(* ========================================================================= *) (* Basic definitions for and theorems about term rewriting. *) (* ========================================================================= *) let TRS_RULES,TRS_INDUCT,TRS_CASES = new_inductive_definition `(!i l r. (l,r) IN rws ==> TRS rws (termsubst i l) (termsubst i r)) /\ (!s t f largs rargs. TRS rws s t ==> TRS rws (Fn f (APPEND largs (CONS s rargs))) (Fn f (APPEND largs (CONS t rargs))))`;; (* ------------------------------------------------------------------------- *) (* Nice general result justfying both deletion and right-simplification. *) (* ------------------------------------------------------------------------- *) let CONVERGENT_MODIFY_LEMMA = prove (`!R S. SN R /\ CR(RTC R) /\ (!x y. S x y ==> TC R x y) /\ (!x y. R x y ==> ?y'. S x y') ==> !y:A. NORMAL(R) y ==> !x. RTC R x y ==> RTC S x y`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN REWRITE_TAC[SN_NOETHERIAN] THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[NORMAL; NOT_EXISTS_THM] THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [RTC_CASES_R] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN REWRITE_TAC[RTC_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `!x:A y:A. R x y ==> (?y':A. S x y')` THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `u:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `v:A`) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `v:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:A`; `v:A`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[RTC_CASES_R; TC_RTC_CASES_R]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `z:A = y` SUBST_ALL_TAC THEN ASM_MESON_TAC[RTC_CASES_R]);; let CONVERGENT_MODIFY = prove (`!R S. SN R /\ CR(RTC R) /\ (!x:A y. S x y ==> TC R x y) /\ (!x:A y. R x y ==> ?y'. S x y') ==> SN(S) /\ CR(RTC S)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[SN_WF] THEN MATCH_MP_TAC WF_SUBSET THEN EXISTS_TAC `INV(TC(R:A->A->bool))` THEN ASM_REWRITE_TAC[INV] THEN REWRITE_TAC[GSYM TC_INV; WF_TC] THEN ASM_REWRITE_TAC[GSYM SN_WF]; ALL_TAC] THEN DISCH_TAC THEN MATCH_MP_TAC NEWMAN_LEMMA THEN ASM_REWRITE_TAC[WCR] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y1:A`; `y2:A`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y1:A`; `y2:A`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[RTC_INC_TC]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z0:A` STRIP_ASSUME_TAC) THEN MP_TAC(MATCH_MP SN_WN (ASSUME `SN(R:A->A->bool)`)) THEN REWRITE_TAC[WN] THEN DISCH_THEN(MP_TAC o SPEC `z0:A`) THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] CONVERGENT_MODIFY_LEMMA) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RTC_TRANS]);; let EQUIVALENT_JOINABLE_MODIFY = prove (`!R S. SN R /\ CR(RTC R) /\ (!x y. S x y ==> TC R x y) /\ (!x y. R x y ==> ?y'. S x y') ==> (!x:A y. JOINABLE S x y = JOINABLE R x y)`, REPEAT STRIP_TAC THEN REWRITE_TAC[JOINABLE] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THENL [SUBGOAL_THEN `!x:A y. RTC S x y ==> RTC R x y` (fun th -> ASM_MESON_TAC[th]) THEN REWRITE_TAC[RTC; RC_CASES] THEN SUBGOAL_THEN `!x:A y. TC S x y ==> TC R x y` (fun th -> ASM_MESON_TAC[th]) THEN GEN_REWRITE_TAC (funpow 2 BINDER_CONV o RAND_CONV o ONCE_DEPTH_CONV) [GSYM TC_IDEMP] THEN MATCH_MP_TAC TC_MONO THEN ASM_REWRITE_TAC[]; FIRST_ASSUM(MP_TAC o MATCH_MP SN_WN) THEN REWRITE_TAC[WN] THEN DISCH_THEN(MP_TAC o SPEC `z:A`) THEN DISCH_THEN(X_CHOOSE_THEN `w:A` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] CONVERGENT_MODIFY_LEMMA) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `w:A`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RTC_TRANS]]);; let EQUIVALENT_RSTC_MODIFY = prove (`!R S. SN R /\ CR(RTC R) /\ (!x y. S x y ==> TC R x y) /\ (!x y. R x y ==> ?y'. S x y') ==> (!x:A y. RSTC S x y = RSTC R x y)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] CONVERGENT_MODIFY) THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] EQUIVALENT_JOINABLE_MODIFY) THEN ASM_SIMP_TAC[CR_RSTC_JOINABLE] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[]);; let EQUIVALENT_MODIFY = prove (`!R S. SN R /\ CR(RTC R) /\ (!x y. S x y ==> TC R x y) /\ (!x y. R x y ==> ?y'. S x y') ==> SN(S) /\ CR(RTC S) /\ (!x:A y. RSTC S x y = RSTC R x y)`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [MATCH_MP_TAC CONVERGENT_MODIFY THEN EXISTS_TAC `R:A->A->bool`; MATCH_MP_TAC EQUIVALENT_RSTC_MODIFY] THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Special case of right simplification of rules. *) (* ------------------------------------------------------------------------- *) let EQUIVALENT_MODIFY_RIGHT = prove (`!R S S'. SN(\x y. R x y \/ S x y) /\ CR(RTC(\x y. R x y \/ S x y)) /\ (!s:A t. S s t ==> ?t'. S' s t') /\ (!s