(* ========================================================================= *) (* Properties of the lexicographic path order. *) (* ========================================================================= *) let ITLIST_ADD_1_POS = prove (`!l. 0 < ITLIST (+) l 1`, LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; ARITH] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; let FVT_FUN_EMPTY = prove (`!f a args. MEM a args /\ (FVT(Fn f args) = {}) ==> (FVT a = {})`, REWRITE_TAC[FVT; EXTENSION; NOT_IN_EMPTY; IN_LIST_UNION; MEM_MAP; GSYM EX_MEM; o_THM] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Notion of an *element* being nonwellfounded: can start a dchain. *) (* ------------------------------------------------------------------------- *) let NONWF = new_definition `NONWF(R) a <=> ?s:num->A. (s 0 = a) /\ (!n. R (s(SUC n)) (s n))`;; let WF_NONWF = prove (`WF(R) <=> !a. ~(NONWF(R) a)`, REWRITE_TAC[WF_DCHAIN; NONWF] THEN MESON_TAC[]);; let NONWF_SUCCESSOR = prove (`!R a:A b. NONWF(R) b /\ R b a ==> NONWF(R) a`, REPEAT GEN_TAC THEN REWRITE_TAC[NONWF] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\n. if n = 0 then a:A else s(n - 1)` THEN REWRITE_TAC[NOT_SUC] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH] THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (SUC n - 1 = SUC(n - 1))`]);; let WF_NONWF = prove (`WF(\x:A y. R x y /\ ~(NONWF(R) y))`, REWRITE_TAC[WF_DCHAIN; NONWF] THEN DISCH_THEN(X_CHOOSE_THEN `s:num->A` MP_TAC) THEN REWRITE_TAC[FORALL_AND_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[] THEN EXISTS_TAC `s:num->A` THEN ASM_REWRITE_TAC[]);; let NONWF_INDUCT = prove (`(!a. ~(NONWF(R) a) /\ (!b. R b a ==> P(b)) ==> P(a)) ==> !x. ~(NONWF(R) x) ==> P(x)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MATCH_MP(fst(EQ_IMP_RULE WF_IND)) WF_NONWF) THEN REWRITE_TAC[] THEN ASM_MESON_TAC[NONWF_SUCCESSOR]);; (* ------------------------------------------------------------------------- *) (* General result on "minimal" infinite descending chains. *) (* ------------------------------------------------------------------------- *) let WF_MINIMAL_STEP = prove (`!m:A->num a. NONWF(R) a ==> ?b. NONWF(R) b /\ R b a /\ (!c. NONWF(R) c /\ R c a ==> m(b) <= m(c))`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `\n. ?c. NONWF(R) c /\ R c a /\ ((m:A->num)(c) = n)` num_WOP) THEN MATCH_MP_TAC(TAUT `(b ==> c) /\ a ==> (a <=> b) ==> c`) THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[NOT_LT]; ALL_TAC] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[NONWF] THEN DISCH_THEN(X_CHOOSE_THEN `s:num->A` STRIP_ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`(m:A->num) (s 1)`; `(s:num->A) 1`] THEN ASM_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN EXISTS_TAC `\n. s(SUC n):A` THEN ASM_REWRITE_TAC[ARITH] THEN ASM_MESON_TAC[num_CONV `1`]);; let WF_MINIMAL_DCHAIN = prove (`!m:A->num. WF(R) <=> ~(?t. (!n. R (t(SUC n)) (t n)) /\ (!s. NONWF(R) s ==> m(t 0) <= m(s)) /\ (!n s. NONWF(R) s /\ R s (t n) ==> m(t(SUC n)) <= m(s)))`, GEN_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_TAC THEN MP_TAC(SPEC `\n. ?s. NONWF(R) s /\ ((m:A->num)(s) = n)` num_WOP) THEN MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN CONJ_TAC THENL [REWRITE_TAC[NONWF] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `n_0:num` MP_TAC) THEN REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) ASSUME_TAC) THEN SUBGOAL_THEN `!s. NONWF R s ==> (m:A->num)(a) <= m(s)` ASSUME_TAC THENL [ASM_MESON_TAC[NOT_LT]; ALL_TAC] THEN MP_TAC(ISPECL [`a:A`; `\b (n:num). @c. NONWF(R) c /\ R c b /\ !d. NONWF(R) d /\ R d b ==> (m:A->num)(c) <= m(d)`] num_RECURSION) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:num->A` THEN REWRITE_TAC[] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `!d. b /\ d /\ a /\ c ==> a /\ b /\ c`) THEN EXISTS_TAC `(!n. NONWF R (t(SUC n):A))` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[AND_FORALL_THM] THEN INDUCT_TAC THENL [FIRST_ASSUM(SUBST1_TAC o SPEC `0`); FIRST_ASSUM(SUBST1_TAC o SPEC `SUC n`)] THEN CONV_TAC SELECT_CONV THEN MATCH_MP_TAC WF_MINIMAL_STEP THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Simple subsequence lemma finitely partitioning an infinite sequence. *) (* ------------------------------------------------------------------------- *) let SEQUENCE_SUBSEQUENCE = prove (`!P (x:num->A). (!n. ?m. n < m /\ P(x m)) ==> ?f. subseq f /\ !n. P(x(f n))`, REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN DISCH_THEN(X_CHOOSE_THEN `st:num->num` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`st(0):num`; `\m:num p:num. st(m):num`] num_RECURSION) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `s:num->num` THEN REWRITE_TAC[] THEN STRIP_TAC THEN CONJ_TAC THENL [REWRITE_TAC[SUBSEQ_SUC] THEN ASM_MESON_TAC[]; INDUCT_TAC THEN ASM_MESON_TAC[]]);; let SEQUENCE_PARTITION_LEMMA = prove (`!x:num->A s. FINITE(s) /\ (!n. x(n) IN s) ==> ?a f. subseq f /\ (!n. x(f n) = a)`, REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `?a:A. !n. ?m:num. n < m /\ (x m = a)` MP_TAC THENL [SUBGOAL_THEN `!s. FINITE s ==> (?n:num. !m. n < m ==> (x(m) IN s)) ==> ?a:A. !n. ?m. n < m /\ (x m = a)` (fun th -> ASM_MESON_TAC[th]) THEN POP_ASSUM_LIST(K ALL_TAC) THEN MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[NOT_IN_EMPTY] THEN CONJ_TAC THENL [MESON_TAC[LT]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`b:A`; `s:A->bool`] THEN MATCH_MP_TAC(TAUT `(~a /\ c ==> b) ==> (a ==> b) ==> (c ==> b)`) THEN REWRITE_TAC[IN_INSERT; NOT_EXISTS_THM; NOT_FORALL_THM; NOT_IMP] THEN ASM_MESON_TAC[ARITH_RULE `(m + n < p:num ==> m < p /\ n < p)`]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN MP_TAC(ISPEC `\x:A. x = a` SEQUENCE_SUBSEQUENCE) THEN ASM_SIMP_TAC[]);; (* ------------------------------------------------------------------------- *) (* Term size (used as auxiliary notion). *) (* ------------------------------------------------------------------------- *) let termsize_EXISTS = prove (`?termsize. (!x. termsize(V x) = 1) /\ (!f args. termsize(Fn f args) = ITLIST (+) (MAP termsize args) 1)`, MP_TAC(ISPECL [`\x:num. 1`; `\(f:num) (args:term list) (ns:num list). ITLIST (+) ns 1`; `[]:num list`; `\(t:term) (ts:term list) (n:num) (ns:num list). CONS n ns`] term_raw_RECURSION) THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; MAP]);; let termsize = new_specification ["termsize"] termsize_EXISTS;; (* ------------------------------------------------------------------------- *) (* Lexical extension of a relation, forcing equivalent list lengths. *) (* ------------------------------------------------------------------------- *) let LEX_DEF = new_recursive_definition list_RECURSION `(LEX(<<) [] l <=> F) /\ (LEX(<<) (CONS h t) l <=> if l = [] then F else if h << HD l then LENGTH t = LENGTH(TL l) else (h = HD l) /\ LEX(<<) t (TL l))`;; let LEX = prove (`(LEX(<<) [] l <=> F) /\ (LEX(<<) (CONS h1 t1) [] <=> F) /\ (LEX(<<) (CONS h1 t1) (CONS h2 t2) <=> if h1 << h2 then LENGTH t1 = LENGTH t2 else (h1 = h2) /\ LEX(<<) t1 t2)`, REWRITE_TAC[LEX_DEF; NOT_CONS_NIL; HD; TL]);; let LEX_LENGTH = prove (`!l1 l2 R. LEX(R) l1 l2 ==> (LENGTH l1 = LENGTH l2)`, LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LENGTH] THEN ASM_MESON_TAC[]);; let MONO_LEX = prove (`(!x:A y:A. R x y ==> S x y) ==> LEX R x y ==> LEX S x y`, DISCH_TAC THEN SPEC_TAC(`y:A list`,`y:A list`) THEN SPEC_TAC(`x:A list`,`x:A list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LEX] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_MESON_TAC[LEX_LENGTH]);; monotonicity_theorems := MONO_LEX::(!monotonicity_theorems);; let LEX_MAP = prove (`!l1 l2. LEX (\x y. R (f x) (f y)) l1 l2 ==> LEX R (MAP f l1) (MAP f l2)`, LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MAP] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN ASM_SIMP_TAC[]);; let LEX_REFL = prove (`!R l. (!x. MEM x l ==> ~(R x x)) ==> ~(LEX(R) l l)`, GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LEX; MEM] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Stronger variant of WF preservation under lexicographic extension. *) (* ------------------------------------------------------------------------- *) let LEX_LENGTH_CHAIN = prove (`!lis R. (!n. LEX(R) (lis(SUC n)) (lis n)) ==> !n. LENGTH(lis(n)) = LENGTH(lis(0))`, REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[LEX_LENGTH]);; let WF_LEX_STRONG_INDUCT = prove (`!n lis. (LENGTH(lis 0) = n) ==> ~((!n a:A. MEM a (lis n) ==> ~(NONWF(R) a)) /\ (!n. LEX(R) (lis(SUC n)) (lis n)))`, INDUCT_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP LEX_LENGTH_CHAIN) THEN UNDISCH_TAC `!n. LENGTH (lis n :(A)list) = LENGTH (lis 0)` THEN ASM_REWRITE_TAC[LENGTH_EQ_NIL] THEN