(* ========================================================================= *) (* Formalization of general topological and metric spaces in HOL Light *) (* *) (* (c) Copyright, John Harrison 1998-2017 *) (* (c) Copyright, Marco Maggesi 2014-2017 *) (* (c) Copyright, Andrea Gabrielli 2016-2017 *) (* ========================================================================= *) needs "Library/products.ml";; needs "Multivariate/misc.ml";; needs "Library/iter.ml";; prioritize_real();; (* ------------------------------------------------------------------------- *) (* Instrument classical tactics to attach label to inductive hypothesis. *) (* ------------------------------------------------------------------------- *) let LABEL_INDUCT_TAC = let IND_TAC = MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC in fun (asl,w as gl) -> let s = fst (dest_var (fst (dest_forall w))) in (IND_TAC THENL [ALL_TAC; GEN_TAC THEN DISCH_THEN (LABEL_TAC("ind_"^s))]) gl;; let LABEL_ABBREV_TAC tm = let cvs,t = dest_eq tm in let v,vs = strip_comb cvs in let s = name_of v in let rs = list_mk_abs(vs,t) in let eq = mk_eq(rs,v) in let th1 = itlist (fun v th -> CONV_RULE(LAND_CONV BETA_CONV) (AP_THM th v)) (rev vs) (ASSUME eq) in let th2 = SIMPLE_CHOOSE v (SIMPLE_EXISTS v (GENL vs th1)) in let th3 = PROVE_HYP (EXISTS(mk_exists(v,eq),rs) (REFL rs)) th2 in fun (asl,w as gl) -> let avoids = itlist (union o frees o concl o snd) asl (frees w) in if mem v avoids then failwith "LABEL_ABBREV_TAC: variable already used" else CHOOSE_THEN (fun th -> RULE_ASSUM_TAC(PURE_ONCE_REWRITE_RULE[th]) THEN PURE_ONCE_REWRITE_TAC[th] THEN LABEL_TAC s th) th3 gl;; (* ------------------------------------------------------------------------- *) (* Further tactics for structuring the proof flow. *) (* ------------------------------------------------------------------------- *) let CUT_TAC : term -> tactic = let th = MESON [] `(p ==> q) /\ p ==> q` and ptm = `p:bool` in fun tm -> MATCH_MP_TAC (INST [tm,ptm] th) THEN CONJ_TAC;; let CLAIM_TAC s tm = SUBGOAL_THEN tm (DESTRUCT_TAC s);; let CONJ_LIST = end_itlist CONJ;; (* ------------------------------------------------------------------------- *) (* General notion of a topology. *) (* ------------------------------------------------------------------------- *) let istopology = new_definition `istopology L <=> {} IN L /\ (!s t. s IN L /\ t IN L ==> (s INTER t) IN L) /\ (!k. k SUBSET L ==> (UNIONS k) IN L)`;; let topology_tybij_th = prove (`?t:(A->bool)->bool. istopology t`, EXISTS_TAC `UNIV:(A->bool)->bool` THEN REWRITE_TAC[istopology; IN_UNIV]);; let topology_tybij = new_type_definition "topology" ("topology","open_in") topology_tybij_th;; let ISTOPOLOGY_OPEN_IN = prove (`istopology(open_in top)`, MESON_TAC[topology_tybij]);; let TOPOLOGY_EQ = prove (`!top1 top2. top1 = top2 <=> !s. open_in top1 s <=> open_in top2 s`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM FUN_EQ_THM] THEN REWRITE_TAC[ETA_AX] THEN MESON_TAC[topology_tybij]);; (* ------------------------------------------------------------------------- *) (* Infer the "universe" from union of all sets in the topology. *) (* ------------------------------------------------------------------------- *) let topspace = new_definition `topspace top = UNIONS {s | open_in top s}`;; (* ------------------------------------------------------------------------- *) (* Main properties of open sets. *) (* ------------------------------------------------------------------------- *) let OPEN_IN_CLAUSES = prove (`!top:(A)topology. open_in top {} /\ (!s t. open_in top s /\ open_in top t ==> open_in top (s INTER t)) /\ (!k. (!s. s IN k ==> open_in top s) ==> open_in top (UNIONS k))`, SIMP_TAC[IN; SUBSET; SIMP_RULE[istopology; IN; SUBSET] ISTOPOLOGY_OPEN_IN]);; let OPEN_IN_SUBSET = prove (`!top s. open_in top s ==> s SUBSET (topspace top)`, REWRITE_TAC[topspace] THEN SET_TAC[]);; let OPEN_IN_EMPTY = prove (`!top. open_in top {}`, REWRITE_TAC[OPEN_IN_CLAUSES]);; let OPEN_IN_INTER = prove (`!top s t. open_in top s /\ open_in top t ==> open_in top (s INTER t)`, REWRITE_TAC[OPEN_IN_CLAUSES]);; let OPEN_IN_UNIONS = prove (`!top k. (!s. s IN k ==> open_in top s) ==> open_in top (UNIONS k)`, REWRITE_TAC[OPEN_IN_CLAUSES]);; let OPEN_IN_UNION = prove (`!top s t. open_in top s /\ open_in top t ==> open_in top (s UNION t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM UNIONS_2] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]);; let OPEN_IN_TOPSPACE = prove (`!top. open_in top (topspace top)`, SIMP_TAC[topspace; OPEN_IN_UNIONS; IN_ELIM_THM]);; let OPEN_IN_INTERS = prove (`!top s:(A->bool)->bool. FINITE s /\ ~(s = {}) /\ (!t. t IN s ==> open_in top t) ==> open_in top (INTERS s)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[INTERS_INSERT; IMP_IMP; NOT_INSERT_EMPTY; FORALL_IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `f:(A->bool)->bool`] THEN ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN ASM_SIMP_TAC[INTERS_0; INTER_UNIV] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_INTER THEN ASM_SIMP_TAC[]);; let OPEN_IN_SUBOPEN = prove (`!top s:A->bool. open_in top s <=> !x. x IN s ==> ?t. open_in top t /\ x IN t /\ t SUBSET s`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[SUBSET_REFL]; ALL_TAC] THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[GSYM FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_UNIONS) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Closed sets. *) (* ------------------------------------------------------------------------- *) let closed_in = new_definition `closed_in top s <=> s SUBSET (topspace top) /\ open_in top (topspace top DIFF s)`;; let CLOSED_IN_SUBSET = prove (`!top s. closed_in top s ==> s SUBSET (topspace top)`, MESON_TAC[closed_in]);; let CLOSED_IN_EMPTY = prove (`!top. closed_in top {}`, REWRITE_TAC[closed_in; EMPTY_SUBSET; DIFF_EMPTY; OPEN_IN_TOPSPACE]);; let CLOSED_IN_TOPSPACE = prove (`!top. closed_in top (topspace top)`, REWRITE_TAC[closed_in; SUBSET_REFL; DIFF_EQ_EMPTY; OPEN_IN_EMPTY]);; let CLOSED_IN_UNION = prove (`!top s t. closed_in top s /\ closed_in top t ==> closed_in top (s UNION t)`, SIMP_TAC[closed_in; UNION_SUBSET; OPEN_IN_INTER; SET_RULE `u DIFF (s UNION t) = (u DIFF s) INTER (u DIFF t)`]);; let CLOSED_IN_INTERS = prove (`!top k:(A->bool)->bool. ~(k = {}) /\ (!s. s IN k ==> closed_in top s) ==> closed_in top (INTERS k)`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_in] THEN REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `topspace top DIFF INTERS k :A->bool = UNIONS {topspace top DIFF s | s IN k}` SUBST1_TAC THENL [ALL_TAC; MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]] THEN GEN_REWRITE_TAC I [EXTENSION] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[IN_UNIONS; IN_INTERS; IN_DIFF; EXISTS_IN_IMAGE] THEN MESON_TAC[]);; let CLOSED_IN_INTER = prove (`!top s t. closed_in top s /\ closed_in top t ==> closed_in top (s INTER t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_2] THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN ASM SET_TAC[]);; let OPEN_IN_CLOSED_IN_EQ = prove (`!top s. open_in top s <=> s SUBSET topspace top /\ closed_in top (topspace top DIFF s)`, REWRITE_TAC[closed_in; SET_RULE `(u DIFF s) SUBSET u`] THEN REWRITE_TAC[SET_RULE `u DIFF (u DIFF s) = u INTER s`] THEN MESON_TAC[OPEN_IN_SUBSET; SET_RULE `s SUBSET t ==> t INTER s = s`]);; let OPEN_IN_CLOSED_IN = prove (`!s. s SUBSET topspace top ==> (open_in top s <=> closed_in top (topspace top DIFF s))`, SIMP_TAC[OPEN_IN_CLOSED_IN_EQ]);; let CLOPEN_IN_COMPLEMENT = prove (`!top s:A->bool. closed_in top s /\ open_in top s <=> s SUBSET topspace top /\ closed_in top (topspace top DIFF s) /\ open_in top (topspace top DIFF s)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [closed_in] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [OPEN_IN_CLOSED_IN_EQ] THEN MESON_TAC[]);; let OPEN_IN_DIFF = prove (`!top s t:A->bool. open_in top s /\ closed_in top t ==> open_in top (s DIFF t)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `s DIFF t :A->bool = s INTER (topspace top DIFF t)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]; MATCH_MP_TAC OPEN_IN_INTER THEN ASM_MESON_TAC[closed_in]]);; let CLOSED_IN_DIFF = prove (`!top s t:A->bool. closed_in top s /\ open_in top t ==> closed_in top (s DIFF t)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `s DIFF t :A->bool = s INTER (topspace top DIFF t)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SET_TAC[]; MATCH_MP_TAC CLOSED_IN_INTER THEN ASM_MESON_TAC[OPEN_IN_CLOSED_IN_EQ]]);; let FORALL_OPEN_IN = prove (`!top. (!s. open_in top s ==> P s) <=> (!s. closed_in top s ==> P(topspace top DIFF s))`, MESON_TAC[OPEN_IN_CLOSED_IN_EQ; OPEN_IN_CLOSED_IN; closed_in; SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`]);; let FORALL_CLOSED_IN = prove (`!top. (!s. closed_in top s ==> P s) <=> (!s. open_in top s ==> P(topspace top DIFF s))`, MESON_TAC[OPEN_IN_CLOSED_IN_EQ; OPEN_IN_CLOSED_IN; closed_in; SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`]);; let EXISTS_OPEN_IN = prove (`!top. (?s. open_in top s /\ P s) <=> (?s. closed_in top s /\ P(topspace top DIFF