(* ========================================================================= *) (* Conversion to prenex form. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Quantifier-free formulas. *) (* ------------------------------------------------------------------------- *) let qfree = new_recursive_definition form_RECURSION `(qfree False <=> T) /\ (qfree (Atom n l) <=> T) /\ (qfree (p --> q) <=> qfree p /\ qfree q) /\ (qfree (!!x p) <=> F)`;; let QFREE = prove (`(qfree False <=> T) /\ (qfree True <=> T) /\ (!a l. qfree (Atom a l) <=> T) /\ (!p. qfree (Not p) <=> qfree p) /\ (!p q. qfree (p || q) <=> qfree p /\ qfree q) /\ (!p q. qfree (p && q) <=> qfree p /\ qfree q) /\ (!p q. qfree (p --> q) <=> qfree p /\ qfree q) /\ (!p q. qfree (p <-> q) <=> qfree p /\ qfree q) /\ (!x p. qfree (!! x p) <=> F) /\ (!x p. qfree (?? x p) <=> F)`, REWRITE_TAC[Not_DEF; True_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; qfree; CONJ_ACI]);; let QFREE_FORMSUBST = prove (`!p v. qfree (formsubst v p) <=> qfree p`, MATCH_MP_TAC form_INDUCTION THEN ASM_REWRITE_TAC[formsubst; qfree; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; let QFREE_BV_EMPTY = prove (`!p. qfree(p) <=> (BV(p) = EMPTY)`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; BV] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[EMPTY_UNION] THEN RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_INSERT; NOT_IN_EMPTY]) THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Prenex and prenex universal formulas. *) (* ------------------------------------------------------------------------- *) let prenex_RULES,prenex_INDUCT,prenex_CASES = new_inductive_definition `(!p. qfree p ==> prenex p) /\ (!x p. prenex p ==> prenex (!!x p)) /\ (!x p. prenex p ==> prenex (??x p))`;; let universal_RULES,universal_INDUCT,universal_CASES = new_inductive_definition `(!p. qfree p ==> universal p) /\ (!x p. universal p ==> universal (!!x p))`;; let prenex_INDUCT_NOT = prove (`!P. (!p. qfree p ==> P p) /\ (!x p. P p ==> P (!! x p)) /\ (!x p. P p ==> P (Not p)) ==> !a. prenex a ==> P a`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC prenex_INDUCT THEN REWRITE_TAC[Exists_DEF] THEN ASM_MESON_TAC[]);; let PRENEX = prove (`(prenex False <=> T) /\ (prenex True <=> T) /\ (!a l. prenex (Atom a l) <=> T) /\ (!p. prenex (Not p) <=> qfree p \/ (?q x. (Not p = ??x q) /\ prenex q)) /\ (!p q. prenex (p || q) <=> qfree p /\ qfree q) /\ (!p q. prenex (p && q) <=> qfree p /\ qfree q) /\ (!p q. prenex (p --> q) <=> qfree p /\ qfree q \/ (?r x. (p --> q = ??x r) /\ prenex r)) /\ (!p q. prenex (p <-> q) <=> qfree p /\ qfree q) /\ (!x p. prenex (!! x p) <=> prenex p) /\ (!x p. prenex (?? x p) <=> prenex p)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [prenex_CASES] THEN REWRITE_TAC[True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF] THEN REWRITE_TAC[form_DISTINCT; form_INJ; QFREE; CONJ_ACI] THEN MESON_TAC[]);; let FORMSUBST_STRUCTURE_LEMMA = prove (`!p i. ((formsubst i p = False) <=> (p = False)) /\ ((?a l. formsubst i p = Atom a l) <=> (?a l. p = Atom a l)) /\ ((?q r. formsubst i p = q --> r) <=> (?q r. p = q --> r)) /\ ((?x q. formsubst i p = !!x q) <=> (?x q. p = !!x q))`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF] THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REPEAT STRIP_TAC THEN MESON_TAC[]);; let FORMSUBST_STRUCTURE_NOT = prove (`!p i. (?q. formsubst i p = Not q) <=> (?q. p = Not q)`, REWRITE_TAC[Not_DEF; FORMSUBST_STRUCTURE_LEMMA] THEN REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `q:form`) THENL [MP_TAC(el 2 (CONJUNCTS (SPEC_ALL FORMSUBST_STRUCTURE_LEMMA))) THEN DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`q:form`; `False`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(REPEAT_TCL CHOOSE_THEN SUBST_ALL_TAC) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[formsubst; FORMSUBST_STRUCTURE_LEMMA; form_INJ] THEN MESON_TAC[]; ASM_REWRITE_TAC[formsubst] THEN MESON_TAC[]]);; let FORMSUBST_STRUCTURE_EXISTS = prove (`!p i. (?x q. formsubst i p = ??x q) <=> (?x q. p = ??x q)`, REPEAT GEN_TAC THEN REWRITE_TAC[Exists_DEF] THEN EQ_TAC THEN STRIP_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[Not_DEF; formsubst; LET_DEF; LET_END_DEF] THEN MESON_TAC[]] THEN MP_TAC(fst(EQ_IMP_RULE(SPEC_ALL FORMSUBST_STRUCTURE_NOT))) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `!! x (Not q)`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r:form` SUBST_ALL_TAC) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[formsubst; Not_DEF; form_INJ; LET_DEF; LET_END_DEF] THEN REWRITE_TAC[GSYM Not_DEF] THEN DISCH_TAC THEN MP_TAC(fst(EQ_IMP_RULE(last(CONJUNCTS(SPEC_ALL(SPEC `r:form` FORMSUBST_STRUCTURE_LEMMA)))))) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`x:num`; `Not q`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:num` (X_CHOOSE_THEN `s:form` SUBST_ALL_TAC)) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[formsubst; Not_DEF; form_INJ; LET_DEF; LET_END_DEF] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM Not_DEF] THEN MESON_TAC[FORMSUBST_STRUCTURE_NOT]);; let PRENEX_FORMSUBST_LEMMA = prove (`!p. prenex p ==> !i q. (p = formsubst i q) ==> prenex q`, MATCH_MP_TAC prenex_INDUCT THEN REPEAT CONJ_TAC THENL [MESON_TAC[QFREE_FORMSUBST; prenex_RULES]; REPEAT STRIP_TAC THEN MP_TAC(SPECL [`q:form`; `i:num->term`] FORMSUBST_STRUCTURE_LEMMA) THEN DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE o last o CONJUNCTS) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`x:num`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (X_CHOOSE_THEN `y:num` (X_CHOOSE_THEN `r:form` SUBST_ALL_TAC)) THEN UNDISCH_TAC `!! x p = formsubst i (!! y r)` THEN REWRITE_TAC[formsubst; form_INJ; PRENEX; LET_DEF; LET_END_DEF] THEN ASM_MESON_TAC[]; REPEAT STRIP_TAC THEN MP_TAC(SPECL [`q:form`; `i:num->term`] FORMSUBST_STRUCTURE_EXISTS) THEN DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE o last o CONJUNCTS) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`x:num`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (X_CHOOSE_THEN `y:num` (X_CHOOSE_THEN `r:form` SUBST_ALL_TAC)) THEN UNDISCH_TAC `?? x p = formsubst i (?? y r)` THEN REWRITE_TAC[PRENEX] THEN REWRITE_TAC[Exists_DEF; Not_DEF; formsubst; form_INJ; LET_DEF; LET_END_DEF] THEN ASM_MESON_TAC[]]);; let PRENEX_FORMSUBST = prove (`!p i. prenex(formsubst i p) = prenex p`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[PRENEX_FORMSUBST_LEMMA]; SPEC_TAC(`i:num->term`,`i:num->term`) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC prenex_INDUCT THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF] THENL [ASM_MESON_TAC[QFREE_FORMSUBST; prenex_RULES]; ASM_REWRITE_TAC[PRENEX]; REWRITE_TAC[formsubst; Not_DEF; Exists_DEF; LET_DEF; LET_END_DEF] THEN REWRITE_TAC[GSYM Not_DEF; GSYM Exists_DEF] THEN ASM_REWRITE_TAC[PRENEX]]]);; (* ------------------------------------------------------------------------- *) (* It's more convenient to argue