(* ========================================================================= *) (* Refinement of canonical model theorem to consider ground terms only. *) (* ========================================================================= *) let herbase_RULES,herbase_INDUCT,herbase_CASES = new_inductive_definition `(~(?c. (c,0) IN fns) ==> herbase fns (V 0)) /\ (!f l. (f,LENGTH l) IN fns /\ ALL (herbase fns) l ==> herbase fns (Fn f l))`;; (* ------------------------------------------------------------------------- *) (* Canonical model based on the language of a set of formulas. *) (* ------------------------------------------------------------------------- *) let herbrand = new_definition `herbrand (L:(num#num->bool)#(num#num->bool)) M <=> (Dom M = herbase (FST L)) /\ (!f. Fun(M) f = Fn f)`;; (* ------------------------------------------------------------------------- *) (* Lemmas. *) (* ------------------------------------------------------------------------- *) let HERBRAND_INTERPRETATION = prove (`!L M. herbrand L M ==> interpretation L M`, GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN SIMP_TAC[herbrand; interpretation] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ASM_SIMP_TAC[herbase_RULES]);; let HERBASE_FUNCTIONS = prove (`!fns t. t IN herbase fns ==> (functions_term t) SUBSET fns`, GEN_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM ALL_MEM; GSYM EX_MEM; MEM_MAP] THEN MESON_TAC[]);; let HERBASE_NONEMPTY = prove (`!fns. ?t. t IN herbase fns`, GEN_TAC THEN REWRITE_TAC[IN] THEN ONCE_REWRITE_TAC[herbase_CASES] THEN MESON_TAC[ALL; LENGTH]);; let HERBRAND_NONEMPTY = prove (`!L M. herbrand L M ==> ~(Dom M = {})`, SIMP_TAC[herbrand; Dom_DEF; EXTENSION; NOT_IN_EMPTY] THEN REWRITE_TAC[NOT_FORALL_THM; HERBASE_NONEMPTY]);; (* ------------------------------------------------------------------------- *) (* Mappings between models and propositional valuations. *) (* ------------------------------------------------------------------------- *) let herbrand_of_prop = new_definition `herbrand_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) = herbase(FST L),Fn,\p l. d(Atom p l)`;; let PROP_OF_HERBRAND_OF_PROP = prove (`!p l. prop_of_model (herbrand_of_prop L d) V (Atom p l) = d (Atom p l)`, REWRITE_TAC[prop_of_model; herbrand_of_prop; holds; Pred_DEF] THEN REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; Fun_DEF] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; let HOLDS_HERBRAND_OF_PROP = prove (`!p. qfree p ==> (holds (herbrand_of_prop L d) V p <=> pholds d p)`, GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);; let HOLDS_HERBRAND_OF_PROP_GENERAL = prove (`qfree p ==> (holds (herbrand_of_prop L d) v p <=> pholds d (formsubst v p))`, DISCH_THEN(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN REPEAT GEN_TAC THEN STRIP_TAC THENL [ALL_TAC; REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; herbrand_of_prop; holds] THEN REWRITE_TAC[Pred_DEF] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);; let HERBRAND_HERBRAND_OF_PROP = prove (`!d. herbrand L (herbrand_of_prop L d)`, REWRITE_TAC[herbrand; herbrand_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);; let INTERPRETATION_HERBRAND_OF_PROP = prove (`!L d. interpretation L (herbrand_of_prop L d)`, REWRITE_TAC[FORALL_PAIR_THM; interpretation; herbrand_of_prop; Fun_DEF; Dom_DEF; IN; ETA_AX] THEN MESON_TAC[herbase_RULES; IN]);; (* ------------------------------------------------------------------------- *) (* Same thing for satisfiability. *) (* ------------------------------------------------------------------------- *) let PSATISFIES_HERBRAND_INSTANCES = prove (`(!p. p IN s ==> qfree p) /\ d psatisfies {formsubst v p | (!x. v x IN herbase(FST L)) /\ p IN s} ==> (herbrand_of_prop L d) satisfies s`, REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN STRIP_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [herbrand_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p)` MP_TAC THENL [ASM_MESON_TAC[HOLDS_HERBRAND_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p) <=> holds (herbrand_of_prop L d) (termval (herbrand_of_prop L d) V o v) p` SUBST1_TAC THENL [REWRITE_TAC[HOLDS_FORMSUBST] THEN ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY]; MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN MATCH_MP_TAC TERMVAL_TRIV THEN REWRITE_TAC[herbrand_of_prop; Fun_DEF]]);; (* ------------------------------------------------------------------------- *) (* Hence the Herbrand theorem. *) (* ------------------------------------------------------------------------- *) let SATISFIES_SUBSET = prove (`!M s t. s SUBSET t /\ M satisfies t ==> M satisfies s`, REWRITE_TAC[satisfies; SUBSET] THEN MESON_TAC[]);; let HERBASE_SUBSET_TERMS = prove (`!t. t IN herbase fns ==> t IN terms fns`, REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[terms_RULES]);; let HERBRAND_THEOREM = prove (`!s. (!p. p IN s ==> qfree p) ==> ((?M:(term->bool)#(num->term list->term)#(num->term list->bool). interpretation (language s) M /\ ~(Dom M = {}) /\ M satisfies s) <=> (?d. d psatisfies {formsubst v p | (!x. v x IN herbase(functions s)) /\ p IN s}))`, GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL [FIRST_ASSUM(X_CHOOSE_TAC `v:num->term` o MATCH_MP VALUATION_EXISTS) THEN EXISTS_TAC `prop_of_model M (v:num->term)` THEN MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; QFREE_FORMSUBST]; FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN DISCH_THEN(MP_TAC o SPEC `s:form->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SATISFIES_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; language] THEN MESON_TAC[HERBASE_SUBSET_TERMS; SUBSET]]; EXISTS_TAC `herbrand_of_prop (language s) d` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[INTERPRETATION_HERBRAND_OF_PROP]; REWRITE_TAC[herbrand_of_prop; Dom_DEF; language; EXTENSION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN] THEN MESON_TAC[herbase_RULES; ALL; LENGTH]; ASM_SIMP_TAC[PSATISFIES_HERBRAND_INSTANCES; language]]]);;