s))`, MESON_TAC[OPEN_IN_CLOSED_IN_EQ; OPEN_IN_CLOSED_IN; closed_in; SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`]);; let EXISTS_CLOSED_IN = prove (`!top. (?s. closed_in top s /\ P s) <=> (?s. open_in top s /\ P(topspace top DIFF s))`, MESON_TAC[OPEN_IN_CLOSED_IN_EQ; OPEN_IN_CLOSED_IN; closed_in; SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`]);; let TOPOLOGY_FINER_CLOSED_IN = prove (`!top top':A topology. topspace top' = topspace top ==> ((!s. open_in top s ==> open_in top' s) <=> (!s. closed_in top s ==> closed_in top' s))`, REWRITE_TAC[FORALL_CLOSED_IN] THEN MESON_TAC[OPEN_IN_CLOSED_IN; OPEN_IN_SUBSET]);; let CLOSED_IN_UNIONS = prove (`!top s. FINITE s /\ (!t. t IN s ==> closed_in top t) ==> closed_in top (UNIONS s)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_INSERT; UNIONS_0; CLOSED_IN_EMPTY; IN_INSERT] THEN MESON_TAC[CLOSED_IN_UNION]);; let TOPOLOGY_EQ_ALT = prove (`!top1 top2:A topology. top1 = top2 <=> !s. closed_in top1 s <=> closed_in top2 s`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(fun th -> MP_TAC(SPEC `topspace top1:A->bool` th) THEN MP_TAC(SPEC `topspace top2:A->bool` th)) THEN REWRITE_TAC[CLOSED_IN_TOPSPACE; IMP_IMP] THEN DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN REWRITE_TAC[IMP_IMP; SUBSET_ANTISYM_EQ] THEN DISCH_TAC THEN REWRITE_TAC[TOPOLOGY_EQ; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN ASM_REWRITE_TAC[FORALL_AND_THM; FORALL_OPEN_IN] THEN ASM_MESON_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE]);; let CARD_EQ_OPEN_CLOSED_IN_SETS = prove (`!top:A topology. {s | open_in top s} =_c {s | closed_in top s}`, GEN_TAC THEN MATCH_MP_TAC EQ_C_INVOLUTION THEN EXISTS_TAC `\u:A->bool. topspace top DIFF u` THEN SIMP_TAC[IN_ELIM_THM; OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN REWRITE_TAC[SET_RULE `u DIFF (u DIFF s) = s <=> s SUBSET u`] THEN MESON_TAC[OPEN_IN_SUBSET; CLOSED_IN_SUBSET]);; (* ------------------------------------------------------------------------- *) (* The discrete topology. *) (* ------------------------------------------------------------------------- *) let discrete_topology = new_definition `discrete_topology u = topology {s:A->bool | s SUBSET u}`;; let discrete_space = new_definition `discrete_space (top:A topology) <=> discrete_topology(topspace top) = top`;; let OPEN_IN_DISCRETE_TOPOLOGY = prove (`!u s:A->bool. open_in (discrete_topology u) s <=> s SUBSET u`, REPEAT GEN_TAC THEN REWRITE_TAC[discrete_topology] THEN GEN_REWRITE_TAC RAND_CONV [SET_RULE `s SUBSET u <=> {t | t SUBSET u} s`] THEN AP_THM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 topology_tybij)] THEN REWRITE_TAC[istopology; IN_ELIM_THM; EMPTY_SUBSET; UNIONS_SUBSET] THEN SET_TAC[]);; let TOPSPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. topspace(discrete_topology u) = u`, REWRITE_TAC[topspace; OPEN_IN_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let CLOSED_IN_DISCRETE_TOPOLOGY = prove (`!u s:A->bool. closed_in (discrete_topology u) s <=> s SUBSET u`, REWRITE_TAC[closed_in] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; TOPSPACE_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let DISCRETE_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. discrete_space(discrete_topology u)`, REWRITE_TAC[discrete_space; TOPSPACE_DISCRETE_TOPOLOGY]);; let DISCRETE_SPACE = prove (`!top:A topology. discrete_space top <=> ?u. discrete_topology u = top`, MESON_TAC[discrete_space; DISCRETE_SPACE_DISCRETE_TOPOLOGY]);; let FORALL_DISCRETE_SPACES = prove (`(!top:A topology. discrete_space top ==> P (topspace top) top) <=> (!u:A->bool. P u (discrete_topology u))`, MESON_TAC[DISCRETE_SPACE; TOPSPACE_DISCRETE_TOPOLOGY]);; let DISCRETE_TOPOLOGY_UNIQUE = prove (`!top u:A->bool. discrete_topology u = top <=> topspace top = u /\ (!x. x IN u ==> open_in top {x})`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; OPEN_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[SING_SUBSET]; STRIP_TAC THEN REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_DISCRETE_TOPOLOGY] THEN X_GEN_TAC `s:A->bool` THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[OPEN_IN_SUBSET]] THEN SUBGOAL_THEN `s = UNIONS(IMAGE (\x:A. {x}) s)` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_IMAGE] THEN SET_TAC[]; MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM SET_TAC[]]]);; let DISCRETE_SPACE_UNIQUE = prove (`!top:A topology. discrete_space top <=> !x. x IN topspace top ==> open_in top {x}`, REWRITE_TAC[discrete_space; DISCRETE_TOPOLOGY_UNIQUE]);; let DISCRETE_TOPOLOGY_UNIQUE_ALT = prove (`!top u:A->bool. discrete_topology u = top <=> topspace top SUBSET u /\ (!x. x IN u ==> open_in top {x})`, REPEAT GEN_TAC THEN REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN MATCH_MP_TAC(TAUT `(r ==> q) ==> ((p /\ q) /\ r <=> p /\ r)`) THEN DISCH_TAC THEN MATCH_MP_TAC OPEN_IN_SUBSET THEN SUBGOAL_THEN `u = UNIONS(IMAGE (\x:A. {x}) u)` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_IMAGE] THEN SET_TAC[]; MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE]]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY = prove (`!top:A topology. top = discrete_topology {} <=> topspace top = {}`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN DISCH_TAC THEN REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_DISCRETE_TOPOLOGY] THEN X_GEN_TAC `u:A->bool` THEN EQ_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET]; REWRITE_TAC[SET_RULE `s SUBSET {} <=> s = {}`] THEN ASM_MESON_TAC[OPEN_IN_EMPTY; OPEN_IN_TOPSPACE]]);; let DISCRETE_SPACE_TOPSPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> discrete_space top`, MESON_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY; discrete_space]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_SING = prove (`!top a:A. top = discrete_topology {a} <=> topspace top = {a}`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN DISCH_TAC THEN REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_DISCRETE_TOPOLOGY] THEN X_GEN_TAC `u:A->bool` THEN EQ_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET]; REWRITE_TAC[SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN ASM_MESON_TAC[OPEN_IN_EMPTY; OPEN_IN_TOPSPACE]]);; let DISCRETE_SPACE_OPEN_EQ = prove (`!top:A topology. discrete_space top <=> !s. open_in top s <=> s SUBSET topspace top`, GEN_TAC THEN REWRITE_TAC[discrete_space; TOPOLOGY_EQ] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY] THEN MESON_TAC[]);; let DISCRETE_SPACE_OPEN = prove (`!top:A topology. discrete_space top <=> !s. s SUBSET topspace top ==> open_in top s`, REWRITE_TAC[DISCRETE_SPACE_OPEN_EQ] THEN MESON_TAC[OPEN_IN_SUBSET]);; let DISCRETE_SPACE_CLOSED_EQ = prove (`!top:A topology. discrete_space top <=> !s. closed_in top s <=> s SUBSET topspace top`, GEN_TAC THEN REWRITE_TAC[discrete_space; TOPOLOGY_EQ_ALT] THEN REWRITE_TAC[CLOSED_IN_DISCRETE_TOPOLOGY] THEN MESON_TAC[]);; let DISCRETE_SPACE_CLOSED = prove (`!top:A topology. discrete_space top <=> !s. s SUBSET topspace top ==> closed_in top s`, REWRITE_TAC[DISCRETE_SPACE_CLOSED_EQ] THEN MESON_TAC[CLOSED_IN_SUBSET]);; let OPEN_IN_DISCRETE_SPACE = prove (`!top (s:A->bool). discrete_space top ==> (open_in top s <=> s SUBSET topspace top)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_DISCRETE_SPACES] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY]);; let CLOSED_IN_DISCRETE_SPACE = prove (`!top (s:A->bool). discrete_space top ==> (closed_in top s <=> s SUBSET topspace top)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_DISCRETE_SPACES] THEN REWRITE_TAC[CLOSED_IN_DISCRETE_TOPOLOGY]);; (* ------------------------------------------------------------------------- *) (* Subspace topology. *) (* ------------------------------------------------------------------------- *) let subtopology = new_definition `subtopology top u = topology {s INTER u | open_in top s}`;; let ISTOPOLOGY_SUBTOPOLOGY = prove (`!top u:A->bool. istopology {s INTER u | open_in top s}`, REWRITE_TAC[istopology; SET_RULE `{s INTER u | open_in top s} = IMAGE (\s. s INTER u) {s | open_in top s}`] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SUBSET_IMAGE; IN_IMAGE; IN_ELIM_THM; SUBSET] THEN REPEAT GEN_TAC THEN REPEAT CONJ_TAC THENL [EXISTS_TAC `{}:A->bool` THEN REWRITE_TAC[OPEN_IN_EMPTY; INTER_EMPTY]; SIMP_TAC[SET_RULE `(s INTER u) INTER t INTER u = (s INTER t) INTER u`] THEN ASM_MESON_TAC[OPEN_IN_INTER]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:(A->bool)->bool`; `g:(A->bool)->bool`] THEN STRIP_TAC THEN EXISTS_TAC `UNIONS g :A->bool` THEN ASM_SIMP_TAC[OPEN_IN_UNIONS; INTER_UNIONS] THEN SET_TAC[]]);; let ISTOPOLOGY_RELATIVE_TO = prove (`!top u:A->bool. istopology top ==> istopology(top relative_to u)`, REWRITE_TAC[RELATIVE_TO] THEN ONCE_REWRITE_TAC[INTER_COMM] THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [topology_tybij] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[ISTOPOLOGY_SUBTOPOLOGY]);; let OPEN_IN_SUBTOPOLOGY = prove (`!top u s. open_in (subtopology top u) s <=> ?t. open_in top t /\ s = t INTER u`, REWRITE_TAC[subtopology] THEN SIMP_TAC[REWRITE_RULE[CONJUNCT2 topology_tybij] ISTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM]);; let TOPOLOGY_FINER_SUBTOPOLOGY = prove (`!top top' (u:A->bool). (!s. open_in top s ==> open_in