(* ========================================================================= *) (* First order logic with equality. *) (* ========================================================================= *) parse_as_infix("===",(18,"right"));; (* ------------------------------------------------------------------------- *) (* Convenient shorthand for equality predicate. *) (* ------------------------------------------------------------------------- *) let Equal_DEF = new_definition `s === t = Atom 0 [s; t]`;; (* ------------------------------------------------------------------------- *) (* Universal closure. *) (* ------------------------------------------------------------------------- *) let uclose = new_definition `uclose p = ITLIST (!!) (list_of_set(FV p)) p`;; (* ------------------------------------------------------------------------- *) (* Definition of normal model. *) (* ------------------------------------------------------------------------- *) let normal = new_definition `normal fns M <=> !s t v. valuation(M) v /\ s IN terms fns /\ t IN terms fns ==> (holds M v (s === t) <=> (termval M v s = termval M v t))`;; (* ------------------------------------------------------------------------- *) (* Equality "axioms" for functions and predicates. *) (* ------------------------------------------------------------------------- *) let Varpairs_DEF = new_recursive_definition num_RECURSION `(Varpairs 0 = []) /\ (Varpairs (SUC n) = CONS (V(2 * n),V(2 * n + 1)) (Varpairs n))`;; let Eqaxiom_Func = new_definition `Eqaxiom_Func (f,n) = uclose (ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True --> Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))`;; let Eqaxiom_Pred = new_definition `Eqaxiom_Pred (p,n) = uclose (ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True --> (Atom p (MAP FST (Varpairs n)) <-> Atom p (MAP SND (Varpairs n))))`;; let Eqaxioms_DEF = new_definition `Eqaxioms L = { (!! 0 (V 0 === V 0)) } UNION { (!!0 (!!1 (!!2 (V 0 === V 1 --> (V 2 === V 1 --> V 0 === V 2))))) } UNION { Eqaxiom_Func fa | fa IN (FST L) } UNION { Eqaxiom_Pred pa | pa IN (SND L) }`;; let DOWNFROM = new_recursive_definition num_RECURSION `(DOWNFROM 0 = []) /\ (DOWNFROM (SUC n) = CONS n (DOWNFROM n))`;; (* ------------------------------------------------------------------------- *) (* Various stupid lemmas. *) (* ------------------------------------------------------------------------- *) let SATISFIES_UNION = prove (`!M s t. M satisfies (s UNION t) <=> M satisfies s /\ M satisfies t`, REWRITE_TAC[satisfies; IN_UNION] THEN MESON_TAC[]);; let HOLDS_UCLOSE_ALL = prove (`!M x p. (!v:num->A. valuation(M) v ==> holds M v p) ==> !v. valuation(M) v ==> holds M v (uclose p)`, REPEAT GEN_TAC THEN REWRITE_TAC[uclose] THEN SPEC_TAC(`list_of_set(FV p)`,`l:num list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[uclose; ITLIST] THEN REWRITE_TAC[holds] THEN ASM_SIMP_TAC[VALUATION_VALMOD]);; let HOLDS_UCLOSE_ALL_EQ = prove (`!M. ~(Dom M :A->bool = {}) ==> !p. (!v. valuation(M) v ==> holds M v (uclose p)) <=> (!v. valuation(M) v ==> holds M v p)`, REPEAT STRIP_TAC THEN REWRITE_TAC[uclose] THEN SPEC_TAC(`list_of_set(FV p)`,`l:num list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[uclose; ITLIST] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE]);; let UCLOSE_FV_LEMMA = prove (`!l p. FV(ITLIST !! l p) = FV(p) DIFF (set_of_list l)`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; FV; set_of_list] THEN SET_TAC[]);; let UCLOSE_CLOSED = prove (`!p. FV(uclose p) = EMPTY`, GEN_TAC THEN REWRITE_TAC[uclose; UCLOSE_FV_LEMMA] THEN SIMP_TAC[SET_OF_LIST_OF_SET; FV_FINITE] THEN SET_TAC[]);; let HOLDS_UCLOSE_ANY = prove (`!M (v:num->A) p. holds M v (uclose p) ==> ~(Dom M = EMPTY) ==> !w. valuation(M) w ==> holds M w p`, REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `!w:num->A. valuation(M) w ==> holds M w (uclose p)` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN UNDISCH_TAC `holds M (v:num->A) (uclose p)` THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[UCLOSE_CLOSED; NOT_IN_EMPTY]; REWRITE_TAC[uclose] THEN SPEC_TAC(`list_of_set(FV p)`,`l:num list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE]]);; let SATISFIES_NOT = prove (`~(Dom M :A->bool = {}) ==> (M satisfies E /\ ~(M satisfies {p}) <=> M satisfies (Not (uclose p) INSERT E))`, REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[TAUT `(a /\ (b \/ c) ==> d) <=> (a /\ c ==> d) /\ (a /\ b ==> d)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_REFL] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [GSYM(MATCH_MP HOLDS_UCLOSE_ALL_EQ th)]) THEN REWRITE_TAC[HOLDS] THEN ASM_MESON_TAC[VALUATION_EXISTS; HOLDS_VALUATION; UCLOSE_CLOSED; NOT_IN_EMPTY]);; let FUNCTIONS_FORM_UCLOSE = prove (`functions_form(uclose p) = functions_form p`, REWRITE_TAC[uclose] THEN SPEC_TAC(`list_of_set (FV p)`,`l:num list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; functions_form]);; let PREDICATES_FORM_UCLOSE = prove (`predicates_form(uclose p) = predicates_form p`, REWRITE_TAC[uclose] THEN SPEC_TAC(`list_of_set (FV p)`,`l:num list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; predicates_form]);; let HOLDS_ANDS = prove (`!l. holds M v (ITLIST (&&) l True) <=> ALL (holds M v) l`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; ALL; HOLDS]);; let