(* ========================================================================= *) (* Prolog-style backchaining for definite and Horn clauses. *) (* ========================================================================= *) let SATISFIES_IMAGE = prove (`M satisfies (IMAGE f s) <=> !x v. valuation(M) v /\ x IN s ==> holds M v (f x)`, REWRITE_TAC[satisfies; IN_IMAGE] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Definitions of definite and Horn clauses. *) (* ------------------------------------------------------------------------- *) let definite = new_definition `definite(cl) <=> clause(cl) /\ (CARD {p | p IN cl /\ positive p} = 1)`;; let horn = new_definition `horn(cl) <=> clause(cl) /\ CARD {p | p IN cl /\ positive p} <= 1`;; (* ------------------------------------------------------------------------- *) (* Trivially, definite is a special case of Horn. *) (* ------------------------------------------------------------------------- *) let DEFINITE_IMP_HORN = prove (`!cl. definite(cl) ==> horn(cl)`, SIMP_TAC[definite; horn; LE_REFL]);; (* ------------------------------------------------------------------------- *) (* Show first how to reduce the Horn case to the definite case. *) (* ------------------------------------------------------------------------- *) let falsify = new_definition `falsify ff cl = if definite(cl) then cl else ff INSERT cl`;; let FALSIFY_FINITE = prove (`FINITE(cl) ==> FINITE(falsify ff cl)`, REPEAT GEN_TAC THEN REWRITE_TAC[falsify] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[FINITE_RULES]);; let FALSIFY_DEFINITE = prove (`horn(cl) ==> definite(falsify (Atom P args) cl)`, REPEAT GEN_TAC THEN REWRITE_TAC[falsify] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(definite cl)` THEN REWRITE_TAC[horn; definite] THEN ASM_CASES_TAC `clause cl` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `{p | p IN Atom P args INSERT cl /\ positive p} = (Atom P args) INSERT {p | p IN cl /\ positive p}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN SUBGOAL_THEN `positive(Atom P args)` (fun th -> MESON_TAC[th]) THEN REWRITE_TAC[positive; negative; ATOM] THEN REWRITE_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN DISCH_TAC THEN CONJ_TAC THENL [REWRITE_TAC[clause; IN_INSERT; FINITE_INSERT] THEN ASM_MESON_TAC[clause; literal; ATOM]; ALL_TAC] THEN SUBGOAL_THEN `FINITE {p | p IN cl /\ positive p}` ASSUME_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN ASM_SIMP_TAC[CARD_CLAUSES] THEN COND_CASES_TAC THENL [ALL_TAC; MATCH_MP_TAC(ARITH_RULE `x <= 1 /\ ~(x = 1) ==> (SUC x = 1)`) THEN ASM_REWRITE_TAC[]] THEN UNDISCH_TAC `Atom P args IN {p | p IN cl /\ positive p}` THEN SUBGOAL_THEN `{p | p IN cl /\ positive p} = {}` (fun th -> REWRITE_TAC[th; NOT_IN_EMPTY]) THEN ONCE_REWRITE_TAC[GSYM HAS_SIZE_0] THEN ASM_REWRITE_TAC[HAS_SIZE] THEN MATCH_MP_TAC(ARITH_RULE `x <= 1 /\ ~(x = 1) ==> (x = 0)`) THEN ASM_REWRITE_TAC[]);; let HOLDS_FALSIFY = prove (`FINITE(cl) /\ holds M v (interp cl) ==> holds M v (interp(falsify ff cl))`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[FALSIFY_FINITE; HOLDS_INTERP] THEN REWRITE_TAC[falsify] THEN COND_CASES_TAC THEN SIMP_TAC[IN_INSERT] THEN MESON_TAC[]);; let REDUCE_HORN_DEFINITE = prove (`(!c. c IN s ==> clause c) /\ ~((Atom ff []) IN UNIONS s) /\ ~(Not(Atom ff []) IN UNIONS s) ==> (~(satisfiable (U:A->bool) (IMAGE interp s)) <=> !M. ~(Dom M = {}) /\ M satisfies (IMAGE interp (IMAGE (falsify (Atom ff [])) s)) ==> !v:num->A. valuation(M) v ==> holds M v (Atom ff []))`, REWRITE_TAC[satisfiable] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[NOT_EXISTS_THM; GSYM IMAGE_o] THEN REWRITE_TAC[SATISFIES_IMAGE] THEN EQ_TAC THENL [MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN ASM_CASES_TAC `(Dom M):A->bool = {}` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`cl:form->bool`; `v:num->A`] THEN REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o SPECL [`cl:form->bool`; `v:num->A`]) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM; falsify] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `holds M (v:num->A) (interp (Atom ff [] INSERT cl)) <=> holds M v (Atom ff []) \/ holds M v (interp cl)` SUBST1_TAC THENL [SUBGOAL_THEN `FINITE (cl:form->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN UNDISCH_TAC `~(holds M (v:num->A) (interp cl))` THEN ASM_SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[FV; NOT_IN_EMPTY; MAP; LIST_UNION]; ALL_TAC] THEN DISCH_THEN(fun th -> GEN_TAC THEN DISCH_TAC THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o SPEC `((Dom M):A->bool),Fun M, (\p args. if (p = ff) /\ (args = []) then F else Pred M p args)`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[holds; Pred_DEF; MAP; NOT_FORALL_THM] THEN MATCH_MP_TAC VALUATION_EXISTS THEN ASM_REWRITE_TAC[Dom_DEF]] THEN ASM_REWRITE_TAC[Dom_DEF] THEN MAP_EVERY X_GEN_TAC [`cl:form->bool`; `v:num->A`] THEN SUBGOAL_THEN `valuation(Dom M,Fun M, (\p args. if (p = ff) /\ (args = []) then F else Pred M p args)) v = valuation M (v:num->A)` SUBST1_TAC THENL [REWRITE_TAC[valuation; Dom_DEF]; ALL_TAC] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPECL [`cl:form->bool`; `v:num->A`])) THEN SUBGOAL_THEN `FINITE (cl:form->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN ASM_SIMP_TAC[o_THM; HOLDS_INTERP; FINITE_INSERT; IN_INSERT] THEN DISCH_THEN(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC HOLDS_FALSIFY THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[HOLDS_INTERP] THEN EXISTS_TAC `p:form` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `holds M (v:num->A) p` THEN MATCH_MP_TAC EQ_IMP THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC HOLDS_PREDICATES THEN REWRITE_TAC[Fun_DEF; Dom_DEF; Pred_DEF] THEN MAP_EVERY X_GEN_TAC [`r:num`; `zs:(A)list`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH] THEN MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN SUBGOAL_THEN `~((Atom ff []) IN cl) /\ ~(Not(Atom ff []) IN cl)` MP_TAC THENL [UNDISCH_TAC `~((Atom ff []) IN UNIONS s)` THEN UNDISCH_TAC `~(Not(Atom ff []) IN UNIONS s)` THEN REWRITE_TAC[IN_UNIONS] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[TAUT `~a /\ ~b ==> ~c <=> c ==> a \/ b`] THEN SUBGOAL_THEN `literal p` MP_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN REWRITE_TAC[literal; ATOM] THEN STRIP_TAC THEN UNDISCH_TAC `p:form IN cl` THEN ASM_REWRITE_TAC[predicates_form; IN_INSERT; NOT_IN_EMPTY; PAIR_EQ; Not_DEF; IN_UNION; NOT_IN_EMPTY] THEN MESON_TAC[LENGTH_EQ_NIL]);; (* ------------------------------------------------------------------------- *) (* Minimal model. *) (* ------------------------------------------------------------------------- *) let minmodel = new_definition `minmodel s = herbase(functions s), Fn, (\p zs. !H. (Dom(H) = herbase(functions s)) /\ (Fun(H) = Fn) /\ H satisfies s ==> Pred(H) p zs)`;; (* ------------------------------------------------------------------------- *) (* Is minimal w.r.t. deduction of atomic formulas. *) (* ------------------------------------------------------------------------- *) let MINMODEL_MINIMAL = prove (`!p v s. atom p ==> (holds (minmodel s) v p <=> !H. (Dom(H) = herbase(functions s)) /\ (Fun(H) = Fn) /\ H satisfies s ==> holds H v p)`, REPEAT GEN_TAC THEN REWRITE_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`p:num`; `args:term list`] THEN DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[holds; minmodel; Pred_DEF; Fun_DEF] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `H:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN STRIP_TAC THEN SUBGOAL_THEN `termval (herbase (functions s), Fn, (\p zs. !H. (Dom H = herbase (functions s)) /\ (Fun H = Fn) /\ H satisfies s ==> Pred H p zs)) = termval H` (fun th -> REWRITE_TAC[th]) THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `v:num->term` THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:term` THEN