by non-structural induction here. *) (* ------------------------------------------------------------------------- *) let size = new_recursive_definition form_RECURSION `(size False = 1) /\ (size (Atom p l) = 1) /\ (size (q --> r) = size q + size r) /\ (size (!!x q) = 1 + size q)`;; let SIZE = prove (`(size False = 1) /\ (size True = 2) /\ (!a l. size (Atom a l) = 1) /\ (!p. size (Not p) = 1 + size p) /\ (!p q. size (p || q) = size p + 2 * size q) /\ (!p q. size (p && q) = size p + 2 * size q + 4) /\ (!p q. size (p --> q) = size p + size q) /\ (!p q. size (p <-> q) = 3 * size p + 3 * size q + 4) /\ (!x p.size (!! x p) = 1 + size p) /\ (!x p. size (?? x p) = 3 + size p)`, REWRITE_TAC[True_DEF; Not_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; size] THEN REPEAT STRIP_TAC THEN ARITH_TAC);; let SIZE_FORMSUBST = prove (`!p i. size (formsubst i p) = size p`, MATCH_MP_TAC form_INDUCTION THEN ASM_REWRITE_TAC[formsubst; size; LET_END_DEF; LET_DEF] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Constructive prenexing procedure. *) (* ------------------------------------------------------------------------- *) let PPAT_DEF = new_definition `PPAT A B C r = if ?x p. r = !!x p then A (@x. ?p. r = !!x p) (@p. r = !!(@x. ?p. r = !!x p) p) else if ?x p. r = ??x p then B (@x. ?p. r = ??x p) (@p. r = ??(@x. ?p. r = ??x p) p) else C r`;; let PRENEX_DISTINCT = prove (`!x y p q. ((!!x p = !!y q) <=> (x = y) /\ (p = q)) /\ ((??x p = ??y q) <=> (x = y) /\ (p = q)) /\ ~(!!x p = ??y q)`, REWRITE_TAC[Exists_DEF; Not_DEF; form_DISTINCT; form_INJ]);; let PPAT = prove (`!A B C. (!x p. PPAT A B C (!!x p) = A x p :A) /\ (!x p. PPAT A B C (??x p) = B x p) /\ !r. ~(?x p. r = !!x p) /\ ~(?x p. r = ??x p) ==> (PPAT A B C r = C r)`, REPEAT GEN_TAC THEN REWRITE_TAC[PPAT_DEF] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[PRENEX_DISTINCT] THEN (COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)]);; let SIZE_REC = prove (`!H. (!f g x. (!z. size z < size x ==> (f z = g z)) ==> (H f x = H g x)) ==> (?f. !x. f x = H f x)`, MATCH_MP_TAC WF_REC THEN REWRITE_TAC[REWRITE_RULE[MEASURE] WF_MEASURE]);; let PRENEX_RIGHT_EXISTENCE = prove (`?Prenex_right. (!p x q. Prenex_right p (!!x q) = let y = VARIANT(FV(p) UNION FV(!!x q)) in !!y (Prenex_right p (formsubst (valmod (x,V y) V) q))) /\ (!p x q. Prenex_right p (??x q) = let y = VARIANT(FV(p) UNION FV(??x q)) in ??y (Prenex_right p (formsubst (valmod (x,V y) V) q))) /\ (!p q. qfree q ==> (Prenex_right p q = p --> q))`, SUBGOAL_THEN `!p. ?Prenex_right. !r. Prenex_right r = PPAT (\x q. let y = VARIANT(FV(p) UNION FV(!!x q)) in !!y (Prenex_right (formsubst (valmod (x,V y) V) q))) (\x q. let y = VARIANT(FV(p) UNION FV(??x q)) in ??y (Prenex_right (formsubst (valmod (x,V y) V) q))) (\q. p --> q) r` MP_TAC THENL [GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)] THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN REWRITE_TAC[PRENEX_DISTINCT] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)] THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [SKOLEM_THM]) THEN DISCH_THEN(X_CHOOSE_TAC `Prenex_right:form->form->form`) THEN EXISTS_TAC `Prenex_right:form->form->form` THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN TRY DISCH_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[PPAT] THEN UNDISCH_TAC `qfree q` THEN REWRITE_TAC[PPAT_DEF] THEN POP_ASSUM_LIST(K ALL_TAC) THEN COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN REWRITE_TAC[]);; let