LENGTH_VARPAIRS = prove (`!n. LENGTH (Varpairs n) = n`, INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; LENGTH]);; let MAP_FST_VARPAIRS = prove (`!n. MAP FST (Varpairs n) = MAP (\n. V(2 * n)) (DOWNFROM n)`, INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; DOWNFROM; MAP]);; let MAP_SND_VARPAIRS = prove (`!n. MAP SND (Varpairs n) = MAP (\n. V(2 * n + 1)) (DOWNFROM n)`, INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; DOWNFROM; MAP]);; let MULT_DIV_LEMMA = prove (`(!n. (2 * n) DIV 2 = n) /\ (!n. (2 * n + 1) DIV 2 = n)`, SIMP_TAC[DIV_MULT; ARITH_EQ] THEN GEN_TAC THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `1` THEN REWRITE_TAC[MULT_AC; ARITH]);; let PAIR_LEMMA = prove (`!z. (\(x,y). P x y) z = P (FST z) (SND z)`, REWRITE_TAC[FORALL_PAIR_THM]);; let FORALL_VARPAIRS = prove (`!n. ALL P (Varpairs n) <=> ALL (\n. P (V (2 * n),V (2 * n + 1))) (DOWNFROM n)`, INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; Varpairs_DEF; DOWNFROM]);; let FORALL2_VARPAIRS = prove (`!n. ALL (\p. Pred M a [termval M v (FST p); termval M v (SND p)]) (Varpairs n) <=> ALL2 (\x y. Pred M a [x;y]) (MAP (termval M v) (MAP FST (Varpairs n))) (MAP (termval M v) (MAP SND (Varpairs n)))`, INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; ALL; ALL2; MAP]);; let FORALL2_FORALL = prove (`!l. ALL2 (\x y. P x y) (MAP f l) (MAP g l) <=> ALL (\x. P (f x) (g x)) l`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; MAP; ALL2]);; let FORALL_DOWNFROM = prove (`!n. ALL P (DOWNFROM n) <=> !k. k < n ==> P k`, INDUCT_TAC THEN ASM_REWRITE_TAC[DOWNFROM; ALL; LT] THEN MESON_TAC[]);; let MAP_INDEXED = prove (`!l:A list. MAP (\n. EL ((LENGTH l - 1) - n) l) (DOWNFROM (LENGTH l)) = l`, let lemma = prove (`!k n. k < n ==> (SUC n - 1 - k = SUC (n - 1 - k))`, REPEAT GEN_TAC THEN REWRITE_TAC[ARITH_RULE `SUC n - 1 = n`] THEN REWRITE_TAC[LT_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[ARITH_RULE `(m + SUC n) - 1 = m + n`; ADD_SUB2]) in ONCE_REWRITE_TAC[lemma] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LENGTH; DOWNFROM; EL] THEN REWRITE_TAC[ARITH_RULE `(SUC n - 1) - n = 0`; EL; HD] THEN AP_TERM_TAC THEN POP_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[FORALL_DOWNFROM] THEN GEN_TAC THEN SPEC_TAC(`LENGTH (t:A list)`,`n:num`) THEN MESON_TAC[EL; TL; lemma]);; let RECONSTRUCT_TERMVAL = prove (`!M a f1 f2. (MAP (termval M (\n. if 2 * LENGTH l <= n then a else if EVEN(n) then f1 (EL ((LENGTH l - 1) - (n DIV 2)) l) else f2 (EL ((LENGTH l - 1) - (n DIV 2)) l))) (MAP FST (Varpairs (LENGTH l))) = MAP f1 l) /\ (MAP (termval M (\n. if 2 * LENGTH l <= n then a else if EVEN(n) then f1 (EL ((LENGTH l - 1) - (n DIV 2)) l) else f2 (EL ((LENGTH l - 1) - (n DIV 2)) l))) (MAP SND (Varpairs (LENGTH l))) = MAP f2 l)`, let lemma = prove (`!L K. L <= K ==> (MAP (\n. if K <= n then a else f n) (DOWNFROM L) = MAP f (DOWNFROM L))`, INDUCT_TAC THEN REWRITE_TAC[MAP; DOWNFROM] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `SUC L <= K ==> L <= K /\ ~(K <= L)`)) THEN DISCH_THEN(CONJUNCTS_THEN2 (ANTE_RES_THEN SUBST1_TAC) ASSUME_TAC) THEN ASM_REWRITE_TAC[]) in REPEAT GEN_TAC THEN REWRITE_TAC[MAP_FST_VARPAIRS; MAP_SND_VARPAIRS] THEN REWRITE_TAC[GSYM MAP_o; o_DEF; termval] THEN REWRITE_TAC[LE_MULT_LCANCEL; ARITH] THEN REWRITE_TAC[EVEN_MULT; EVEN_ADD; MULT_DIV_LEMMA; ARITH] THEN REWRITE_TAC[ARITH_RULE `2 * x <= 2 * y + 1 <=> x <= y`] THEN SIMP_TAC[lemma; LE_REFL] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[MAP_o; MAP_INDEXED]);; let FORALL_TERMS_STRONG = prove (`!s t. terms (functions s) t <=> functions_term t SUBSET (functions s)`, let lemma0 = prove (`(a INSERT b) SUBSET s <=> a IN s /\ b SUBSET s`, SET_TAC[]) in let lemma1 = prove (`s UNION t SUBSET u <=> s SUBSET u /\ t SUBSET u`, SET_TAC[]) in let lemma2 = prove (`!l. LIST_UNION l SUBSET s <=> ALL (\x. x SUBSET s) l`, LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[lemma1]) in GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[EMPTY_SUBSET; functions_term] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[terms_CASES] THEN REWRITE_TAC[term_INJ; term_DISTINCT] THEN MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[terms_CASES] THEN REWRITE_TAC[term_INJ; term_DISTINCT] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[UNWIND_THM1; lemma0] THEN AP_TERM_TAC THEN REWRITE_TAC[lemma2] THEN REWRITE_TAC[ALL_MAP; o_DEF] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL] THEN ASM_MESON_TAC[]);; let FORALL_TERMS_RAW = prove (`!s t. terms (functions s) t ==> functions_term t SUBSET (functions s)`, REWRITE_TAC[FORALL_TERMS_STRONG]);; let FORALL_TERMS_INDEXED = prove (`!l n. ALL (terms (functions s)) l /\ n < LENGTH l ==> functions_term (EL n l) SUBSET functions s`, LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LENGTH; CONJUNCT1 LT] THEN INDUCT_TAC THEN REWRITE_TAC[LT_SUC; LT_0; EL; HD] THENL [MESON_TAC[FORALL_TERMS_RAW]; REWRITE_TAC[TL] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* The key theorem. *) (* ------------------------------------------------------------------------- *) let NORMAL_THM = prove (`(?M:(A->bool)#(num->A list->A)#(num->A list->bool). interpretation (language s) M /\ ~(Dom M = EMPTY) /\ normal (functions s) M /\ M satisfies s) <=> (?M:(A->bool)#(num->A list->A)#(num->A list->bool). interpretation (language s) M /\ ~(Dom M = EMPTY) /\ M satisfies (s UNION Eqaxioms (language s)))`, let lemma0 = prove (`a SUBSET s /\ b SUBSET s ==> (a UNION b) SUBSET s`,SET_TAC[]) in let lemma1 = prove (`a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`,SET_TAC[]) in let lemma2 = prove (`!l. ALL (\x. x SUBSET s) l ==> LIST_UNION l SUBSET s`, LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma0 THEN ASM_MESON_TAC[]) in let lemma3 = prove (`{x} SUBSET s <=> x IN s`, SET_TAC[]) in let lemma4a = prove (`s UNION t SUBSET u <=> s SUBSET u /\ t SUBSET u`, SET_TAC[]) in let lemma4 = prove (`!l. LIST_UNION l SUBSET s <=> ALL (\x. x SUBSET s) l`, LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[lemma4a]) in let slemma1 = prove (`(s UNION t) SUBSET u <=> s SUBSET u /\ t SUBSET u`, SET_TAC[]) in let clemma1 = prove (`canonize o valmod (x,a) v = valmod (x,canonize a) (canonize o v)`, REWRITE_TAC[FUN_EQ_THM; o_THM; valmod] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]) in REWRITE_TAC[Eqaxioms_DEF; SATISFIES_UNION] THEN EQ_TAC THEN STRIP_TAC THENL [EXISTS_TAC `M:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[satisfies] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [RULE_ASSUM_TAC(REWRITE_RULE[normal]) THEN ASM_SIMP_TAC[holds; IN; terms_RULES; VALUATION_VALMOD]; RULE_ASSUM_TAC(REWRITE_RULE[normal]) THEN REWRITE_TAC[holds; IN] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [IN; terms_RULES; VALUATION_VALMOD]; UNDISCH_TAC `valuation M (v:num->A)` THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN SUBST_ALL_TAC(SYM(ISPEC `fa:num#num` PAIR)) THEN PURE_REWRITE_TAC[Eqaxiom_Func] THEN MATCH_MP_TAC HOLDS_UCLOSE_ALL THEN REWRITE_TAC[holds] THEN RULE_ASSUM_TAC(REWRITE_RULE[language; normal]) THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[HOLDS_ANDS] THEN REWRITE_TAC[ALL_MAP] THEN FIRST_ASSUM(MP_TAC o SPECL [`Fn (FST fa) (MAP FST (Varpairs (SND fa)))`; `Fn (FST fa) (MAP SND (Varpairs (SND fa)))`; `v:num->A`]) THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL [ASM_REWRITE_TAC[IN] THEN CONJ_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN ASM_REWRITE_TAC[LENGTH_MAP; LENGTH_VARPAIRS] THEN SPEC_TAC(`SND(fa:num#num)`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ALL; Varpairs_DEF; MAP] THEN MESON_TAC[terms_RULES]; DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN REWRITE_TAC[termval] THEN REWRITE_TAC[GSYM MAP_o] THEN DISCH_THEN(fun th -> AP_TERM_TAC THEN MP_TAC th) THEN SPEC_TAC(`SND(fa:num#num)`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; ALL; MAP] THEN REWRITE_TAC[o_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[terms_RULES; IN]; UNDISCH_TAC `valuation M (v:num->A)` THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN SUBST_ALL_TAC(SYM(ISPEC `pa:num#num` PAIR)) THEN PURE_REWRITE_TAC[Eqaxiom_Pred] THEN MATCH_MP_TAC HOLDS_UCLOSE_ALL THEN REWRITE_TAC[HOLDS] THEN RULE_ASSUM_TAC(REWRITE_RULE[language; normal]) THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[HOLDS_ANDS] THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[termval] THEN REWRITE_TAC[GSYM MAP_o] THEN DISCH_THEN(fun th -> AP_TERM_TAC THEN MP_TAC th) THEN SPEC_TAC(`SND(pa:num#num)`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; ALL; MAP] THEN REWRITE_TAC[o_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[terms_RULES; IN]]; ALL_TAC] THEN ABBREV_TAC `equiv = \a:A b. a IN Dom(M) /\ b IN Dom(M) /\ Pred(M) 0 [a; b]` THEN ABBREV_TAC `canonize = \a:A. @b:A. equiv a b` THEN ABBREV_TAC `M' = { a:A | a IN Dom(M) /\ (a = canonize a) }, (\f l. canonize(Fun(M) f l)),Pred(M)` THEN EXISTS_TAC `M':(A->bool)#(num->A list->A)#(num->A list->bool)` THEN REWRITE_TAC[normal] THEN SUBGOAL_THEN `!a:A. equiv a a <=> a IN Dom(M)` ASSUME_TAC THENL [GEN_TAC THEN EXPAND_TAC "equiv" THEN UNDISCH_TAC `(M:(A->bool)#(num->A list->A)#(num->A list->bool)) satisfies { (!!0 (V 0 === V 0)) }` THEN REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN DISCH_THEN(MP_TAC o SPEC `\x:num. a:A`) THEN ASM_REWRITE_TAC[valuation] THEN SIMP_TAC[holds] THEN REWRITE_TAC[Equal_DEF; holds] THEN DISCH_THEN(MP_TAC o SPEC `!!0 (Atom 0 [V 0; V 0])`) THEN REWRITE_TAC[] THEN ASM_CASES_TAC `a:A IN Dom(M)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[MAP; termval; valmod]; ALL_TAC] THEN SUBGOAL_THEN `!a:A. equiv a (canonize a :A) <=> a IN Dom(M)` ASSUME_TAC THENL [EXPAND_TAC "canonize" THEN GEN_TAC THEN CONV_TAC(LAND_CONV SELECT_CONV) THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!a:A b c. equiv a b ==> equiv c b ==> equiv a c` ASSUME_TAC THENL [REPEAT GEN_TAC THEN EXPAND_TAC "equiv" THEN STRIP_TAC THEN STRIP_TAC THEN UNDISCH_TAC `(M:(A->bool)#(num->A list->A)#(num->A list->bool)) satisfies { (!!0 (!!1 (!!2 (V 0 === V 1 --> (V 2 === V 1 --> V 0 === V 2))))) }` THEN REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN DISCH_THEN(MP_TAC o SPEC `valmod (0,a) (valmod (1,b) (\n. c:A))`) THEN ASM_SIMP_TAC[VALUATION_VALMOD; valuation] THEN DISCH_THEN(MP_TAC o SPEC `!!0 (!!1 (!!2 (V 0 === V 1 --> (V 2 === V 1 --> V 0 === V 2))))`) THEN REWRITE_TAC[holds; valmod; Equal_DEF; MAP; termval; ARITH_EQ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!a:A b. equiv a b ==> equiv b a` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!a:A b. equiv a b ==> (canonize a :A = canonize