t. S' s t ==> ?u. S s u /\ RTC (\x y. R x y \/ S x y) u t) ==> SN(\x y. R x y \/ S' x y) /\ CR(RTC(\x y. R x y \/ S' x y)) /\ (!x y. RSTC(\x y. R x y \/ S' x y) x y = RSTC(\x y. R x y \/ S x y) x y)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC EQUIVALENT_MODIFY THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THENL [MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[]; FIRST_ASSUM(MP_TAC o C MATCH_MP (ASSUME `(S':A->A->bool) x y`)) THEN DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THEN GEN_REWRITE_TAC I [TC_RTC_CASES_R] THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[]; ASM_MESON_TAC[]; ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* And of deletion of joinable ones. *) (* ------------------------------------------------------------------------- *) let CONVERGENT_DELETE_LEFT = prove (`!R S. SN(\x y. R x y \/ S x y) /\ CR(RTC(\x y. R x y \/ S x y)) /\ (!x:A y. S x y ==> ?z. R x z) ==> SN(R) /\ CR(RTC R) /\ (!x y. RSTC(R) x y = RSTC(\x y. R x y \/ S x y) x y)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC EQUIVALENT_MODIFY THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN DISCH_TAC THEN ASM_SIMP_TAC[TC_INC] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* The case of left-simplification is harder; this lemma isn't enough. *) (* But given the deletion result above, we don't need this anyway! *) (* ------------------------------------------------------------------------- *) let CONVERGENT_MODIFY_LEMMA = prove (`!R S S' t. SN(\x y. R x y \/ S x y \/ S' x y) /\ CR(RTC(\x y. R x y \/ S x y)) /\ (!s t. S s t ==> ?s' t'. RTC R s s' /\ RTC R t t' /\ (S' s' t' \/ S' t' s')) /\ NORMAL(\x y. R x y \/ S x y) t ==> !s:A. RTC (\x y. R x y \/ S x y) s t ==> RTC (\x y. R x y \/ S' x y) s t`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN REWRITE_TAC[SN_NOETHERIAN] THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `s:A` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [RTC_CASES_R] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN REWRITE_TAC[RTC_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THENL [FIRST_ASSUM(fun th -> MP_TAC(SPEC `u:A` th) THEN ANTS_TAC) THENL [ONCE_REWRITE_TAC[TC_CASES_R] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:A`; `u:A`]) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s':A`; `u':A`] THEN STRIP_TAC THENL [FIRST_ASSUM(MP_TAC o SPEC `u':A`) THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (u:A) u'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`u':A`; `u:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN DISCH_THEN(MP_TAC o SPECL [`s:A`; `u':A`; `t:A`]) THEN ANTS_TAC THENL [CONJ_TAC THENL [ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (u:A) u'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`u':A`; `u:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `z:A = t` SUBST_ALL_TAC THENL [UNDISCH_TAC `RTC (\x y. R x y \/ S x y) t (z:A)` THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN ASM_CASES_TAC `z:A = t` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORMAL]) THEN REWRITE_TAC[] THEN MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[RTC_CASES] THEN DISJ2_TAC THEN EXISTS_TAC `u':A` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[RTC_CASES_L] THEN DISJ2_TAC THEN EXISTS_TAC `s':A` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (s:A) s'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `s':A = s` THENL [RULE_ASSUM_TAC(REWRITE_RULE[GSYM SN_NOETHERIAN; SN_WF]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP WF_REFL) THEN DISCH_THEN(MP_TAC o SPEC `s:A`) THEN REWRITE_TAC[INV] THEN MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[RTC_CASES_L] THEN DISJ2_TAC THEN EXISTS_TAC `u':A` THEN UNDISCH_THEN `s':A = s` SUBST_ALL_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (u:A) u'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`u':A`; `u:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `s':A`) THEN ANTS_TAC THENL [MATCH_MP_TAC RTC_NE_IMP_TC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (s:A) s'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN DISCH_THEN(MP_TAC o SPECL [`s:A`; `s':A`; `t:A`]) THEN ANTS_TAC THENL [CONJ_TAC THENL [UNDISCH_TAC `RTC R (s:A) s'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `z:A = t` SUBST_ALL_TAC THENL [UNDISCH_TAC `RTC (\x y. R x y \/ S x y) t (z:A)` THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN ASM_CASES_TAC `z:A = t` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORMAL]) THEN REWRITE_TAC[] THEN MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[RTC_CASES] THEN DISJ2_TAC THEN EXISTS_TAC `s':A` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (s:A) s'` THEN MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]);;