PRENEX_RIGHT = new_specification ["Prenex_right"] PRENEX_RIGHT_EXISTENCE;; let PRENEX_LEFT_EXISTENCE = prove (`?Prenex_left. (!p x q. Prenex_left (!!x q) p = let y = VARIANT(FV(!!x q) UNION FV(p)) in ??y (Prenex_left (formsubst (valmod (x,V y) V) q) p)) /\ (!p x q. Prenex_left (??x q) p = let y = VARIANT(FV(??x q) UNION FV(p)) in !!y (Prenex_left (formsubst (valmod (x,V y) V) q) p)) /\ (!p q. qfree q ==> (Prenex_left q p = Prenex_right q p))`, SUBGOAL_THEN `!p. ?Prenex_left. !r. Prenex_left r = PPAT (\x q. let y = VARIANT(FV(!!x q) UNION FV(p)) in ??y (Prenex_left (formsubst (valmod (x,V y) V) q))) (\x q. let y = VARIANT(FV(??x q) UNION FV(p)) in !!y (Prenex_left (formsubst (valmod (x,V y) V) q))) (\q. Prenex_right q p) r` MP_TAC THENL [GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)] THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN REWRITE_TAC[PRENEX_DISTINCT] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)] THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SIZE_FORMSUBST; SIZE] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [SKOLEM_THM]) THEN DISCH_THEN(X_CHOOSE_TAC `Prenex_left:form->form->form`) THEN EXISTS_TAC `\q p. (Prenex_left:form->form->form) p q` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN TRY DISCH_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[PPAT] THEN UNDISCH_TAC `qfree q` THEN REWRITE_TAC[PPAT_DEF] THEN POP_ASSUM_LIST(K ALL_TAC) THEN COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN COND_CASES_TAC THENL [POP_ASSUM(STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN REWRITE_TAC[]);; let PRENEX_LEFT = new_specification ["Prenex_left"] PRENEX_LEFT_EXISTENCE;; let Prenex_DEF = new_recursive_definition form_RECURSION `(Prenex False = False) /\ (Prenex (Atom a l) = Atom a l) /\ (Prenex (p --> q) = Prenex_left (Prenex p) (Prenex q)) /\ (Prenex (!!x p) = !!x (Prenex p))`;; (* ------------------------------------------------------------------------- *) (* Proof that it does indeed prenex. *) (* ------------------------------------------------------------------------- *) let PRENEX_RIGHT_FORALL = prove (`~(Dom M :A->bool = EMPTY) ==> (holds M v (p --> !!x q) <=> holds M v (!! (VARIANT (FV(p) UNION FV(!!x q))) (p --> formsubst (valmod (x,V(VARIANT (FV(p) UNION FV(!!x q)))) V) q)))`, DISCH_TAC THEN ABBREV_TAC `y = VARIANT (FV(p) UNION FV(!!x q))` THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `holds M (v:num->A) (p --> !!y (formsubst (valmod (x,V y) V) q))` THEN SUBGOAL_THEN `~(y IN FV(p)) /\ ~(y IN FV(!!x q))` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM IN_UNION] THEN EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM; GSYM FV]; ALL_TAC] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[holds] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN DISCH_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN DISCH_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN X_GEN_TAC `z:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod; o_THM] THEN COND_CASES_TAC THEN REWRITE_TAC[termval] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN UNDISCH_TAC `~(y IN FV(!!x q))` THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN ASM_MESON_TAC[]; REWRITE_TAC[HOLDS] THEN SUBGOAL_THEN `!v a:A. holds M (valmod (y,a) v) p = holds M v p` (fun th -> REWRITE_TAC[th]) THENL [ALL_TAC; ASM_CASES_TAC `holds M (v:num->A) p` THEN ASM_REWRITE_TAC[]] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]]);; let