(* ========================================================================= *) (* Positive resolution and semantic resolution. *) (* ========================================================================= *) let allpositive = new_definition `allpositive cl <=> !p. p IN cl ==> positive p`;; (* ------------------------------------------------------------------------- *) (* Various simple lemmas. *) (* ------------------------------------------------------------------------- *) let NOT_NEGATIVE_ATOM = prove (`!p a. ~(negative (Atom p a))`, REWRITE_TAC[negative; Not_DEF; form_DISTINCT]);; let NEGATIVE_NOT = prove (`!p. negative(Not p)`, MESON_TAC[negative]);; let CLAUSE_FINITE = prove (`!c. clause c ==> FINITE c`, SIMP_TAC[clause]);; let POSITIVE_LITERAL_ATOM = prove (`!p. literal(p) /\ positive(p) <=> atom(p)`, REWRITE_TAC[literal; positive; negative] THEN MESON_TAC[Not_DEF; form_DISTINCT; ATOM]);; let PHOLDS_ATOM = prove (`!v p. atom(p) ==> (pholds v p <=> v p)`, SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM; PHOLDS]);; let PHOLDS_ALLTRUE_POSLIT = prove (`!p. literal p /\ positive p ==> pholds (\x. T) p`, REWRITE_TAC[literal; ATOM; positive; negative] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[PHOLDS] THEN ASM_MESON_TAC[atom; Not_DEF; form_DISTINCT]);; let PHOLDS_ALLFALSE_NEGLIT = prove (`!p. literal p /\ negative p ==> pholds (\x. F) p`, REWRITE_TAC[literal; ATOM; positive; negative] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[PHOLDS] THEN ASM_MESON_TAC[atom; Not_DEF; form_DISTINCT]);; let PHOLDS_ALLTRUE_POSCLAUSE = prove (`!c. clause(c) /\ allpositive c /\ ~(c = {}) ==> pholds (\x. T) (interp c)`, SIMP_TAC[clause; PHOLDS_INTERP; allpositive; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[PHOLDS_ALLTRUE_POSLIT]);; let PHOLDS_ALLFALSE_NONPOSCLAUSE = prove (`!c. clause(c) /\ ~allpositive c ==> pholds (\x. F) (interp c)`, SIMP_TAC[clause; PHOLDS_INTERP; allpositive; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[PHOLDS_ALLFALSE_NEGLIT; positive]);; (* ------------------------------------------------------------------------- *) (* Main lemma from Robinson's original proof. *) (* ------------------------------------------------------------------------- *) let PRESOLUTION_LEMMA = prove (`!s. FINITE s /\ (!c. c IN s ==> clause c) /\ ~psatisfiable (IMAGE interp s) /\ ~({} IN s) ==> ?c1 c2 p. c1 IN s /\ c2 IN s /\ (allpositive c1 \/ allpositive c2) /\ p IN c1 /\ ~~p IN c2 /\ ~((resolve p c1 c2) IN s)`, REPEAT STRIP_TAC THEN ABBREV_TAC `P = {c | c IN s /\ allpositive c}` THEN ABBREV_TAC `N = {c | c IN s /\ ~(allpositive c)}` THEN SUBGOAL_THEN `~(P:(form->bool)->bool = {})` ASSUME_TAC THENL [EXPAND_TAC "P" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; TAUT `~(a /\ b) <=> a ==> ~b`] THEN DISCH_TAC THEN UNDISCH_TAC `~psatisfiable (IMAGE interp s)` THEN REWRITE_TAC[psatisfiable] THEN EXISTS_TAC `\p:form. F` THEN ASM_SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM; PHOLDS_ALLFALSE_NONPOSCLAUSE]; ALL_TAC] THEN SUBGOAL_THEN `~(N:(form->bool)->bool = {})` ASSUME_TAC THENL [EXPAND_TAC "N" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; TAUT `~(a /\ b) <=> a ==> ~b`] THEN DISCH_TAC THEN UNDISCH_TAC `~psatisfiable (IMAGE interp s)` THEN REWRITE_TAC[psatisfiable] THEN EXISTS_TAC `\p:form. T` THEN SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC PHOLDS_ALLTRUE_POSCLAUSE THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?n v. v psatisfies (IMAGE interp P) /\ v HAS_SIZE n` MP_TAC THENL [EXISTS_TAC `CARD((UNIONS P):form->bool)` THEN EXISTS_TAC `(UNIONS P):form->bool` THEN REWRITE_TAC[HAS_SIZE] THEN CONJ_TAC THENL [REWRITE_TAC[psatisfies; IN_IMAGE; IN_UNIONS; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `c:form->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN SUBGOAL_THEN `FINITE(c:form->bool)` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN ASM_SIMP_TAC[PHOLDS_INTERP] THEN SUBGOAL_THEN `~(c:form->bool = {})` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `positive q` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[allpositive]; ALL_TAC] THEN SUBGOAL_THEN `atom q` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[clause; literal; positive; negative]; ALL_TAC] THEN SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM; PHOLDS] THEN REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN GEN_REWRITE_TAC I [GSYM IN] THEN REWRITE_TAC[IN_UNIONS] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `FINITE(P:(form->bool)->bool)` MP_TAC THENL [EXPAND_TAC "P" THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:(form->bool)->bool` THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM]; ALL_TAC] THEN SIMP_TAC[FINITE_UNIONS] THEN RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN REWRITE_TAC[NOT_EXISTS_THM; RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[TAUT `a ==> ~(b /\ c) <=> a /\ c ==> ~b`] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?m c. c IN N /\ ~(pholds v (interp c)) /\ {p | p IN c /\ negative p} HAS_SIZE m` MP_TAC THENL [GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN UNDISCH_TAC `~psatisfiable (IMAGE interp s)` THEN REWRITE_TAC[psatisfiable; NOT_EXISTS_THM; NOT_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `v:form->bool`) THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; IN_IMAGE; NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN GEN_TAC THEN REWRITE_TAC[LEFT_FORALL_IMP_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:form->bool` THEN STRIP_TAC THEN EXISTS_TAC `CARD {p | p IN k /\ negative p}` THEN ASM_REWRITE_TAC[HAS_SIZE] THEN CONJ_TAC THENL [EXPAND_TAC "N" THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `(k:form->bool) IN P` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[IN_IMAGE; psatisfies]; ALL_TAC] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `k:form->bool` THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `k:form->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ASSUME `(k:form->bool) IN N`) THEN EXPAND_TAC "N" THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[allpositive; NOT_FORALL_THM; NOT_IMP; positive] THEN DISCH_THEN(X_CHOOSE_THEN `r:form` MP_TAC) THEN REWRITE_TAC[negative] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `l:form` SUBST_ALL_TAC) THEN SUBGOAL_THEN `clause k` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN SUBGOAL_THEN `atom l` ASSUME_TAC THENL [SUBGOAL_THEN `literal(Not l)` MP_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; literal; Not_DEF; form_INJ; atom]; ALL_TAC] THEN SUBGOAL_THEN `v(l:form) = T` ASSUME_TAC THENL [UNDISCH_TAC `~pholds v (interp k)` THEN ASM_SIMP_TAC[PHOLDS_INTERP; CLAUSE_FINITE; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `Not l`) THEN ASM_REWRITE_TAC[PHOLDS] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ATOM]) THEN ASM_REWRITE_TAC[PHOLDS]; ALL_TAC] THEN SUBGOAL_THEN `?j. j IN P /\ l IN j /\ ~(pholds v (interp (j DELETE l)))` MP_TAC THENL [FIRST_ASSUM(MP_TAC o SPECL [`n - 1`; `\p:form. if p = l then F else v(p)`]) THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC(ARITH_RULE `~(n = 0) ==> n - 1 < n`) THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAS_SIZE_0]) THEN REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `l:form`) THEN REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[IN]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_REWRITE_TAC[HAS_SIZE] THEN SUBGOAL_THEN `(\p:form. if p = l then F else v(p)) = v DELETE l` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_DELETE] THEN GEN_TAC THEN REWRITE_TAC[IN] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE] THEN ASM_REWRITE_TAC[IN]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `~a ==> b <=> ~b ==> a`] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ b /\ ~c) <=> a /\ b ==> c`] THEN DISCH_TAC THEN REWRITE_TAC[psatisfies] THEN GEN_TAC THEN REWRITE_TAC[IN_IMAGE] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:form->bool` THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `clause c /\ clause(c DELETE l)` MP_TAC THENL [MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN SIMP_TAC[clause; IN_DELETE; FINITE_DELETE]; ALL_TAC] THEN SIMP_TAC[clause; PHOLDS_INTERP] THEN REWRITE_TAC[GSYM clause] THEN STRIP_TAC THEN ASM_CASES_TAC `l:form IN c` THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN SIMP_TAC[IN_DELETE] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `atom q` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[POSITIVE_LITERAL_ATOM; allpositive; clause]; ALL_TAC] THEN SIMP_TAC[PHOLDS_ATOM] THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `v psatisfies IMAGE interp P` THEN REWRITE_TAC[psatisfies] THEN DISCH_THEN(MP_TAC o SPEC `interp c`) THEN REWRITE_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[PHOLDS_INTERP; CLAUSE_FINITE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN STRIP_TAC THEN SUBGOAL_THEN `atom q` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[POSITIVE_LITERAL_ATOM; allpositive; clause]; ALL_TAC] THEN ASM_SIMP_TAC[PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS_ATOM]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `j:form->bool` STRIP_ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`j:form->bool`; `k:form->bool`; `l:form`] THEN REWRITE_TAC[GSYM negative; GSYM positive] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[allpositive]; ALL_TAC] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[allpositive]; ALL_TAC] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[allpositive]; ALL_TAC] THEN ASM_REWRITE_TAC[negate] THEN CONJ_TAC THENL [COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[allpositive; positive]; ALL_TAC] THEN FIRST_ASSUM(fun th -> MP_TAC(SPEC `m - 1` th) THEN ANTS_TAC) THENL [MATCH_MP_TAC(ARITH_RULE `~(n = 0) ==> n - 1 < n`) THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAS_SIZE_0]) THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN DISCH_THEN(MP_TAC o SPEC `Not l`) THEN ASM_REWRITE_TAC[IN_ELIM_THM; negative] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `resolve l j k`) THEN ONCE_REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN DISCH_TAC THEN SUBGOAL_THEN `~pholds v (interp (resolve l j k))` ASSUME_TAC THENL [UNDISCH_TAC `~pholds v (interp k)` THEN UNDISCH_TAC `~pholds v (interp (j DELETE l))` THEN SUBGOAL_THEN `clause j` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN ASM_SIMP_TAC[PHOLDS_INTERP; CLAUSE_FINITE; RESOLVE_CLAUSE; FINITE_DELETE] THEN REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [SUBGOAL_THEN `~(resolve l j k IN P)` MP_TAC THENL [ASM_MESON_TAC[psatisfies; IN_IMAGE]; ALL_TAC] THEN UNDISCH_TAC `resolve l j k IN s` THEN MAP_EVERY EXPAND_TAC ["P"; "N"] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONV_TAC TAUT; ALL_TAC] THEN SUBGOAL_THEN `{p | p IN resolve l j k /\ negative p} = {p | p IN k /\ negative p} DELETE (Not l)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; resolve; IN_UNION] THEN SUBGOAL_THEN `~~l = Not l` SUBST1_TAC THENL [REWRITE_TAC[negate] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN ASM_MESON_TAC[allpositive; positive]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(a ==> ~e) ==> ((a /\ b \/ c /\ d) /\ e <=> (c /\ e) /\ d)`) THEN REWRITE_TAC[GSYM positive] THEN ASM_MESON_TAC[allpositive]; ALL_TAC] THEN SUBGOAL_THEN `FINITE {p | p IN k /\ negative p}` MP_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `k:form->bool` THEN ASM_SIMP_TAC[CLAUSE_FINITE; SUBSET; IN_ELIM_THM]; ALL_TAC] THEN SIMP_TAC[HAS_SIZE; CARD_DELETE; FINITE_DELETE] THEN DISCH_TAC THEN UNDISCH_TAC `{p | p IN k /\ negative p} HAS_SIZE m` THEN SIMP_TAC[HAS_SIZE] THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[negative]);; (* ------------------------------------------------------------------------- *) (* Inductive definition of *positive* propositional resolution. *) (* ------------------------------------------------------------------------- *) let pposresproof_RULES,pposresproof_INDUCT,pposresproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> pposresproof hyps cl) /\ (!p cl1 cl2. pposresproof hyps cl1 /\ pposresproof