(* ========================================================================= *) (* Conversion to Skolem normal form. *) (* ========================================================================= *) let HOLDS_EXISTS_LEMMA = prove (`!p t x M v preds:num#num->bool. interpretation (functions_term t,preds) M /\ valuation(M) (v:num->A) /\ holds M v (formsubst (valmod (x,t) V) p) ==> holds M v (??x p)`, REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN REWRITE_TAC[HOLDS] THEN DISCH_TAC THEN EXISTS_TAC `termval M (v:num->A) t` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `preds:num#num->bool` THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* One-step Skolemization of ??x p using new function f. *) (* ------------------------------------------------------------------------- *) let Skolem1_DEF = new_definition `Skolem1 f x p = formsubst (valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p`;; let HOLDS_SKOLEM1 = prove (`!f x p. prenex(??x p) /\ ~((f,CARD(FV(??x p))) IN functions_form(??x p)) ==> prenex(Skolem1 f x p) /\ (FV(Skolem1 f x p) = FV(??x p)) /\ size(Skolem1 f x p) < size(??x p) /\ (predicates_form (Skolem1 f x p) = predicates_form(??x p)) /\ (functions_form(??x p) SUBSET functions_form (Skolem1 f x p)) /\ (functions_form (Skolem1 f x p) SUBSET ((f,CARD(FV(??x p))) INSERT functions_form(??x p))) /\ (!M. interpretation (language {p}) M /\ ~(Dom(M) = EMPTY) /\ (!v:num->A. valuation(M) v ==> holds M v (??x p)) ==> ?M'. (Dom(M') = Dom(M)) /\ (Pred(M') = Pred(M)) /\ (!g zs. ~(g = f) \/ ~(LENGTH zs = CARD(FV(??x p))) ==> (Fun(M') g zs = Fun(M) g zs)) /\ interpretation (language {(Skolem1 f x p)}) M' /\ (!v. valuation(M') v ==> holds M' v (Skolem1 f x p))) /\ (!N. interpretation (language {(Skolem1 f x p)}) N /\ ~(Dom(N) = EMPTY) ==> !v:num->A. valuation(N) (v:num->A) /\ holds N v (Skolem1 f x p) ==> holds N v (??x p))`, let lemma1 = prove (`!l. LIST_UNION (MAP (\x. {x}) l) = set_of_list l`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[set_of_list; LIST_UNION; MAP] THEN SET_TAC[]) in let lemma2 = prove (`!s. FINITE(s) ==> (LIST_UNION (MAP (\x. {x}) (list_of_set s)) = s)`, GEN_TAC THEN REWRITE_TAC[lemma1; SET_OF_LIST_OF_SET]) in let lemma3 = prove (`holds M v p /\ (Dom M = Dom M') /\ (!P zs. Pred M P zs = Pred M' P zs) /\ (!f zs. f,LENGTH zs IN functions_form p ==> (Fun M f zs = Fun M' f zs)) ==> holds M' v p`, DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP HOLDS_FUNCTIONS) THEN ASM_MESON_TAC[]) in REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `x IN FV(p)` THENL [ALL_TAC; SUBGOAL_THEN `Skolem1 f x p = p` SUBST1_TAC THENL [GEN_REWRITE_TAC RAND_CONV [GSYM FORMSUBST_TRIV] THEN REWRITE_TAC[Skolem1_DEF] THEN MATCH_MP_TAC FORMSUBST_VALUATION THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `~(x IN FV(p))` THEN REWRITE_TAC[FV; Exists_DEF; Not_DEF; EXTENSION; IN_UNION; IN_DELETE; NOT_IN_EMPTY] THEN MESON_TAC[]; REWRITE_TAC[SIZE] THEN ARITH_TAC; REWRITE_TAC[Exists_DEF; Not_DEF; predicates_form; UNION_EMPTY]; REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_REFL]; REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY] THEN SET_TAC[]; W(EXISTS_TAC o rand o rand o lhand o snd o dest_exists o snd) THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[HOLDS] THEN DISCH_THEN(CHOOSE_THEN (MP_TAC o CONJUNCT2)) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[]; FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN REWRITE_TAC[HOLDS] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `holds N (v:num->A) p` THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[]]] THEN RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN REWRITE_TAC[Skolem1_DEF] THEN ASM_REWRITE_TAC[PRENEX_FORMSUBST] THEN ASM_REWRITE_TAC[SIZE_FORMSUBST; SIZE; ARITH_RULE `x < 3 + x`] THEN CONJ_TAC THENL [REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN REWRITE_TAC[FVT; NOT_IN_EMPTY; IN_INSERT] THEN REWRITE_TAC[GSYM MAP_o; o_DEF] THEN REWRITE_TAC[FVT] THEN REWRITE_TAC[MATCH_MP lemma2 (SPEC `??x p` FV_FINITE)] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN UNDISCH_TAC `x IN FV p` THEN REWRITE_TAC[FV; Exists_DEF; Not_DEF; UNION_EMPTY; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[FORMSUBST_PREDICATES] THEN CONJ_TAC THENL [REWRITE_TAC[predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY]; ALL_TAC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN CONJ_TAC THENL [REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_UNION]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[functions_term] THEN SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY` (fun th -> REWRITE_TAC[th]) THENL [LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[LENGTH_MAP] THEN SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV(??x p))` SUBST1_TAC THENL [MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN REWRITE_TAC[Exists_DEF; Not_DEF; functions_form] THEN REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; NOT_IN_EMPTY; DISJ_ACI]; ALL_TAC] THEN REPEAT STRIP_TAC THENL [EXISTS_TAC `Dom(M):A->bool, (\g zs. if (g = f) /\ (LENGTH zs = CARD(FV(??x p))) then @a. a IN Dom(M) /\ holds M (valmod (x,a) (ITLIST valmod (MAP2 (\x a. (x,a)) (list_of_set(FV(??x