SPEC_TAC(`v:num->term`,`v:num->term`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[Fun_DEF]);; (* ------------------------------------------------------------------------- *) (* And_DEF is indeed a model of the original clauses. *) (* ------------------------------------------------------------------------- *) let HOLDS_ITLIST_IMP = prove (`!M v asm c. holds M v (ITLIST (-->) asm c) <=> (?p. MEM p asm /\ ~(holds M v p)) \/ holds M v c`, GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; ITLIST; HOLDS] THEN MESON_TAC[]);; let breakhorn = new_definition `breakhorn(cl) = if definite cl then let p = @p. p IN cl /\ positive p in MAP (~~) (list_of_set(cl DELETE p)),p else MAP (~~) (list_of_set cl),False`;; let hypotheses = new_definition `hypotheses cl = FST(breakhorn cl)`;; let conclusion = new_definition `conclusion cl = SND(breakhorn cl)`;; let HOLDS_HORN = prove (`!cl. horn(cl) ==> ALL atom (hypotheses cl) /\ (if definite(cl) then atom(conclusion cl) else (conclusion cl = False)) /\ !M (v:num->A). holds M v (interp cl) <=> holds M v (ITLIST (-->) (hypotheses cl) (conclusion cl))`, REPEAT GEN_TAC THEN REWRITE_TAC[horn] THEN STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE `x <= 1 ==> (x = 0) \/ (x = 1)`)) THEN ASM_REWRITE_TAC[definite; ARITH; conclusion; hypotheses; breakhorn] THENL [CONJ_TAC THENL [SUBGOAL_THEN `ALL (\p. literal p /\ negative p) (list_of_set cl)` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN ASM_SIMP_TAC[GSYM ALL_MEM; MEM_LIST_OF_SET] THEN SUBGOAL_THEN `{p | p IN cl /\ positive p} = {}` MP_TAC THENL [ONCE_REWRITE_TAC[GSYM HAS_SIZE_0] THEN ASM_REWRITE_TAC[HAS_SIZE] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]; REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN MESON_TAC[positive]]; REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE [IMP_CONJ] ALL_IMP) THEN SIMP_TAC[o_THM; negate] THEN X_GEN_TAC `p:form` THEN STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `q:form` SUBST_ALL_TAC o GEN_REWRITE_RULE I [negative]) THEN REWRITE_TAC[Not_DEF; form_INJ] THEN UNDISCH_TAC `literal (Not q)` THEN SIMP_TAC[literal; ATOM; Not_DEF; form_DISTINCT; form_INJ] THEN MESON_TAC[]]; REPEAT GEN_TAC THEN REWRITE_TAC[interp] THEN SPEC_TAC(`list_of_set(cl:form->bool)`,`l:form list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ITLIST; HOLDS; MAP; HOLDS_NEGATE] THEN CONV_TAC TAUT]; ALL_TAC] THEN SUBGOAL_THEN `FINITE {p | p IN cl /\ positive p}` ASSUME_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN SUBGOAL_THEN `{p | p IN cl /\ positive p} HAS_SIZE (SUC 0)` MP_TAC THENL [ASM_REWRITE_TAC[ARITH; HAS_SIZE]; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE_SUC] THEN STRIP_TAC THEN LET_TAC THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN SUBGOAL_THEN `p IN cl /\ positive p` STRIP_ASSUME_TAC THENL [EXPAND_TAC "p" THEN CONV_TAC SELECT_CONV THEN UNDISCH_TAC `~({p | p IN cl /\ positive p} = {})` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `p:form`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE_0] THEN REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; NOT_IN_EMPTY] THEN DISCH_TAC THEN CONJ_TAC THENL [SUBGOAL_THEN `ALL (\p. literal p /\ negative p) (list_of_set(cl DELETE p))` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN ASM_SIMP_TAC[GSYM ALL_MEM; MEM_LIST_OF_SET; FINITE_DELETE] THEN SUBGOAL_THEN `!q. q IN (cl DELETE p) ==> literal q /\ ~(positive q)` (fun th -> MESON_TAC[th; positive]) THEN REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE [IMP_CONJ] ALL_IMP) THEN SIMP_TAC[o_THM; negate] THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `q:form` SUBST_ALL_TAC o GEN_REWRITE_RULE I [negative]) THEN REWRITE_TAC[Not_DEF; form_INJ] THEN UNDISCH_TAC `literal (Not q)` THEN SIMP_TAC[literal; ATOM; Not_DEF; form_DISTINCT; form_INJ] THEN MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [SUBGOAL_THEN `literal p` MP_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN REWRITE_TAC[literal] THEN STRIP_TAC THEN UNDISCH_TAC `positive p` THEN ASM_REWRITE_TAC[positive; negative] THEN