hyps cl2 /\ (allpositive cl1 \/ allpositive cl2) /\ p IN cl1 /\ ~~p IN cl2 ==> pposresproof hyps (resolve p cl1 cl2))`;; (* ------------------------------------------------------------------------- *) (* Its completeness. *) (* ------------------------------------------------------------------------- *) let POSRESPROOF_FINITE = prove (`!hyps. FINITE hyps /\ (!cl. cl IN hyps ==> clause cl) ==> FINITE {cl | pposresproof hyps cl}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{t | t SUBSET (UNIONS hyps)} :(form->bool)->bool` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_POWERSET THEN RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN ASM_SIMP_TAC[FINITE_UNIONS]; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MATCH_MP_TAC pposresproof_INDUCT THEN CONJ_TAC THENL [MESON_TAC[IN_UNIONS]; REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]]);; let PPOSRESPROOF_REFUTATION_COMPLETE_FINITE = prove (`FINITE hyps /\ (!cl. cl IN hyps ==> clause cl) /\ ~(psatisfiable {interp cl | cl IN hyps}) ==> pposresproof hyps {}`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `hyps:(form->bool)->bool` POSRESPROOF_FINITE) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(SPEC `{cl | pposresproof hyps cl}` PRESOLUTION_LEMMA) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `~psatisfiable (IMAGE interp {cl | pposresproof hyps cl})` ASSUME_TAC THENL [UNDISCH_TAC `~psatisfiable {interp cl | cl IN hyps}` THEN REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] PSATISFIABLE_MONO) THEN REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[pposresproof_RULES]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC(TAUT `~c /\ a ==> (a /\ ~b ==> c) ==> b`) THEN CONJ_TAC THENL [MESON_TAC[pposresproof_RULES]; ALL_TAC] THEN MATCH_MP_TAC pposresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE]);; (* ------------------------------------------------------------------------- *) (* Lift to the non-finite case by compactness. *) (* ------------------------------------------------------------------------- *) let PPOSRESPROOF_MONO = prove (`!hyps1 hyps2 c. pposresproof hyps1 c /\ hyps1 SUBSET hyps2 ==> pposresproof hyps2 c`, GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC pposresproof_INDUCT THEN MESON_TAC[pposresproof_RULES; SUBSET]);; let PPOSRESPROOF_REFUTATION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ ~(psatisfiable {interp cl | cl IN hyps}) ==> pposresproof hyps {}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC PPOSRESPROOF_MONO THEN FIRST_ASSUM(MP_TAC o MATCH_MP UNPSATISFIABLE_FINITE_SUBSET) THEN DISCH_THEN(X_CHOOSE_THEN `t:form->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?h. FINITE h /\ h SUBSET hyps /\ t SUBSET {interp cl | cl IN h}` MP_TAC THENL [REWRITE_TAC[IMAGE_CLAUSE] THEN MATCH_MP_TAC FINITE_SUBSET_IMAGE_IMP THEN ASM_REWRITE_TAC[GSYM IMAGE_CLAUSE]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC PPOSRESPROOF_REFUTATION_COMPLETE_FINITE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN MAP_EVERY UNDISCH_TAC [`~(psatisfiable t)`; `t SUBSET {interp cl | cl IN h}`] THEN REWRITE_TAC[PSATISFIABLE_MONO; TAUT `b ==> ~c ==> ~a <=> a /\ b ==> c`]);; (* ------------------------------------------------------------------------- *) (* Generalization to semantic resolution at the propositional level. *) (* ------------------------------------------------------------------------- *) let psemresproof_RULES,psemresproof_INDUCT,psemresproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> psemresproof v hyps cl) /\ (!p cl1 cl2. psemresproof v hyps cl1 /\ psemresproof v hyps cl2 /\ (~pholds v (interp cl1) \/ ~pholds v (interp cl2)) /\ p IN cl1 /\ ~~p IN cl2 ==> psemresproof v hyps (resolve p cl1 cl2))`;; (* ------------------------------------------------------------------------- *) (* Proof by propositional variable flipping. *) (* ------------------------------------------------------------------------- *) let propflip = new_definition `propflip w p = if (negative p = pholds w p) then p else ~~p`;; let PHOLDS_LITERAL_PROPFLIP = prove (`!p w. literal(p) ==> (pholds w p <=> pholds (\x. F) (propflip w p))`, REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS_NEGATE; PHOLDS]);; let PROPFLIP_INVOLUTE = prove (`!w p. literal p ==> (propflip w (propflip w p) = p)`, REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM] THENL [ASM_CASES_TAC `w(Atom q l):bool` THEN ASM_REWRITE_TAC[negate; NOT_NEGATIVE_ATOM; NEGATIVE_NOT; PHOLDS] THEN REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL]; ASM_CASES_TAC `w(Atom q' l):bool` THEN ASM_REWRITE_TAC[negate; NOT_NEGATIVE_ATOM; NEGATIVE_NOT; PHOLDS] THEN REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL] THEN ASM_REWRITE_TAC[NOT_NEGATIVE_ATOM; PHOLDS]]);; let PROPFLIP_INJ = prove (`!w p q. literal p /\ literal q /\ (propflip w p = propflip w q) ==> (p = q)`, MESON_TAC[PROPFLIP_INVOLUTE]);; let PROPFLIP_NEGATE = prove (`!w p. literal p ==> (propflip w (~~p) = ~~(propflip w p))`, REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; NEGATE_NEG] THEN SIMP_TAC[NEGATE_ATOM; atom] THEN REWRITE_TAC[PHOLDS; NEGATIVE_NOT] THEN REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; NEGATE_NEG] THEN SIMP_TAC[NEGATE_ATOM; atom] THEN COND_CASES_TAC THEN SIMP_TAC[NEGATE_ATOM; atom; NEGATE_NEG]);; let PROPFLIP_RESOLVE = prove (`!cl1 cl2 p w. clause cl1 /\ clause cl2 /\ p IN cl1 ==> (IMAGE (propflip w) (resolve p cl1 cl2) = resolve (propflip w p) (IMAGE (propflip w) cl1) (IMAGE (propflip w) cl2))`, REPEAT STRIP_TAC THEN REWRITE_TAC[resolve; IMAGE_UNION] THEN BINOP_TAC THEN (REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE] THEN X_GEN_TAC `q:form` THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PROPFLIP_NEGATE; clause]] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PROPFLIP_INJ; clause; PROPFLIP_NEGATE; NEGATE_LITERAL]));; let PPOSRESPROOF_CLAUSE = prove (`!hyps. (!c. c IN hyps ==> clause c) ==> !c. pposresproof hyps c ==> clause c`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC pposresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE]);; let