p))) zs) (\z. @c. c IN Dom(M)))) p else Fun(M) g zs), Pred(M)` THEN ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[language; interpretation] THEN SUBGOAL_THEN `functions {(formsubst(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)} = ((f,CARD(FV(??x p))) INSERT functions_form p)` SUBST1_TAC THENL [MP_TAC(SPECL [`x:num`; `Fn f (MAP V (list_of_set(FV(??x p))))`; `p:form`] FORMSUBST_FUNCTIONS_FORM_1) THEN ASM_REWRITE_TAC[FVT] THEN SUBGOAL_THEN `LIST_UNION(MAP FVT (MAP V (list_of_set(FV(??x p))))) = FV(??x p)` (fun th -> ASM_REWRITE_TAC[th]) THENL [SUBGOAL_THEN `FV(??x p) = set_of_list(list_of_set(FV(??x p)))` (fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SET_OF_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; MAP; FVT; set_of_list] THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } = functions_form p` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION] THEN X_GEN_TAC `fa:num#num` THEN GEN_REWRITE_TAC RAND_CONV [DISJ_SYM] THEN AP_TERM_TAC THEN REWRITE_TAC[functions_term] THEN SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY` (fun th -> REWRITE_TAC[th]) THENL [LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[LENGTH_MAP] THEN MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN REWRITE_TAC[Dom_DEF; Fun_DEF] THEN X_GEN_TAC `g:num` THEN X_GEN_TAC `zs:A list` THEN REWRITE_TAC[IN_INSERT; PAIR_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [DISCH_TAC THEN SUBGOAL_THEN `?a:A. a IN Dom M /\ holds M (valmod (x,a) (ITLIST valmod (MAP2 (\x a. x,a) (list_of_set (FV (?? x p))) zs) (\z. @c. c IN Dom(M)))) p` (fun th -> REWRITE_TAC[SELECT_RULE th]) THEN UNDISCH_TAC `!v. valuation M v ==> holds M (v:num->A) (??x p)` THEN REWRITE_TAC[HOLDS] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[valuation] THEN UNDISCH_TAC `ALL (\x:A. x IN Dom M) zs` THEN SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = LENGTH (zs:A list)` MP_TAC THENL [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN SPEC_TAC(`list_of_set(FV(??x p))`,`xs:num list`) THEN SPEC_TAC(`zs:A list`,`zs:A list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; ITLIST; MAP2; LENGTH] THENL [GEN_TAC THEN REWRITE_TAC[LENGTH_EQ_NIL] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[MAP2; ITLIST] THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN REWRITE_TAC[SUC_INJ] THEN DISCH_THEN(fun th -> DISCH_TAC THEN ANTE_RES_THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[MAP2; ITLIST] THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[interpretation; language]) THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } = functions_form p` (fun th -> ASM_REWRITE_TAC[th]) THEN GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]]; ALL_TAC] THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN REWRITE_TAC[termval] THEN REWRITE_TAC[GSYM MAP_o] THEN REWRITE_TAC[o_DEF; termval] THEN REWRITE_TAC[Fun_DEF; LENGTH_MAP] THEN SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV (??x p))` SUBST1_TAC THENL [MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN REWRITE_TAC[] THEN MATCH_MP_TAC lemma3 THEN REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN CONJ_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN UNDISCH_TAC `(f',LENGTH (zs:A list)) IN functions_form p` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(f,CARD (FV (?? x p)) IN functions_form (?? x p))` THEN REWRITE_TAC[Exists_DEF; functions_form; Not_DEF; UNION_EMPTY] THEN DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN SUBGOAL_THEN `!a. holds M (valmod (x,a) (ITLIST valmod (MAP2 (\x a. x,a) (list_of_set (FV (??x p))) (MAP (\y. v y) (list_of_set(FV(??x p))))) (\z. @c. c IN Dom(M)))) p = holds M (valmod (x,a:A) v) p` (fun th -> REWRITE_TAC[th]) THENL [ALL_TAC; SUBGOAL_THEN `(@a:A. a IN Dom M /\ holds M (valmod (x,a) v) p) IN Dom(M) /\ holds M (valmod (x,(@a. a IN Dom M /\ holds M (valmod (x,a) v) p)) v) p` (ACCEPT_TAC o CONJUNCT2) THEN CONV_TAC SELECT_CONV THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[HOLDS]) THEN RULE_ASSUM_TAC(REWRITE_RULE[valuation; Dom_DEF]) THEN ASM_REWRITE_TAC[valuation]] THEN X_GEN_TAC `a:A` THEN MATCH_MP_TAC HOLDS_VALUATION THEN X_GEN_TAC `z:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod] THEN ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `MEM z (list_of_set (FV (??x p)))` MP_TAC THENL [SUBGOAL_THEN `z IN FV(??x p)` (fun th -> MESON_TAC[th; MEM_LIST_OF_SET; FV_FINITE]) THEN ASM_REWRITE_TAC[Exists_DEF; Not_DEF; FV; IN_DELETE; IN_UNION; NOT_IN_EMPTY]; ALL_TAC] THEN SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN REWRITE_TAC[ITLIST; MAP2; MAP; valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC HOLDS_EXISTS_LEMMA THEN EXISTS_TAC `Fn f (MAP V (list_of_set (FV (?? x p))))` THEN EXISTS_TAC `predicates_form (formsubst (valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interpretation (language (formsubst (valmod (x,Fn f (MAP V (list_of_set (FV (?? x p))))) V) p INSERT EMPTY)) (N:(A->bool)#((num->((A)list->A))#(num->((A)list->bool))))` THEN REWRITE_TAC[LANGUAGE_1] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN REWRITE_TAC[SUBSET_UNION]]);; (* ------------------------------------------------------------------------- *) (* Multiple Skolemization