b)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN EXPAND_TAC "canonize" THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(Dom M' :A->bool = EMPTY)` ASSUME_TAC THENL [EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN UNDISCH_TAC `~(Dom M :A->bool = EMPTY)` THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN EXISTS_TAC `(canonize:A->A) a` THEN REWRITE_TAC[IN_ELIM_THM] THEN SUBGOAL_THEN `(equiv:A->A->bool) a (canonize a)` (fun th -> ASM_MESON_TAC[th]) THEN EXPAND_TAC "canonize" THEN CONV_TAC SELECT_CONV THEN EXISTS_TAC `a:A` THEN EXPAND_TAC "equiv" THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(M:(A->bool)#(num->A list->A)#(num->A list->bool)) satisfies { (!!0 (V 0 === V 0)) }` THEN REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN DISCH_THEN(MP_TAC o SPECL [`\n:num. a:A`; `!! 0 (V 0 === V 0)`]) THEN ASM_REWRITE_TAC[valuation] THEN REWRITE_TAC[holds; Equal_DEF; MAP; termval; valmod] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[interpretation; language] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF; Dom_DEF] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN SUBGOAL_THEN `(equiv:A->A->bool) (Fun M f l) (canonize (Fun M f l))` (fun th -> ASM_MESON_TAC[th]) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[language; interpretation]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(fun th -> EXISTS_TAC (lhand(concl th)) THEN CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM ACCEPT_TAC]) THEN REWRITE_TAC[IN_ELIM_THM] THEN SIMP_TAC[]; DISCH_TAC] THEN SUBGOAL_THEN `!t v. valuation M (v:num->A) /\ t IN terms (functions s) ==> (termval M' (canonize o v) t = (canonize:A->A) (termval M v t))` ASSUME_TAC THENL [ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN EXPAND_TAC "M'" THEN DISCH_THEN(ASSUME_TAC o GSYM o REWRITE_RULE[valuation; Dom_DEF; IN_ELIM_THM]) THEN MATCH_MP_TAC term_INDUCT THEN ASM_REWRITE_TAC[termval; Fun_DEF] THEN REWRITE_TAC[o_THM] THEN X_GEN_TAC `f:num` THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "equiv" THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[GSYM(CONJUNCT2 termval)] THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `functions s` THEN ASM_REWRITE_TAC[valuation] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_RAW THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_REWRITE_TAC[]; FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[interpretation; language]) THEN UNDISCH_TAC `Fn f l IN terms (functions s)` THEN REWRITE_TAC[IN; LENGTH_MAP] THEN ONCE_REWRITE_TAC[terms_CASES] THEN REWRITE_TAC[term_INJ; term_DISTINCT] THEN DISCH_THEN(X_CHOOSE_THEN `g:num` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `L:term list` MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC(CONJUNCT2 th) THEN REWRITE_TAC[GSYM(CONJUNCT1 th)]) THEN REWRITE_TAC[IN] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(fun th -> EXISTS_TAC (lhand(concl th)) THEN CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM ACCEPT_TAC]) THEN X_GEN_TAC `u:term` THEN REWRITE_TAC[o_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `(termval M' ((canonize:A->A) o v) u) IN (Dom M')` MP_TAC THENL [MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `ppp:num#num->bool` THEN CONJ_TAC THENL [UNDISCH_TAC `interpretation (language s) (M':(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN UNDISCH_TAC `terms (functions s) u` THEN SPEC_TAC(`functions s`,`fns:num#num->bool`) THEN SPEC_TAC(`u:term`,`u:term`) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [terms_CASES] THEN REWRITE_TAC[term_INJ; term_DISTINCT] THEN DISCH_THEN(X_CHOOSE_THEN `g:num` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `L:term list` MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC(CONJUNCT2 th) THEN REWRITE_TAC[GSYM(CONJUNCT1 th)]) THEN STRIP_TAC THEN MATCH_MP_TAC lemma1 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma2 THEN REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\u. !fns. terms fns u ==> functions_term u SUBSET fns` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM] THEN X_GEN_TAC `tt:term` THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `MEM (tt:term) l'` THEN UNDISCH_TAC `ALL (terms fns) l'` THEN SPEC_TAC(`l':term list`,`ll:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MEM] THEN ASM_MESON_TAC[]; REWRITE_TAC[valuation; o_THM] THEN X_GEN_TAC `x:num` THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]]; REWRITE_TAC[IN] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM] THEN SIMP_TAC[IN]]; UNDISCH_TAC `(M:(A->bool)#(num->A list->A)#(num->A list->bool)) satisfies {Eqaxiom_Func fa | fa IN FST (language s)}` THEN REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_ELIM_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `Eqaxiom_Func (f,LENGTH (l:term list))`) THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `(f:num,LENGTH(l:term list))`) THEN REWRITE_TAC[] THEN REWRITE_TAC[Eqaxiom_Func] THEN SUBGOAL_THEN `?a:A. a IN Dom(M)` CHOOSE_TAC THENL [ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `\n:num. a:A`) THEN ASM_REWRITE_TAC[valuation] THEN UNDISCH_TAC `Fn f l IN terms (functions s)` THEN REWRITE_TAC[IN] THEN ONCE_REWRITE_TAC[terms_CASES] THEN REWRITE_TAC[term_INJ; term_DISTINCT] THEN DISCH_THEN(X_CHOOSE_THEN `g:num` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `L:term list` MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC(CONJUNCT2 th) THEN REWRITE_TAC[GSYM(CONJUNCT1 th)]) THEN REWRITE_TAC[language; IN] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP HOLDS_UCLOSE_ANY) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[holds; HOLDS_ANDS; Equal_DEF; MAP; GSYM MAP_o] THEN REWRITE_TAC[termval] THEN REWRITE_TAC[ALL_MAP; o_DEF; PAIR_LEMMA; holds] THEN REWRITE_TAC[MAP] THEN REWRITE_TAC[FORALL2_VARPAIRS] THEN DISCH_THEN(MP_TAC o SPEC `\n:num. if 2 * LENGTH l <= n then a else if EVEN(n) then termval M v (EL ((LENGTH l - 1) - (n DIV 2)) l) :A else termval M' (canonize o v) (EL ((LENGTH l - 1) - (n DIV 2)) l)`) THEN REWRITE_TAC[RECONSTRUCT_TERMVAL] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[IMP_IMP] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV) [o_DEF] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[FORALL2_FORALL] THEN CONJ_TAC THENL [REWRITE_TAC[valuation] THEN X_GEN_TAC `k:num` THEN ASM_CASES_TAC `2 * LENGTH (l:term list) <= k` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THENL [MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `ppp:num#num->bool` THEN ASM_REWRITE_TAC[valuation] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_INDEXED THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(2 * LENGTH (l:term list) <= k)` THEN REWRITE_TAC[ARITH_RULE `~(2 * n <= k) ==> n - 1 - m < n`]; SUBGOAL_THEN `termval M' ((canonize:A->A) o v) (EL (LENGTH l - 1 - k DIV 2) l) IN (Dom M' :A->bool)` MP_TAC THENL [MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `ppp:num#num->bool` THEN ASM_REWRITE_TAC[valuation] THEN CONJ_TAC THENL [UNDISCH_TAC `interpretation (language s) (M':(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_INDEXED THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(2 * LENGTH (l:term list) <= k)` THEN REWRITE_TAC[ARITH_RULE `~(2 * n <= k) ==> n - 1 - m < n`]; EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF; o_THM] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]]; EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]]]; MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\t. terms (functions s) t /\ (t IN terms (functions s) ==> (termval M' (canonize o v) t = (canonize:A->A) (termval M v t)))` THEN REWRITE_TAC[GSYM AND_ALL] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(equiv:A->A->bool) (termval M v x) (termval M' (canonize o v) x)` MP_TAC THENL [ALL_TAC; EXPAND_TAC "equiv" THEN SIMP_TAC[]] THEN SUBGOAL_THEN `!a b. (a = canonize b) /\ b IN Dom(M) ==> (equiv:A->A->bool) b a` MATCH_MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_SIMP_TAC[IN]; ALL_TAC] THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `functions s` THEN ASM_REWRITE_TAC[valuation] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_RAW THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_REWRITE_TAC[]]]; ALL_TAC] THEN SUBGOAL_THEN `!p v. valuation M (v:num->A) /\ (functions_form p) SUBSET (functions s) /\ (predicates_form p) SUBSET (predicates s) ==> (holds M' ((canonize:A->A) o v) p <=> holds M v p)` ASSUME_TAC THENL [MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds; functions_form; predicates_form] THEN REWRITE_TAC[slemma1] THEN REPEAT CONJ_TAC THENL [ALL_TAC; MESON_TAC[]; REPEAT GEN_TAC THEN DISCH_THEN(fun th -> SIMP_TAC[GSYM th; VALUATION_VALMOD]) THEN REWRITE_TAC[clemma1] THEN GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!P. (!a:A. a IN Dom(M') ==> P a) <=> (!a:A. a IN Dom(M) ==> P(canonize a))` (fun th -> REWRITE_TAC[th]) THEN GEN_TAC THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]] THEN X_GEN_TAC `p:num` THEN X_GEN_TAC `l:term list` THEN GEN_TAC THEN REWRITE_TAC[lemma3; lemma4; ALL_MAP] THEN DISCH_THEN(STRIP_ASSUME_TAC o REWRITE_RULE[o_DEF]) THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Pred_DEF] THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(M:(A->bool)#(num->A list->A)#(num->A list->bool)) satisfies {Eqaxiom_Pred pa | pa IN SND (language s)}` THEN REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_ELIM_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `Eqaxiom_Pred (p,LENGTH (l:term list))`) THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `(p:num,LENGTH(l:term list))`) THEN REWRITE_TAC[] THEN REWRITE_TAC[Eqaxiom_Pred] THEN SUBGOAL_THEN `?a:A. a IN Dom(M)` CHOOSE_TAC THENL [ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `\n:num. a:A`) THEN ASM_REWRITE_TAC[valuation] THEN ASM_REWRITE_TAC[language] THEN DISCH_THEN(MP_TAC o MATCH_MP HOLDS_UCLOSE_ANY) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HOLDS; HOLDS_ANDS; Equal_DEF; MAP; GSYM MAP_o] THEN REWRITE_TAC[MAP_o] THEN DISCH_THEN(MP_TAC o SPEC `\n:num. if 2 * LENGTH l <= n then a else if EVEN(n) then termval M v (EL ((LENGTH l - 1) - (n DIV 2)) l) :A else termval M' (canonize o v) (EL ((LENGTH l - 1) - (n DIV 2)) l)`) THEN REWRITE_TAC[RECONSTRUCT_TERMVAL] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(fun th -> CONV_TAC SYM_CONV THEN MATCH_MP_TAC th) THEN REWRITE_TAC[FORALL2_FORALL] THEN CONJ_TAC THENL [REWRITE_TAC[valuation] THEN X_GEN_TAC `k:num` THEN ASM_CASES_TAC `2 * LENGTH (l:term list) <= k` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THENL [MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `ppp:num#num->bool` THEN