top' s) ==> (!s. open_in (subtopology top u) s ==> open_in (subtopology top' u) s)`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN MESON_TAC[]);; let OPEN_IN_SUBSET_TOPSPACE = prove (`!top s t:A->bool. open_in top s /\ s SUBSET t ==> open_in (subtopology top t) s`, SIMP_TAC[OPEN_IN_SUBTOPOLOGY; SET_RULE `s SUBSET t <=> s INTER t = s`] THEN MESON_TAC[]);; let OPEN_INTER_OPEN_IN_SUBTOPOLOGY = prove (`!top s t:A->bool. open_in top s ==> open_in (subtopology top t) (s INTER t)`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN MESON_TAC[]);; let OPEN_IN_SUBTOPOLOGY_INTER_OPEN = prove (`!top s t:A->bool. open_in top t ==> open_in (subtopology top s) (s INTER t)`, ONCE_REWRITE_TAC[INTER_COMM] THEN REWRITE_TAC[OPEN_INTER_OPEN_IN_SUBTOPOLOGY]);; let OPEN_IN_RELATIVE_TO = prove (`!top s:A->bool. (open_in top relative_to s) = open_in (subtopology top s)`, REWRITE_TAC[relative_to; OPEN_IN_SUBTOPOLOGY; FUN_EQ_THM] THEN MESON_TAC[INTER_COMM]);; let OPEN_IN_SUBTOPOLOGY_ALT = prove (`!top u s:A->bool. open_in (subtopology top u) s <=> s IN {u INTER t | open_in top t}`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; IN_ELIM_THM] THEN SET_TAC[]);; let OPEN_IN_SUBSET_TRANS = prove (`!top s t u:A->bool. open_in (subtopology top u) s /\ s SUBSET t /\ t SUBSET u ==> open_in (subtopology top t) s`, REWRITE_TAC[GSYM OPEN_IN_RELATIVE_TO; RELATIVE_TO_SUBSET_TRANS]);; let OPEN_IN_OPEN_SUBTOPOLOGY = prove (`!top s t:A->bool. open_in top s ==> (open_in (subtopology top s) t <=> open_in top t /\ t SUBSET s)`, REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN REWRITE_TAC[OPEN_IN_SUBSET_TOPSPACE] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; OPEN_IN_SUBTOPOLOGY_ALT] THEN SIMP_TAC[FORALL_IN_GSPEC; OPEN_IN_INTER; INTER_SUBSET]);; let OPEN_IN_SUBTOPOLOGY_INTER_SUBSET = prove (`!top s u v:A->bool. open_in (subtopology top u) (u INTER s) /\ v SUBSET u ==> open_in (subtopology top v) (v INTER s)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);; let OPEN_IN_SUBTOPOLOGY_INTER_OPEN_IN = prove (`!top s t u. open_in (subtopology top u) s /\ open_in top t ==> open_in (subtopology top u) (s INTER t)`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[OPEN_IN_INTER; INTER_ACI]);; let TOPSPACE_SUBTOPOLOGY = prove (`!top u. topspace(subtopology top u) = topspace top INTER u`, REWRITE_TAC[topspace; OPEN_IN_SUBTOPOLOGY; INTER_UNIONS] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM]);; let TOPSPACE_SUBTOPOLOGY_SUBSET = prove (`!top s:A->bool. s SUBSET topspace top ==> topspace(subtopology top s) = s`, REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let TOPSPACE_SUBTOPOLOGY_IS_SUBSET = prove (`!top s:A->bool. topspace(subtopology top s) SUBSET s`, REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; INTER_SUBSET]);; let OPEN_IN_TRANS = prove (`!top s t u:A->bool. open_in (subtopology top t) s /\ open_in (subtopology top u) t ==> open_in (subtopology top u) s`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[OPEN_IN_INTER; INTER_ACI]);; let CLOSED_IN_SUBTOPOLOGY = prove (`!top u s. closed_in (subtopology top u) s <=> ?t:A->bool. closed_in top t /\ s = t INTER u`, REWRITE_TAC[closed_in; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET_INTER; OPEN_IN_SUBTOPOLOGY; RIGHT_AND_EXISTS_THM] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `topspace top DIFF t :A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_TOPSPACE; OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]);; let CLOSED_IN_SUBSET_TOPSPACE = prove (`!top s t:A->bool. closed_in top s /\ s SUBSET t ==> closed_in (subtopology top t) s`, SIMP_TAC[CLOSED_IN_SUBTOPOLOGY; SET_RULE `s SUBSET t <=> s INTER t = s`] THEN MESON_TAC[]);; let CLOSED_INTER_CLOSED_IN_SUBTOPOLOGY = prove (`!top s t:A->bool. closed_in top s ==> closed_in (subtopology top t) (s INTER t)`, REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN MESON_TAC[]);; let CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED = prove (`!top s t:A->bool. closed_in top t ==> closed_in (subtopology top s) (s INTER t)`, ONCE_REWRITE_TAC[INTER_COMM] THEN REWRITE_TAC[CLOSED_INTER_CLOSED_IN_SUBTOPOLOGY]);; let CLOSED_IN_RELATIVE_TO = prove (`!top s:A->bool. (closed_in top relative_to s) = closed_in (subtopology top s)`, REWRITE_TAC[relative_to; CLOSED_IN_SUBTOPOLOGY; FUN_EQ_THM] THEN MESON_TAC[INTER_COMM]);; let CLOSED_IN_SUBTOPOLOGY_ALT = prove (`!top u s:A->bool. closed_in (subtopology top u) s <=> s IN {u INTER t | closed_in top t}`, REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY; IN_ELIM_THM] THEN SET_TAC[]);; let CLOSED_IN_SUBSET_TRANS = prove (`!top s t u:A->bool. closed_in (subtopology top u) s /\ s SUBSET t /\ t SUBSET u ==> closed_in (subtopology top t) s`, REWRITE_TAC[GSYM CLOSED_IN_RELATIVE_TO; RELATIVE_TO_SUBSET_TRANS]);; let CLOSED_IN_CLOSED_SUBTOPOLOGY = prove (`!top s t:A->bool. closed_in top s ==> (closed_in (subtopology top s) t <=> closed_in top t /\ t SUBSET s)`, REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN REWRITE_TAC[CLOSED_IN_SUBSET_TOPSPACE] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; CLOSED_IN_SUBTOPOLOGY_ALT] THEN SIMP_TAC[FORALL_IN_GSPEC; CLOSED_IN_INTER; INTER_SUBSET]);; let CLOSED_IN_SUBTOPOLOGY_INTER_SUBSET = prove (`!top s u v:A->bool. closed_in (subtopology top u) (u INTER s) /\ v SUBSET u ==> closed_in (subtopology top v) (v INTER s)`, REPEAT GEN_TAC THEN SIMP_TAC[CLOSED_IN_SUBTOPOLOGY; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);; let CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED_IN = prove (`!top s t u. closed_in (subtopology top u) s /\ closed_in top t ==> closed_in (subtopology top u) (s INTER t)`, REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[CLOSED_IN_INTER; INTER_ACI]);; let SUBTOPOLOGY_SUBTOPOLOGY = prove (`!top s t:A->bool. subtopology (subtopology top s) t = subtopology top (s INTER t)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[subtopology] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN REWRITE_TAC[SET_RULE `{f x | ?y. P y /\ x = g y} = {f(g y) | P y}`] THEN REWRITE_TAC[INTER_ASSOC]);; let CLOSED_IN_TRANS = prove (`!top s t u:A->bool. closed_in (subtopology top t) s /\ closed_in (subtopology top u) t ==> closed_in (subtopology top u) s`, REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CLOSED_IN_INTER; INTER_ACI]);; let OPEN_IN_TOPSPACE_EMPTY = prove (`!top:A topology s. topspace top = {} ==> (open_in top s <=> s = {})`, MESON_TAC[OPEN_IN_EMPTY; OPEN_IN_SUBSET; SUBSET_EMPTY]);; let CLOSED_IN_TOPSPACE_EMPTY = prove (`!top:A topology s. topspace top = {} ==> (closed_in top s <=> s = {})`, MESON_TAC[CLOSED_IN_EMPTY; CLOSED_IN_SUBSET; SUBSET_EMPTY]);; let OPEN_IN_SUBTOPOLOGY_EMPTY = prove (`!top s. open_in (subtopology top {}) s <=> s = {}`, SIMP_TAC[OPEN_IN_TOPSPACE_EMPTY; TOPSPACE_SUBTOPOLOGY; INTER_EMPTY]);; let CLOSED_IN_SUBTOPOLOGY_EMPTY = prove (`!top s. closed_in (subtopology top {}) s <=> s = {}`, SIMP_TAC[CLOSED_IN_TOPSPACE_EMPTY; TOPSPACE_SUBTOPOLOGY; INTER_EMPTY]);; let OPEN_IN_SUBTOPOLOGY_REFL = prove (`!top u:A->bool. open_in (subtopology top u) u <=> u SUBSET topspace top`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s INTER t SUBSET u`) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET]; DISCH_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]]);; let CLOSED_IN_SUBTOPOLOGY_REFL = prove (`!top u:A->bool. closed_in (subtopology top u) u <=> u SUBSET topspace top`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s INTER t SUBSET u`) THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET]; DISCH_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN ASM SET_TAC[]]);; let SUBTOPOLOGY_SUPERSET = prove (`!top s:A->bool. topspace top SUBSET s ==> subtopology top s = top`, REPEAT GEN_TAC THEN SIMP_TAC[TOPOLOGY_EQ; OPEN_IN_SUBTOPOLOGY] THEN DISCH_TAC THEN X_GEN_TAC `u:A->bool` THEN EQ_TAC THENL [DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP OPEN_IN_SUBSET th)) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]; DISCH_TAC THEN EXISTS_TAC `u:A->bool` THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let SUBTOPOLOGY_TOPSPACE = prove (`!top. subtopology top (topspace top) = top`, SIMP_TAC[SUBTOPOLOGY_SUPERSET; SUBSET_REFL]);; let SUBTOPOLOGY_UNIV = prove (`!top. subtopology top UNIV = top`, SIMP_TAC[SUBTOPOLOGY_SUPERSET; SUBSET_UNIV]);; let SUBTOPOLOGY_RESTRICT = prove (`!top s:A->bool. subtopology top s = subtopology top (topspace top INTER s)`, MESON_TAC[SUBTOPOLOGY_TOPSPACE; SUBTOPOLOGY_SUBTOPOLOGY]);; let OPEN_IN_IMP_SUBSET = prove (`!top s t. open_in (subtopology top s) t ==> t SUBSET s`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN SET_TAC[]);; let CLOSED_IN_IMP_SUBSET = prove (`!top s t. closed_in (subtopology top s) t ==> t SUBSET s`, REWRITE_TAC[closed_in; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let OPEN_IN_TRANS_FULL = prove (`!top s u. open_in (subtopology top u) s /\ open_in top u ==> open_in top s`, MESON_TAC[OPEN_IN_TRANS; SUBTOPOLOGY_TOPSPACE]);; let CLOSED_IN_TRANS_FULL = prove (`!top s u. closed_in (subtopology top u) s /\ closed_in top u ==> closed_in top s`, MESON_TAC[CLOSED_IN_TRANS; SUBTOPOLOGY_TOPSPACE]);; let OPEN_IN_SUBTOPOLOGY_DIFF_CLOSED = prove (`!top s t:A->bool. s SUBSET topspace top /\ closed_in top t ==> open_in (subtopology top s) (s DIFF t)`, REWRITE_TAC[closed_in; OPEN_IN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `topspace top DIFF t:A->bool` THEN ASM SET_TAC[]);; let CLOSED_IN_SUBTOPOLOGY_DIFF_OPEN = prove (`!top s t:A->bool. s SUBSET topspace top /\ open_in top t ==> closed_in (subtopology top s) (s DIFF t)`, REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ; CLOSED_IN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `topspace top DIFF t:A->bool` THEN ASM SET_TAC[]);; let OPEN_IN_SUBTOPOLOGY_UNION = prove (`!top s t u:A->bool. open_in (subtopology top t) s /\ open_in (subtopology top u) s ==> open_in (subtopology top (t UNION u)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s':A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t':A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `s' INTER t':A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN ASM SET_TAC[]);; let CLOSED_IN_SUBTOPOLOGY_UNION = prove (`!top s t u:A->bool. closed_in (subtopology top t) s /\ closed_in (subtopology top u) s ==> closed_in (subtopology top (t UNION u)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s':A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t':A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `s' INTER t':A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_INTER] THEN ASM SET_TAC[]);; let SUBTOPOLOGY_DISCRETE_TOPOLOGY = prove (`!u s:A->bool. subtopology (discrete_topology u) s = discrete_topology(u INTER s)`, REWRITE_TAC[subtopology; OPEN_IN_DISCRETE_TOPOLOGY] THEN REPEAT GEN_TAC THEN REWRITE_TAC[discrete_topology] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN ONCE_REWRITE_TAC[SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN SIMP_TAC[IN_ELIM_THM; SUBSET_INTER] THEN SET_TAC[]);; let DISCRETE_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. discrete_space top ==> discrete_space(subtopology top s)`, REWRITE_TAC[DISCRETE_SPACE] THEN MESON_TAC[SUBTOPOLOGY_DISCRETE_TOPOLOGY]);; (* ------------------------------------------------------------------------- *) (* Topology bases. *) (* ------------------------------------------------------------------------- *) let ISTOPOLOGY_BASE_ALT = prove (`!P:(A->bool)->bool. istopology (ARBITRARY UNION_OF P) <=> (!s t. (ARBITRARY UNION_OF P) s /\ (ARBITRARY UNION_OF P) t ==> (ARBITRARY UNION_OF P) (s INTER t))`, GEN_TAC THEN REWRITE_TAC[REWRITE_RULE[IN] istopology] THEN REWRITE_TAC[ARBITRARY_UNION_OF_EMPTY] THEN MATCH_MP_TAC(TAUT `q ==> (p /\ q <=> p)`) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ARBITRARY_UNION_OF_UNIONS THEN ASM SET_TAC[]);; let ISTOPOLOGY_BASE_EQ = prove (`!P:(A->bool)->bool. istopology (ARBITRARY UNION_OF P) <=> (!s t. P s /\ P t ==> (ARBITRARY UNION_OF P) (s INTER t))`, REWRITE_TAC[ISTOPOLOGY_BASE_ALT; ARBITRARY_UNION_OF_INTER_EQ]);; let ISTOPOLOGY_BASE = prove (`!P:(A->bool)->bool. (!s t. P s /\ P t ==> P(s INTER t)) ==> istopology (ARBITRARY UNION_OF P)`, REWRITE_TAC[ISTOPOLOGY_BASE_EQ] THEN MESON_TAC[ARBITRARY_UNION_OF_INC]);; let MINIMAL_TOPOLOGY_BASE = prove (`!top:A topology P. (!s. P s ==> open_in top s) /\ (!s t. P s /\ P t ==> P(s INTER t)) ==> !s. open_in(topology(ARBITRARY UNION_OF P)) s ==> open_in top s`, REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ISTOPOLOGY_BASE) THEN SIMP_TAC[topology_tybij] THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[FORALL_UNION_OF; OPEN_IN_UNIONS]);; let OPEN_IN_TOPOLOGY_BASE_UNIQUE = prove (`!top:A topology B. open_in top = ARBITRARY UNION_OF B <=> (!v. v IN B ==> open_in top v) /\ (!u x. open_in top u /\ x IN u ==> ?v. v IN B /\ x IN v /\ v SUBSET u)`, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[ARBITRARY_UNION_OF_INC; IN]; ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_UNION_OF; ARBITRARY; SUBSET; IN_UNIONS] THEN SET_TAC[]; REWRITE_TAC[FUN_EQ_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN ASM_REWRITE_TAC[FORALL_UNION_OF; ARBITRARY; FORALL_AND_THM] THEN CONJ_TAC THENL [X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[UNION_OF; ARBITRARY] THEN EXISTS_TAC `{v:A->bool | v IN B /\ v SUBSET u}` THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM] THEN ASM SET_TAC[]; REPEAT STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]]]);; let TOPOLOGY_BASE_UNIQUE = prove (`!top:A topology P. (!s. P s ==> open_in top s) /\ (!u x. open_in top u /\ x IN u ==> ?b. P b /\ x IN b /\ b SUBSET u) ==> topology(ARBITRARY UNION_OF P) = top`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[topology_tybij] `open_in top = P ==> topology P = top`) THEN REWRITE_TAC[OPEN_IN_TOPOLOGY_BASE_UNIQUE] THEN ASM SET_TAC[]);; let TOPOLOGY_BASES_EQ = prove (`!P Q. (!u x. P u /\ x IN u ==> ?v. Q v /\ x IN v /\ v SUBSET u) /\ (!v x. Q v /\ x IN v ==> ?u. P u /\ x IN u /\ u SUBSET v) ==> topology (ARBITRARY UNION_OF P) = topology (ARBITRARY UNION_OF Q)`, REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ARBITRARY_UNION_OF_IDEMPOT] THEN REWRITE_TAC[SUBSET; IN] THEN GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] UNION_OF_MONO) THEN REWRITE_TAC[ARBITRARY_UNION_OF_ALT] THEN ASM SET_TAC[]);; let ISTOPOLOGY_SUBBASE = prove (`!P s:A->bool. istopology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF P relative_to s))`, REPEAT GEN_TAC THEN MATCH_MP_TAC ISTOPOLOGY_BASE THEN MATCH_MP_TAC RELATIVE_TO_INTER THEN REWRITE_TAC[FINITE_INTERSECTION_OF_INTER]);; let OPEN_IN_SUBBASE = prove (`!B u s:A->bool. open_in (topology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF B relative_to u))) s <=> (ARBITRARY UNION_OF (FINITE INTERSECTION_OF B relative_to u)) s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 topology_tybij); GSYM FUN_EQ_THM; ETA_AX] THEN REWRITE_TAC[ISTOPOLOGY_SUBBASE]);; let TOPSPACE_SUBBASE = prove (`!B u:A->bool. topspace(topology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF B relative_to u))) = u`, REWRITE_TAC[OPEN_IN_SUBBASE; topspace; GSYM SUBSET_ANTISYM_EQ] THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[UNIONS_SUBSET; IN_ELIM_THM; FORALL_UNION_OF] THEN GEN_TAC THEN REWRITE_TAC[ARBITRARY] THEN MATCH_MP_TAC(MESON[] `(!x. Q x ==> R x) ==> (!x. P x ==> Q x) ==> (!x. P x ==> R x)`) THEN REWRITE_TAC[FORALL_RELATIVE_TO; INTER_SUBSET]; MATCH_MP_TAC(SET_RULE `x IN s ==> x SUBSET UNIONS s`) THEN REWRITE_TAC[UNION_OF; ARBITRARY; IN_ELIM_THM] THEN EXISTS_TAC `{u:A->bool}` THEN REWRITE_TAC[UNIONS_1] THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; relative_to] THEN EXISTS_TAC `(:A)` THEN REWRITE_TAC[INTER_UNIV] THEN REWRITE_TAC[INTERSECTION_OF] THEN EXISTS_TAC `{}:(A->bool)->bool` THEN REWRITE_TAC[FINITE_EMPTY; NOT_IN_EMPTY; INTERS_0]]);; let MINIMAL_TOPOLOGY_SUBBASE = prove (`!top:A topology u P. (!s. P s ==> open_in top s) /\ open_in top u ==> !s. open_in(topology(ARBITRARY UNION_OF (FINITE INTERSECTION_OF P relative_to u))) s ==> open_in top s`, REPEAT GEN_TAC THEN STRIP_TAC THEN SIMP_TAC[REWRITE_RULE[topology_tybij] ISTOPOLOGY_SUBBASE] THEN REWRITE_TAC[FORALL_UNION_OF; ARBITRARY] THEN X_GEN_TAC `v:(A->bool)->bool` THEN DISCH_TAC THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_INSERT] THEN MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; FINITE_INSERT; NOT_INSERT_EMPTY] THEN ASM_MESON_TAC[]);; let ISTOPOLOGY_SUBBASE_UNIV = prove (`!P:(A->bool)->bool. istopology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF P))`, GEN_TAC THEN MATCH_MP_TAC ISTOPOLOGY_BASE THEN REWRITE_TAC[FINITE_INTERSECTION_OF_INTER]);; (* ------------------------------------------------------------------------- *) (* Hereditary topological properties. *) (* ------------------------------------------------------------------------- *) let hereditarily = new_definition `hereditarily P (top:A topology) <=> !s. s SUBSET topspace top ==> P(subtopology top s)`;; let HEREDITARILY = prove (`!P top:A topology. hereditarily P top <=> !s. P(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[hereditarily] THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[INTER_SUBSET]);; let HEREDITARILY_MONO = prove (`!P Q:A topology->bool. (!top. P top ==> Q t) ==> (!top:A topology. hereditarily P top ==> hereditarily P top)`, REWRITE_TAC[hereditarily] THEN MESON_TAC[]);; let HEREDITARILY_INC = prove (`!P:A topology->bool. hereditarily P top ==> P top`, REWRITE_TAC[HEREDITARILY] THEN MESON_TAC[SUBTOPOLOGY_TOPSPACE]);; let HEREDITARILY_SUBTOPOLOGY = prove (`!P top s:A->bool. hereditarily P top ==> hereditarily P (subtopology top s)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[HEREDITARILY] THEN SIMP_TAC[SUBTOPOLOGY_SUBTOPOLOGY]);; (* ------------------------------------------------------------------------- *) (* Derived set (set of limit points). *) (* ------------------------------------------------------------------------- *) parse_as_infix("derived_set_of",(21,"right"));; let derived_set_of = new_definition `top derived_set_of s = {x:A | x IN topspace top /\ (!t. x IN t /\ open_in top t ==> ?y. ~(y = x) /\ y IN s /\ y IN t)}`;; let DERIVED_SET_OF_RESTRICT = prove (`!top s:A->bool. top derived_set_of s = top derived_set_of (topspace top INTER s)`, REWRITE_TAC[derived_set_of; EXTENSION; IN_ELIM_THM; IN_INTER] THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let