of a prenex formula. *) (* ------------------------------------------------------------------------- *) let Skolems_EXISTENCE = prove (`!J. ?Skolems. !r. Skolems r = \k. PPAT (\x q. !!x (Skolems q k)) (\x q. Skolems (Skolem1 (NUMPAIR J k) x q) (SUC k)) (\p. p) r`, GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN REWRITE_TAC[form_DISTINCT; form_INJ] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)] THEN AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[size] THEN ARITH_TAC; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN REWRITE_TAC[PRENEX_DISTINCT] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) (SPEC_ALL SELECT_REFL)] THEN AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[Skolem1_DEF; SIZE_FORMSUBST] THEN REWRITE_TAC[SIZE] THEN ARITH_TAC);; let Skolems_SPECIFICATION = prove (`?Skolems. !J r k. Skolems J r k = PPAT (\x q. !!x (Skolems J q k)) (\x q. Skolems J (Skolem1 (NUMPAIR J k) x q) (SUC k)) (\p. p) r`, REWRITE_TAC[REWRITE_RULE[SKOLEM_THM; FUN_EQ_THM] Skolems_EXISTENCE]);; let Skolems_DEF = new_specification ["Skolems"] Skolems_SPECIFICATION;; let HOLDS_SKOLEMS_INDUCTION = prove (`!n J k p. (size(p) = n) /\ prenex(p) /\ (!l m. (NUMPAIR J l,m) IN functions_form p ==> l < k) ==> universal((Skolems J p k)) /\ (FV((Skolems J p k)) = FV(p)) /\ (predicates_form (Skolems J p k) = predicates_form p) /\ functions_form p SUBSET functions_form (Skolems J p k) /\ functions_form (Skolems J p k) SUBSET {NUMPAIR j l,m | j,l,m | (j = J) /\ k <= l} UNION functions_form p /\ (!M. interpretation (language {p}) M /\ ~(Dom M = EMPTY) /\ (!v:num->A. valuation M v ==> holds M v p) ==> ?M'. (Dom M' = Dom M) /\ (Pred M' = Pred M) /\ (!g zs. ~(Fun(M') g zs = Fun(M) g zs) ==> ?l. k <= l /\ (g = NUMPAIR J l)) /\ interpretation (language {(Skolems J p k)}) M' /\ (!v. valuation M' v ==> holds M' v (Skolems J p k))) /\ (!N. interpretation (language {(Skolems J p k)}) N /\ ~(Dom(N) = EMPTY) ==> !v:num->A. valuation(N) v /\ holds N v (Skolems J p k) ==> holds N v p)`, MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o ONCE_REWRITE_RULE[prenex_CASES]) THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [SUBGOAL_THEN `Skolems J p k = p` SUBST1_TAC THENL [ONCE_REWRITE_TAC[Skolems_DEF] THEN SUBGOAL_THEN `~(?x q. p = !!x q) /\ ~(?x q. p = ??x q)` MP_TAC THENL [REPEAT STRIP_TAC THEN UNDISCH_TAC `qfree p` THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN SIMP_TAC[PPAT]; ALL_TAC] THEN REWRITE_TAC[SUBSET_UNION; SUBSET_REFL] THEN ONCE_REWRITE_TAC[universal_CASES] THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN W(EXISTS_TAC o rand o rand o lhand o body o rand o snd) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `r:form` (CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)))) THEN REWRITE_TAC[SIZE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THENL [FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size r`) THEN REWRITE_TAC[ARITH_RULE `r < 1 + r`] THEN DISCH_THEN(MP_TAC o SPECL [`J:num`; `k:num`; `r:form`]) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[functions_form]) THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ARITH_TAC; ALL_TAC] THEN STRIP_TAC THEN SUBGOAL_THEN `Skolems J (!!x r) k = !!x (Skolems J r k)` SUBST1_TAC THENL [GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN SUBGOAL_THEN `?z s. !!x r = !!z s` (fun th -> SIMP_TAC[th; PPAT]) THEN MESON_TAC[]; ALL_TAC] THEN ABBREV_TAC `q = Skolems J r k` THEN ASM_REWRITE_TAC[functions_form; FV] THEN REWRITE_TAC[predicates_form; functions_form; LANGUAGE_1] THEN REWRITE_TAC[GSYM LANGUAGE_1] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[universal_CASES]; ALL_TAC] THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `interpretation (language (r INSERT EMPTY)) M /\ ~(Dom M = EMPTY) /\ (!v:num->A. valuation M v ==> holds M v r)` (ANTE_RES_THEN MP_TAC) THENL [ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC th) THEN REWRITE_TAC[HOLDS] THEN DISCH_THEN(MP_TAC o SPEC `(v:num->A) x`) THEN REWRITE_TAC[VALMOD_TRIV] THEN DISCH_THEN MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC(prove(`(!x. p x ==> q x) ==> (?x. p x) ==> ?x. q x`, MESON_TAC[])) THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[holds] THEN ASM_MESON_TAC[VALUATION_VALMOD]]; UNDISCH_TAC `holds N (v:num->A) (!!x q)` THEN REWRITE_TAC[HOLDS] THEN ASM_MESON_TAC[VALUATION_VALMOD]]; ALL_TAC] THEN MP_TAC(SPECL [`NUMPAIR J k`; `x:num`; `r:form`] HOLDS_SKOLEM1) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [ASM_REWRITE_TAC[PRENEX] THEN ASM_MESON_TAC[LT_REFL]; ALL_TAC] THEN STRIP_TAC THEN ABBREV_TAC `q = Skolem1 (NUMPAIR J k) x r` THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size q`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SIZE]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`J:num`; `SUC k`; `q:form`]) THEN ASM_REWRITE_TAC[LT] THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [REPEAT GEN_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN SUBGOAL_THEN `Skolems J (?? x r) k = Skolems J q (SUC k)` SUBST1_TAC THENL [EXPAND_TAC "q" THEN GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN REWRITE_TAC[PPAT]; ABBREV_TAC `s = Skolems J q (SUC