(* ========================================================================= *) (* Propositional logic as subsystem of FOL, leading to compactness. *) (* ========================================================================= *) let pholds = new_recursive_definition form_RECURSION `(pholds v False <=> F) /\ (pholds v (Atom p l) <=> v (Atom p l)) /\ (pholds v (q --> r) <=> pholds v q ==> pholds v r) /\ (pholds v (!!x q) <=> v (!!x q))`;; let PHOLDS = prove (`(pholds v False <=> F) /\ (pholds v True <=> T) /\ (pholds v (Atom p l) <=> v (Atom p l)) /\ (pholds v (Not q) <=> ~(pholds v q)) /\ (pholds v (q || r) <=> pholds v q \/ pholds v r) /\ (pholds v (q && r) <=> pholds v q /\ pholds v r) /\ (pholds v (q --> r) <=> pholds v q ==> pholds v r) /\ (pholds v (q <-> r) <=> (pholds v q = pholds v r))`, REWRITE_TAC [True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; pholds] THEN CONV_TAC TAUT);; (* ------------------------------------------------------------------------- *) (* Propositional satisfaction. *) (* ------------------------------------------------------------------------- *) parse_as_infix("psatisfies",(10,"right"));; let psatisfies = new_definition `v psatisfies s <=> !p. p IN s ==> pholds v p`;; let psatisfiable = new_definition `psatisfiable s <=> ?v. !p. p IN s ==> pholds v p`;; let PSATISFIABLE_MONO = prove (`!A B. psatisfiable A /\ B SUBSET A ==> psatisfiable B`, REWRITE_TAC[psatisfiable] THEN MESON_TAC[SUBSET]);; (* ------------------------------------------------------------------------- *) (* Extensibility of finitely satisfiable set. *) (* ------------------------------------------------------------------------- *) let finsat = new_definition `finsat A <=> !B. B SUBSET A /\ FINITE(B) ==> psatisfiable B`;; let FINSAT_MONO = prove (`!A B. finsat A /\ B SUBSET A ==> finsat B`, REWRITE_TAC[finsat] THEN MESON_TAC[SUBSET_TRANS; FINITE_SUBSET]);; let SATISFIABLE_MONO = prove (`!A B. psatisfiable A /\ B SUBSET A ==> psatisfiable B`, REWRITE_TAC[psatisfiable] THEN MESON_TAC[SUBSET]);; let FINSAT_SATISFIABLE = prove (`psatisfiable B ==> finsat B`, REWRITE_TAC[finsat] THEN MESON_TAC[SATISFIABLE_MONO; SUBSET_TRANS; FINITE_SUBSET]);; let FINSAT_MAX = prove (`!A. finsat(A) ==> ?B. A SUBSET B /\ finsat(B) /\ !C. B SUBSET C /\ finsat(C) ==> (C = B)`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\B C. A SUBSET B /\ B SUBSET C /\ finsat(C)` ZL) THEN PBETA_TAC THEN REWRITE_TAC[] THEN SUBGOAL_THEN `poset (\B C. A SUBSET B /\ B SUBSET C /\ finsat(C))` ASSUME_TAC THENL [REWRITE_TAC[poset; fld; IN_ELIM_THM] THEN MESON_TAC[SUBSET_TRANS; SUBSET_REFL; FINSAT_MONO; SUBSET_ANTISYM]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `fld(\B C. A SUBSET B /\ B SUBSET C /\ finsat(C)) = \B. A SUBSET B /\ finsat(B)` ASSUME_TAC THENL [REWRITE_TAC[FUN_EQ_THM; fld; IN_ELIM_THM] THEN MESON_TAC[SUBSET_TRANS; FINSAT_MONO; SUBSET_REFL]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [ALL_TAC; MESON_TAC[SUBSET_TRANS]] THEN X_GEN_TAC `C:(form->bool)->bool` THEN REWRITE_TAC[chain] THEN REWRITE_TAC[IN] THEN DISCH_TAC THEN ASM_CASES_TAC `C:(form->bool)->bool = EMPTY` THENL [EXISTS_TAC `A:form->bool` THEN ASM_REWRITE_TAC[EMPTY; SUBSET_REFL]; ALL_TAC] THEN EXISTS_TAC `UNIONS (C:(form->bool)->bool)` THEN FIRST_ASSUM(X_CHOOSE_THEN `u:form->bool` MP_TAC o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[IN] THEN DISCH_TAC THEN SUBGOAL_THEN `A:form->bool SUBSET (UNIONS C)` ASSUME_TAC THENL [REWRITE_TAC[UNIONS; SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET; IN]; ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `!B:form->bool. FINITE B ==> B SUBSET (UNIONS C) ==> ?U. U IN C /\ B SUBSET U` ASSUME_TAC THENL [MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[EMPTY_SUBSET] THEN ASM_MESON_TAC[IN]; ALL_TAC] THEN X_GEN_TAC `p:form` THEN X_GEN_TAC `W:form->bool` THEN ASM_CASES_TAC `(p:form INSERT W) SUBSET (UNIONS C)` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `W:form->bool SUBSET (UNIONS C)` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; IN_INSERT; IN]; ASM_REWRITE_TAC[]] THEN REWRITE_TAC[IN; SUBSET; INSERT; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `v1:form->bool` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `p:form INSERT W SUBSET UNIONS C` THEN REWRITE_TAC[IN_INSERT; SUBSET; UNIONS; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `p:form`) THEN REWRITE_TAC[] THEN