IN_DERIVED_SET_OF = prove (`!top s x:A. x IN top derived_set_of s <=> x IN topspace top /\ (!t. x IN t /\ open_in top t ==> ?y. ~(y = x) /\ y IN s /\ y IN t)`, REWRITE_TAC[derived_set_of; IN_ELIM_THM]);; let DERIVED_SET_OF_SUBSET_TOPSPACE = prove (`!top s:A->bool. top derived_set_of s SUBSET topspace top`, REWRITE_TAC[derived_set_of] THEN SET_TAC[]);; let DERIVED_SET_OF_SUBTOPOLOGY = prove (`!top u s:A->bool. (subtopology top u) derived_set_of s = u INTER top derived_set_of (u INTER s)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[derived_set_of; OPEN_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> r ==> p /\ q ==> s`] THEN REWRITE_TAC[FORALL_UNWIND_THM2; IN_INTER; IN_ELIM_THM] THEN ASM SET_TAC[]);; let DERIVED_SET_OF_SUBSET_SUBTOPOLOGY = prove (`!top s t:A->bool. (subtopology top s) derived_set_of t SUBSET s`, SIMP_TAC[DERIVED_SET_OF_SUBTOPOLOGY; INTER_SUBSET]);; let DERIVED_SET_OF_EMPTY = prove (`!top:A topology. top derived_set_of {} = {}`, REWRITE_TAC[EXTENSION; IN_DERIVED_SET_OF; NOT_IN_EMPTY] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let DERIVED_SET_OF_MONO = prove (`!top s t:A->bool. s SUBSET t ==> top derived_set_of s SUBSET top derived_set_of t`, REWRITE_TAC[derived_set_of] THEN SET_TAC[]);; let DERIVED_SET_OF_UNION = prove (`!top s t:A->bool. top derived_set_of (s UNION t) = top derived_set_of s UNION top derived_set_of t`, REPEAT GEN_TAC THEN SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; UNION_SUBSET; DERIVED_SET_OF_MONO; SUBSET_UNION] THEN REWRITE_TAC[SUBSET; IN_DERIVED_SET_OF; IN_UNION] THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM; NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `u:A->bool`) (X_CHOOSE_TAC `v:A->bool`)) THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER] THEN ASM_MESON_TAC[]);; let DERIVED_SET_OF_UNIONS = prove (`!top (f:(A->bool)->bool). FINITE f ==> top derived_set_of (UNIONS f) = UNIONS {top derived_set_of s | s IN f}`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[UNIONS_0; NOT_IN_EMPTY; UNIONS_INSERT; DERIVED_SET_OF_EMPTY; DERIVED_SET_OF_UNION; SIMPLE_IMAGE; IMAGE_CLAUSES]);; let DERIVED_SET_OF_TOPSPACE = prove (`!top:A topology. top derived_set_of (topspace top) = {x | x IN topspace top /\ ~open_in top {x}}`, GEN_TAC THEN REWRITE_TAC[EXTENSION; derived_set_of; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THENL [DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{a:A}`) THEN ASM SET_TAC[]; X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN ASM_CASES_TAC `u = {a:A}` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let DISCRETE_TOPOLOGY_UNIQUE_DERIVED_SET = prove (`!top u:A->bool. discrete_topology u = top <=> topspace top = u /\ top derived_set_of u = {}`, REPEAT GEN_TAC THEN REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE] THEN ASM_CASES_TAC `u:A->bool = topspace top` THEN ASM_REWRITE_TAC[DERIVED_SET_OF_TOPSPACE] THEN SET_TAC[]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EQ = prove (`!top u:A->bool. subtopology top u = discrete_topology u <=> u SUBSET topspace top /\ u INTER top derived_set_of u = {}`, REPEAT GEN_TAC THEN CONV_TAC (LAND_CONV SYM_CONV) THEN REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE_DERIVED_SET] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; DERIVED_SET_OF_SUBTOPOLOGY] THEN REWRITE_TAC[SET_RULE `u INTER u = u`] THEN SET_TAC[]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY = prove (`!top s:A->bool. s SUBSET topspace top /\ s INTER top derived_set_of s = {} ==> subtopology top s = discrete_topology s`, REWRITE_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EQ]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_GEN = prove (`!top s:A->bool. s INTER top derived_set_of s = {} ==> subtopology top s = discrete_topology(topspace top INTER s)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN MATCH_MP_TAC SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY THEN REWRITE_TAC[GSYM DERIVED_SET_OF_RESTRICT] THEN ASM SET_TAC[]);; let OPEN_IN_INTER_DERIVED_SET_OF_SUBSET = prove (`!top s t:A->bool. open_in top s ==> s INTER top derived_set_of t SUBSET top derived_set_of (s INTER t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[derived_set_of] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s INTER u:A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER] THEN MESON_TAC[]);; let OPEN_IN_INTER_DERIVED_SET_OF_EQ = prove (`!top s t:A->bool. open_in top s ==> s INTER top derived_set_of t = s INTER top derived_set_of (s INTER t)`, SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; INTER_SUBSET; SUBSET_INTER] THEN SIMP_TAC[OPEN_IN_INTER_DERIVED_SET_OF_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> u INTER s SUBSET t`) THEN MATCH_MP_TAC DERIVED_SET_OF_MONO THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Closure with respect to a topological space. *) (* ------------------------------------------------------------------------- *) parse_as_infix("closure_of",(21,"right"));; let closure_of = new_definition `top closure_of s = {x:A | x IN topspace top /\ (!t. x IN t /\ open_in top t ==> ?y. y IN s /\ y IN t)}`;; let CLOSURE_OF_RESTRICT = prove (`!top s:A->bool. top closure_of s = top closure_of (topspace top INTER s)`, REWRITE_TAC[closure_of; EXTENSION; IN_ELIM_THM; IN_INTER] THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let IN_CLOSURE_OF = prove (`!top s x:A. x IN top closure_of s <=> x IN topspace top /\ (!t. x IN t /\ open_in top t ==> ?y. y IN s /\ y IN t)`, REWRITE_TAC[closure_of; IN_ELIM_THM]);; let CLOSURE_OF = prove (`!top s:A->bool. top closure_of s = topspace top INTER (s UNION top derived_set_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION] THEN FIX_TAC "[x]" THEN REWRITE_TAC[IN_CLOSURE_OF; IN_DERIVED_SET_OF; IN_UNION; IN_INTER] THEN ASM_CASES_TAC `x:A IN topspace top` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(LABEL_TAC "x_ok") THEN MESON_TAC[]);; let CLOSURE_OF_ALT = prove (`!top s:A->bool. top closure_of s = topspace top INTER s UNION top derived_set_of s`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSURE_OF] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] DERIVED_SET_OF_SUBSET_TOPSPACE) THEN SET_TAC[]);; let DERIVED_SET_OF_SUBSET_CLOSURE_OF = prove (`!top s:A->bool. top derived_set_of s SUBSET top closure_of s`, REWRITE_TAC[CLOSURE_OF; SUBSET_INTER; DERIVED_SET_OF_SUBSET_TOPSPACE] THEN SIMP_TAC[SUBSET_UNION]);; let CLOSURE_OF_SUBTOPOLOGY = prove (`!top u s:A->bool. (subtopology top u) closure_of s = u INTER (top closure_of (u INTER s))`, SIMP_TAC[CLOSURE_OF; TOPSPACE_SUBTOPOLOGY; DERIVED_SET_OF_SUBTOPOLOGY] THEN SET_TAC[]);; let CLOSURE_OF_EMPTY = prove (`!top. top closure_of {}:A->bool = {}`, REWRITE_TAC[EXTENSION; IN_CLOSURE_OF; NOT_IN_EMPTY] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let CLOSURE_OF_TOPSPACE = prove (`!top:A topology. top closure_of topspace top = topspace top`, REWRITE_TAC[EXTENSION; IN_CLOSURE_OF] THEN MESON_TAC[]);; let CLOSURE_OF_UNIV = prove (`!top. top closure_of (:A) = topspace top`, REWRITE_TAC[closure_of] THEN SET_TAC[]);; let CLOSURE_OF_SUBSET_TOPSPACE = prove (`!top s:A->bool. top closure_of s SUBSET topspace top`, REWRITE_TAC[closure_of] THEN SET_TAC[]);; let CLOSURE_OF_SUBSET_SUBTOPOLOGY = prove (`!top s t:A->bool. (subtopology top s) closure_of t SUBSET s`, REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; closure_of] THEN SET_TAC[]);; let CLOSURE_OF_MONO = prove (`!top s t:A->bool. s SUBSET t ==> top closure_of s SUBSET top closure_of t`, REWRITE_TAC[closure_of] THEN SET_TAC[]);; let CLOSURE_OF_SUBTOPOLOGY_SUBSET = prove (`!top s u:A->bool. (subtopology top u) closure_of s SUBSET (top closure_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY] THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> s INTER t SUBSET u`) THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN REWRITE_TAC[INTER_SUBSET]);; let CLOSURE_OF_SUBTOPOLOGY_MONO = prove (`!top s t u:A->bool. t SUBSET u ==> (subtopology top t) closure_of s SUBSET (subtopology top u) closure_of s`, REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t SUBSET t' ==> s INTER t SUBSET s' INTER t'`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN ASM SET_TAC[]);; let CLOSURE_OF_UNION = prove (`!top s t:A->bool. top closure_of (s UNION t) = top closure_of s UNION top closure_of t`, REWRITE_TAC[CLOSURE_OF; DERIVED_SET_OF_UNION] THEN SET_TAC[]);; let CLOSURE_OF_UNIONS = prove (`!top (f:(A->bool)->bool). FINITE f ==> top closure_of (UNIONS f) = UNIONS {top closure_of s | s IN f}`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[UNIONS_0; NOT_IN_EMPTY; UNIONS_INSERT; CLOSURE_OF_EMPTY; CLOSURE_OF_UNION; SIMPLE_IMAGE; IMAGE_CLAUSES]);; let CLOSURE_OF_SUBSET = prove (`!top s:A->bool. s SUBSET topspace top ==> s SUBSET top closure_of s`, REWRITE_TAC[CLOSURE_OF] THEN SET_TAC[]);; let CLOSURE_OF_SUBSET_INTER = prove (`!top s:A->bool. topspace top INTER s SUBSET top closure_of s`, REWRITE_TAC[CLOSURE_OF] THEN SET_TAC[]);; let CLOSURE_OF_SUBSET_EQ = prove (`!top s:A->bool. s SUBSET topspace top /\ top closure_of s SUBSET s <=> closed_in top