k)`] THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_TRANS]; UNDISCH_TAC `functions_form s SUBSET {NUMPAIR j l,m | j,l,m | (j = J) /\ SUC k <= l} UNION functions_form q` THEN UNDISCH_TAC `functions_form q SUBSET (NUMPAIR J k,CARD (FV (?? x r))) INSERT functions_form (?? x r)` THEN REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[NUMPAIR_INJ; ARITH_RULE `SUC k <= l ==> k <= l`; LE_REFL]; REPEAT STRIP_TAC THEN SUBGOAL_THEN `interpretation (language {r}) M /\ ~(Dom M = EMPTY) /\ !v:num->A. valuation M v ==> holds M v (?? x r)` (ANTE_RES_THEN MP_TAC) THENL [ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [LANGUAGE_1; Not_DEF; Exists_DEF; functions_form; predicates_form; UNION_EMPTY]) THEN ASM_REWRITE_TAC[LANGUAGE_1]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `M0:(A->bool)#(num->A list->A)#(num->A list->bool)` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `interpretation (language {q}) M0 /\ ~(Dom M0 = EMPTY) /\ (!v:num->A. valuation M0 v ==> holds M0 v q)` (ANTE_RES_THEN MP_TAC) THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` STRIP_ASSUME_TAC) THEN EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `~(Fun M1 g (zs:A list) = Fun M0 g zs) \/ ~(Fun M0 g zs = Fun M g zs)` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 (ANTE_RES_THEN MP_TAC) MP_TAC) THENL [MESON_TAC[ARITH_RULE `SUC k <= l ==> k <= l`]; ALL_TAC] THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN MESON_TAC[LE_REFL]; GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN MP_TAC(ASSUME `valuation N (v:num->A)`) THEN REWRITE_TAC[IMP_IMP] THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interpretation (language {s}) (N:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[LANGUAGE_1] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN ASM_REWRITE_TAC[]]);; let HOLDS_SKOLEMS_PRENEX = prove (`!p. prenex(p) ==> !K. (!l m. ~(NUMPAIR K l,m IN functions_form p)) ==> universal(Skolems K p 0) /\ (FV(Skolems K p 0) = FV(p)) /\ (predicates_form (Skolems K p 0) = predicates_form p) /\ functions_form p SUBSET functions_form (Skolems K p 0) /\ functions_form (Skolems K p 0) SUBSET {NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\ (!M. interpretation (language {p}) M /\ ~(Dom M = EMPTY) /\ (!v:num->A. valuation M v ==> holds M v p) ==> ?M'. (Dom M' = Dom M) /\ (Pred M' = Pred M) /\ (!g zs. ~(Fun M' g zs = Fun M g zs) ==> (?l. g = NUMPAIR K l)) /\ interpretation (language {(Skolems K p 0)}) M' /\ (!v. valuation M' v ==> holds M' v (Skolems K p 0))) /\ (!N. interpretation (language {(Skolems K p 0)}) N /\ ~(Dom N = EMPTY) ==> !v:num->A. valuation(N) v /\ holds N v (Skolems K p 0) ==> holds N v p)`, GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`size p`; `K:num`; `0`; `p:form`] HOLDS_SKOLEMS_INDUCTION) THEN ASM_REWRITE_TAC[LE_0]);; (* ------------------------------------------------------------------------- *) (* Now Skolemize an arbitrary (non-prenex) formula. *) (* ------------------------------------------------------------------------- *) let Skopre_DEF = new_definition `Skopre K p = Skolems K (Prenex p) 0`;; let SKOPRE = prove (`!p K. (!l m. ~(NUMPAIR K l,m IN functions_form p)) ==> universal(Skopre K p) /\ (FV(Skopre K p) = FV(p)) /\ (predicates_form (Skopre K p) = predicates_form p) /\ functions_form p SUBSET functions_form (Skopre K p) /\ functions_form (Skopre K p) SUBSET {NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\ (!M. interpretation (language {p}) M /\ ~(Dom M = EMPTY) /\ (!v:num->A. valuation M v ==> holds M v p) ==> ?M'. (Dom M' = Dom M) /\ (Pred M' = Pred M) /\ (!g zs. ~(Fun M' g zs = Fun M g zs) ==> (?l. g = NUMPAIR K l)) /\ interpretation (language {(Skopre K p)}) M' /\ (!v. valuation M' v ==> holds M' v (Skopre K p))) /\ (!N. interpretation (language {(Skopre K p)}) N /\ ~(Dom(N) = EMPTY) ==> !v:num->A. valuation(N) v /\ holds N v (Skopre K p) ==> holds N v p)`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[Skopre_DEF] THEN MP_TAC(SPEC `p:form` PRENEX_THM) THEN ABBREV_TAC `r = Prenex p` THEN STRIP_TAC THEN SUBGOAL_THEN `(functions_form r = functions_form p) /\ (predicates_form r = predicates_form p)` STRIP_ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[LANGUAGE_1; PAIR_EQ]) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN W(fun (_,w) -> SUBGOAL_THEN (subst [`r:form`,`p:form`] w) MP_TAC) THENL [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP HOLDS_SKOLEMS_PRENEX) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN ASM_REWRITE_TAC[] THEN REPEAT(AP_TERM_TAC ORELSE ABS_TAC) THEN BINOP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REPEAT(MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a ==> b <=> a ==> c)`) THEN DISCH_TAC) THEN TRY BINOP_TAC THEN REPEAT((FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]) ORELSE (FIRST_ASSUM(MATCH_MP_TAC o GSYM) THEN ASM_REWRITE_TAC[]) ORELSE AP_TERM_TAC ORELSE ABS_TAC) THEN REFL_TAC);; (* ------------------------------------------------------------------------- *) (* Bumping up function indices to leave room for Skolem functions. *) (* ------------------------------------------------------------------------- *) let bumpmod = new_definition `bumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMSND k) zs),Pred(M)`;; let