REWRITE_TAC[Not_DEF; form_INJ; GSYM EXISTS_REFL]; ALL_TAC] THEN REPEAT GEN_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN ASM_SIMP_TAC[HOLDS_INTERP] THEN REWRITE_TAC[HOLDS_ITLIST_IMP; MEM_MAP] THEN ASM_SIMP_TAC[MEM_LIST_OF_SET; FINITE_DELETE] THEN REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[HOLDS_NEGATE]);; let MINMODEL_MODEL = prove (`(!cl. cl IN s ==> definite(cl)) ==> minmodel(IMAGE interp s) satisfies (IMAGE interp s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ_ALT; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN REWRITE_TAC[IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN SUBGOAL_THEN `definite cl` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `horn cl` ASSUME_TAC THENL [ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN MAP_EVERY ABBREV_TAC [`asm = hypotheses cl`; `c = conclusion cl`] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN ONCE_REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN REWRITE_TAC[ALL_MEM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ASM_SIMP_TAC[MINMODEL_MINIMAL] THEN DISCH_TAC THEN SUBGOAL_THEN `ALL (\c. !H. (Dom H = herbase (functions (IMAGE interp s))) /\ (Fun H = Fn) /\ H satisfies IMAGE interp s ==> holds H v c) asm` MP_TAC THENL [MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `holds (minmodel (IMAGE interp s)) v` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ALL_MEM; MINMODEL_MINIMAL]; ALL_TAC] THEN REWRITE_TAC[GSYM FORALL_ALL] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `H:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `holds H (v:num->term) (ITLIST (-->) asm c)` MP_TAC THENL [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN RULE_ASSUM_TAC(REWRITE_RULE[satisfies; IN_IMAGE]) THEN FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN UNDISCH_TAC `valuation (minmodel (IMAGE interp s)) v` THEN ASM_REWRITE_TAC[valuation; Dom_DEF; minmodel]; ALL_TAC] THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN MESON_TAC[]);; let CONCLUSION_DEFINITE = prove (`!cl p. definite cl /\ p IN cl /\ positive p ==> (conclusion cl = p)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[conclusion; breakhorn] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[SND] THEN MATCH_MP_TAC SELECT_UNIQUE THEN X_GEN_TAC `q:form` THEN REWRITE_TAC[] THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN UNDISCH_TAC `definite cl` THEN REWRITE_TAC[definite] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[TAUT `a ==> b <=> ~b ==> ~a`] THEN DISCH_TAC THEN MATCH_MP_TAC(ARITH_RULE `2 <= a ==> ~(a = 1)`) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD {p, (q:form)}` THEN CONJ_TAC THENL [ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES; IN_SING; NOT_IN_EMPTY; ARITH]; ALL_TAC] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `cl:form->bool` THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]);; let CONCLUSION_DEFINITE_ALT = prove (`!cl p. clause cl /\ p IN cl /\ positive p /\ (!q. q IN cl /\ ~(q = p) ==> negative q) ==> (conclusion cl = p)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[definite] THEN SUBGOAL_THEN `{p | p IN cl /\ positive p} = {p}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[positive]; SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]]);; let HYPOTHESES_CONCLUSION = prove (`!cl. definite cl ==> (set_of_list(hypotheses cl) = IMAGE (~~) (cl DELETE (conclusion cl)))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[hypotheses; breakhorn; conclusion] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[FST; SND] THEN REWRITE_TAC[IN_IMAGE; EXTENSION; IN_SET_OF_LIST; IN_DELETE] THEN REWRITE_TAC[MEM_MAP] THEN RULE_ASSUM_TAC(REWRITE_RULE[definite; clause]) THEN ASM_SIMP_TAC[MEM_LIST_OF_SET; FINITE_DELETE] THEN REWRITE_TAC[IN_DELETE] THEN REWRITE_TAC[CONJ_ACI]);; (* ------------------------------------------------------------------------- *) (* Backchaining. *) (* ------------------------------------------------------------------------- *) let