ASM_MESON_TAC[LEX]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEX_LENGTH_CHAIN) THEN FIRST_X_ASSUM SUBST1_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `?hd tl. !n:num. CONS (hd n :A) (tl n) = lis(n)` MP_TAC THENL [EXISTS_TAC `\n:num. HD(lis n):A` THEN EXISTS_TAC `\n:num. TL(lis n):A list` THEN SUBGOAL_THEN `!n:num. ~(lis n :(A)list = [])` MP_TAC THENL [ASM_MESON_TAC[LEX_LENGTH_CHAIN; LENGTH; NOT_SUC]; ALL_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[] THEN SPEC_TAC(`(lis:num->(A)list) m`,`l:(A)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[HD; TL]; ALL_TAC] THEN DISCH_THEN(REPEAT_TCL CHOOSE_THEN (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[GSYM th]))) THEN UNDISCH_TAC `!n:num a:A. MEM a (CONS (hd n) (tl n)) ==> ~NONWF R a` THEN REWRITE_TAC[MEM; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN STRIP_TAC THEN UNDISCH_TAC `!n:num. LEX R (CONS (hd(SUC n):A) (tl(SUC n))) (CONS (hd n) (tl n))` THEN REWRITE_TAC[LEX] THEN UNDISCH_TAC `!m:num. LENGTH (CONS (hd m :A) (tl m)) = SUC n` THEN REWRITE_TAC[LENGTH; SUC_INJ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[TAUT `(if p then T else r) <=> p \/ ~p /\ r`] THEN UNDISCH_TAC `!n:num a:A. MEM a (tl n) ==> ~NONWF R a` THEN UNDISCH_TAC `!m. LENGTH ((tl:num->(A)list) m) = n` THEN REWRITE_TAC[IMP_IMP] THEN SPEC_TAC(`tl:num->(A)list`,`tl:num->(A)list`) THEN ABBREV_TAC `h:A = hd 0` THEN SUBGOAL_THEN `~(NONWF(R) (h:A))` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> UNDISCH_TAC `!n:num. ~NONWF R (hd n :A)` THEN UNDISCH_TAC `hd 0 :A = h` THEN MP_TAC th) THEN SPEC_TAC(`hd:num->A`,`hd:num->A`) THEN SPEC_TAC(`h:A`,`h:A`) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC NONWF_INDUCT THEN X_GEN_TAC `h:A` THEN STRIP_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN STRIP_TAC THEN X_GEN_TAC `hd:num->A` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?m. R (hd(SUC m):A) (hd m)` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `(hd:num->A) (SUC p)`) THEN ANTS_TAC THENL [SUBGOAL_THEN `!n. n <= p ==> (hd n :A = h)` (fun th -> ASM_MESON_TAC[th; LE_REFL]) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LE_SUC_LT] THEN ASM_MESON_TAC[LT_IMP_LE]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `\n. hd(SUC p + n):A`) THEN ASM_REWRITE_TAC[ADD_CLAUSES; NOT_IMP] THEN DISCH_THEN(MP_TAC o SPEC `\n. tl(SUC p + n):A list`) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:num` THEN FIRST_ASSUM(MP_TAC o check (is_disj o concl) o SPEC `SUC(p + m)`) THEN REWRITE_TAC[ADD_CLAUSES]);; let WF_LEX_STRONG = prove (`!R lis. ~((!n a:A. MEM a (lis n) ==> ~(NONWF(R) a)) /\ (!n. LEX(R) (lis(SUC n)) (lis n)))`, MESON_TAC[WF_LEX_STRONG_INDUCT]);; (* ------------------------------------------------------------------------- *) (* Ad-hoc but useful lemma. *) (* ------------------------------------------------------------------------- *) let LEX_RESTRICT = prove (`!P R l1 l2. LEX R l1 l2 /\ (!a. MEM a l1 ==> P(a)) /\ (!a. MEM a l2 ==> P(a)) ==> LEX (\x y. P(x) /\ P(y) /\ R x y) l1 l2`, GEN_TAC THEN GEN_TAC THEN REPEAT LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MEM] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Subterm relationship. *) (* ------------------------------------------------------------------------- *) parse_as_infix("subterm",(12,"right"));; parse_as_infix("psubterm",(12,"right"));; let subterm_RULES,subterm_INDUCT,subterm_CASES = new_inductive_definition `(!t. t subterm t) /\ (!s a f args. s subterm a /\ MEM a args ==> s subterm (Fn f args))`;; let psubterm = new_definition `s psubterm t <=> s subterm t /\ ~(s = t)`;; (* ------------------------------------------------------------------------- *) (* A lemma we don't seem able to avoid. *) (* ------------------------------------------------------------------------- *) let DESCENDANT_SMALLER = prove (`!f args s. MEM s args ==> termsize s < termsize (Fn f args)`, GEN_TAC THEN REWRITE_TAC[termsize] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP; ITLIST] THEN ASM_MESON_TAC[ARITH_RULE `0 < b ==> a < a + b`; ARITH_RULE `a < c ==> a < b + c`; ITLIST_ADD_1_POS]);; let DESCENDANT_DISTINCT = prove (`!f args. ~(MEM (Fn f args) args)`, MESON_TAC[DESCENDANT_SMALLER; LT_REFL]);; (* ------------------------------------------------------------------------- *) (* Trivial properties of subterm and psubterm