bumpterm = new_recursive_definition term_RECURSION `(bumpterm (V x) = V x) /\ (bumpterm (Fn k l) = Fn (NUMPAIR 0 k) (MAP bumpterm l))`;; let bumpform = new_recursive_definition form_RECURSION `(bumpform False = False) /\ (bumpform (Atom p l) = Atom p (MAP bumpterm l)) /\ (bumpform (q --> r) = bumpform q --> bumpform r) /\ (bumpform (!!x r) = !!x (bumpform r))`;; let BUMPTERM = prove (`!M v t. termval M v t = termval (bumpmod M) v (bumpterm t)`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; bumpterm] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN REWRITE_TAC[GSYM bumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);; let BUMPFORM = prove (`!M p v. holds M v p = holds (bumpmod M) v (bumpform p)`, GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[Dom_DEF; bumpmod; bumpform; holds; Pred_DEF] THEN REWRITE_TAC[GSYM bumpmod; GSYM MAP_o] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[o_THM; GSYM BUMPTERM; ALL_T]);; let FUNCTIONS_FORM_BUMPFORM = prove (`!p f m. f,m IN functions_form(bumpform p) ==> ?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION] THEN REPEAT GEN_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);; let BUMPFORM_INTERPRETATION = prove (`interpretation (language {p}) M ==> interpretation (language {(bumpform p)}) (bumpmod M)`, REWRITE_TAC[LANGUAGE_1; interpretation] THEN REWRITE_TAC[Dom_DEF; bumpmod; Fun_DEF] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[FUNCTIONS_FORM_BUMPFORM; NUMPAIR_DEST]);; let unbumpterm = new_recursive_definition term_RECURSION `(unbumpterm (V x) = V x) /\ (unbumpterm (Fn k l) = Fn (NUMSND k) (MAP unbumpterm l))`;; let unbumpform = new_recursive_definition form_RECURSION `(unbumpform False = False) /\ (unbumpform (Atom p l) = Atom p (MAP unbumpterm l)) /\ (unbumpform (q --> r) = unbumpform q --> unbumpform r) /\ (unbumpform (!!x r) = !!x (unbumpform r))`;; let UNBUMPTERM = prove (`!t. unbumpterm(bumpterm t) = t`, MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[unbumpterm; bumpterm; NUMPAIR_DEST] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[o_THM]);; let UNBUMPFORM = prove (`!p. unbumpform (bumpform p) = p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[unbumpform; bumpform] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM MAP_o; o_DEF; UNBUMPTERM] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN REWRITE_TAC[ALL_T]);; let unbumpmod = new_definition `unbumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMPAIR 0 k) zs),Pred(M)`;; let UNBUMPMOD_TERM = prove (`!M v t. termval M v (bumpterm t) = termval (unbumpmod M) v t`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; bumpterm] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[unbumpmod; Fun_DEF; NUMPAIR_DEST] THEN REWRITE_TAC[GSYM unbumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);; let UNBUMPMOD = prove (`!M p (v:num->A). holds M v (bumpform p) = holds (unbumpmod M) v p`, GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[Dom_DEF; unbumpmod; bumpform; holds; Pred_DEF] THEN REWRITE_TAC[GSYM unbumpmod; GSYM MAP_o] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[o_THM; GSYM UNBUMPMOD_TERM; ALL_T]);; (* ------------------------------------------------------------------------- *) (* Mapping terms and formulas into terms for unique Skolem functions. *) (* ------------------------------------------------------------------------- *) let NUMLIST = new_recursive_definition list_RECURSION `(NUMLIST [] = 0) /\ (NUMLIST (CONS h t) = NUMPAIR h (NUMLIST t) + 1)`;; let NUMLIST_INJ = prove (`!l1 l2. (NUMLIST l1 = NUMLIST l2) = (l1 = l2)`, REPEAT(LIST_INDUCT_TAC ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[NUMLIST; GSYM ADD1; SUC_INJ; NOT_SUC; CONS_11; NOT_CONS_NIL; NUMPAIR_INJ]);; let num_of_term = new_nested_recursive_definition term_RECURSION `(!x. num_of_term (V x) = NUMPAIR 0 x) /\ (!f l. num_of_term (Fn f l) = NUMPAIR 1 (NUMPAIR f (NUMLIST(MAP num_of_term l))))`;; let NUM_OF_TERM_INJ = prove (`!s t. (num_of_term s = num_of_term t) = (s = t)`, REPEAT(MATCH_MP_TAC term_INDUCT ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[num_of_term; NUMPAIR_INJ; NUMLIST_INJ; ARITH] THEN REWRITE_TAC[term_INJ; term_DISTINCT] THEN AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN UNDISCH_TAC `ALL (\s. !t. (num_of_term s = num_of_term t) = (s = t)) l` THEN POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[IMP_IMP] THEN SPEC_TAC(`l':term list`,`l':term list`) THEN SPEC_TAC(`l:term list`,`l:term list`) THEN REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN REWRITE_TAC[num_of_term] THEN ASM_MESON_TAC[]);; let num_of_form = new_recursive_definition form_RECURSION `(num_of_form False = NUMPAIR 0 0) /\ (num_of_form (Atom p l) = NUMPAIR 1 (NUMPAIR p (NUMLIST(MAP num_of_term l)))) /\ (num_of_form (q --> r) = NUMPAIR 2 (NUMPAIR (num_of_form q) (num_of_form r))) /\ (num_of_form (!!x q) = NUMPAIR 3 (NUMPAIR x (num_of_form q)))`;; let NUMLIST_NUM_OF_TERM = prove (`!l1 l2. (NUMLIST (MAP num_of_term l1) = NUMLIST (MAP num_of_term l2)) = (l1 = l2)`, REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN ASM_REWRITE_TAC[GSYM ADD1; NOT_SUC; SUC_INJ; NUMPAIR_INJ; NUM_OF_TERM_INJ]);; let NUM_OF_FORM_INJ = prove (`!q