ASM_REWRITE_TAC[valuation] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_INDEXED THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\x. functions_term x SUBSET functions s` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[FORALL_TERMS_STRONG]; UNDISCH_TAC `~(2 * LENGTH (l:term list) <= k)` THEN REWRITE_TAC[ARITH_RULE `~(2 * n <= k) ==> n - 1 - m < n`]]; SUBGOAL_THEN `termval M' ((canonize:A->A) o v) (EL (LENGTH l - 1 - k DIV 2) l) IN (Dom M' :A->bool)` MP_TAC THENL [MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `ppp:num#num->bool` THEN ASM_REWRITE_TAC[valuation] THEN CONJ_TAC THENL [UNDISCH_TAC `interpretation (language s) (M':(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_INDEXED THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM FORALL_TERMS_STRONG]) THEN RULE_ASSUM_TAC(CONV_RULE(ONCE_DEPTH_CONV ETA_CONV)) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(2 * LENGTH (l:term list) <= k)` THEN REWRITE_TAC[ARITH_RULE `~(2 * n <= k) ==> n - 1 - m < n`]; EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF; o_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]]; EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN SIMP_TAC[]]]; REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[PAIR_LEMMA; o_DEF] THEN REWRITE_TAC[holds; MAP; termval] THEN REWRITE_TAC[FORALL2_VARPAIRS] THEN REWRITE_TAC[GSYM MAP_o] THEN REWRITE_TAC[FORALL2_FORALL] THEN REWRITE_TAC[o_DEF; FORALL2_VARPAIRS] THEN REWRITE_TAC[RECONSTRUCT_TERMVAL] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[FORALL2_FORALL] THEN REWRITE_TAC[GSYM o_DEF] THEN ONCE_REWRITE_TAC[o_DEF] THEN REWRITE_TAC[] THEN MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\x. functions_term x SUBSET functions s` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM FORALL_TERMS_STRONG] THEN X_GEN_TAC `t:term` THEN STRIP_TAC THEN ASM_SIMP_TAC[IN] THEN SUBGOAL_THEN `(equiv:A->A->bool) (termval M v t) (canonize (termval M v t))` MP_TAC THENL [SUBGOAL_THEN `termval M v t IN (Dom(M):A->bool)` (fun th -> ASM_MESON_TAC[th]) THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `functions s` THEN ASM_REWRITE_TAC[valuation] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_RAW THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_REWRITE_TAC[]; EXPAND_TAC "equiv" THEN SIMP_TAC[]]]; ALL_TAC] THEN CONJ_TAC THENL [X_GEN_TAC `t:term` THEN X_GEN_TAC `u:term` THEN X_GEN_TAC `v:num->A` THEN STRIP_TAC THEN REWRITE_TAC[Equal_DEF; holds; MAP] THEN ASM_SIMP_TAC[] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Pred_DEF] THEN SUBGOAL_THEN `termval M v t IN (Dom(M):A->bool) /\ termval M v u IN Dom(M)` ASSUME_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `ppp:num#num->bool` THEN UNDISCH_TAC `valuation M' (v:num->A)` THEN EXPAND_TAC "M'" THEN REWRITE_TAC[valuation; Dom_DEF] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN MATCH_MP_TAC FORALL_TERMS_RAW THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_REWRITE_TAC[]; ASM_SIMP_TAC[]] THEN SUBGOAL_THEN `canonize o (v:num->A) = v` (fun th -> ONCE_REWRITE_TAC[GSYM th]) THENL [REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[o_THM] THEN UNDISCH_TAC `valuation M' (v:num->A)` THEN REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `valuation M (v:num->A)` ASSUME_TAC THENL [UNDISCH_TAC `valuation M' (v:num->A)` THEN REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM] THEN SIMP_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `(equiv:A->A->bool) ((canonize:A->A) (termval M v t)) (canonize (termval M v u))` THEN CONJ_TAC THENL [EXPAND_TAC "equiv" THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `(equiv:A->A->bool) (termval M v t) (termval M v u)` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[satisfies] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `canonize o (v:num->A) = v` (fun th -> ONCE_REWRITE_TAC[GSYM th]) THENL [REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[o_THM] THEN UNDISCH_TAC `valuation M' (v:num->A)` THEN REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `valuation M (v:num->A)` ASSUME_TAC THENL [UNDISCH_TAC `valuation M' (v:num->A)` THEN REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM] THEN SIMP_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `functions_form p SUBSET functions s /\ predicates_form p SUBSET predicates s` STRIP_ASSUME_TAC THENL [REWRITE_TAC[functions; predicates] THEN UNDISCH_TAC `p:form IN s` THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[satisfies]) THEN ASM_SIMP_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Compactness and Lowenheim-Skolem for normal models. *) (* ------------------------------------------------------------------------- *) let FUNCTIONS_SUBSET = prove (`!s t. t SUBSET s ==> functions t SUBSET functions s`, REWRITE_TAC[SUBSET; functions; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]);; let INTERPRETATION_MODIFY_LANGUAGE = prove (`!s s' t. t SUBSET s /\ (?M. interpretation (language s) M /\ ~(Dom M :A->bool = EMPTY) /\ M satisfies t) ==> ?M. interpretation (language s') M /\ ~(Dom M :A->bool = EMPTY) /\ M satisfies t`, REPEAT GEN_TAC THEN STRIP_TAC THEN EXISTS_TAC `Dom(M):A->bool, (\g zs. if (g,LENGTH zs) IN functions s then Fun(M) g zs else @a. a IN