PRENEX_RIGHT_EXISTS = prove (`~(Dom M :A->bool = EMPTY) ==> (holds M v (p --> ??x q) <=> holds M v (?? (VARIANT (FV(p) UNION FV(??x q))) (p --> formsubst (valmod (x,V(VARIANT (FV(p) UNION FV(??x q)))) V) q)))`, DISCH_TAC THEN ABBREV_TAC `y = VARIANT (FV(p) UNION FV(??x q))` THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `holds M (v:num->A) (p --> ??y (formsubst (valmod (x,V y) V) q))` THEN SUBGOAL_THEN `~(y IN FV(p)) /\ ~(y IN FV(??x q))` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM IN_UNION] THEN EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM; GSYM FV]; ALL_TAC] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[holds] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN DISCH_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a /\ b) <=> (a /\ c))`) THEN DISCH_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN X_GEN_TAC `z:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod; o_THM] THEN COND_CASES_TAC THEN REWRITE_TAC[termval] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN UNDISCH_TAC `~(y IN FV(??x q))` THEN ASM_REWRITE_TAC[FV; Not_DEF; Exists_DEF; UNION_EMPTY; IN_DELETE] THEN ASM_MESON_TAC[]; REWRITE_TAC[HOLDS] THEN SUBGOAL_THEN `!v a:A. holds M (valmod (y,a) v) p = holds M v p` (fun th -> REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ASM_CASES_TAC `holds M (v:num->A) p` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]]);; let PRENEX_DUALITY_LEMMAS = prove (`(holds M v (??x p --> q) <=> holds M v (Not q --> !!x (Not p))) /\ (holds M v (!!x p --> q) <=> holds M v (Not q --> ??x (Not p)))`, REWRITE_TAC[HOLDS] THEN MESON_TAC[]);; let PRENEX_LEFT_FORALL = prove (`~(Dom M :A->bool = EMPTY) ==> (holds M v (!!x p --> q) <=> holds M v (?? (VARIANT (FV(!!x p) UNION FV(q))) (formsubst (valmod (x,V(VARIANT (FV(!!x p) UNION FV(q)))) V) p --> q)))`, DISCH_TAC THEN REWRITE_TAC[PRENEX_DUALITY_LEMMAS] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP PRENEX_RIGHT_EXISTS th]) THEN REWRITE_TAC[Exists_DEF; Not_DEF; FV; UNION_EMPTY; UNION_COMM] THEN REWRITE_TAC[holds; formsubst; TAUT `(~a ==> ~b) <=> (b ==> a)`]);; let PRENEX_LEFT_EXISTS = prove (`~(Dom M :A->bool = EMPTY) ==> (holds M v (??x p --> q) <=> holds M v (!! (VARIANT (FV(??x p) UNION FV(q))) (formsubst (valmod (x,V(VARIANT (FV(??x p) UNION FV(q)))) V) p --> q)))`, DISCH_TAC THEN REWRITE_TAC[PRENEX_DUALITY_LEMMAS] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP PRENEX_RIGHT_FORALL th]) THEN REWRITE_TAC[Exists_DEF; Not_DEF; FV; UNION_EMPTY; UNION_COMM] THEN REWRITE_TAC[holds; formsubst; TAUT `(~a ==> ~b) <=> (b ==> a)`]);; (* ------------------------------------------------------------------------- *) (* Extras about free variables. *) (* ------------------------------------------------------------------------- *) let PRENEX_RIGHT_FORALL_FV = prove (`FV(p --> !!x q) = FV(!! (VARIANT (FV(p) UNION FV(!!x q))) (p --> formsubst (valmod (x,V(VARIANT (FV(p) UNION FV(!!x q)))) V) q))`, let lemma = prove (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in REWRITE_TAC[FV; FORMSUBST_RENAME; lemma] THEN MP_TAC(SPEC `p --> !!x q` VARIANT_THM) THEN REWRITE_TAC[EXTENSION; FV; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; let PRENEX_RIGHT_EXISTS_FV = prove (`FV(p --> ??x q) = FV(?? (VARIANT (FV(p) UNION FV(??x q))) (p --> formsubst (valmod (x,V(VARIANT (FV(p) UNION FV(??x q)))) V) q))`, let lemma = prove (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in