PSEMRESPROOF_CLAUSE = prove (`!hyps w. (!c. c IN hyps ==> clause c) ==> !c. psemresproof w hyps c ==> clause c`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC psemresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE]);; let LITERAL_PROPFLIP = prove (`!p w. literal p ==> literal (propflip w p)`, REPEAT GEN_TAC THEN REWRITE_TAC[propflip] THEN COND_CASES_TAC THEN SIMP_TAC[NEGATE_LITERAL]);; let CLAUSE_IMAGE_PROPFLIP = prove (`!cl w. clause cl ==> clause (IMAGE (propflip w) cl)`, SIMP_TAC[clause; FINITE_IMAGE] THEN MESON_TAC[LITERAL_PROPFLIP; IN_IMAGE]);; let PHOLDS_LITERAL_PROPFLIP_SAME = prove (`!p w. literal(p) ==> (pholds w (propflip w p) <=> ~(positive p))`, REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; positive] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS_NEGATE; PHOLDS]);; let PHOLDS_IMAGE_PROPFLIP_SAME = prove (`!v cl. clause cl ==> (pholds v (interp (IMAGE (propflip v) cl)) <=> ~(allpositive cl))`, SIMP_TAC[clause; PHOLDS_INTERP; FINITE_IMAGE; allpositive] THEN ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[NOT_IMP; NOT_FORALL_THM] THEN MESON_TAC[PHOLDS_LITERAL_PROPFLIP_SAME]);; let PPOSRESPROOF_PSEMRESPROOF = prove (`!hyps. (!c. c IN hyps ==> clause c) ==> !w cl. pposresproof hyps cl ==> psemresproof w (IMAGE (IMAGE (propflip w)) hyps) (IMAGE (propflip w) cl)`, GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN SUBGOAL_THEN `!cl. pposresproof hyps cl ==> clause cl /\ psemresproof w (IMAGE (IMAGE (propflip w)) hyps) (IMAGE (propflip w) cl)` (fun th -> SIMP_TAC[th]) THEN MATCH_MP_TAC pposresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN CONJ_TAC THENL [ASM_MESON_TAC[psemresproof_RULES; IN_IMAGE]; ALL_TAC] THEN ASM_SIMP_TAC[PROPFLIP_RESOLVE] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psemresproof_RULES)) THEN ASM_SIMP_TAC[PHOLDS_IMAGE_PROPFLIP_SAME] THEN ASM_MESON_TAC[PROPFLIP_NEGATE; clause; NEGATE_LITERAL; IN_IMAGE]);; (* ------------------------------------------------------------------------- *) (* Hence refutation completeness. *) (* ------------------------------------------------------------------------- *) let PHOLDS_ATOM_PROPFLIP_DIFF = prove (`!p v w. atom(p) ==> (pholds v (propflip w p) <=> ~(v p = w p))`, SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[propflip; NOT_NEGATIVE_ATOM; positive; negate; PHOLDS] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS]);; let PHOLDS_LITERAL_PROPFLIP_DIFF = prove (`!p v w. literal(p) ==> (pholds v (propflip w p) <=> pholds (\x. ~(v x = w x)) p)`, REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; positive] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS_NEGATE; PHOLDS]);; let PHOLDS_INTERP_IMAGE_PROPFLIP_DIFF = prove (`!v cl. clause cl ==> (pholds v (interp (IMAGE (propflip w) cl)) <=> pholds (\x. ~(v x = w x)) (interp cl))`, SIMP_TAC[clause; PHOLDS_INTERP; FINITE_IMAGE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN_IMAGE; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2; GSYM CONJ_ASSOC] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN GEN_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN ASM_SIMP_TAC[PHOLDS_LITERAL_PROPFLIP_DIFF]);; let PSATISFIABLE_CLAUSES_PROPFLIP = prove (`!w s. (!c. c IN s ==> clause c) ==> (psatisfiable (IMAGE (interp o IMAGE (propflip w)) s) <=> psatisfiable (IMAGE interp s))`, REPEAT STRIP_TAC THEN REWRITE_TAC[psatisfiable; IMAGE_o] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\p:form. ~(v(p):bool = w(p))` THEN ASM_SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THENL [ASM_SIMP_TAC[GSYM PHOLDS_INTERP_IMAGE_PROPFLIP_DIFF]; ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE_PROPFLIP_DIFF] THEN REWRITE_TAC[TAUT `~(~(a <=> b) <=> b) <=> a`] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV)] THEN ASM_MESON_TAC[IN_IMAGE]);; let PSEMRESPROOF_MONO = prove (`!w hyps1 hyps2 c. psemresproof w hyps1 c /\ hyps1 SUBSET hyps2 ==> psemresproof w hyps2 c`, GEN_TAC THEN GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC psemresproof_INDUCT THEN MESON_TAC[psemresproof_RULES; SUBSET]);; let PROPFLIP_INVOLUTE_CLAUSE = prove (`!w cl. clause cl ==> (IMAGE (propflip w) (IMAGE (propflip w) cl) = cl)`, REWRITE_TAC[clause] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[PROPFLIP_INVOLUTE]);; let PSEMRESPROOF_REFUTATION_COMPLETE = prove (`!hyps w. (!cl. cl IN hyps ==> clause cl) /\ ~(psatisfiable {interp cl | cl IN hyps}) ==> psemresproof w hyps {}`, let lemma = prove (`{interp cl | cl IN hyps} = IMAGE interp hyps`, REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]) in REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[lemma] THEN ASM_SIMP_TAC[GSYM PSATISFIABLE_CLAUSES_PROPFLIP] THEN REWRITE_TAC[IMAGE_o; GSYM lemma] THEN SUBGOAL_THEN `!cl. cl IN IMAGE (IMAGE (propflip w)) hyps ==> clause cl` MP_TAC THENL [ASM_SIMP_TAC[CLAUSE_IMAGE_PROPFLIP; IN_IMAGE; LEFT_IMP_EXISTS_THM]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> a /\ b ==> a ==> c`] THEN DISCH_THEN(MP_TAC o MATCH_MP PPOSRESPROOF_REFUTATION_COMPLETE) THEN ONCE_REWRITE_TAC[TAUT `b ==> a ==> c <=> a /\ b ==> c`] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] PPOSRESPROOF_PSEMRESPROOF)) THEN DISCH_THEN(MP_TAC o SPEC `w:form->bool`) THEN REWRITE_TAC[IMAGE_CLAUSES] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] PSEMRESPROOF_MONO) THEN SIMP_TAC[SUBSET; IN_IMAGE; LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN ASM_MESON_TAC[PROPFLIP_INVOLUTE_CLAUSE]);; (* ------------------------------------------------------------------------- *) (* Lifting positive resolution to first order level. *) (* ------------------------------------------------------------------------- *) let posresproof_RULES,posresproof_INDUCT,posresproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> posresproof hyps cl) /\ (!cl1 cl2 cl2' ps1 ps2 i. posresproof hyps cl1 /\ posresproof hyps cl2 /\ (allpositive cl1 \/ allpositive cl2) /\ (IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ (?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ (mgu (ps1 UNION {~~p | p IN ps2}) = i) ==> posresproof hyps (IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; let POSRESPROOF_CLAUSE = prove (`(!cl. cl IN hyps ==> clause cl) ==> !cl. posresproof hyps cl ==> clause cl`, let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in DISCH_TAC THEN MATCH_MP_TAC posresproof_INDUCT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; let ALLPOSITIVE_INSTANCE_OF = prove (`!cl1 cl2. cl1 instance_of cl2 /\ allpositive cl1 ==> allpositive cl2`, REWRITE_TAC[allpositive; instance_of] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[positive; NEGATIVE_FORMSUBST; IN_IMAGE]);; let POSRESOLUTION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ ~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ M satisfies (IMAGE interp hyps)) ==> posresproof hyps {}`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `~(psatisfiable {interp cl | cl IN {IMAGE(formsubst v) cl | v,cl | cl IN hyps}})` MP_TAC THENL [REWRITE_TAC[psatisfiable] THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN REWRITE_TAC[psatisfies] THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PPOSRESPROOF_REFUTATION_COMPLETE)) THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN SUBGOAL_THEN `!cl0. pposresproof {IMAGE (formsubst v) cl | v,cl | cl IN hyps} cl0 ==> ?cl. posresproof hyps cl /\ cl0 instance_of cl` MP_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN MESON_TAC[INSTANCE_OF_EMPTY]] THEN MATCH_MP_TAC pposresproof_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN MESON_TAC[posresproof_RULES]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN MP_TAC(SPECL [`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; `A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] LIFTING_LEMMA) THEN ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN ANTS_TAC THENL [ASM_MESON_TAC[FVS_CLAUSE_FINITE; POSRESPROOF_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[renaming] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN ANTS_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[POSRESPROOF_CLAUSE]; ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; POSRESPROOF_CLAUSE]; ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN EXISTS_TAC `termsubst k o (j:num->term)` THEN SUBGOAL_THEN `termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` MP_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; ALL_TAC] THEN REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; FINITE_SUBSET]; SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL posresproof_RULES)) THEN EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ALLPOSITIVE_INSTANCE_OF]);; (* ------------------------------------------------------------------------- *) (* Lift semantic resolution to first order level as well. *) (* ------------------------------------------------------------------------- *) let semresproof_RULES,semresproof_INDUCT,semresproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> semresproof M hyps cl) /\ (!cl1 cl2 cl2' ps1 ps2 i. semresproof M hyps cl1 /\ semresproof M hyps cl2 /\ (~(!v:num->A. holds M v (interp cl1)) \/ ~(!v:num->A. holds M v (interp cl2))) /\ (IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ (?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ (mgu (ps1 UNION {~~p | p IN ps2}) = i) ==> semresproof M hyps (IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; let SEMRESPROOF_CLAUSE = prove (`(!c. c IN hyps ==> clause c) ==> (!c. semresproof M hyps c ==> clause c)`, let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in DISCH_TAC THEN MATCH_MP_TAC semresproof_INDUCT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; let QFREE_HOLDS_PHOLDS = prove (`!p. qfree(p) ==> (holds M v p <=> pholds (holds M v) p)`, MATCH_MP_TAC form_INDUCTION THEN SIMP_TAC[HOLDS; PHOLDS; qfree]);; let LIFTING_FALSIFY = prove (`!p M w. qfree(p) /\ (!v. holds M v p) ==> pholds (holds M w) (formsubst i p)`, SIMP_TAC[GSYM QFREE_HOLDS_PHOLDS; QFREE_FORMSUBST; HOLDS_FORMSUBST]);; let LIFTING_FALSITY_CLAUSE = prove (`clause A /\ (!v:num->A. holds M v (interp A)) /\ A' instance_of A ==> pholds (holds M w) (interp A')`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [instance_of]) THEN DISCH_THEN(X_CHOOSE_THEN `i:num->term` SUBST1_TAC) THEN SUBGOAL_THEN `pholds (holds M (w:num->A)) (formsubst i (interp A))` MP_TAC THENL [ASM_MESON_TAC[LIFTING_FALSIFY; QFREE_INTERP]; ALL_TAC] THEN ASM_SIMP_TAC[PHOLDS_INTERP; IMAGE_FORMSUBST_CLAUSE; FINITE_IMAGE; CLAUSE_FINITE; PHOLDS_FORMSUBST; QFREE_INTERP] THEN ASM_MESON_TAC[IN_IMAGE; clause; QFREE_LITERAL; PHOLDS_FORMSUBST]);; let SEMRESOLUTION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ ~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ M satisfies (IMAGE interp hyps)) ==> !M:(A->bool)#(num->A list->A)#(num->A list->bool). semresproof M hyps {}`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `~(psatisfiable {interp cl | cl IN {IMAGE(formsubst v) cl | v,cl | cl IN hyps /\ (!x. v(x) IN herbase (functions (IMAGE interp hyps)))}})` MP_TAC THENL [REWRITE_TAC[psatisfiable] THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN REWRITE_TAC[psatisfies] THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PSEMRESPROOF_REFUTATION_COMPLETE)) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `holds M (@x:num->A. T)`) THEN ABBREV_TAC `w = @x:num->A. T` THEN ABBREV_TAC `ghyps = {IMAGE(formsubst v) cl | v,cl | cl IN hyps /\ (!x. v(x) IN herbase (functions (IMAGE interp hyps)))}` THEN SUBGOAL_THEN `!cl0. psemresproof (holds M (w:num->A)) ghyps cl0 ==> ?cl. semresproof M hyps cl /\ cl0 instance_of cl` MP_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN MESON_TAC[INSTANCE_OF_EMPTY]] THEN MATCH_MP_TAC psemresproof_INDUCT THEN CONJ_TAC THENL [EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN MESON_TAC[semresproof_RULES]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN MP_TAC(SPECL [`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; `A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] LIFTING_LEMMA) THEN ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN ANTS_TAC THENL [ASM_MESON_TAC[FVS_CLAUSE_FINITE; SEMRESPROOF_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[renaming] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN ANTS_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SEMRESPROOF_CLAUSE]; ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; SEMRESPROOF_CLAUSE]; ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN EXISTS_TAC `termsubst k o (j:num->term)` THEN SUBGOAL_THEN `termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` MP_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; ALL_TAC] THEN REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; FINITE_SUBSET]; SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL semresproof_RULES)) THEN EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SEMRESPROOF_CLAUSE; LIFTING_FALSITY_CLAUSE]);; (* ------------------------------------------------------------------------- *) (* More refined variant based on genuine models and valuations. *) (* ------------------------------------------------------------------------- *) let semresproof2_RULES,semresproof2_INDUCT,semresproof2_CASES = new_inductive_definition `(!cl. cl IN hyps ==> semresproof2 M hyps cl) /\ (!cl1 cl2 cl2' ps1 ps2 i. semresproof2 M hyps cl1 /\ semresproof2 M hyps cl2 /\ (~(!v:num->A. valuation M v ==> holds M v (interp cl1)) \/ ~(!v:num->A. valuation M v ==> holds M v (interp cl2))) /\ (IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ (?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ (mgu (ps1 UNION {~~p | p IN ps2}) = i) ==> semresproof2 M hyps (IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; let SEMRESPROOF2_CLAUSE = prove (`(!c. c IN hyps ==> clause c) ==> (!c. semresproof2 M hyps c ==> clause c)`, let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in DISCH_TAC THEN MATCH_MP_TAC semresproof2_INDUCT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; let QFREE_HOLDS_PHOLDS = prove (`!p. qfree(p) ==> (holds M v p <=> pholds (holds M v) p)`, MATCH_MP_TAC form_INDUCTION THEN SIMP_TAC[HOLDS; PHOLDS; qfree]);; let LIFTING_FALSIFY = prove (`!p M w. qfree(p) /\ (!v. valuation M v ==> holds M v p) /\ (!x f l. (f,LENGTH l) IN functions_term(i x) /\ ALL (\a. a IN Dom(M)) l ==> Fun M f l IN Dom(M)) ==> !w. valuation M w ==> pholds (holds M w) (formsubst i p)`, SIMP_TAC[GSYM QFREE_HOLDS_PHOLDS; QFREE_FORMSUBST; HOLDS_FORMSUBST] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[valuation; o_THM] THEN X_GEN_TAC `v:num` THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[interpretation]);; let LIFTING_FALSITY_CLAUSE = prove (`clause A /\ (A' = IMAGE (formsubst i) A) /\ (!v:num->A. valuation M v ==> holds M v (interp A)) /\ (!x f l. (f,LENGTH l) IN functions_term(i x) /\ ALL (\a. a IN Dom(M)) l ==> Fun M f l IN Dom(M)) ==> !w. valuation M w ==> pholds (holds M w) (interp A')`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `pholds (holds M (w:num->A)) (formsubst i (interp A))` MP_TAC THENL [UNDISCH_TAC `valuation M (w:num->A)` THEN SPEC_TAC(`w:num->A`,`w:num->A`) THEN MATCH_MP_TAC LIFTING_FALSIFY THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[QFREE_INTERP]; ALL_TAC] THEN ASM_SIMP_TAC[PHOLDS_INTERP; IMAGE_FORMSUBST_CLAUSE; FINITE_IMAGE; CLAUSE_FINITE; PHOLDS_FORMSUBST; QFREE_INTERP] THEN ASM_MESON_TAC[IN_IMAGE; clause; QFREE_LITERAL; PHOLDS_FORMSUBST]);; let FUNCTIONS_FORM_INTERP = prove (`!s. FINITE s ==> (functions_form(interp s) = functions s)`, REWRITE_TAC[interp] THEN SUBGOAL_THEN `!l. functions_form(ITLIST (||) l False) = functions(set_of_list l)` (fun th -> MESON_TAC[SET_OF_LIST_OF_SET; th]) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; And_DEF; Or_DEF; Not_DEF; functions_form; set_of_list] THENL [REWRITE_TAC[functions; NOT_IN_EMPTY; EXTENSION; IN_ELIM_THM; IN_UNIONS]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[functions; IN_INSERT; EXTENSION; IN_ELIM_THM; IN_UNIONS; IN_UNION] THEN MESON_TAC[]);; let FUNCTIONS_IMAGE_INTERP = prove (`!s. (!c. c IN s ==> FINITE(c)) ==> (functions (IMAGE interp s) = UNIONS {functions p | p IN s})`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[functions_form; functions; IN_UNIONS; IN_ELIM_THM; IN_IMAGE] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2; GSYM CONJ_ASSOC] THEN REWRITE_TAC[GSYM functions] THEN ASM_MESON_TAC[FUNCTIONS_FORM_INTERP]);; let FUNCTIONS_RESOLVE = prove (`functions(resolve p cl1 cl2) SUBSET (functions cl1 UNION functions cl2)`, REWRITE_TAC[SUBSET; functions; IN_UNION; resolve; IN_DIFF; IN_UNION; IN_UNIONS; IN_ELIM_THM; IN_DELETE] THEN MESON_TAC[]);; let PSEMRESPROOF_FUNCTIONS = prove (`(!c. c IN hyps ==> clause c) ==> !c. psemresproof M hyps c ==> functions c SUBSET functions(IMAGE interp hyps)`, DISCH_TAC THEN MATCH_MP_TAC psemresproof_INDUCT THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_SIMP_TAC[FUNCTIONS_IMAGE_INTERP; PSEMRESPROOF_CLAUSE; CLAUSE_FINITE] THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `functions cl1 UNION functions cl2` THEN REWRITE_TAC[FUNCTIONS_RESOLVE] THEN ASM_MESON_TAC[SUBSET; IN_UNION]);; let FUNCTIONS_TERM_NOCONSTANTS = prove (`!t. ~(?c. c,0 IN functions_term t) ==> ~(FVT t = {})`, MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[functions_term; NOT_IN_EMPTY; FVT] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]; ALL_TAC] THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LENGTH; IN_INSERT; MAP; LIST_UNION] THENL [MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_UNION; EMPTY_UNION] THEN MESON_TAC[]);; let HERBASE = prove (`!t. t IN herbase fns <=> functions_term t SUBSET fns /\ (FVT(t) = if ?c. c,0 IN fns then {} else {0})`, GEN_TAC THEN EQ_TAC THEN SPEC_TAC(`t:term`,`t:term`) THENL [GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [IN] THEN MATCH_MP_TAC herbase_INDUCT THEN SIMP_TAC[FVT; functions_term; EMPTY_SUBSET] THEN REWRITE_TAC[GSYM ALL_MEM] THEN MAP_EVERY X_GEN_TAC [`f:num`; `tms:term list`] THEN STRIP_TAC THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `y:num` THEN REWRITE_TAC[IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ a /\ b`] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [TAUT `a /\ b <=> ~(b ==> ~a)`] THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP] THEN COND_CASES_TAC THEN REWRITE_TAC[NOT_IN_EMPTY] THEN SUBGOAL_THEN `~(tms:term list = [])` (fun th -> ASM_MESON_TAC[th; list_CASES; MEM; LENGTH_EQ_NIL]) THEN ASM_MESON_TAC[LENGTH]; ALL_TAC] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[functions_term; EMPTY_SUBSET; FVT] THEN COND_CASES_TAC THEN REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY] THEN ASM_MESON_TAC[IN; herbase_RULES]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`f:num`; `tms:term list`] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL herbase_RULES)) THEN UNDISCH_TAC `functions_term (Fn f tms) SUBSET fns` THEN REWRITE_TAC[SUBSET; functions_term; IN_INSERT; IN_LIST_UNION] THEN SIMP_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`; FORALL_AND_THM] THEN MATCH_MP_TAC(TAUT `(a ==> a') /\ (b ==> b') ==> a /\ b ==> a' /\ b'`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM ALL_MEM; GSYM EX_MEM; MEM_MAP] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `t:term` THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN SIMP_TAC[] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_THEN(MP_TAC o SPEC `functions_term t`) THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [GSYM IN] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[TAUT `a ==> b ==> c <=> a /\ b ==> c`]) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; IN]; ALL_TAC] THEN UNDISCH_TAC `FVT(Fn f tms) = (if ?c:num. c,0 IN fns then {} else {0})` THEN REWRITE_TAC[FVT] THEN COND_CASES_TAC THENL [REWRITE_TAC[EXTENSION; IN_LIST_UNION; MEM_MAP; NOT_IN_EMPTY; GSYM EX_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(FVT t = {})` MP_TAC THENL [ASM_MESON_TAC[FUNCTIONS_TERM_NOCONSTANTS]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_SING] THEN REWRITE_TAC[IN_LIST_UNION; MEM_MAP; NOT_IN_EMPTY; GSYM EX_MEM] THEN ASM_MESON_TAC[]);; let HERBASE_LEMMA = prove (`functions_form q SUBSET fns /\ (!v. i(v) IN herbase fns) /\ ~(j(x) IN herbase fns) /\ x IN FV(p) ==> ~(formsubst j p = formsubst i q)`, REWRITE_TAC[HERBASE] THEN REWRITE_TAC[DE_MORGAN_THM] THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `functions_form(formsubst i q) SUBSET fns /\ ~(functions_form(formsubst j p) SUBSET fns)` (fun th -> ASM_MESON_TAC[th]) THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN UNDISCH_TAC `~(functions_term (j(x:num)) SUBSET fns)` THEN REWRITE_TAC[SUBSET] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `fn:num#num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?y. y IN FVT(j(x:num)) /\ !z:num. ~(y IN FVT(i z))` MP_TAC THENL [ALL_TAC; DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `~(FV(formsubst j p) = FV(formsubst i q))` (fun th -> ASM_MESON_TAC[th]) THEN REWRITE_TAC[EXTENSION; NOT_FORALL_THM; IN_ELIM_THM; FORMSUBST_FV] THEN ASM_MESON_TAC[]] THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [UNDISCH_TAC `~(FVT(j(x:num)) = (if ?c:num. c,0 IN fns then {} else {0}))` THEN ASM_REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]; ALL_TAC] THEN UNDISCH_TAC `~(FVT(j(x:num)) = (if ?c:num. c,0 IN fns then {} else {0}))` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `~(FVT(j(x:num)) = {})` MP_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_SING] THEN MESON_TAC[]] THEN MATCH_MP_TAC FUNCTIONS_TERM_NOCONSTANTS THEN SUBGOAL_THEN `functions_term(j(x:num)) SUBSET fns` (fun th -> ASM_MESON_TAC[th; SUBSET]) THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `functions_form(formsubst j p)` THEN CONJ_TAC THENL [REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM; SUBSET] THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET]);; let SEMRESOLUTION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ ~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ M satisfies (IMAGE interp hyps)) ==> !M:(A->bool)#(num->A list->A)#(num->A list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) ==> semresproof2 M hyps {}`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `~(psatisfiable {interp cl | cl IN {IMAGE(formsubst v) cl | v,cl | cl IN hyps /\ (!x. v(x) IN herbase (functions (IMAGE interp hyps)))}})` MP_TAC THENL [REWRITE_TAC[psatisfiable] THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN REWRITE_TAC[psatisfies] THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PSEMRESPROOF_REFUTATION_COMPLETE)) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN FIRST_ASSUM(X_CHOOSE_TAC `w:num->A` o MATCH_MP VALUATION_EXISTS) THEN DISCH_THEN(MP_TAC o SPEC `holds M (w:num->A)`) THEN ABBREV_TAC `ghyps = {IMAGE(formsubst v) cl | v,cl | cl IN hyps /\ (!x. v(x) IN herbase (functions (IMAGE interp hyps)))}` THEN SUBGOAL_THEN `!cl0. psemresproof (holds M (w:num->A)) ghyps cl0 ==> ?cl. semresproof2 M hyps cl /\ ?i. (!x. i(x) IN herbase(functions(IMAGE interp hyps))) /\ (cl0 = IMAGE (formsubst i) cl)` MP_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN MESON_TAC[INSTANCE_OF_EMPTY; instance_of]] THEN ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN MATCH_MP_TAC psemresproof_INDUCT THEN CONJ_TAC THENL [SIMP_TAC[CONJUNCT1(SPEC_ALL psemresproof_RULES)] THEN EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN MESON_TAC[semresproof2_RULES]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `A:form->bool` MP_TAC)) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `B:form->bool` MP_TAC)) MP_TAC) THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `k1:num->term` (STRIP_ASSUME_TAC o GSYM)) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `k2:num->term` (STRIP_ASSUME_TAC o GSYM)) THEN CONJ_TAC THENL [ASM_SIMP_TAC[psemresproof_RULES]; ALL_TAC] THEN MP_TAC(SPECL [`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; `A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] LIFTING_LEMMA) THEN ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN ANTS_TAC THENL [ASM_MESON_TAC[FVS_CLAUSE_FINITE; SEMRESPROOF2_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[renaming] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN ANTS_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SEMRESPROOF2_CLAUSE]; ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; SEMRESPROOF2_CLAUSE]; ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; ASM_MESON_TAC[instance_of]; SUBGOAL_THEN `B' instance_of B` MP_TAC THENL [ASM_MESON_TAC[instance_of]; ALL_TAC] THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN EXISTS_TAC `termsubst k o (j:num->term)` THEN SUBGOAL_THEN `termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` MP_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; ALL_TAC] THEN REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; FINITE_SUBSET]; SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; QFREE_LITERAL; SUBSET; IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC(CONJUNCT2(SPEC_ALL semresproof2_RULES)) THEN EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(UNDISCH_TAC o check is_disj o concl) THEN MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN UNDISCH_TAC `valuation M (w:num->A)` THEN MATCH_MP_TAC(TAUT `(d ==> a ==> b) /\ (e ==> a ==> c) ==> a ==> ~b \/ ~c ==> ~d \/ ~e`) THEN CONJ_TAC THEN DISCH_TAC THEN SPEC_TAC(`w:num->A`,`w:num->A`) THEN MATCH_MP_TAC(GEN_ALL LIFTING_FALSITY_CLAUSE) THENL [MAP_EVERY EXISTS_TAC [`A:form->bool`; `k2:num->term`]; MAP_EVERY EXISTS_TAC [`B:form->bool`; `k1:num->term`]] THEN (ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SEMRESPROOF2_CLAUSE]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [interpretation] o REWRITE_RULE[language]) THEN ASM_REWRITE_TAC[]) THENL [UNDISCH_TAC `f,LENGTH(l:A list) IN functions_term (k2(x:num))`; UNDISCH_TAC `f,LENGTH(l:A list) IN functions_term (k1(x:num))`] THEN SPEC_TAC(`f:num,LENGTH(l:A list)`,`fn:num#num`) THEN REWRITE_TAC[GSYM SUBSET] THEN MATCH_MP_TAC HERBASE_FUNCTIONS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN UNDISCH_TAC `resolve p A' B' instance_of IMAGE (formsubst (mgu (A1 UNION {~~ l | l IN B1}))) (A DIFF A1 UNION C DIFF B1)` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_TAC `i:num->term`) THEN ABBREV_TAC `D = IMAGE (formsubst (mgu (A1 UNION {~~ l | l IN B1}))) (A DIFF A1 UNION C DIFF B1)` THEN ABBREV_TAC `i' = \x:num. if i(x) IN herbase (functions (IMAGE interp hyps)) then i(x) else @x. x IN herbase (functions (IMAGE interp hyps))` THEN EXISTS_TAC `i':num->term` THEN CONJ_TAC THENL [GEN_TAC THEN EXPAND_TAC "i'" THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV THEN REWRITE_TAC[HERBASE_NONEMPTY]; ALL_TAC] THEN SUBGOAL_THEN `!p x. p IN D /\ x IN FV(p) ==> (i'(x):term = i(x))` MP_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN MESON_TAC[FORMSUBST_VALUATION]] THEN SUBGOAL_THEN `!p x. p IN D /\ x IN FV(p) ==> i(x) IN herbase(functions (IMAGE interp hyps))` MP_TAC THENL [ALL_TAC; EXPAND_TAC "i'" THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]] THEN SUBGOAL_THEN `!p. p IN D ==> ?v q. (!x. v x IN herbase(functions(IMAGE interp hyps))) /\ functions_form q SUBSET functions(IMAGE interp hyps) /\ (formsubst i p = formsubst v q)` (fun th -> ASM_MESON_TAC[th; HERBASE_LEMMA]) THEN SUBGOAL_THEN `!p. p IN D ==> functions_form(formsubst i p) SUBSET functions(IMAGE interp ghyps) /\ ?v q. (!x. v x IN herbase(functions(IMAGE interp hyps))) /\ (formsubst i p = formsubst v q)` MP_TAC THENL [X_GEN_TAC `q:form` THEN DISCH_TAC THEN SUBGOAL_THEN `(formsubst i q) IN resolve p A' B'` ASSUME_TAC THENL [ASM_MESON_TAC[EXTENSION; IN_IMAGE]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; UNDISCH_TAC `(formsubst i q) IN resolve p A' B'` THEN REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN ASM_MESON_TAC[IN_IMAGE]] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `functions(resolve p A' B')` THEN CONJ_TAC THENL [REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `psemresproof (holds M (w:num->A)) ghyps (resolve p A' B')` MP_TAC THENL [MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psemresproof_RULES)) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SPEC_TAC(`resolve p A' B'`,`cl:form->bool`) THEN MATCH_MP_TAC PSEMRESPROOF_FUNCTIONS THEN EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `q:form` THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_THEN `ii:num->term` MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`ii:num->term`; `r:form`] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `functions_form(formsubst i q)` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN SIMP_TAC[SUBSET; IN_UNION]; ALL_TAC] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `functions(IMAGE interp ghyps)` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `functions(IMAGE interp ghyps) = UNIONS {functions p | p IN ghyps}` SUBST1_TAC THENL [MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN ASM_SIMP_TAC[CLAUSE_FINITE] THEN EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FINITE_IMAGE; CLAUSE_FINITE]; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM] THEN X_GEN_TAC `fn:num#num` THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` (CONJUNCTS_THEN2 MP_TAC SUBST_ALL_TAC)) THEN EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `vv:num->term` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `c:form->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC SUBST_ALL_TAC) THEN UNDISCH_TAC `fn IN functions (IMAGE (formsubst vv) c)` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [functions] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_IMAGE] THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC SUBST_ALL_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `s:form` (CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN UNDISCH_TAC `fn IN functions_form (formsubst vv s)` THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [ASM_SIMP_TAC[FUNCTIONS_IMAGE_INTERP; CLAUSE_FINITE] THEN REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN EXISTS_TAC `UNIONS {functions_form f | f IN c}` THEN CONJ_TAC THENL [EXISTS_TAC `c:form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[HERBASE_FUNCTIONS; SUBSET]);;