s`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[closed_in; SUBSET; closure_of; IN_ELIM_THM] THEN GEN_REWRITE_TAC RAND_CONV [OPEN_IN_SUBOPEN] THEN MP_TAC(ISPEC `top:A topology` OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let CLOSURE_OF_EQ = prove (`!top s:A->bool. top closure_of s = s <=> closed_in top s`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THENL [ASM_MESON_TAC[SUBSET_ANTISYM_EQ; CLOSURE_OF_SUBSET; CLOSURE_OF_SUBSET_EQ]; ASM_MESON_TAC[CLOSED_IN_SUBSET; CLOSURE_OF_SUBSET_TOPSPACE]]);; let CLOSED_IN_CONTAINS_DERIVED_SET = prove (`!top s:A->bool. closed_in top s <=> top derived_set_of s SUBSET s /\ s SUBSET topspace top`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ; CLOSURE_OF] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] DERIVED_SET_OF_SUBSET_TOPSPACE) THEN SET_TAC[]);; let DERIVED_SET_SUBSET_GEN = prove (`!top s:A->bool. top derived_set_of s SUBSET s <=> closed_in top (topspace top INTER s)`, REWRITE_TAC[CLOSED_IN_CONTAINS_DERIVED_SET; INTER_SUBSET] THEN REWRITE_TAC[GSYM DERIVED_SET_OF_RESTRICT; SUBSET_INTER] THEN REWRITE_TAC[DERIVED_SET_OF_SUBSET_TOPSPACE]);; let DERIVED_SET_SUBSET = prove (`!top s:A->bool. s SUBSET topspace top ==> (top derived_set_of s SUBSET s <=> closed_in top s)`, SIMP_TAC[CLOSED_IN_CONTAINS_DERIVED_SET]);; let CLOSED_IN_DERIVED_SET = prove (`!top s t:A->bool. closed_in (subtopology top t) s <=> s SUBSET topspace top /\ s SUBSET t /\ !x. x IN top derived_set_of s /\ x IN t ==> x IN s`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_CONTAINS_DERIVED_SET] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN REWRITE_TAC[DERIVED_SET_OF_SUBTOPOLOGY] THEN ASM_CASES_TAC `t INTER s:A->bool = s` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let CLOSED_IN_INTER_CLOSURE_OF = prove (`!top s t:A->bool. closed_in (subtopology top s) t <=> s INTER top closure_of t = t`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSURE_OF; CLOSED_IN_DERIVED_SET] THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] DERIVED_SET_OF_SUBSET_TOPSPACE) THEN SET_TAC[]);; let CLOSURE_OF_CLOSED_IN = prove (`!top s:A->bool. closed_in top s ==> top closure_of s = s`, REWRITE_TAC[CLOSURE_OF_EQ]);; let CLOSED_IN_CLOSURE_OF = prove (`!top s:A->bool. closed_in top (top closure_of s)`, REPEAT GEN_TAC THEN SUBGOAL_THEN `top closure_of (s:A->bool) = topspace top DIFF UNIONS {t | open_in top t /\ DISJOINT s t}` SUBST1_TAC THENL [REWRITE_TAC[closure_of; UNIONS_GSPEC] THEN SET_TAC[]; MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN SIMP_TAC[OPEN_IN_UNIONS; FORALL_IN_GSPEC]]);; let CLOSURE_OF_CLOSURE_OF = prove (`!top s:A->bool. top closure_of (top closure_of s) = top closure_of s`, REWRITE_TAC[CLOSURE_OF_EQ; CLOSED_IN_CLOSURE_OF]);; let CLOSURE_OF_HULL = prove (`!top s:A->bool. s SUBSET topspace top ==> top closure_of s = (closed_in top) hull s`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC HULL_UNIQUE THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; CLOSED_IN_CLOSURE_OF] THEN ASM_MESON_TAC[CLOSURE_OF_EQ; CLOSURE_OF_MONO]);; let CLOSURE_OF_MINIMAL = prove (`!top s t:A->bool. s SUBSET t /\ closed_in top t ==> (top closure_of s) SUBSET t`, ASM_MESON_TAC[CLOSURE_OF_EQ; CLOSURE_OF_MONO]);; let CLOSURE_OF_MINIMAL_EQ = prove (`!top s t:A->bool. s SUBSET topspace top /\ closed_in top t ==> ((top closure_of s) SUBSET t <=> s SUBSET t)`, MESON_TAC[SUBSET_TRANS; CLOSURE_OF_SUBSET; CLOSURE_OF_MINIMAL]);; let CLOSURE_OF_UNIQUE = prove (`!top s t. s SUBSET t /\ closed_in top t /\ (!t'. s SUBSET t' /\ closed_in top t' ==> t SUBSET t') ==> top closure_of s = t`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) CLOSURE_OF_HULL o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET_TRANS]; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC HULL_UNIQUE THEN ASM_REWRITE_TAC[]);; let FORALL_IN_CLOSURE_OF_GEN = prove (`!top P s:A->bool. (!x. x IN s ==> P x) /\ closed_in top {x | x IN top closure_of s /\ P x} ==> (!x. x IN top closure_of s ==> P x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN STRIP_TAC THEN REWRITE_TAC[SET_RULE `(!x. x IN s ==> P x) <=> s SUBSET {x | x IN s /\ P x}`] THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`top:A topology`; `topspace top INTER s:A->bool`] CLOSURE_OF_SUBSET) THEN ASM SET_TAC[]);; let FORALL_IN_CLOSURE_OF = prove (`!top P s:A->bool. (!x. x IN s ==> P x) /\ closed_in top {x | x IN topspace top /\ P x} ==> (!x. x IN top closure_of s ==> P x)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC FORALL_IN_CLOSURE_OF_GEN THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `{x:A | x IN top closure_of s /\ P x} = top closure_of s INTER {x | x IN topspace top /\ P x}` (fun th -> ASM_SIMP_TAC[th; CLOSED_IN_INTER; CLOSED_IN_CLOSURE_OF]) THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET_TOPSPACE) THEN SET_TAC[]);; let FORALL_IN_CLOSURE_OF_UNIV = prove (`!top P s:A->bool. (!x. x IN s ==> P x) /\ closed_in top {x | P x} ==> !x. x IN top closure_of s ==> P x`, REWRITE_TAC[SET_RULE `(!x. x IN s ==> P x) <=> s SUBSET {x | P x}`] THEN SIMP_TAC[CLOSURE_OF_MINIMAL]);; let CLOSURE_OF_EQ_EMPTY_GEN = prove (`!top s:A->bool. top closure_of s = {} <=> DISJOINT (topspace top) s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT; DISJOINT] THEN EQ_TAC THEN SIMP_TAC[CLOSURE_OF_EMPTY] THEN MATCH_MP_TAC(SET_RULE `t SUBSET s ==> s = {} ==> t = {}`) THEN MATCH_MP_TAC CLOSURE_OF_SUBSET THEN REWRITE_TAC[INTER_SUBSET]);; let CLOSURE_OF_EQ_EMPTY = prove (`!top s:A->bool. s SUBSET topspace top ==> (top closure_of s = {} <=> s = {})`, REWRITE_TAC[CLOSURE_OF_EQ_EMPTY_GEN] THEN SET_TAC[]);; let OPEN_IN_INTER_CLOSURE_OF_SUBSET = prove (`!top s t:A->bool. open_in top s ==> s INTER top closure_of t SUBSET top closure_of (s INTER t)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `t:A->bool` o MATCH_MP OPEN_IN_INTER_DERIVED_SET_OF_SUBSET) THEN REWRITE_TAC[CLOSURE_OF] THEN SET_TAC[]);; let CLOSURE_OF_OPEN_IN_INTER_CLOSURE_OF = prove (`!top s t:A->bool. open_in top s ==> top closure_of (s INTER top closure_of t) = top closure_of (s INTER t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN ASM_SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_SUBSET]; MATCH_MP_TAC CLOSURE_OF_MONO THEN MP_TAC(ISPECL [`top:A topology`; `topspace top INTER t:A->bool`] CLOSURE_OF_SUBSET) THEN REWRITE_TAC[INTER_SUBSET; GSYM CLOSURE_OF_RESTRICT] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]]);; let OPEN_IN_INTER_CLOSURE_OF_EQ = prove (`!top s t:A->bool. open_in top s ==> s INTER top closure_of t = s INTER top closure_of (s INTER t)`, SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; INTER_SUBSET; SUBSET_INTER] THEN SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> u INTER s SUBSET t`) THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN SET_TAC[]);; let OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY = prove (`!top s t:A->bool. open_in top s ==> (s INTER top closure_of t = {} <=> s INTER t = {})`, REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SPEC `t:A->bool` o MATCH_MP OPEN_IN_INTER_CLOSURE_OF_EQ) THEN EQ_TAC THEN SIMP_TAC[CLOSURE_OF_EMPTY; INTER_EMPTY] THEN MATCH_MP_TAC(SET_RULE `s INTER t SUBSET c ==> s INTER c = {} ==> s INTER t = {}`) THEN MATCH_MP_TAC CLOSURE_OF_SUBSET THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]);; let CLOSURE_OF_OPEN_IN_INTER_SUPERSET = prove (`!top s t:A->bool. open_in top s /\ s SUBSET top closure_of t ==> top closure_of (s INTER t) = top closure_of s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `t:A->bool` o MATCH_MP CLOSURE_OF_OPEN_IN_INTER_CLOSURE_OF) THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let CLOSURE_OF_OPEN_IN_SUBTOPOLOGY_INTER_CLOSURE_OF = prove (`!top s t u:A->bool. open_in (subtopology top u) s /\ t SUBSET u ==> top closure_of (s INTER top closure_of t) = top closure_of (s INTER t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_SUBTOPOLOGY]) THEN DISCH_THEN(X_CHOOSE_THEN `v:A->bool` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN FIRST_ASSUM(MP_TAC o SPEC `t:A->bool` o MATCH_MP CLOSURE_OF_OPEN_IN_INTER_CLOSURE_OF) THEN ASM_SIMP_TAC[SET_RULE `t SUBSET u ==> (v INTER u) INTER t = v INTER t`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN SET_TAC[]; MATCH_MP_TAC CLOSURE_OF_MONO THEN MP_TAC(ISPECL [`top:A topology`; `topspace top INTER t:A->bool`] CLOSURE_OF_SUBSET) THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT; INTER_SUBSET] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]]);; let CLOSURE_OF_SUBTOPOLOGY_OPEN = prove (`!top u s:A->bool. open_in top u \/ s SUBSET u ==> (subtopology top u) closure_of s = u INTER top closure_of s`, REWRITE_TAC[SET_RULE `s SUBSET u <=> u INTER s = s`] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY] THEN ASM_MESON_TAC[OPEN_IN_INTER_CLOSURE_OF_EQ]);; let DISCRETE_TOPOLOGY_CLOSURE_OF = prove (`!u s:A->bool. (discrete_topology u) closure_of s = u INTER s`, ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; CLOSURE_OF_EQ] THEN REWRITE_TAC[CLOSED_IN_DISCRETE_TOPOLOGY; INTER_SUBSET]);; (* ------------------------------------------------------------------------- *) (* Interior with respect to a topological space. *) (* ------------------------------------------------------------------------- *) parse_as_infix("interior_of",(21,"right"));; let