REWRITE_TAC[FV; FV_EXISTS; FORMSUBST_RENAME; lemma] THEN MP_TAC(SPEC `p --> ??x q` VARIANT_THM) THEN REWRITE_TAC[EXTENSION; FV; FV_EXISTS; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; let PRENEX_LEFT_FORALL_FV = prove (`FV(!!x p --> q) = FV(?? (VARIANT (FV(!!x p) UNION FV(q))) (formsubst (valmod (x,V(VARIANT (FV(!!x p) UNION FV(q)))) V) p --> q))`, let lemma = prove (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in REWRITE_TAC[FV; FV_EXISTS; FORMSUBST_RENAME; lemma] THEN MP_TAC(SPEC `!!x p --> q` VARIANT_THM) THEN REWRITE_TAC[EXTENSION; FV; FV_EXISTS; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; let PRENEX_LEFT_EXISTS_FV = prove (`FV(??x p --> q) = FV(!! (VARIANT (FV(??x p) UNION FV(q))) (formsubst (valmod (x,V(VARIANT (FV(??x p) UNION FV(q)))) V) p --> q))`, let lemma = prove (`(s UNION t) DELETE x = (s DELETE x) UNION (t DELETE x)`,SET_TAC[]) in REWRITE_TAC[FV; FV_EXISTS; FORMSUBST_RENAME; lemma] THEN MP_TAC(SPEC `??x p --> q` VARIANT_THM) THEN REWRITE_TAC[EXTENSION; FV; FV_EXISTS; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* And extras about the language. *) (* ------------------------------------------------------------------------- *) let PRENEX_RIGHT_FORALL_LANGUAGE = prove (`language {(p --> !!x q)} = language {(!! (VARIANT (FV(p) UNION FV(!!x q))) (p --> formsubst (valmod (x,V(VARIANT (FV(p) UNION FV(!!x q)))) V) q))}`, REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form] THEN REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);; let PRENEX_RIGHT_EXISTS_LANGUAGE = prove (`language {(p --> ??x q)} = language {(?? (VARIANT (FV(p) UNION FV(??x q))) (p --> formsubst (valmod (x,V(VARIANT (FV(p) UNION FV(??x q)))) V) q))}`, REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY] THEN REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);; let PRENEX_LEFT_FORALL_LANGUAGE = prove (`language {(!!x p --> q)} = language {(?? (VARIANT (FV(!!x p) UNION FV(q))) (formsubst (valmod (x,V(VARIANT (FV(!!x p) UNION FV(q)))) V) p --> q))}`, REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY] THEN REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);; let PRENEX_LEFT_EXISTS_LANGUAGE = prove (`language {(??x p --> q)} = language {(!! (VARIANT (FV(??x p) UNION FV(q))) (formsubst (valmod (x,V(VARIANT (FV(??x p) UNION FV(q)))) V) p --> q))}`, REWRITE_TAC[LANGUAGE_1; functions_form; predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY] THEN REWRITE_TAC[REWRITE_RULE[PAIR_EQ; LANGUAGE_1] FORMSUBST_LANGUAGE_RENAME]);; (* ------------------------------------------------------------------------- *) (* Proofs that things work properly. *) (* ------------------------------------------------------------------------- *) let PRENEX_LEMMA_FORALL = prove (`P /\ (FV r1 = FV r2) /\ (language {r1} = language {r2}) /\ (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v p <=> holds M v q)) ==> P /\ (FV(!!z r1) = FV(!!z r2)) /\ (language {(!!z r1)} = language {(!!z r2)}) /\ !M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v (!!x p) <=> holds M v (!!x q))`, REWRITE_TAC[LANGUAGE_1; PAIR_EQ] THEN STRIP_TAC THEN ASM_REWRITE_TAC[FV; functions_form; predicates_form] THEN ASM_SIMP_TAC[HOLDS]);; let PRENEX_LEMMA_EXISTS = prove (`P /\ (FV r1 = FV r2) /\ (language {r1} = language {r2}) /\ (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v p <=> holds M v q)) ==> P /\ (FV(??z r1) = FV(??z r2)) /\ (language {(??z r1)} = language {(??z r2)}) /\ !M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v (??x p) <=> holds M v (??x q))`, REWRITE_TAC[LANGUAGE_1; PAIR_EQ] THEN STRIP_TAC THEN ASM_REWRITE_TAC[FV; FV_EXISTS] THEN ASM_SIMP_TAC[HOLDS] THEN ASM_REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; predicates_form]);; let PRENEX_RIGHT_THM = prove (`!p q. qfree p /\ prenex q ==> prenex (Prenex_right p q) /\ (FV(Prenex_right p q) = FV(p --> q)) /\ (language {(Prenex_right p q)} = language {(p --> q)}) /\ (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v (Prenex_right p q) <=> holds M v (p --> q)))`, SUBGOAL_THEN `!p. qfree p ==> !n q. prenex(q) /\ (size(q) = n) ==> prenex (Prenex_right p q) /\ (FV(Prenex_right p q) = FV(p --> q)) /\ (language {(Prenex_right p q)} = language {(p --> q)}) /\ (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v (Prenex_right p q) <=> holds M v (p --> q)))` (fun th -> MESON_TAC[th]) THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [prenex_CASES]) THENL [ASM_SIMP_TAC [PRENEX_RIGHT; PRENEX]; ALL_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[PRENEX_RIGHT] THEN REWRITE_TAC[LET_DEF; LET_END_DEF; PRENEX] THEN SIMP_TAC [PRENEX_RIGHT_FORALL; PRENEX_RIGHT_EXISTS] THEN REWRITE_TAC[PRENEX_RIGHT_FORALL_FV; PRENEX_RIGHT_FORALL_LANGUAGE] THEN REWRITE_TAC[PRENEX_RIGHT_EXISTS_FV; PRENEX_RIGHT_EXISTS_LANGUAGE] THENL [MATCH_MP_TAC PRENEX_LEMMA_FORALL; MATCH_MP_TAC PRENEX_LEMMA_EXISTS] THEN RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `size p'` THEN REWRITE_TAC[PRENEX_FORMSUBST; SIZE_FORMSUBST] THEN UNDISCH_TAC `size q = n` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_REWRITE_TAC[SIZE] THEN ARITH_TAC);; let PRENEX_LEFT_THM = prove (`!p q. prenex p /\ prenex q ==> prenex (Prenex_left p q) /\ (FV(Prenex_left p q) = FV(p --> q)) /\ (language {(Prenex_left p q)} = language {(p --> q)}) /\ (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v (Prenex_left p q) <=> holds M v (p --> q)))`, SUBGOAL_THEN `!q. prenex(q) ==> !n p. prenex(p) /\ (size(p) = n) ==> prenex (Prenex_left p q) /\ (FV(Prenex_left p q) = FV(p --> q)) /\ (language {(Prenex_left p q)} = language {(p --> q)}) /\ (!M v. ~(Dom M :A->bool = EMPTY) ==> (holds M v (Prenex_left p q) <=> holds M v (p --> q)))` (fun th -> MESON_TAC[th]) THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [prenex_CASES]) THENL [ASM_SIMP_TAC [PRENEX_LEFT; PRENEX] THEN MATCH_MP_TAC PRENEX_RIGHT_THM THEN ASM_REWRITE_TAC[]; ALL_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[PRENEX_LEFT] THEN REWRITE_TAC[LET_DEF; LET_END_DEF; PRENEX] THEN SIMP_TAC [PRENEX_LEFT_FORALL; PRENEX_LEFT_EXISTS] THEN REWRITE_TAC[PRENEX_LEFT_FORALL_FV; PRENEX_LEFT_FORALL_LANGUAGE] THEN REWRITE_TAC[PRENEX_LEFT_EXISTS_FV; PRENEX_LEFT_EXISTS_LANGUAGE] THENL [MATCH_MP_TAC PRENEX_LEMMA_EXISTS; MATCH_MP_TAC PRENEX_LEMMA_FORALL] THEN RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `size p'` THEN REWRITE_TAC[PRENEX_FORMSUBST; SIZE_FORMSUBST] THEN UNDISCH_TAC `size p = n` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_REWRITE_TAC[SIZE] THEN ARITH_TAC);; let PRENEX_THM = prove (`!p. prenex(Prenex p) /\ (FV(Prenex p) = FV(p)) /\ (language {(Prenex p)} = language {p}) /\ !M v. ~(Dom M = EMPTY) ==> (holds M (v:num->A) (Prenex p) <=> holds M v p)`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[PRENEX; Prenex_DEF] THEN REWRITE_TAC[HOLDS] THEN MP_TAC PRENEX_LEFT_THM THEN REWRITE_TAC[HOLDS; FV; LANGUAGE_1; PAIR_EQ] THEN REWRITE_TAC[functions_form; predicates_form] THEN MESON_TAC[]);;