relations. *) (* ------------------------------------------------------------------------- *) let SUBTERM_REFL = prove (`!t. t subterm t`, REWRITE_TAC[subterm_RULES]);; let SUBTERM_TRANS = prove (`!s t u. s subterm t /\ t subterm u ==> s subterm u`, SUBGOAL_THEN `!t u. t subterm u ==> !s. s subterm t ==> s subterm u` (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC subterm_INDUCT THEN REWRITE_TAC[] THEN MESON_TAC[subterm_RULES]);; let SUBTERM_ANTISYM = prove (`!s t. s subterm t /\ t subterm s ==> (s = t)`, MATCH_MP_TAC term_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL [ONCE_REWRITE_TAC[subterm_CASES] THEN SIMP_TAC[term_DISTINCT]; ALL_TAC] THEN REWRITE_TAC[GSYM ALL_MEM] THEN STRIP_TAC THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[subterm_CASES] THEN REWRITE_TAC[term_INJ] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_MESON_TAC[subterm_RULES; SUBTERM_TRANS]);; let SUBTERM_FVT = prove (`!x t. x IN FVT(t) ==> V(x) subterm t`, GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[FVT; IN_SING; IN_LIST_UNION; SUBTERM_REFL] THEN REWRITE_TAC[MEM_MAP; GSYM EX_MEM; GSYM ALL_MEM] THEN MESON_TAC[subterm_RULES]);; let PSUBTERM_ANTISYM = prove (`!s t. ~(s psubterm t /\ t psubterm s)`, REWRITE_TAC[psubterm] THEN MESON_TAC[SUBTERM_ANTISYM]);; let SUBTERM_PSUBTERM_TRANS = prove (`!s t u. s subterm t /\ t psubterm u ==> s psubterm u`, REWRITE_TAC[psubterm] THEN MESON_TAC[SUBTERM_TRANS; SUBTERM_ANTISYM]);; (* ------------------------------------------------------------------------- *) (* Useful alternative characterization of psubterm. *) (* ------------------------------------------------------------------------- *) let PSUBTERM_CASES = prove (`!s t. s psubterm t <=> ?f args u. (t = Fn f args) /\ MEM u args /\ s subterm u`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[psubterm] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [subterm_CASES] THEN ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`; `a:term`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBTERM_PSUBTERM_TRANS THEN EXISTS_TAC `a:term` THEN ASM_REWRITE_TAC[psubterm] THEN ASM_MESON_TAC[DESCENDANT_DISTINCT; subterm_RULES]]);; (* ------------------------------------------------------------------------- *) (* Stability of subterm relationships under instantiation. *) (* ------------------------------------------------------------------------- *) let SUBTERM_INSTANTIATION = prove (`!i s t. s subterm t ==> (termsubst i s) subterm (termsubst i t)`, GEN_TAC THEN MATCH_MP_TAC subterm_INDUCT THEN REWRITE_TAC[termsubst; subterm_RULES] THEN ASM_MESON_TAC[MEM_MAP; subterm_RULES]);; let PSUBTERM_INSTANTIATION = prove (`!i s t. s psubterm t ==> (termsubst i s) psubterm (termsubst i t)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`args:term list`; `u:term`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`MAP (termsubst i) args`; `termsubst i u`] THEN ASM_REWRITE_TAC[MEM_MAP; termsubst] THEN ASM_MESON_TAC[SUBTERM_INSTANTIATION]);; (* ------------------------------------------------------------------------- *) (* Inductive definition of the LPO. *) (* ------------------------------------------------------------------------- *) let lpo_RULES,lpo_INDUCT,lpo_CASES = new_inductive_definition `(!x s. x IN FVT(s) /\ ~(s = V x) ==> V x << s) /\ (!fs sargs ft targs si. MEM si sargs /\ (Fn ft targs << si \/ (si = Fn ft targs)) ==> Fn ft targs << Fn fs sargs) /\ (!fs ft sargs targs. (fs > ft \/ (fs = ft) /\ LENGTH sargs > LENGTH targs) /\ ALL (\ti. ti << Fn fs sargs) targs ==> Fn ft targs << Fn fs sargs) /\ (!f sargs targs. ALL (\ti. ti << Fn f sargs) targs /\ LEX(<<) targs sargs ==> Fn f targs << Fn f sargs)`;; (* ------------------------------------------------------------------------- *) (* Nicer cases theorem; essentially a recursive version of the definition. *) (* ------------------------------------------------------------------------- *) let LPO_CASES = prove (`(!s x. (s << V x) <=> F) /\ (!x t. V x << t <=> x IN FVT(t) /\ ~(t = V x)) /\ (!f fargs g gargs. Fn f fargs << Fn g gargs <=> (?gi. MEM gi gargs /\ (Fn f fargs << gi \/ (Fn f fargs = gi))) \/ (!fi. MEM fi fargs ==> fi << Fn g gargs) /\ ((f < g \/ (f = g) /\ (LENGTH fargs < LENGTH gargs)) \/ (f = g) /\ LEX(<<) fargs gargs))`, REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN REWRITE_TAC[term_DISTINCT; term_INJ; FVT; IN_SING; GSYM