Dom(M)), Pred(M)` THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF; interpretation; language] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [language; interpretation]) THEN ASM_REWRITE_TAC[]; CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]; FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN REWRITE_TAC[satisfies] THEN ASM_REWRITE_TAC[valuation; Dom_DEF] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN STRIP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC HOLDS_FUNCTIONS THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_UNIONS; functions; SUBSET; IN_ELIM_THM]) THEN ASM_MESON_TAC[]]);; let INTERPRETATION_RESTRICT_LANGUAGE = prove (`!s s' t. s' SUBSET s /\ (?M. interpretation (language s) M /\ ~(Dom M :A->bool = EMPTY) /\ M satisfies t) ==> ?M. interpretation (language s') M /\ ~(Dom M :A->bool = EMPTY) /\ M satisfies t`, REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET; language; interpretation] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[FUNCTIONS_SUBSET; SUBSET]);; let FUNCTIONS_INSERT = prove (`functions(p INSERT s) = functions_form p UNION functions s`, REWRITE_TAC[EXTENSION; functions; IN_UNION; IN_INSERT; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]);; let FUNCTIONS_UNION = prove (`functions (s UNION t) = functions s UNION functions t`, REWRITE_TAC[EXTENSION; functions; IN_UNION; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]);; let PREDICATES_UNION = prove (`predicates (s UNION t) = predicates s UNION predicates t`, REWRITE_TAC[EXTENSION; predicates; IN_UNION; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]);; let FUNCTIONS_FORM_UCLOSE = prove (`functions_form(uclose p) = functions_form p`, REWRITE_TAC[uclose] THEN SPEC_TAC(`list_of_set(FV p)`,`l:num list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; functions_form]);; let FUNCTIONS_TERM_FNV1 = prove (`functions_term (Fn p (MAP FST (Varpairs n))) = {(p,n)}`, REWRITE_TAC[functions_term; LENGTH_MAP; LENGTH_VARPAIRS] THEN AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[MAP; Varpairs_DEF; functions_term; LIST_UNION] THEN ASM_REWRITE_TAC[UNION_EMPTY]);; let FUNCTIONS_FORM_FNV1 = prove (`!n. LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = EMPTY`, INDUCT_TAC THEN REWRITE_TAC[MAP; Varpairs_DEF; functions_term; LIST_UNION] THEN ASM_REWRITE_TAC[UNION_EMPTY]);; let FUNCTIONS_FORM_FNV2 = prove (`!n. LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = EMPTY`, INDUCT_TAC THEN REWRITE_TAC[MAP; Varpairs_DEF; functions_term; LIST_UNION] THEN ASM_REWRITE_TAC[UNION_EMPTY]);; let FUNCTIONS_TERM_FNV2 = prove (`functions_term (Fn p (MAP SND (Varpairs n))) = {(p,n)}`, REWRITE_TAC[functions_term; LENGTH_MAP; LENGTH_VARPAIRS] THEN AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[MAP; Varpairs_DEF; functions_term; LIST_UNION] THEN ASM_REWRITE_TAC[UNION_EMPTY]);; let FUNCTIONS_EQCONJ = prove (`!n. functions_form(ITLIST (&&) (MAP (\(s,t). Atom 0 [s; t]) (Varpairs n)) True) = EMPTY`, INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; ITLIST; MAP; True_DEF; Not_DEF; functions_form; UNION_EMPTY; PAIR_LEMMA; And_DEF; Or_DEF] THEN RULE_ASSUM_TAC(REWRITE_RULE[True_DEF; Not_DEF]) THEN ASM_REWRITE_TAC[LIST_UNION; functions_term; UNION_EMPTY]);; let FUNCTIONS_EQAXIOM_FUNC = prove (`!fa. functions_form (Eqaxiom_Func fa) = {fa}`, REWRITE_TAC[FORALL_PAIR_THM; Eqaxiom_Func] THEN REWRITE_TAC[FUNCTIONS_FORM_UCLOSE] THEN REWRITE_TAC[functions_form; Equal_DEF; MAP; LIST_UNION] THEN REWRITE_TAC[FUNCTIONS_TERM_FNV1; FUNCTIONS_TERM_FNV2] THEN REWRITE_TAC[FUNCTIONS_EQCONJ] THEN REWRITE_TAC[UNION_EMPTY; UNION_IDEMPOT]);; let FUNCTIONS_EQAXIOM_PRED = prove (`!pa. functions_form (Eqaxiom_Pred pa) = EMPTY`, REWRITE_TAC[FORALL_PAIR_THM; Eqaxiom_Pred] THEN REWRITE_TAC[FUNCTIONS_FORM_UCLOSE] THEN REWRITE_TAC[functions_form; Equal_DEF; MAP; LIST_UNION] THEN REWRITE_TAC[FUNCTIONS_TERM_FNV1; FUNCTIONS_TERM_FNV2] THEN REWRITE_TAC[FUNCTIONS_EQCONJ] THEN REWRITE_TAC[functions_form; Iff_DEF; And_DEF; Not_DEF; Or_DEF] THEN REWRITE_TAC[FUNCTIONS_FORM_FNV1; FUNCTIONS_FORM_FNV2] THEN REWRITE_TAC[UNION_EMPTY; UNION_IDEMPOT]);; let FUNCTIONS_EQAXIOM = prove (`functions (Eqaxioms (language s)) = functions s`, ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[functions; Eqaxioms_DEF; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[language] THEN GEN_TAC THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV o BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV) [CONJ_SYM] THEN REWRITE_TAC[OR_EXISTS_THM] THEN REWRITE_TAC[RIGHT_OR_EXISTS_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[functions_form; Equal_DEF; LIST_UNION; MAP] THEN REWRITE_TAC[functions_term; IN_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[FUNCTIONS_EQAXIOM_FUNC; FUNCTIONS_EQAXIOM_PRED] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]);; let INTERPRETATION_EQAXIOMS = prove (`interpretation (language s) M = interpretation (language (s UNION (Eqaxioms (language s)))) M`, REWRITE_TAC[interpretation; language] THEN REWRITE_TAC[FUNCTIONS_UNION] THEN REWRITE_TAC[GSYM language; FUNCTIONS_EQAXIOM] THEN REWRITE_TAC[UNION_IDEMPOT]);; let TERMS_SUBSET = prove (`!f1 f2. f1 SUBSET f2 ==> terms f1 SUBSET terms f2`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; IN] THEN MATCH_MP_TAC terms_INDUCT THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[terms_CASES] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[terms_CASES] THEN