r. (num_of_form q = num_of_form r) = (q = r)`, MATCH_MP_TAC form_INDUCTION THEN REPEAT CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC; REPEAT GEN_TAC THEN STRIP_TAC; REPEAT GEN_TAC THEN STRIP_TAC] THEN MATCH_MP_TAC form_INDUCTION THEN ASM_REWRITE_TAC[num_of_form; NUMPAIR_INJ; ARITH; form_DISTINCT; form_INJ; NUMLIST_NUM_OF_TERM]);; let form_of_num = new_definition `form_of_num x = @p. num_of_form p = x`;; let FORM_OF_NUM = prove (`form_of_num(num_of_form p) = p`, REWRITE_TAC[form_of_num; NUM_OF_FORM_INJ]);; (* ------------------------------------------------------------------------- *) (* Skolemization function. *) (* ------------------------------------------------------------------------- *) let SKOLEMIZE = new_definition `SKOLEMIZE p = Skopre (num_of_form(bumpform p) + 1) (bumpform p)`;; let SKOLEMIZE_WORKS = prove (`!p. universal(SKOLEMIZE p) /\ (FV(SKOLEMIZE p) = FV(bumpform p)) /\ (predicates_form (SKOLEMIZE p) = predicates_form (bumpform p)) /\ functions_form (bumpform p) SUBSET functions_form (SKOLEMIZE p) /\ functions_form (SKOLEMIZE p) SUBSET {NUMPAIR k l,m | k,l,m | k = num_of_form(bumpform p) + 1} UNION functions_form (bumpform p) /\ (!M. interpretation (language {(bumpform p)}) M /\ ~(Dom M = EMPTY) /\ (!v:num->A. valuation M v ==> holds M v (bumpform p)) ==> ?M'. (Dom M' = Dom M) /\ (Pred M' = Pred M) /\ (!g zs. ~(Fun M' g zs = Fun M g zs) ==> (?l. g = NUMPAIR (num_of_form(bumpform p) + 1) l)) /\ interpretation (language {(SKOLEMIZE p)}) M' /\ (!v. valuation M' v ==> holds M' v (SKOLEMIZE p))) /\ (!N. interpretation (language {(SKOLEMIZE p)}) N /\ ~(Dom(N) = EMPTY) ==> !v:num->A. valuation(N) v /\ holds N v (SKOLEMIZE p) ==> holds N v (bumpform p))`, GEN_TAC THEN REWRITE_TAC[SKOLEMIZE] THEN MATCH_MP_TAC SKOPRE THEN SPEC_TAC(`num_of_form(bumpform p)`,`x:num`) THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[bumpform; functions_form] THEN REWRITE_TAC[IN_UNION; NOT_IN_EMPTY] THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN REWRITE_TAC[GSYM MAP_o] THEN SPEC_TAC(`x:num`,`x:num`) THEN SPEC_TAC(`l:num`,`y:num`) THEN SPEC_TAC(`m:num`,`z:num`) THEN SPEC_TAC(`a1:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; NOT_IN_EMPTY; MAP] THEN ASM_REWRITE_TAC[IN_UNION] THEN SPEC_TAC(`h:term`,`t:term`) THEN POP_ASSUM(K ALL_TAC) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[functions_term; bumpterm; o_THM; NOT_IN_EMPTY] THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY; IN_INSERT; ALL] THEN REWRITE_TAC[PAIR_EQ; NUMPAIR_INJ; ARITH_RULE `~(x + 1 = 0)`] THEN STRIP_TAC THEN REPEAT GEN_TAC THEN ASM_REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN FIRST_ASSUM(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN REWRITE_TAC[IN_INSERT; DE_MORGAN_THM] THEN MESON_TAC[]);; let FUNCTIONS_FORM_SKOLEMIZE = prove (`!p f m. f,m IN functions_form(SKOLEMIZE p) ==> (?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p) \/ (?l. (f = NUMPAIR (num_of_form (bumpform p) + 1) l))`, REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC_ALL SKOLEMIZE_WORKS) THEN DISCH_THEN(MP_TAC o el 4 o CONJUNCTS) THEN REWRITE_TAC[SUBSET; IN_UNION] THEN DISCH_THEN(fun ith -> FIRST_ASSUM(MP_TAC o MATCH_MP ith)) THEN MATCH_MP_TAC(TAUT `(a ==> a') /\ (b ==> b') ==> a \/ b ==> b' \/ a'`) THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM; NUMPAIR_INJ; PAIR_EQ] THEN MESON_TAC[]; ALL_TAC] THEN POP_ASSUM(K ALL_TAC) THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Construction of Skolem model for a formula. *) (* ------------------------------------------------------------------------- *) let SKOMOD1 = new_definition `SKOMOD1 p M = if (!v. valuation M v ==> holds M v p) then @M'. (Dom M' = Dom (bumpmod M)) /\ (Pred M' = Pred (bumpmod M)) /\ (!g zs. ~(Fun M' g zs = Fun (bumpmod M) g zs) ==> (?l. g = NUMPAIR (num_of_form (bumpform p) + 1) l)) /\ interpretation (language {(SKOLEMIZE p)}) M' /\ (!v:num->A. valuation M' v ==> holds M' v (SKOLEMIZE p)) else (Dom M,(\g zs. @a:A. a IN Dom(M)),Pred M)`;; let SKOMOD1_WORKS = prove (`!M p. interpretation (language {p}) M /\ ~(Dom M = EMPTY) ==> (Dom (SKOMOD1 p M) = Dom (bumpmod M)) /\ (Pred (SKOMOD1 p M) = Pred (bumpmod M)) /\ interpretation (language {(SKOLEMIZE p)}) (SKOMOD1 p M) /\ ((!v:num->A. valuation M v ==> holds M v p) ==> (!g zs. ~(Fun (SKOMOD1 p M) g zs = Fun (bumpmod M) g zs) ==> (?l. g = NUMPAIR (num_of_form (bumpform p) + 1) l)) /\ (!v:num->A. valuation (SKOMOD1 p M) v ==> holds (SKOMOD1 p M) v (SKOLEMIZE p)))`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[SKOMOD1] THEN COND_CASES_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL [ONCE_REWRITE_TAC[AC CONJ_ACI `d /\ p /\ i /\ g /\ v <=> d /\ p /\ g /\ i /\ v`] THEN CONV_TAC SELECT_CONV THEN MATCH_MP_TAC(el 5 (CONJUNCTS (SPEC_ALL SKOLEMIZE_WORKS))) THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC BUMPFORM_INTERPRETATION THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[Dom_DEF; bumpmod]; REWRITE_TAC[GSYM BUMPFORM] THEN REWRITE_TAC[valuation; Dom_DEF; bumpmod] THEN ASM_REWRITE_TAC[GSYM valuation]]; REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF; bumpmod] THEN REWRITE_TAC[interpretation; Dom_DEF; LANGUAGE_1; Fun_DEF] THEN REPEAT STRIP_TAC THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]);; let SKOMOD = new_definition `SKOMOD M = (Dom M, (\g zs. if NUMFST g = 0 then Fun M (NUMSND g) zs else Fun (SKOMOD1 (unbumpform(form_of_num (PRE(NUMFST g)))) M) g zs), Pred M)`;; let SKOMOD_INTERPRETATION = prove (`interpretation (language {p}) M /\ ~(Dom M :A->bool = EMPTY) ==> interpretation (language {(SKOLEMIZE p)}) (SKOMOD M)`, DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC (CONJUNCT1 th)) THEN REWRITE_TAC[LANGUAGE_1; interpretation] THEN REWRITE_TAC[Dom_DEF; SKOMOD; Fun_DEF] THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST; ARITH_RULE `~(x + 1 = 0)`] THENL [FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM] THEN REWRITE_TAC[ADD1] THEN MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o el 1 o CONJUNCTS)) THEN REWRITE_TAC[LANGUAGE_1; interpretation] THEN ASM_REWRITE_TAC[bumpmod; Dom_DEF] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let SKOMOD_WORKS = prove (`interpretation(language {p}) M /\ ~(Dom M = EMPTY) ==> ((!v:num->A. valuation(M) v ==> holds M v p) <=> (!v:num->A. valuation(SKOMOD M) v ==> holds (SKOMOD M) v (SKOLEMIZE p)))`, STRIP_TAC THEN REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN REWRITE_TAC[GSYM valuation] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN SUBGOAL_THEN `holds (SKOMOD1 p M) (v:num->A) (SKOLEMIZE p)` MP_TAC THENL [SUBGOAL_THEN `valuation (SKOMOD1 p M) (v:num->A)` MP_TAC THENL [MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN UNDISCH_TAC `valuation M (v:num->A)` THEN ASM_REWRITE_TAC[Dom_DEF; valuation; bumpmod]; ALL_TAC] THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC HOLDS_FUNCTIONS THEN MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; bumpmod] THEN REWRITE_TAC[Fun_DEF] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST] THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`NUMPAIR 0 k`; `zs:A list`]) THEN REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN REWRITE_TAC[NUMPAIR_INJ; ARITH_RULE `~(0 = x + 1)`]; REWRITE_TAC[ARITH_RULE `~(x + 1 = 0)`] THEN REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM]]; DISCH_TAC THEN SUBGOAL_THEN `!v. valuation (bumpmod M) (v:num->A) ==> holds (bumpmod M) v (bumpform p)` MP_TAC THENL [ALL_TAC; REWRITE_TAC[GSYM BUMPFORM; valuation] THEN REWRITE_TAC[Dom_DEF; bumpmod]] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM SKOMOD]) THEN GEN_TAC THEN DISCH_TAC THEN MP_TAC(INST [`@x:A. T`,`ty:A`] (last (CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THEN DISCH_THEN(MP_TAC o SPEC `SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))`) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [CONJ_TAC THENL [MATCH_MP_TAC SKOMOD_INTERPRETATION THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[SKOMOD; Dom_DEF]]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `holds (SKOMOD M) (v:num->A) (bumpform p)` MP_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN ASM_REWRITE_TAC[GSYM valuation] THEN UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN REWRITE_TAC[bumpmod; Dom_DEF; valuation]; FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN REWRITE_TAC[bumpmod; Dom_DEF; valuation]]; MATCH_MP_TAC EQ_IMP THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC HOLDS_FUNCTIONS THEN REWRITE_TAC[SKOMOD; Dom_DEF; Fun_DEF; Pred_DEF; bumpmod] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_BUMPFORM) THEN STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST]]]);; let SKOLEMIZE_SATISFIABLE = prove (`(?M. ~(Dom M :A->bool = EMPTY) /\ interpretation (language s) M /\ M satisfies s) <=> (?M. ~(Dom M :A->bool = EMPTY) /\ interpretation (language {SKOLEMIZE p | p IN s}) M /\ M satisfies {SKOLEMIZE p | p IN s})`, REWRITE_TAC[satisfies; IN_ELIM_THM] THEN EQ_TAC THEN STRIP_TAC THENL [EXISTS_TAC `SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[Dom_DEF; SKOMOD]; REWRITE_TAC[interpretation; language; functions] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC_ALL SKOMOD_INTERPRETATION) THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL [ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[interpretation; language] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `functions {p} SUBSET functions s` (MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `p:form IN s` THEN REWRITE_TAC[functions] THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[interpretation; language] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; functions] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `interpretation (language {p'}) M /\ ~(Dom M :A->bool = EMPTY)` (MP_TAC o MATCH_MP SKOMOD_WORKS) THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interpretation (language s) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN UNDISCH_TAC `p':form IN s` THEN ASM_MESON_TAC[]]; ALL_TAC] THEN EXISTS_TAC `unbumpmod (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[GSYM UNBUMPMOD] THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[unbumpmod; Dom_DEF]; ALL_TAC; REPEAT STRIP_TAC THEN SUBGOAL_THEN `interpretation (language ({(SKOLEMIZE p)})) M /\ ~(Dom M :A->bool = EMPTY)` (MATCH_MP_TAC o MATCH_MP (last(CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THENL [ASM_REWRITE_TAC[] THEN FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN REWRITE_TAC[functions; SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[IN_UNIONS; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN ASM_MESON_TAC[]; CONJ_TAC THENL [UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN REWRITE_TAC[valuation; Dom_DEF; unbumpmod]; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN REWRITE_TAC[valuation; Dom_DEF; unbumpmod] THEN ASM_MESON_TAC[]]]] THEN SUBGOAL_THEN `interpretation (language {bumpform p | p IN s}) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` MP_TAC THENL [FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN REWRITE_TAC[functions; SUBSET; IN_ELIM_THM; IN_UNIONS] THEN MP_TAC(GEN `p:form` (el 3 (CONJUNCTS (SPEC `p:form` (INST [`@x:A. T`,`ty:A`] SKOLEMIZE_WORKS))))) THEN REWRITE_TAC[SUBSET] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!p. interpretation (language {(bumpform p)}) (M:(A->bool)#(num->A list->A)#(num->A list->bool)) ==> interpretation (language {p}) (unbumpmod M)` MP_TAC THENL [REWRITE_TAC[LANGUAGE_1; interpretation] THEN REWRITE_TAC[Dom_DEF; unbumpmod; Fun_DEF] THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[functions_form; bumpform] THEN REWRITE_TAC[NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION] THEN SPEC_TAC(`\x:A. x IN Dom M`,`P:A->bool`) THEN GEN_TAC THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `f,LENGTH(l:A list) IN LIST_UNION (MAP functions_term a1)` THEN SPEC_TAC(`LENGTH(l:A list)`,`k:num`) THEN SPEC_TAC(`a1:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION] THEN REPEAT STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN DISJ1_TAC THEN UNDISCH_TAC `f,k IN functions_term h` THEN SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ; LENGTH_MAP] THEN POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISJ2_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN REWRITE_TAC[ALL; IN_UNION] THEN POP_ASSUM MP_TAC THEN W((fun t -> SPEC_TAC(t,`P:term->bool`)) o find_term is_abs o snd) THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[interpretation; language; functions] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!p. p IN s ==> interpretation (language {p}) (unbumpmod (M:(A->bool)#(num->A list->A)#(num->A list->bool)))` MP_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `p:form`) THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; REWRITE_TAC[interpretation; language; functions] THEN REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN REWRITE_TAC[IN_UNIONS; IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]]; REWRITE_TAC[interpretation; language; functions] THEN REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNIONS] THEN REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN DISCH_THEN(MP_TAC o SPEC `f':form`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Skolemization right down to quantifier-free formula. *) (* ------------------------------------------------------------------------- *) let specialize = new_recursive_definition form_RECURSION `(specialize False = False) /\ (specialize (Atom p l) = Atom p l) /\ (specialize (q --> r) = q --> r) /\ (specialize (!!x r) = specialize r)`;; let SPECIALIZE_SATISFIES = prove (`!M s. ~(Dom M:A->bool = EMPTY) ==> (M satisfies s <=> M satisfies {specialize p | p IN s})`, REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN SUBGOAL_THEN `!p. (!v:num->A. valuation M v ==> holds M v p) <=> (!v:num->A. valuation M v ==> holds M v (specialize p))` (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[specialize] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE]);; let SPECIALIZE_QFREE = prove (`!p. universal p ==> qfree(specialize p)`, MATCH_MP_TAC universal_INDUCT THEN REWRITE_TAC[specialize] THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; specialize]);; let SPECIALIZE_LANGUAGE = prove (`!s. language {specialize p | p IN s} = language s`, REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN SUBGOAL_THEN `(!p. functions_form(specialize p) = functions_form p) /\ (!p. predicates_form(specialize p) = predicates_form p)` (fun th -> GEN_MESON_TAC 16 40 1[th]) THEN CONJ_TAC THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[specialize; predicates_form; functions_form]);; let SKOLEM = new_definition `SKOLEM p = specialize(SKOLEMIZE p)`;; let SKOLEM_QFREE = prove (`!p. qfree(SKOLEM p)`, REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM] THEN MATCH_MP_TAC SPECIALIZE_QFREE THEN REWRITE_TAC[SKOLEMIZE_WORKS]);; let SKOLEM_SATISFIABLE = prove (`(?M. ~(Dom M :A->bool = EMPTY) /\ interpretation (language s) M /\ M satisfies s) = (?M. ~(Dom M :A->bool = EMPTY) /\ interpretation (language {SKOLEM p | p IN s}) M /\ M satisfies {SKOLEM p | p IN s})`, GEN_REWRITE_TAC LAND_CONV [SKOLEMIZE_SATISFIABLE] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a /\ b <=> a /\ c)`) THEN DISCH_TAC THEN BINOP_TAC THENL [AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM SPECIALIZE_LANGUAGE] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; REWRITE_TAC[SKOLEM] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [MATCH_MP SPECIALIZE_SATISFIES th]) THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]]);;