ALL_MEM; GT] THEN TRY(CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))) THEN REWRITE_TAC[TAUT `(a /\ b) /\ c <=> ~(a /\ b ==> ~c)`] THEN SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* LPO does not introduce new variables. *) (* ------------------------------------------------------------------------- *) let LPO_FVT = prove (`!s t. s << t ==> FVT(s) SUBSET FVT(t)`, MATCH_MP_TAC lpo_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL [ALL_TAC; SPEC_TAC(`Fn ft targs`,`t:term`); ALL_TAC; ALL_TAC] THEN SIMP_TAC[FVT; SUBSET; IN_SING; IN_LIST_UNION; GSYM EX_MEM; GSYM ALL_MEM; MEM_MAP] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* LPO is transitive (quite a tedious proof; follows Baader & Nipkow). *) (* ------------------------------------------------------------------------- *) let LPO_TRANS_INDUCT = prove (`!n r s t. (termsize r + termsize s + termsize t = n) /\ t << s /\ s << r ==> t << r`, MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISJ_CASES_THEN MP_TAC (SPEC `t:term` term_CASES) THENL [DISCH_THEN(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) THEN STRIP_TAC THEN MATCH_MP_TAC(el 0 (CONJUNCTS lpo_RULES)) THEN CONJ_TAC THENL [MP_TAC(MATCH_MP LPO_FVT (ASSUME `V x << s`)) THEN MP_TAC(MATCH_MP LPO_FVT (ASSUME `s << r`)) THEN REWRITE_TAC[FVT; SUBSET; IN_SING] THEN MESON_TAC[]; ASM_MESON_TAC[LPO_CASES]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `h:num` (X_CHOOSE_THEN `ts:term list` SUBST_ALL_TAC)) THEN DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THEN DISJ_CASES_THEN MP_TAC (SPEC `r:term` term_CASES) THENL [ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `rs:term list` SUBST_ALL_TAC)) THEN DISJ_CASES_THEN MP_TAC (SPEC `s:term` term_CASES) THENL [ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `ss:term list` SUBST_ALL_TAC)) THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM]) THEN RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP]) THEN ASM_CASES_TAC `?ri. MEM ri rs /\ (Fn g ss << ri \/ (Fn g ss = ri))` THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `ri:term` (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN MATCH_MP_TAC(el 1 (CONJUNCTS lpo_RULES)) THEN EXISTS_TAC `ri:term` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN DISJ1_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `termsize ri + termsize(Fn g ss) + termsize (Fn h ts)` THEN EXISTS_TAC `Fn g ss` THEN ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!si. MEM si ss ==> si << Fn f rs` ASSUME_TAC THENL [UNDISCH_TAC `Fn g ss << Fn f rs` THEN GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN REWRITE_TAC[term_DISTINCT; term_INJ; GSYM ALL_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `?si. MEM si ss /\ (Fn h ts << si \/ (Fn h ts = si))` THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `si:term` (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC `termsize(Fn f rs) + termsize si + termsize (Fn h ts)`) THEN EXISTS_TAC `si:term` THEN ASM_SIMP_TAC[LT_ADD_LCANCEL; LT_ADD_RCANCEL] THEN MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!ti. MEM ti ts ==> ti << Fn g ss` ASSUME_TAC THENL [UNDISCH_TAC `Fn h ts << Fn g ss` THEN GEN_REWRITE_TAC LAND_CONV [lpo_CASES] THEN REWRITE_TAC[term_DISTINCT; term_INJ; GSYM ALL_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!ti. MEM ti ts ==> ti << Fn f rs` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC `termsize (Fn f rs) + termsize (Fn g ss) + termsize ti`) THEN EXISTS_TAC `Fn g ss` THEN ASM_SIMP_TAC[LT_ADD_LCANCEL; DESCENDANT_SMALLER]; ALL_TAC] THEN UNDISCH_TAC `Fn h ts << Fn g ss` THEN UNDISCH_TAC `Fn g ss << Fn f rs` THEN ONCE_REWRITE_TAC[LPO_CASES] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THENL [ASM_MESON_TAC[LT_TRANS; LEX_LENGTH]; ALL_TAC] THEN DISCH_THEN DISJ_CASES_TAC THENL [ASM_MESON_TAC[LT_TRANS; LEX_LENGTH]; ALL_TAC] THEN DISJ2_TAC THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN SUBGOAL_THEN `!r s t. MEM r rs /\ MEM s ss /\ MEM t ts /\ t << s /\ s << r ==> t << r` MP_TAC THENL [MAP_EVERY X_GEN_TAC [`a:term`; `b:term`; `c:term`] THEN STRIP_TAC THEN FIRST_ASSUM(fun th -> MATCH_MP_TAC th THEN EXISTS_TAC `termsize a + termsize b + termsize c`) THEN EXISTS_TAC `b:term` THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC LT_ADD2 THEN CONJ_TAC) THEN ASM_SIMP_TAC[DESCENDANT_SMALLER]; ALL_TAC] THEN