gbackchain_RULES,gbackchain_INDUCT,gbackchain_CASES = new_inductive_definition `!cl i ns. cl IN s /\ (!x. i(x) IN herbase(functions(IMAGE interp s))) /\ ALL2 (gbackchain s) ns (MAP (formsubst i) (hypotheses cl)) ==> gbackchain s (ITLIST (+) ns 1) (formsubst i (conclusion cl))`;; let ALL2_TRIV = prove (`!l1 l2. ALL2 (\n. P) l1 l2 <=> (LENGTH l1 = LENGTH l2) /\ ALL P l2`, LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2; ALL; LENGTH; NOT_SUC; SUC_INJ] THEN REWRITE_TAC[CONJ_ACI]);; let GBACKCHAIN_SOUND = prove (`(!cl. cl IN s ==> definite(cl)) /\ valuation (minmodel (IMAGE interp s)) v ==> !n p. gbackchain s n p ==> holds (minmodel(IMAGE interp s)) v p`, STRIP_TAC THEN MATCH_MP_TAC gbackchain_INDUCT THEN REWRITE_TAC[ALL2_TRIV] THEN MAP_EVERY X_GEN_TAC [`cl:form->bool`; `i:num->term`; `ns:num list`] THEN REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP MINMODEL_MODEL) THEN REWRITE_TAC[satisfies] THEN DISCH_THEN(MP_TAC o SPEC `termval (minmodel (IMAGE interp s)) (v:num->term) o (i:num->term)`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `interp cl`) THEN ANTS_TAC THENL [ALL_TAC; SUBGOAL_THEN `horn cl` MP_TAC THENL [ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[GSYM HOLDS_FORMSUBST] THEN UNDISCH_TAC `ALL (holds (minmodel (IMAGE interp s)) v) (MAP (formsubst i) (hypotheses cl))` THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[o_THM] THEN MESON_TAC[]] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[IN_IMAGE]] THEN REWRITE_TAC[valuation; o_THM] THEN X_GEN_TAC `x:num` THEN SUBGOAL_THEN `i(x:num) IN herbase (functions (IMAGE interp s))` MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN SPEC_TAC(`(i:num->term) x`,`t:term`) THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN W(EXISTS_TAC o fst o dest_exists o snd) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `interpretation (functions(IMAGE interp s),predicates(IMAGE interp s)) (minmodel (IMAGE interp s))` MP_TAC THENL [MATCH_MP_TAC HERBRAND_INTERPRETATION THEN REWRITE_TAC[herbrand; minmodel; Dom_DEF; Fun_DEF]; ALL_TAC] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN ASM_SIMP_TAC[HERBASE_FUNCTIONS]);; let GBACKCHAIN_COMPLETE = prove (`(!cl. cl IN s ==> definite(cl)) /\ atom(p) /\ (FV p = {}) /\ (!v. holds (minmodel (IMAGE interp s)) v p) ==> ?n. gbackchain s n p`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP MINMODEL_MINIMAL th]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `v:num->term`) THEN DISCH_THEN(MP_TAC o SPEC `herbase(functions(IMAGE interp s)),Fn, (\p tms. ?n. gbackchain s n (Atom p tms))`) THEN REWRITE_TAC[Dom_DEF; Fun_DEF] THEN FIRST_ASSUM(X_CHOOSE_THEN `P:num` MP_TAC o GEN_REWRITE_RULE I [ATOM]) THEN DISCH_THEN(X_CHOOSE_THEN `tms:term list` SUBST_ALL_TAC) THEN REWRITE_TAC[holds; Pred_DEF] THEN MATCH_MP_TAC(TAUT `(b <=> c) /\ a ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL [AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN UNDISCH_TAC `FV(Atom P tms) = {}` THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; FV; IN_LIST_UNION] THEN REWRITE_TAC[EX_MAP] THEN REWRITE_TAC[GSYM ALL_MEM; GSYM EX_MEM] THEN REWRITE_TAC[o_THM; NOT_EXISTS_THM] THEN DISCH_TAC THEN X_GEN_TAC `t:term` THEN DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `termval(herbase (functions (IMAGE interp s)), Fn,(\p tms. ?n. gbackchain s n (Atom p tms))) V t` THEN CONJ_TAC THENL [MATCH_MP_TAC TERMVAL_VALUATION THEN ASM_MESON_TAC[]; ALL_TAC] THEN SPEC_TAC(`t:term`,`t:term`) THEN MATCH_MP_TAC TERMVAL_TRIV THEN REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN REWRITE_TAC[satisfies] THEN REPEAT GEN_TAC THEN REWRITE_TAC[valuation; Dom_DEF] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` (CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN SUBGOAL_THEN `horn cl` MP_TAC THENL [ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`; NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN REWRITE_TAC[ALL_MEM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ABBREV_TAC `gbmod = herbase (functions (IMAGE interp s)), Fn, (\p tms. ?n. gbackchain s n (Atom p tms))` THEN SUBGOAL_THEN `!p. atom p ==> (holds gbmod v p <=> ?n. gbackchain s n (formsubst v p))` ASSUME_TAC THENL [SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN EXPAND_TAC "gbmod" THEN REWRITE_TAC[HOLDS] THEN REWRITE_TAC[Pred_DEF; formsubst] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN X_GEN_TAC `t:term` THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN SPEC_TAC(`t:term`,`t:term`) THEN SPEC_TAC(`v:num->term`,`v:num->term`) THEN MATCH_MP_TAC TERMSUBST_TERMVAL THEN REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN SUBGOAL_THEN `holds gbmod v (conclusion cl) <=> ?n. gbackchain s n (formsubst v (conclusion cl))` SUBST1_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_cond o concl)) THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `ALL (holds gbmod v) (hypotheses cl) <=> ALL (\p. ?n. gbackchain s n (formsubst v p)) (hypotheses cl)` SUBST1_TAC THENL [UNDISCH_TAC `ALL atom (hypotheses cl)` THEN REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN EXISTS_TAC `?ns. ALL2 (gbackchain s) ns (MAP (formsubst v) (hypotheses cl))` THEN CONJ_TAC THENL [SPEC_TAC(`hypotheses cl`,`l:form list`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP] THENL [EXISTS_TAC `[]:num list` THEN REWRITE_TAC[ALL2]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `n:num`) ASSUME_TAC) THEN FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN EXISTS_TAC `CONS (n:num) ns` THEN ASM_REWRITE_TAC[ALL2]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN EXISTS_TAC `ITLIST (+) ns 1` THEN MATCH_MP_TAC gbackchain_RULES THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Combine these results. *) (* ------------------------------------------------------------------------- *) let GBACKCHAIN_MINIMAL = prove (`!s p. (!cl. cl IN s ==> definite cl) /\ atom p /\ (FV p = {}) ==> !v. holds (minmodel (IMAGE interp s)) v p <=> ?n. gbackchain s n p`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MATCH_MP_TAC GBACKCHAIN_COMPLETE THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN ASM_SIMP_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]; DISCH_TAC THEN SUBGOAL_THEN `?w. valuation (minmodel (IMAGE interp s)) w` (X_CHOOSE_TAC `w:num->term`) THENL [MATCH_MP_TAC VALUATION_EXISTS THEN MATCH_MP_TAC HERBRAND_NONEMPTY THEN REWRITE_TAC[herbrand; minmodel; Dom_DEF; Fun_DEF] THEN EXISTS_TAC `functions(IMAGE interp s),predicates summat` THEN REWRITE_TAC[FST]; ALL_TAC] THEN SUBGOAL_THEN `holds (minmodel (IMAGE interp s)) w p` MP_TAC THENL [UNDISCH_TAC `?n. gbackchain s n p` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`p:form`,`p:form`) THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC GBACKCHAIN_SOUND THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]]);; (* ------------------------------------------------------------------------- *) (* A free-variable version, also considering valuation restriction. *) (* (This doesn't really matter for the ground case, above.) *) (* ------------------------------------------------------------------------- *) let iminmodel = new_definition `iminmodel s = terms(functions s), Fn, (\p zs. !C. (Dom(C) = terms(functions s)) /\ (Fun(C) = Fn) /\ (!v p. p IN s /\ valuation C v ==> holds C v p) ==> Pred(C) p zs)`;; let IMINMODEL_MINIMAL = prove (`!p v s. atom p ==> (holds (iminmodel s) v p <=> !C. (Dom(C) = terms(functions s)) /\ (Fun(C) = Fn) /\ (!v q. q IN s /\ valuation C v ==> holds C v q) ==> holds C v p)`, REPEAT GEN_TAC THEN REWRITE_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`p:num`; `args:term list`] THEN DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[holds; iminmodel; Pred_DEF; Fun_DEF] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `C:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN STRIP_TAC THEN SUBGOAL_THEN `termval (terms (functions s), Fn, (\p zs. !C. (Dom C = terms (functions s)) /\ (Fun C = Fn) /\ (!v p. p IN s /\ valuation C v ==> holds C v p) ==> Pred C p zs)) = termval C` (fun th -> REWRITE_TAC[th]) THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `w:num->term` THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:term` THEN SPEC_TAC(`w:num->term`,`w:num->term`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[Fun_DEF]);; let IMINMODEL_MODEL = prove (`(!cl. cl IN s ==> definite(cl)) ==> !v p. p IN s /\ (!x. v(x) IN terms(functions(IMAGE interp s))) ==> holds (iminmodel(IMAGE interp s)) v (interp p)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `definite cl` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `horn cl` ASSUME_TAC THENL [ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN MAP_EVERY ABBREV_TAC [`asm = hypotheses cl`; `c = conclusion cl`] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN ONCE_REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN REWRITE_TAC[ALL_MEM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ASM_SIMP_TAC[IMINMODEL_MINIMAL] THEN DISCH_TAC THEN SUBGOAL_THEN `ALL (\c. !C. (Dom C = terms (functions (IMAGE interp s))) /\ (Fun C = Fn) /\ (!v p. p IN (IMAGE interp s) /\ valuation C v ==> holds C v p) ==> holds C v c) asm` MP_TAC THENL [MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `holds (iminmodel (IMAGE interp s)) v` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `p:form` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `atom p` (fun th -> REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN ASM_MESON_TAC[ALL_MEM]; ALL_TAC] THEN REWRITE_TAC[GSYM FORALL_ALL] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `C:(term->bool)#((num->((term)list->term))#(num->((term)list->bool)))` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `holds C (v:num->term) (ITLIST (-->) asm c)` MP_TAC THENL [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[valuation; Dom_DEF] THEN ASM_MESON_TAC[IN_IMAGE]; ALL_TAC] THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN MESON_TAC[]);; let IMINMODEL_INTERPRETATION = prove (`!s. interpretation(language s) (iminmodel s)`, GEN_TAC THEN REWRITE_TAC[interpretation; iminmodel; language; Dom_DEF] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[Fun_DEF; IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ASM_SIMP_TAC[terms_RULES]);; let ibackchain_RULES,ibackchain_INDUCT,ibackchain_CASES = new_inductive_definition `!cl i ns. cl IN s /\ (!x. i(x) IN terms(functions(IMAGE interp s))) /\ ALL2 (ibackchain s) ns (MAP (formsubst i) (hypotheses cl)) ==> ibackchain s (ITLIST (+) ns 1) (formsubst i (conclusion cl))`;; let IBACKCHAIN_SOUND = prove (`(!cl. cl IN s ==> definite(cl)) ==> !v n p. ibackchain s n p /\ (!x. v(x) IN terms(functions(IMAGE interp s))) ==> holds (iminmodel(IMAGE interp s)) v p`, REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC ibackchain_INDUCT THEN REWRITE_TAC[ALL2_TRIV] THEN MAP_EVERY X_GEN_TAC [`cl:form->bool`; `i:num->term`; `ns:num list`] THEN REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN STRIP_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP IMINMODEL_MODEL) THEN DISCH_THEN(MP_TAC o SPEC `termval (iminmodel (IMAGE interp s)) (v:num->term) o (i:num->term)`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `horn cl` MP_TAC THENL [ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[GSYM HOLDS_FORMSUBST] THEN MATCH_MP_TAC(TAUT `a /\ ~b ==> ((a ==> b \/ c) ==> c)`) THEN CONJ_TAC THENL [X_GEN_TAC `x:num` THEN REWRITE_TAC[o_THM] THEN SUBGOAL_THEN `termval(iminmodel (IMAGE interp s)) v (i(x:num)) IN Dom(iminmodel (IMAGE interp s))` MP_TAC THENL [ALL_TAC; REWRITE_TAC[iminmodel; Dom_DEF]] THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `{}:(num#num)->bool` THEN CONJ_TAC THENL [MP_TAC(SPEC `IMAGE interp s` IMINMODEL_INTERPRETATION) THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN SUBGOAL_THEN `i(x:num) IN terms(FST(language(IMAGE interp s)))` MP_TAC THENL [ASM_REWRITE_TAC[language; FST]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP STUPID_CANONDOM_LEMMA) THEN REWRITE_TAC[language; FST]; ASM_REWRITE_TAC[valuation; iminmodel; Dom_DEF]]; ALL_TAC] THEN UNDISCH_TAC `ALL (\p. (!x. v x IN terms (functions (IMAGE interp s))) ==> holds (iminmodel (IMAGE interp s)) v p) (MAP (formsubst i) (hypotheses cl))` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[o_THM] THEN MESON_TAC[]);; let IBACKCHAIN_COMPLETE = prove (`(!cl. cl IN s ==> definite(cl)) /\ atom(p) /\ (!v. (!x. v(x) IN terms(functions(IMAGE interp s))) ==> holds (iminmodel (IMAGE interp s)) v p) ==> ?n. ibackchain s n p`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN DISCH_THEN(MP_TAC o SPEC `V`) THEN ANTS_TAC THENL [REWRITE_TAC[terms_RULES; IN]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `terms(functions(IMAGE interp s)),Fn, (\p tms. ?n. ibackchain s n (Atom p tms))`) THEN REWRITE_TAC[Dom_DEF; Fun_DEF] THEN FIRST_ASSUM(X_CHOOSE_THEN `P:num` MP_TAC o GEN_REWRITE_RULE I [ATOM]) THEN DISCH_THEN(X_CHOOSE_THEN `tms:term list` SUBST_ALL_TAC) THEN REWRITE_TAC[holds; Pred_DEF] THEN MATCH_MP_TAC(TAUT `(b <=> c) /\ a ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL [AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN REWRITE_TAC[GSYM ALL_MEM; GSYM EX_MEM] THEN X_GEN_TAC `t:term` THEN DISCH_TAC THEN SPEC_TAC(`t:term`,`t:term`) THEN MATCH_MP_TAC TERMVAL_TRIV THEN REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` (CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN SUBGOAL_THEN `horn cl` MP_TAC THENL [ASM_MESON_TAC[DEFINITE_IMP_HORN]; ALL_TAC] THEN DISCH_THEN(MP_TAC o INST_TYPE [`:term`,`:A`] o MATCH_MP HOLDS_HORN) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HOLDS_ITLIST_IMP] THEN REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`; NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ ~b) <=> a ==> b`] THEN REWRITE_TAC[ALL_MEM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN ABBREV_TAC `gbmod = terms (functions (IMAGE interp s)), Fn, (\p tms. ?n. ibackchain s n (Atom p tms))` THEN SUBGOAL_THEN `!p. atom p ==> (holds gbmod v p <=> ?n. ibackchain s n (formsubst v p))` ASSUME_TAC THENL [SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN EXPAND_TAC "gbmod" THEN REWRITE_TAC[HOLDS] THEN REWRITE_TAC[Pred_DEF; formsubst] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN X_GEN_TAC `t:term` THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN SPEC_TAC(`t:term`,`t:term`) THEN SPEC_TAC(`v:num->term`,`v:num->term`) THEN MATCH_MP_TAC TERMSUBST_TERMVAL THEN REWRITE_TAC[Fun_DEF]; ALL_TAC] THEN SUBGOAL_THEN `holds gbmod v (conclusion cl) <=> ?n. ibackchain s n (formsubst v (conclusion cl))` SUBST1_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_cond o concl)) THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `ALL (holds gbmod v) (hypotheses cl) <=> ALL (\p. ?n. ibackchain s n (formsubst v p)) (hypotheses cl)` SUBST1_TAC THENL [UNDISCH_TAC `ALL atom (hypotheses cl)` THEN REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN EXISTS_TAC `?ns. ALL2 (ibackchain s) ns (MAP (formsubst v) (hypotheses cl))` THEN CONJ_TAC THENL [SPEC_TAC(`hypotheses cl`,`l:form list`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP] THENL [EXISTS_TAC `[]:num list` THEN REWRITE_TAC[ALL2]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `n:num`) ASSUME_TAC) THEN FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN EXISTS_TAC `CONS (n:num) ns` THEN ASM_REWRITE_TAC[ALL2]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `ns:num list`) THEN EXISTS_TAC `ITLIST (+) ns 1` THEN MATCH_MP_TAC ibackchain_RULES THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `valuation gbmod (v:num->term)` THEN EXPAND_TAC "gbmod" THEN REWRITE_TAC[valuation; Dom_DEF]);; let IBACKCHAIN_MINIMAL = prove (`!s p. (!cl. cl IN s ==> definite cl) /\ atom p ==> ((!v. (!x. v(x) IN terms(functions(IMAGE interp s))) ==> holds (iminmodel(IMAGE interp s)) v p) <=> ?n. ibackchain s n p)`, MESON_TAC[IBACKCHAIN_SOUND; IBACKCHAIN_COMPLETE]);;