DISJ2_TAC THEN RULE_ASSUM_TAC(CONV_RULE(ONCE_DEPTH_CONV ETA_CONV)) THEN ASM_MESON_TAC[SUBSET]]);; let EQAXIOMS_UNION = prove (`Eqaxioms (language (s UNION t)) = Eqaxioms (language s) UNION Eqaxioms (language t)`, REWRITE_TAC[Eqaxioms_DEF; language; FUNCTIONS_UNION; PREDICATES_UNION] THEN REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]);; let EQAXIOMS_SUBSET = prove (`s SUBSET t ==> Eqaxioms (language s) SUBSET Eqaxioms (language t)`, REWRITE_TAC[SUBSET_UNION_ABSORPTION; GSYM EQAXIOMS_UNION] THEN SIMP_TAC[]);; let IN_EQAXIOMS = prove (`p IN Eqaxioms (language s) ==> (s = EMPTY) \/ ?q. q IN s /\ p IN Eqaxioms (language {q})`, REWRITE_TAC[Eqaxioms_DEF; language] THEN REWRITE_TAC[IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY] THEN REWRITE_TAC[functions; predicates; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; let COMPACT_LS_NORM_LEMMA1 = prove (`(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation (language s) M /\ ~(Dom M :A->bool = EMPTY) /\ normal (functions s) M /\ M satisfies t) ==> (!t. FINITE t /\ t SUBSET s ==> ?M. interpretation (language t) M /\ ~(Dom M :A->bool = EMPTY) /\ normal (functions t) M /\ M satisfies t)`, let lemma = prove (`(!t. P t ==> !M. Q t M ==> R t M) ==> (!t. P t ==> ?M. Q t M) ==> (!t. P t ==> ?M. R t M)`, MESON_TAC[]) in MATCH_MP_TAC lemma THEN GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[interpretation; normal; language] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET; FUNCTIONS_SUBSET; TERMS_SUBSET]);; let COMPACT_LS_NORM_LEMMA2a = prove (`FINITE t /\ t SUBSET Eqaxioms (language s) ==> ?s0. FINITE s0 /\ s0 SUBSET s /\ t SUBSET Eqaxioms (language s0)`, let lemma = prove (`(x INSERT s SUBSET t <=> x IN t /\ s SUBSET t) /\ (u UNION s SUBSET t <=> u SUBSET t /\ s SUBSET t)`, SET_TAC[]) in REWRITE_TAC[IMP_CONJ] THEN SPEC_TAC(`t:form->bool`,`t:form->bool`) THEN MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[EMPTY_SUBSET] THEN CONJ_TAC THENL [EXISTS_TAC `EMPTY:form->bool` THEN REWRITE_TAC[EMPTY_SUBSET; FINITE_RULES]; ALL_TAC] THEN REWRITE_TAC[lemma] THEN X_GEN_TAC `p:form` THEN X_GEN_TAC `t:form->bool` THEN DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (ANTE_RES_THEN MP_TAC)) THEN POP_ASSUM(K ALL_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `s0:form->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `s:form->bool = EMPTY` THEN ASM_REWRITE_TAC[] THENL [DISCH_TAC THEN EXISTS_TAC `s0:form->bool` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[EQAXIOMS_SUBSET; SUBSET; EMPTY_SUBSET]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP IN_EQAXIOMS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN EXISTS_TAC `{(q:form)} UNION s0` THEN ASM_REWRITE_TAC[FINITE_INSERT; FINITE_UNION; lemma] THEN REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET] THEN ASM_REWRITE_TAC[EQAXIOMS_UNION; IN_UNION] THEN UNDISCH_TAC `t SUBSET Eqaxioms (language s0)` THEN SET_TAC[]);; let COMPACT_LS_NORM_LEMMA2 = prove (`!t. FINITE t /\ t SUBSET s UNION (Eqaxioms (language s)) ==> ?u. t SUBSET (u UNION (Eqaxioms (language u))) /\ FINITE u /\ u SUBSET s`, let lemma = prove (`(s:A->bool) SUBSET (t UNION u) ==> ?s0 s1. (s = s0 UNION s1) /\ s0 SUBSET t /\ s1 SUBSET u`, DISCH_THEN(fun th -> EXISTS_TAC `(s:A->bool) INTER t` THEN EXISTS_TAC `(s:A->bool) INTER u` THEN MP_TAC th) THEN SET_TAC[]) in let slemma1 = prove (`(s UNION t) SUBSET u <=> s SUBSET u /\ t SUBSET u`, SET_TAC[]) in GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN DISCH_THEN(X_CHOOSE_THEN `b:form->bool` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `e:form->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[FINITE_UNION] THEN DISCH_THEN(fun th1 -> DISCH_THEN(fun th2 -> ASSUME_TAC(CONJUNCT1 th1) THEN ASSUME_TAC(CONJUNCT1 th2) THEN MP_TAC(CONJ (CONJUNCT2 th1) (CONJUNCT2 th2)))) THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_LS_NORM_LEMMA2a) THEN DISCH_THEN(X_CHOOSE_THEN `s0:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(b:form->bool) UNION s0` THEN ASM_REWRITE_TAC[slemma1; FINITE_UNION] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[EQAXIOMS_UNION] THEN UNDISCH_TAC `e SUBSET Eqaxioms (language s0)` THEN SET_TAC[]);; let COMPACT_LS_NORM = prove (`(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language s) M /\ ~(Dom(M):A->bool = EMPTY) /\ normal (functions s) M /\ M satisfies t) ==> ?C. interpretation (language s) C /\ ~(Dom(C):term->bool = EMPTY) /\ normal (functions s) C /\ C satisfies s`, DISCH_THEN(MP_TAC o MATCH_MP COMPACT_LS_NORM_LEMMA1) THEN REWRITE_TAC[NORMAL_THM] THEN DISCH_TAC THEN MATCH_MP_TAC INTERPRETATION_RESTRICT_LANGUAGE THEN EXISTS_TAC `s UNION (Eqaxioms (language s))` THEN REWRITE_TAC[SUBSET_UNION] THEN MATCH_MP_TAC COMPACT_LS THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_LS_NORM_LEMMA2) THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(fun th -> FIRST_X_ASSUM(MP_TAC o C MATCH_MP th)) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [INTERPRETATION_EQAXIOMS] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] INTERPRETATION_MODIFY_LANGUAGE)) THEN DISCH_THEN(MP_TAC o SPEC `s:form->bool`) THEN REWRITE_TAC[SUBSET_REFL] THEN REWRITE_TAC[GSYM INTERPRETATION_EQAXIOMS] THEN REWRITE_TAC[satisfies] THEN ASM_MESON_TAC[SUBSET]);;