REWRITE_TAC[IN] THEN DISCH_THEN(X_CHOOSE_THEN `v2:form->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`v1:form->bool`; `v2:form->bool`]) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [EXISTS_TAC `v2:form->bool` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN]) THEN ASM_MESON_TAC[]; EXISTS_TAC `v1:form->bool` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN]) THEN ASM_MESON_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `finsat (UNIONS C :form->bool)` ASSUME_TAC THENL [REWRITE_TAC[finsat] THEN X_GEN_TAC `B:form->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `B:form->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`v:form->bool`; `v:form->bool`]) THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[finsat]; ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:form->bool` THEN DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; UNIONS; IN_ELIM_THM; IN] THEN ASM_MESON_TAC[]]]);; (* ------------------------------------------------------------------------- *) (* Compactness. *) (* ------------------------------------------------------------------------- *) let FINSAT_EXTEND = prove (`finsat(B) ==> finsat(p INSERT B) \/ finsat(Not p INSERT B)`, REWRITE_TAC[finsat] THEN DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN DISCH_THEN (MP_TAC o REWRITE_RULE[DE_MORGAN_THM; NOT_FORALL_THM; NOT_IMP]) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `C:form->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `D:form->bool` STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SPEC `(C DELETE p) UNION (D DELETE Not p)`) THEN ASM_REWRITE_TAC[NOT_IMP; FINITE_UNION; FINITE_DELETE] THEN CONJ_TAC THENL [ASSUM_LIST SET_TAC; UNDISCH_TAC `~(psatisfiable C)` THEN UNDISCH_TAC `~(psatisfiable D)` THEN REWRITE_TAC[psatisfiable; IN_DELETE; IN_UNION] THEN REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM; NOT_IMP] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `v:form->bool` THEN UNDISCH_TAC `!v. ?p. p IN C /\ ~pholds v p` THEN DISCH_THEN(MP_TAC o SPEC `v:form->bool`) THEN DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `p:form = q` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:form->bool`) THEN DISCH_THEN(X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC) THEN EXISTS_TAC `r:form` THEN ASM_REWRITE_TAC[] THEN DISJ2_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `~pholds v (Not q)` THEN ASM_REWRITE_TAC[PHOLDS]]);; let FINSAT_MAX_COMPLETE = prove (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B)) ==> !p. p IN B \/ Not(p) IN B`, REPEAT STRIP_TAC THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP FINSAT_EXTEND) THENL [DISJ1_TAC; DISJ2_TAC] THEN REWRITE_TAC[ABSORPTION] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let FINSAT_MAX_COMPLETE_STRONG = prove (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B)) ==> !p. Not(p) IN B <=> ~(p IN B)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(a \/ b) /\ ~(a /\ b) ==> (b <=> ~a)`) THEN CONJ_TAC THENL [ASM_MESON_TAC[FINSAT_MAX_COMPLETE]; ALL_TAC] THEN DISCH_TAC THEN UNDISCH_TAC `finsat B` THEN REWRITE_TAC[finsat] THEN DISCH_THEN(MP_TAC o SPEC `{ p, (Not p) }`) THEN REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN REWRITE_TAC[psatisfiable; IN_INSERT; SUBSET; NOT_IN_EMPTY] THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; DE_MORGAN_THM] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; PHOLDS] THEN CONV_TAC TAUT);; let FINSAT_DEDUCTION = prove (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B)) ==> !p. p IN B <=> ?A. FINITE(A) /\ A SUBSET B /\ !v. (!q. q IN A ==> pholds v q) ==> pholds v p`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN EXISTS_TAC `{p:form}` THEN REWRITE_TAC[FINITE_INSERT; FINITE_RULES] THEN REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; STRIP_TAC THEN REWRITE_TAC[ABSORPTION] THEN FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `finsat B` THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[finsat; NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(A:form->bool) UNION (A1 DELETE p)` THEN ASM_REWRITE_TAC[FINITE_UNION; FINITE_DELETE] THEN CONJ_TAC THENL [ASSUM_LIST SET_TAC; ALL_TAC] THEN UNDISCH_TAC `!v. (!q. q IN A ==> pholds v q) ==> pholds v p` THEN UNDISCH_TAC `~(psatisfiable A1)` THEN REWRITE_TAC[psatisfiable; IN_UNION; IN_DELETE] THEN MESON_TAC[]]);; let FINSAT_MAX_CONSISTENT = prove (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B)) ==> ~(False IN B)`, DISCH_THEN(MP_TAC o CONJUNCT1) THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[finsat] THEN DISCH_THEN(MP_TAC o SPEC `{False}`) THEN ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES; psatisfiable] THEN REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[NOT_IMP; NOT_FORALL_THM; NOT_EXISTS_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MESON_TAC[PHOLDS]);; let FINSAT_MAX_HOMO = prove (`finsat(B) /\ (!C. B SUBSET C /\ finsat(C) ==> (C = B)) ==> !p q. (p --> q) IN B <=> p IN B ==> q IN B`, DISCH_TAC THEN REPEAT GEN_TAC THEN EQ_TAC THENL [FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_DEDUCTION th]) THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `A2:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(A1:form->bool) UNION A2` THEN ASM_REWRITE_TAC[FINITE_UNION] THEN CONJ_TAC THENL [ASSUM_LIST SET_TAC; ALL_TAC] THEN UNDISCH_TAC `!v. (!q. q IN A2 ==> pholds v q) ==> pholds v p` THEN UNDISCH_TAC `!v. (!q. q IN A1 ==> pholds v q) ==> pholds v (p --> q)` THEN REWRITE_TAC[entails; IN_UNION; PHOLDS] THEN MESON_TAC[]; GEN_REWRITE_TAC LAND_CONV [TAUT `p ==> q <=> ~p \/ q`] THEN FIRST_ASSUM(fun th -> REWRITE_TAC [GSYM(MATCH_MP FINSAT_MAX_COMPLETE_STRONG th)]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_DEDUCTION th]) THEN STRIP_TAC THEN EXISTS_TAC `A:form->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN REWRITE_TAC[PHOLDS] THEN MESON_TAC[]]);; let COMPACT_PROP = prove (`(!B. FINITE(B) /\ B SUBSET A ==> ?d. !r. r IN B ==> pholds(d) r) ==> ?d. !r. r IN A ==> pholds(d) r`, STRIP_TAC THEN SUBGOAL_THEN `finsat(A)` (MP_TAC o MATCH_MP FINSAT_MAX) THENL [REWRITE_TAC[finsat; psatisfiable] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN EXISTS_TAC `\p:form. p IN B` THEN SUBGOAL_THEN `!r. pholds (\p. p IN B) r <=> r IN B` (fun th -> ASM_MESON_TAC[th; SUBSET]) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[pholds] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_MAX_CONSISTENT th]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FINSAT_MAX_HOMO th]) THEN SIMP_TAC[]);; (* ------------------------------------------------------------------------- *) (* Important variant used in proving Uniformity for FOL. *) (* ------------------------------------------------------------------------- *) let COMPACT_PROP_ALT = prove (`!A. (!d. ?p. p IN A /\ pholds d p) ==> ?B. FINITE(B) /\ B SUBSET A /\ (!d. ?p. p IN B /\ pholds d p)`, GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `~(?d. !r. r IN { Not q | q IN A } ==> pholds(d) r)` MP_TAC THENL [REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP] THEN REWRITE_TAC[IN_ELIM_THM; Not_DEF] THEN ASM_MESON_TAC[pholds]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] COMPACT_PROP)) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `{ r | Not r IN B }` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_IMAGE_INJ THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[Not_DEF; form_INJ]; UNDISCH_TAC `B SUBSET {Not q | q IN A}` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN DISCH_TAC THEN CONJ_TAC THENL [GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[Not_DEF; form_INJ] THEN MESON_TAC[]; ASM_MESON_TAC[el 3 (CONJUNCTS PHOLDS)]]]);; let FINITE_DISJ_LEMMA = prove (`!A. FINITE(A) ==> ?ps. ALL (\p. p IN A) ps /\ !d. pholds(d) (ITLIST (||) ps False) <=> ?p. p IN A /\ pholds d p`, MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL [EXISTS_TAC `[] :form list` THEN REWRITE_TAC[ALL; ITLIST] THEN REWRITE_TAC[pholds; NOT_IN_EMPTY]; X_GEN_TAC `q:form` THEN X_GEN_TAC `s:form->bool` THEN DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN EXISTS_TAC `CONS (q:form) ps` THEN REWRITE_TAC[ALL; ITLIST] THEN ASM_REWRITE_TAC[PHOLDS; IN_INSERT] THEN CONJ_TAC THENL [MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p:form. p IN s` THEN ASM_REWRITE_TAC[] THEN MESON_TAC[]; MESON_TAC[]]]);; let COMPACT_DISJ = prove (`!A. (!d. ?p. p IN A /\ pholds d p) ==> ?ps. ALL (\p. p IN A) ps /\ !d. pholds(d) (ITLIST (||) ps False)`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_PROP_ALT) THEN DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC o MATCH_MP FINITE_DISJ_LEMMA) THEN EXISTS_TAC `ps:form list` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p:form. p IN B` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET]);;