MAP_EVERY(fun s -> SPEC_TAC(s,s)) [`rs:term list`; `ss:term list`; `ts:term list`] THEN POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT LIST_INDUCT_TAC THEN REWRITE_TAC[LEX; MEM] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN TRY(ASM (GEN_MESON_TAC 0 15 1) [LEX_LENGTH]) THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(a1 /\ a2 ==> a3) /\ (b1 ==> b2 ==> b3) ==> a1 /\ b1 ==> a2 /\ b2 ==> a3 /\ b3`) THEN SIMP_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);; let LPO_TRANS = prove (`!s t u. s << t /\ t << u ==> s << u`, MESON_TAC[LPO_TRANS_INDUCT]);; (* ------------------------------------------------------------------------- *) (* LPO has the subterm property. *) (* ------------------------------------------------------------------------- *) let LPO_SUBTERM_LEMMA = prove (`!f args a. MEM a args ==> a << Fn f args`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN ONCE_REWRITE_TAC[LPO_CASES] THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REWRITE_TAC[FVT; IN_LIST_UNION; GSYM EX_MEM; GSYM ALL_MEM; MEM_MAP] THEN X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[term_DISTINCT] THEN EXISTS_TAC `FVT(V x)` THEN REWRITE_TAC[FVT; IN_SING] THEN EXISTS_TAC `V x` THEN ASM_REWRITE_TAC[FVT]);; let LPO_SUBTERM = prove (`!s t. s subterm t ==> (s = t) \/ s << t`, MATCH_MP_TAC subterm_INDUCT THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[LPO_SUBTERM_LEMMA]; DISJ2_TAC THEN MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `a:term` THEN ASM_SIMP_TAC[LPO_SUBTERM_LEMMA]]);; let LPO_PSUBTERM = prove (`!s t. s psubterm t ==> s << t`, REWRITE_TAC[psubterm] THEN MESON_TAC[LPO_SUBTERM]);; (* ------------------------------------------------------------------------- *) (* LPO is compatible with instantiation. *) (* ------------------------------------------------------------------------- *) let LPO_INSTANTIATION = prove (`!i s t. s << t ==> termsubst i s << termsubst i t`, GEN_TAC THEN MATCH_MP_TAC lpo_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THENL [MATCH_MP_TAC LPO_PSUBTERM THEN MATCH_MP_TAC PSUBTERM_INSTANTIATION THEN ASM_REWRITE_TAC[psubterm] THEN ASM_SIMP_TAC[SUBTERM_FVT]; REWRITE_TAC[termsubst] THEN MATCH_MP_TAC(el 1 (CONJUNCTS lpo_RULES)) THEN REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[termsubst]; REWRITE_TAC[termsubst] THEN MATCH_MP_TAC(el 2 (CONJUNCTS lpo_RULES)) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN REWRITE_TAC[GSYM ALL_MEM; MEM_MAP; termsubst; LENGTH_MAP] THEN ASM_MESON_TAC[]; REWRITE_TAC[termsubst] THEN MATCH_MP_TAC(el 3 (CONJUNCTS lpo_RULES)) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ALL_MAP; o_DEF] THEN RULE_ASSUM_TAC(REWRITE_RULE[termsubst]) THEN ASM_SIMP_TAC[LEX_MAP]]);; (* ------------------------------------------------------------------------- *) (* LPO is a congruence. *) (* ------------------------------------------------------------------------- *) let LPO_CONGRUENCE = prove (`!s t. s << t ==> Fn f (APPEND largs (CONS s rargs)) << Fn f (APPEND largs (CONS t rargs))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(last(CONJUNCTS lpo_RULES)) THEN CONJ_TAC THENL [REWRITE_TAC[GSYM ALL_MEM] THEN X_GEN_TAC `u:term` THEN DISCH_TAC THEN ASM_CASES_TAC `u:term = s` THENL [MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LPO_PSUBTERM THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN MAP_EVERY EXISTS_TAC [`f:num`; `APPEND largs (CONS (t:term) rargs)`; `t:term`] THEN ASM_REWRITE_TAC[MEM; SUBTERM_REFL; MEM_APPEND]; MATCH_MP_TAC LPO_PSUBTERM THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN MAP_EVERY EXISTS_TAC [`f:num`; `APPEND largs (CONS (t:term) rargs)`; `u:term`] THEN REWRITE_TAC[SUBTERM_REFL] THEN ASM_MESON_TAC[MEM; MEM_APPEND]]; SPEC_TAC(`largs:term list`,`largs:term list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LEX; APPEND] THEN COND_CASES_TAC THEN REWRITE_TAC[LENGTH; LENGTH_APPEND]]);; (* ------------------------------------------------------------------------- *) (* LPO is irreflexive. *) (* ------------------------------------------------------------------------- *) let LPO_REFL = prove (`!t. ~(t << t)`, MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[LPO_CASES] THEN REWRITE_TAC[] THEN REWRITE_TAC[GSYM ALL_MEM; LT_REFL] THEN ASM_SIMP_TAC[LEX_REFL] THEN