairs_DEF] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MAP; GSYM Equal_DEF] THEN REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_PAIR_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; TAUT `~(p /\ ~p)`] THEN REWRITE_TAC[Equal_DEF] THEN MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal; Not_DEF; form_DISTINCT]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN SIMP_TAC[o_THM] THEN REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN REWRITE_TAC[GSYM Equal_DEF] THEN REWRITE_TAC[FORMSUBST_EQ] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]] THEN REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Func] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN SUBGOAL_THEN `conclusion cl = (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))` (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL [MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM] THEN REWRITE_TAC[Equal_DEF; form_DISTINCT]; ALL_TAC] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN SUBGOAL_THEN `IMAGE (~~) (cl DELETE (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))) = {(s === t) | MEM (s,t) (Varpairs n)}` SUBST1_TAC THENL [EXPAND_TAC "cl" THEN REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[TAUT `~(p /\ ~p)`; IN_ELIM_THM] THEN REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[Equal_DEF] THEN MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal; Not_DEF; form_DISTINCT]; ALL_TAC] THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[o_THM; FORMSUBST_EQ] THEN REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN REWRITE_TAC[GSYM Equal_DEF] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[LEFT_FORALL_IMP_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_REFL] THEN REWRITE_TAC[termsubst; GSYM MAP_o] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN DISCH_TAC THEN MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL provable_RULES))) THEN REWRITE_TAC[ALL2_MAP2] THEN REWRITE_TAC[ALL2_ALL] THEN ASM_REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM; o_THM]);; let EQLOGIC_SOUND = prove (`!E s t. E |- s === t ==> !M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)). normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\ M satisfies E ==> M satisfies {(s === t)}`, GEN_TAC THEN REWRITE_TAC[satisfies] THEN SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN SUBGOAL_THEN `!M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)). normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\ (!v p. valuation M v /\ p IN E ==> holds M v p) ==> !a. E |- a ==> !s t. (a = (s === t)) ==> !v. valuation M v ==> holds M v (s === t)` (fun th -> MESON_TAC[th]) THEN GEN_TAC THEN REWRITE_TAC[normal; satisfies; TERMS_UNIV; IN_UNIV] THEN STRIP_TAC THEN MATCH_MP_TAC provable_INDUCT THEN SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[]; REPEAT STRIP_TAC THEN REWRITE_TAC[termval] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_ALL2 THEN UNDISCH_TAC `ALL2 (\l r. !v:num->A. valuation M v ==> (termval M v l = termval M v r)) a b` THEN MATCH_MP_TAC MONO_ALL2 THEN ASM_SIMP_TAC[]; REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORMSUBST_EQ] THEN REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN REWRITE_TAC[TERMVAL_TERMSUBST] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[o_THM; valuation] THEN GEN_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `UNIV:(num#num)->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN REWRITE_TAC[SUBSET_UNIV]]);;