ASM_MESON_TAC[LPO_PSUBTERM; LPO_TRANS; PSUBTERM_CASES; SUBTERM_REFL; DESCENDANT_SMALLER; LT_REFL]);; (* ------------------------------------------------------------------------- *) (* LPO is wellfounded over a finite signature. *) (* ------------------------------------------------------------------------- *) let LPO_WF = prove (`!A. FINITE(A) ==> WF(\s t. functions_term(s) SUBSET A /\ functions_term(t) SUBSET A /\ s << t)`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL WF_MINIMAL_DCHAIN)))) THEN EXISTS_TAC `termsize` THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `t:num->term` (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN REWRITE_TAC[FORALL_AND_THM] THEN DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT2) THEN SUBGOAL_THEN `!n:num. ?f args. (t(n) = Fn f args) /\ ALL (\t. ~(NONWF(\s t. functions_term(s) SUBSET A /\ functions_term(t) SUBSET A /\ s << t) t)) args` MP_TAC THENL [GEN_TAC THEN MP_TAC(SPEC `(t:num->term) n` term_CASES) THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[LPO_CASES]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `args:term list` THEN DISCH_TAC THEN ASM_REWRITE_TAC[GSYM ALL_MEM] THEN X_GEN_TAC `u:term` THEN DISCH_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `n = 0` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `u:term`) THEN ASM_REWRITE_TAC[] THEN UNDISCH_THEN `n = 0` SUBST_ALL_TAC THEN ASM_SIMP_TAC[NOT_LE; DESCENDANT_SMALLER]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n - 1`; `u:term`]) THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (SUC(n - 1) = n)`] THEN REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; NOT_LE] THEN REPEAT CONJ_TAC THENL [UNDISCH_THEN `!n:num. functions_term (t n) SUBSET A` (MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT; MEM_MAP; GSYM EX_MEM] THEN ASM_MESON_TAC[]; MATCH_MP_TAC LPO_TRANS THEN EXISTS_TAC `(t:num->term)(n)` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LPO_PSUBTERM THEN ONCE_REWRITE_TAC[PSUBTERM_CASES] THEN MAP_EVERY EXISTS_TAC [`f:num`; `args:term list`; `u:term`] THEN ASM_REWRITE_TAC[SUBTERM_REFL]; FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [MATCH_MP (ARITH_RULE `~(n = 0) ==> (n = SUC(n - 1))`) th]) THEN ASM_REWRITE_TAC[]]; MATCH_MP_TAC DESCENDANT_SMALLER THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM; GSYM ALL_MEM] THEN DISCH_THEN(X_CHOOSE_THEN `fn:num->num` (X_CHOOSE_THEN `args:num->term list` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `?far:num#num s. subseq s /\ (!n:num. fn(s n),LENGTH(args(s n):term list) = far)` MP_TAC THENL [MATCH_MP_TAC SEQUENCE_PARTITION_LEMMA THEN EXISTS_TAC `A:num#num->bool` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:num` THEN UNDISCH_TAC `!n:num. functions_term (t n) SUBSET A` THEN DISCH_THEN(MP_TAC o REWRITE_RULE[SUBSET] o SPEC `n:num`) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[functions_term; IN_INSERT]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [EXISTS_PAIR_THM] THEN REWRITE_TAC[PAIR_EQ; FORALL_AND_THM] THEN DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `ar:num` (X_CHOOSE_THEN `k:num->num` STRIP_ASSUME_TAC))) THEN SUBGOAL_THEN `!m n. m <= n ==> t(n) << t(m) \/ (t(n) = t(m))` ASSUME_TAC THENL [SUBGOAL_THEN `!n d. t(n + d) << t(n) \/ (t(n + d) = t(n))` (fun th -> MESON_TAC[th; LE_EXISTS]) THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN ASM_MESON_TAC[LPO_TRANS]; ALL_TAC] THEN SUBGOAL_THEN `!m n. m < n ==> t(n) << t(m)` MP_TAC THENL [REWRITE_TAC[GSYM LE_SUC_LT] THEN ASM_MESON_TAC[LPO_TRANS]; ALL_TAC] THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPECL [`(k:num->num) n`; `k(SUC n):num`]) THEN FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [SUBSEQ_SUC]) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[LPO_CASES] THEN REWRITE_TAC[LT_REFL] THEN SUBGOAL_THEN `!a n:num. MEM a (args n) ==> functions_term a SUBSET A` ASSUME_TAC THENL [REPEAT GEN_TAC THEN UNDISCH_THEN `!n:num. functions_term (t n) SUBSET A` (MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT; MEM_MAP; GSYM EX_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!n a. ~(MEM a (args ((k:num->num) n)) /\ (Fn f (args (k (SUC n))) << a \/ (Fn f (args (k (SUC n))) = a)))` (fun th -> REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN REWRITE_TAC[DE_MORGAN_THM] THEN MATCH_MP_TAC(TAUT `(a ==> b) ==> ~a \/ b`) THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [NONWF] o C MATCH_MP (ASSUME `MEM (a:term) (args((k:num->num) n))`)) THEN REWRITE_TAC[NONWF; TAUT `~p ==> ~q /\ ~r <=> q \/ r ==> p`] THEN DISCH_TAC THEN EXISTS_TAC `\r:num. if r = 0 then a:term else t(k(SUC n) + r)` THEN REWRITE_TAC[NOT_SUC] THEN X_GEN_TAC `m:num` THEN COND_CASES_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPECL [`k(SUC n):num`; `k(SUC n) + m`]) THEN REWRITE_TAC[LE_ADD] THEN UNDISCH_TAC `!n:num. t(SUC n) << t n` THEN DISCH_THEN(MP_TAC o SPEC `k(SUC n) + m`) THEN REWRITE_TAC[ADD_CLAUSES] THEN FIRST_X_ASSUM(MP_TAC o check (is_disj o concl)) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[LPO_TRANS]; ALL_TAC] THEN ASM_MESON_TAC[ADD_CLAUSES]; ALL_TAC] THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(\s t. functions_term s SUBSET A /\ functions_term t SUBSET A /\ s << t)`; `\n:num. (args:num->term list)(k n)`] WF_LEX_STRONG) THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC LEX_RESTRICT THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LT_REFL]);; (* ------------------------------------------------------------------------- *) (* Converse subterm property (not really needed, in fact). *) (* ------------------------------------------------------------------------- *) let LPO_SUBTERM_NOT = prove (`!t s. s subterm t ==> ~(t << s)`, MESON_TAC[LPO_SUBTERM; LPO_TRANS; LPO_REFL]);; (* ------------------------------------------------------------------------- *) (* Completeness on ground terms. *) (* ------------------------------------------------------------------------- *) let LEX_TOTAL = prove (`!fargs gargs. (LENGTH fargs = LENGTH gargs) /\ (!fi gi. MEM fi fargs /\ MEM gi gargs ==> fi << gi \/ gi << fi \/ (fi = gi)) ==> LEX(<<) fargs gargs \/ LEX(<<) gargs fargs \/ (fargs = gargs)`, MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LEX; MEM; LENGTH; NOT_SUC] THEN CONJ_TAC THENL [MESON_TAC[LENGTH_EQ_NIL]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`s:term`; `ss:term list`] THEN DISCH_TAC THEN MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[LEX; MEM; LENGTH; NOT_SUC] THEN MAP_EVERY X_GEN_TAC [`t:term`; `ts:term list`] THEN DISCH_THEN(K ALL_TAC) THEN SIMP_TAC[SUC_INJ] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ts:term list`) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_MESON_TAC[]);; let LPO_GROUND_COMPLETE = prove (`!s t. (FVT(s) = {}) /\ (FVT(t) = {}) ==> s << t \/ t << s \/ (s = t)`, SUBGOAL_THEN `!n s t. (termsize(s) + termsize(t) = n) /\ (FVT(s) = {}) /\ (FVT(t) = {}) ==> s << t \/ t << s \/ (s = t)` (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[FVT; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`f:num`; `fargs:term list`] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[FVT; EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`g:num`; `gargs:term list`] THEN DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN SUBGOAL_THEN `(!fi. MEM fi fargs ==> fi << Fn g gargs \/ Fn g gargs << fi \/ (fi = Fn g gargs)) /\ (!gi. MEM gi gargs ==> gi << Fn f fargs \/ Fn f fargs << gi \/ (gi = Fn f fargs)) /\ (!fi gi. MEM fi fargs /\ MEM gi gargs ==> fi << gi \/ gi << fi \/ (fi = gi))` STRIP_ASSUME_TAC THENL [UNDISCH_THEN `termsize (Fn f fargs) + termsize (Fn g gargs) = n` (SUBST_ALL_TAC o SYM) THEN RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> b /\ a /\ c /\ d`] THEN REWRITE_TAC[UNWIND_THM1] THEN ASM_SIMP_TAC[LT_ADD_LCANCEL; LT_ADD_RCANCEL; DESCENDANT_SMALLER; ARITH_RULE `a + b < b + c <=> a < c`; LT_ADD2] THEN ASM_MESON_TAC[FVT_FUN_EMPTY]; ALL_TAC] THEN ONCE_REWRITE_TAC[LPO_CASES] THEN SUBGOAL_THEN `(?a. MEM a gargs /\ (Fn f fargs << a \/ (Fn f fargs = a))) \/ ~(?a. MEM a gargs /\ (Fn f fargs << a \/ (Fn f fargs = a))) /\ (!a. MEM a gargs ==> a << Fn f fargs)` DISJ_CASES_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(?a. MEM a fargs /\ (Fn g gargs << a \/ (Fn g gargs = a))) \/ ~(?a. MEM a fargs /\ (Fn g gargs << a \/ (Fn g gargs = a))) /\ (!a. MEM a fargs ==> a << Fn g gargs)` DISJ_CASES_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[term_INJ] THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPECL [`f:num`; `g:num`] LT_CASES) THEN ASM_REWRITE_TAC[LT_REFL] THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPECL [`LENGTH(fargs:term list)`; `LENGTH(gargs:term list)`] LT_CASES) THEN ASM_REWRITE_TAC[LT_REFL] THEN MATCH_MP_TAC LEX_TOTAL THEN ASM_SIMP_TAC[]);;