interior_of = new_definition `top interior_of s = {x | ?t. open_in top t /\ x IN t /\ t SUBSET s}`;; let INTERIOR_OF_RESTRICT = prove (`!top s:A->bool. top interior_of s = top interior_of (topspace top INTER s)`, REWRITE_TAC[interior_of; EXTENSION; IN_ELIM_THM; SUBSET_INTER] THEN MESON_TAC[OPEN_IN_SUBSET]);; let INTERIOR_OF_EQ = prove (`!top s:A->bool. (top interior_of s = s) <=> open_in top s`, REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; interior_of; IN_ELIM_THM] THEN GEN_REWRITE_TAC RAND_CONV [OPEN_IN_SUBOPEN] THEN MESON_TAC[SUBSET]);; let INTERIOR_OF_OPEN_IN = prove (`!top s:a->bool. open_in top s ==> top interior_of s = s`, MESON_TAC[INTERIOR_OF_EQ]);; let INTERIOR_OF_EMPTY = prove (`!top:A topology. top interior_of {} = {}`, REWRITE_TAC[INTERIOR_OF_EQ; OPEN_IN_EMPTY]);; let INTERIOR_OF_TOPSPACE = prove (`!top:A topology. top interior_of (topspace top) = topspace top`, REWRITE_TAC[INTERIOR_OF_EQ; OPEN_IN_TOPSPACE]);; let OPEN_IN_INTERIOR_OF = prove (`!top s:A->bool. open_in top (top interior_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[interior_of] THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);; let INTERIOR_OF_INTERIOR_OF = prove (`!top s:A->bool. top interior_of top interior_of s = top interior_of s`, REWRITE_TAC[INTERIOR_OF_EQ; OPEN_IN_INTERIOR_OF]);; let INTERIOR_OF_SUBSET = prove (`!top s:A->bool. top interior_of s SUBSET s`, REWRITE_TAC[interior_of] THEN SET_TAC[]);; let INTERIOR_OF_SUBSET_CLOSURE_OF = prove (`!top s:A->bool. top interior_of s SUBSET top closure_of s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INTERIOR_OF_RESTRICT; CLOSURE_OF_RESTRICT] THEN TRANS_TAC SUBSET_TRANS `topspace top INTER s:A->bool` THEN SIMP_TAC[INTERIOR_OF_SUBSET; CLOSURE_OF_SUBSET; INTER_SUBSET]);; let SUBSET_INTERIOR_OF_EQ = prove (`!top s:A->bool. s SUBSET top interior_of s <=> open_in top s`, SIMP_TAC[GSYM INTERIOR_OF_EQ; GSYM SUBSET_ANTISYM_EQ; INTERIOR_OF_SUBSET]);; let INTERIOR_OF_MONO = prove (`!top s t:A->bool. s SUBSET t ==> top interior_of s SUBSET top interior_of t`, REWRITE_TAC[interior_of] THEN SET_TAC[]);; let INTERIOR_OF_MAXIMAL = prove (`!top s t:A->bool. t SUBSET s /\ open_in top t ==> t SUBSET top interior_of s`, REWRITE_TAC[interior_of] THEN SET_TAC[]);; let INTERIOR_OF_MAXIMAL_EQ = prove (`!top s t:A->bool. open_in top t ==> (t SUBSET top interior_of s <=> t SUBSET s)`, MESON_TAC[INTERIOR_OF_MAXIMAL; SUBSET_TRANS; INTERIOR_OF_SUBSET]);; let INTERIOR_OF_UNIQUE = prove (`!top s t:A->bool. t SUBSET s /\ open_in top t /\ (!t'. t' SUBSET s /\ open_in top t' ==> t' SUBSET t) ==> top interior_of s = t`, MESON_TAC[SUBSET_ANTISYM; INTERIOR_OF_MAXIMAL; INTERIOR_OF_SUBSET; OPEN_IN_INTERIOR_OF]);; let INTERIOR_OF_SUBSET_TOPSPACE = prove (`!top s:A->bool. top interior_of s SUBSET topspace top`, REWRITE_TAC[SUBSET; interior_of; IN_ELIM_THM] THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let INTERIOR_OF_SUBSET_SUBTOPOLOGY = prove (`!top s t:A->bool. (subtopology top s) interior_of t SUBSET s`, REPEAT STRIP_TAC THEN MP_TAC (ISPEC `subtopology top (s:A->bool)` INTERIOR_OF_SUBSET_TOPSPACE) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER]);; let INTERIOR_OF_INTER = prove (`!top s t:A->bool. top interior_of (s INTER t) = top interior_of s INTER top interior_of t`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_INTER] THEN SIMP_TAC[INTERIOR_OF_MONO; INTER_SUBSET] THEN SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ; OPEN_IN_INTERIOR_OF; OPEN_IN_INTER] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t SUBSET t' ==> s INTER t SUBSET s' INTER t'`) THEN REWRITE_TAC[INTERIOR_OF_SUBSET]);; let INTERIOR_OF_INTERS_SUBSET = prove (`!top f:(A->bool)->bool. top interior_of (INTERS f) SUBSET INTERS {top interior_of s | s IN f}`, REWRITE_TAC[SUBSET; interior_of; INTERS_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM; IN_INTERS] THEN MESON_TAC[]);; let UNION_INTERIOR_OF_SUBSET = prove (`!top s t:A->bool. top interior_of s UNION top interior_of t SUBSET top interior_of (s UNION t)`, SIMP_TAC[UNION_SUBSET; INTERIOR_OF_MONO; SUBSET_UNION]);; let INTERIOR_OF_EQ_EMPTY = prove (`!top s:A->bool. top interior_of s = {} <=> !t. open_in top t /\ t SUBSET s ==> t = {}`, MESON_TAC[INTERIOR_OF_MAXIMAL_EQ; SUBSET_EMPTY; OPEN_IN_INTERIOR_OF; INTERIOR_OF_SUBSET]);; let INTERIOR_OF_EQ_EMPTY_ALT = prove (`!top s:A->bool. top interior_of s = {} <=> !t. open_in top t /\ ~(t = {}) ==> ~(t DIFF s = {})`, GEN_TAC THEN REWRITE_TAC[INTERIOR_OF_EQ_EMPTY] THEN SET_TAC[]);; let INTERIOR_OF_UNIONS_OPEN_IN_SUBSETS = prove (`!top s:A->bool. UNIONS {t | open_in top t /\ t SUBSET s} = top interior_of s`, REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC INTERIOR_OF_UNIQUE THEN SIMP_TAC[OPEN_IN_UNIONS; IN_ELIM_THM] THEN SET_TAC[]);; let INTERIOR_OF_COMPLEMENT = prove (`!top s:A->bool. top interior_of (topspace top DIFF s) = topspace top DIFF top closure_of s`, REWRITE_TAC[interior_of; closure_of] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_ELIM_THM; SUBSET] THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let INTERIOR_OF_CLOSURE_OF = prove (`!top s:A->bool. top interior_of s = topspace top DIFF top closure_of (topspace top DIFF s)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM INTERIOR_OF_COMPLEMENT] THEN GEN_REWRITE_TAC LAND_CONV [INTERIOR_OF_RESTRICT] THEN AP_TERM_TAC THEN SET_TAC[]);; let CLOSURE_OF_INTERIOR_OF = prove (`!top s:A->bool. top closure_of s = topspace top DIFF top interior_of (topspace top DIFF s)`, REWRITE_TAC[INTERIOR_OF_COMPLEMENT] THEN REWRITE_TAC[SET_RULE `s = t DIFF (t DIFF s) <=> s SUBSET t`] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE]);; let CLOSURE_OF_COMPLEMENT = prove (`!top s:A->bool. top closure_of (topspace top DIFF s) = topspace top DIFF top interior_of s`, REWRITE_TAC[interior_of; closure_of] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_ELIM_THM; SUBSET] THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let INTERIOR_OF_EQ_EMPTY_COMPLEMENT = prove (`!top s:A->bool. top interior_of s = {} <=> top closure_of (topspace top DIFF s) = topspace top`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] INTERIOR_OF_SUBSET_TOPSPACE) THEN REWRITE_TAC[CLOSURE_OF_COMPLEMENT] THEN SET_TAC[]);; let CLOSURE_OF_EQ_UNIV = prove (`!top s:A->bool. top closure_of s = topspace top <=> top interior_of (topspace top DIFF s) = {}`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET_TOPSPACE) THEN REWRITE_TAC[INTERIOR_OF_COMPLEMENT] THEN SET_TAC[]);; let INTERIOR_OF_SUBTOPOLOGY_SUBSET = prove (`!top s u:A->bool. u INTER top interior_of s SUBSET (subtopology top u) interior_of s`, REWRITE_TAC[SUBSET; IN_INTER; interior_of; OPEN_IN_SUBTOPOLOGY; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[TAUT `(p /\ q) /\ r <=> q /\ p /\ r`] THEN REWRITE_TAC[UNWIND_THM2] THEN ASM SET_TAC[]);; let INTERIOR_OF_SUBTOPOLOGY_SUBSETS = prove (`!top s t u:A->bool. t SUBSET u ==> t INTER (subtopology top u) interior_of s SUBSET (subtopology top t) interior_of s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `t SUBSET u ==> t = u INTER t`)) THEN REWRITE_TAC[GSYM SUBTOPOLOGY_SUBTOPOLOGY] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `t SUBSET u ==> u INTER t = t`)) THEN REWRITE_TAC[INTERIOR_OF_SUBTOPOLOGY_SUBSET]);; let INTERIOR_OF_SUBTOPOLOGY_MONO = prove (`!top s t u:A->bool. s SUBSET t /\ t SUBSET u ==> (subtopology top u) interior_of s SUBSET (subtopology top t) interior_of s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(SET_RULE `i SUBSET s /\ t INTER i SUBSET i' ==> s SUBSET t ==> i SUBSET i'`) THEN ASM_SIMP_TAC[INTERIOR_OF_SUBSET; INTERIOR_OF_SUBTOPOLOGY_SUBSETS]);; let INTERIOR_OF_SUBTOPOLOGY_OPEN = prove (`!top u s:A->bool. open_in top u ==> (subtopology top u) interior_of s = u INTER top interior_of s`, REPEAT STRIP_TAC THEN REWRITE_TAC[INTERIOR_OF_CLOSURE_OF] THEN ASM_SIMP_TAC[CLOSURE_OF_SUBTOPOLOGY_OPEN] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[SET_RULE `s INTER t DIFF u = t INTER (s DIFF u)`] THEN ASM_SIMP_TAC[GSYM OPEN_IN_INTER_CLOSURE_OF_EQ] THEN SET_TAC[]);; let DENSE_INTERSECTS_OPEN = prove (`!top s:A->bool. top closure_of s = topspace top <=> !t. open_in top t /\ ~(t = {}) ==> ~(s INTER t = {})`, REWRITE_TAC[CLOSURE_OF_INTERIOR_OF] THEN SIMP_TAC[INTERIOR_OF_SUBSET_TOPSPACE; SET_RULE `s SUBSET u ==> (u DIFF s = u <=> s = {})`] THEN REWRITE_TAC[INTERIOR_OF_EQ_EMPTY_ALT] THEN SIMP_TAC[OPEN_IN_SUBSET; SET_RULE `t SUBSET u ==> (~(t DIFF (u DIFF s) = {}) <=> ~(s INTER t = {}))`]);; let INTERIOR_OF_CLOSED_IN_UNION_EMPTY_INTERIOR_OF = prove (`!top s t:A->bool. closed_in top s /\ top interior_of t = {} ==> top interior_of (s UNION t) = top interior_of s`, REPEAT STRIP_TAC THEN REWRITE_TAC[INTERIOR_OF_CLOSURE_OF] THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `u DIFF (s UNION t) = (u DIFF s) INTER (u DIFF t)`] THEN W(MP_TAC o PART_MATCH (rand o rand) CLOSURE_OF_OPEN_IN_INTER_CLOSURE_OF o lhand o snd) THEN ASM_SIMP_TAC[CLOSURE_OF_COMPLEMENT; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM CLOSURE_OF_COMPLEMENT] THEN AP_TERM_TAC THEN SET_TAC[]);; let INTERIOR_OF_UNION_EQ_EMPTY = prove (`!top s t:A->bool. closed_in top s \/ closed_in top t ==> (top interior_of (s UNION t) = {} <=> top interior_of s = {} /\ top interior_of t = {})`, GEN_TAC THEN MATCH_MP_TAC(MESON[] `(!x y. R x y ==> R y x) /\ (!x y. P x ==> R x y) ==> (!x y. P x \/ P y ==> R x y)`) THEN CONJ_TAC THENL [REWRITE_TAC[UNION_COMM] THEN SET_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(p ==> r) /\ (r ==> (p <=> q)) ==> (p <=> q /\ r)`) THEN ASM_SIMP_TAC[INTERIOR_OF_CLOSED_IN_UNION_EMPTY_INTERIOR_OF] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t = {} ==> s = {}`) THEN SIMP_TAC[INTERIOR_OF_MONO; SUBSET_UNION]);; let DISCRETE_TOPOLOGY_INTERIOR_OF = prove (`!u s:A->bool. (discrete_topology u) interior_of s = u INTER s`, ONCE_REWRITE_TAC[INTERIOR_OF_RESTRICT] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; INTERIOR_OF_EQ] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; INTER_SUBSET]);; (* ------------------------------------------------------------------------- *) (* Frontier with respect to topological space. *) (* ------------------------------------------------------------------------- *) parse_as_infix("frontier_of",(21,"right"));; let frontier_of = new_definition `top frontier_of s = top closure_of s DIFF top interior_of s`;; let FRONTIER_OF_CLOSURES = prove (`!top s. top frontier_of s = top closure_of s INTER top closure_of (topspace top DIFF s)`, REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[frontier_of; CLOSURE_OF_COMPLEMENT] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s INTER (u DIFF t) = s DIFF t`) THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE]);; let INTERIOR_OF_UNION_FRONTIER_OF = prove (`!top s:A->bool. top interior_of s UNION top frontier_of s = top closure_of s`, REPEAT GEN_TAC THEN REWRITE_TAC[frontier_of] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] INTERIOR_OF_SUBSET_CLOSURE_OF) THEN SET_TAC[]);; let FRONTIER_OF_RESTRICT = prove (`!top s:A->bool. top frontier_of s = top frontier_of (topspace top INTER s)`, REPEAT GEN_TAC THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN BINOP_TAC THEN GEN_REWRITE_TAC LAND_CONV [CLOSURE_OF_RESTRICT] THEN AP_TERM_TAC THEN SET_TAC[]);; let CLOSED_IN_FRONTIER_OF = prove (`!top s:A->bool. closed_in top (top frontier_of s)`, SIMP_TAC[FRONTIER_OF_CLOSURES; CLOSED_IN_INTER; CLOSED_IN_CLOSURE_OF]);; let FRONTIER_OF_SUBSET_TOPSPACE = prove (`!top s:A->bool. top frontier_of s SUBSET topspace top`, SIMP_TAC[CLOSED_IN_SUBSET; CLOSED_IN_FRONTIER_OF]);; let FRONTIER_OF_SUBSET_SUBTOPOLOGY = prove (`!top s t:A->bool. (subtopology top s) frontier_of t SUBSET s`, MESON_TAC[TOPSPACE_SUBTOPOLOGY; FRONTIER_OF_SUBSET_TOPSPACE; SUBSET_INTER]);; let FRONTIER_OF_SUBTOPOLOGY_SUBSET = prove (`!top s u:A->bool. u INTER (subtopology top u) frontier_of s SUBSET (top frontier_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[frontier_of] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ u INTER t' SUBSET t ==> u INTER (s DIFF t) SUBSET s' DIFF t'`) THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY_SUBSET; INTERIOR_OF_SUBTOPOLOGY_SUBSET]);; let FRONTIER_OF_SUBTOPOLOGY_MONO = prove (`!top s t u:A->bool. s SUBSET t /\ t SUBSET u ==> (subtopology top t) frontier_of s SUBSET (subtopology top u) frontier_of s`, REPEAT STRIP_TAC THEN REWRITE_TAC[frontier_of] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t' SUBSET t ==> s DIFF t SUBSET s' DIFF t'`) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBTOPOLOGY_MONO; INTERIOR_OF_SUBTOPOLOGY_MONO]);; let CLOPEN_IN_EQ_FRONTIER_OF = prove (`!top s:A->bool. closed_in top s /\ open_in top s <=> s SUBSET topspace top /\ top frontier_of s = {}`, REPEAT GEN_TAC THEN REWRITE_TAC[FRONTIER_OF_CLOSURES; OPEN_IN_CLOSED_IN_EQ] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [SIMP_TAC[CLOSURE_OF_CLOSED_IN] THEN SET_TAC[]; DISCH_TAC] THEN ASM_REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ; SUBSET_DIFF] THEN MATCH_MP_TAC(SET_RULE `c INTER c' = {} /\ s SUBSET c /\ (u DIFF s) SUBSET c' /\ c SUBSET u /\ c' SUBSET u ==> c SUBSET s /\ c' SUBSET (u DIFF s)`) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; SUBSET_DIFF; CLOSURE_OF_SUBSET_TOPSPACE]);; let FRONTIER_OF_EQ_EMPTY = prove (`!top s:A->bool. s SUBSET topspace top ==> (top frontier_of s = {} <=> closed_in top s /\ open_in top s)`, SIMP_TAC[CLOPEN_IN_EQ_FRONTIER_OF]);; let FRONTIER_OF_OPEN_IN = prove (`!top s:A->bool. open_in top s ==> top frontier_of s = top closure_of s DIFF s`, SIMP_TAC[frontier_of; INTERIOR_OF_OPEN_IN]);; let FRONTIER_OF_OPEN_IN_STRADDLE_INTER = prove (`!top s u:A->bool. open_in top u /\ ~(u INTER top frontier_of s = {}) ==> ~(u INTER s = {}) /\ ~(u DIFF s = {})`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `~(s INTER t INTER u = {}) ==> ~(s INTER t = {}) /\ ~(s INTER u = {})`)) THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY o rand o lhand o snd) THEN ASM SET_TAC[]);; let FRONTIER_OF_SUBSET_CLOSED_IN = prove (`!top s:A->bool. closed_in top s ==> (top frontier_of s) SUBSET s`, REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ; frontier_of] THEN SET_TAC[]);; let FRONTIER_OF_EMPTY = prove (`!top. top frontier_of {} = {}`, REWRITE_TAC[FRONTIER_OF_CLOSURES; CLOSURE_OF_EMPTY; INTER_EMPTY]);; let FRONTIER_OF_TOPSPACE = prove (`!top:A topology. top frontier_of topspace top = {}`, SIMP_TAC[FRONTIER_OF_EQ_EMPTY; SUBSET_REFL] THEN REWRITE_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE]);; let FRONTIER_OF_SUBSET_EQ = prove (`!top s:A->bool. s SUBSET topspace top ==> ((top frontier_of s) SUBSET s <=> closed_in top s)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[FRONTIER_OF_SUBSET_CLOSED_IN] THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN ASM_REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ] THEN ONCE_REWRITE_TAC[SET_RULE `s INTER t = s DIFF (s DIFF t)`] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP (SET_RULE `s DIFF t SUBSET u ==> t SUBSET u ==> s SUBSET u`)) THEN MATCH_MP_TAC(SET_RULE `!u. u DIFF s SUBSET d /\ c SUBSET u ==> c DIFF d SUBSET s`) THEN EXISTS_TAC `topspace top:A->bool` THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE] THEN MATCH_MP_TAC CLOSURE_OF_SUBSET THEN SET_TAC[]);; let FRONTIER_OF_COMPLEMENT = prove (`!top s:A->bool. top frontier_of (topspace top DIFF s) = top frontier_of s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[FRONTIER_OF_RESTRICT] THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN GEN_REWRITE_TAC RAND_CONV [INTER_COMM] THEN BINOP_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let FRONTIER_OF_DISJOINT_EQ = prove (`!top s. s SUBSET topspace top ==> ((top frontier_of s) INTER s = {} <=> open_in top s)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[OPEN_IN_CLOSED_IN] THEN ASM_SIMP_TAC[GSYM FRONTIER_OF_SUBSET_EQ; SUBSET_DIFF] THEN REWRITE_TAC[FRONTIER_OF_COMPLEMENT] THEN MATCH_MP_TAC(SET_RULE `f SUBSET u ==> (f INTER s = {} <=> f SUBSET u DIFF s)`) THEN REWRITE_TAC[FRONTIER_OF_SUBSET_TOPSPACE]);; let FRONTIER_OF_DISJOINT_EQ_ALT = prove (`!top s:A->bool. s SUBSET (topspace top DIFF top frontier_of s) <=> open_in top s`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THENL [ASM_SIMP_TAC[GSYM FRONTIER_OF_DISJOINT_EQ] THEN ASM SET_TAC[]; EQ_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[OPEN_IN_SUBSET]]]);; let FRONTIER_OF_INTER = prove (`!top s t:A->bool. top frontier_of(s INTER t) = top closure_of (s INTER t) INTER (top frontier_of s UNION top frontier_of t)`, REPEAT GEN_TAC THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN SIMP_TAC[CLOSURE_OF_MONO; INTER_SUBSET; GSYM CLOSURE_OF_UNION; SET_RULE `u SUBSET s /\ u SUBSET t ==> u INTER (s INTER x UNION t INTER y) = u INTER (x UNION y)`] THEN REPLICATE_TAC 2 AP_TERM_TAC THEN SET_TAC[]);; let FRONTIER_OF_INTER_SUBSET = prove (`!top s t. top frontier_of(s INTER t) SUBSET top frontier_of(s) UNION top frontier_of(t)`, REWRITE_TAC[FRONTIER_OF_INTER] THEN SET_TAC[]);; let FRONTIER_OF_INTER_CLOSED_IN = prove (`!top s t:A->bool. closed_in top s /\ closed_in top t ==> top frontier_of(s INTER t) = top frontier_of s INTER t UNION s INTER top frontier_of t`, SIMP_TAC[FRONTIER_OF_INTER; CLOSED_IN_INTER; CLOSURE_OF_CLOSED_IN] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP FRONTIER_OF_SUBSET_CLOSED_IN)) THEN SET_TAC[]);; let FRONTIER_OF_UNION_SUBSET = prove (`!top s t:A->bool. top frontier_of(s UNION t) SUBSET top frontier_of s UNION top frontier_of t`, ONCE_REWRITE_TAC[GSYM FRONTIER_OF_COMPLEMENT] THEN REWRITE_TAC[SET_RULE `u DIFF (s UNION t) = (u DIFF s) INTER (u DIFF t)`] THEN REWRITE_TAC[FRONTIER_OF_INTER_SUBSET]);; let FRONTIER_OF_UNIONS_SUBSET = prove (`!top f:(A->bool)->bool. FINITE f ==> top frontier_of (UNIONS f) SUBSET UNIONS {top frontier_of t | t IN f}`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SIMPLE_IMAGE; IMAGE_UNIONS; IMAGE_CLAUSES; UNIONS_0; UNIONS_INSERT; FRONTIER_OF_EMPTY; SUBSET_REFL] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH lhand FRONTIER_OF_UNION_SUBSET o lhand o snd) THEN ASM SET_TAC[]);; let FRONTIER_OF_FRONTIER_OF_SUBSET = prove (`!top s:A->bool. top frontier_of (top frontier_of s) SUBSET top frontier_of s`, REPEAT GEN_TAC THEN MATCH_MP_TAC FRONTIER_OF_SUBSET_CLOSED_IN THEN REWRITE_TAC[CLOSED_IN_FRONTIER_OF]);; let FRONTIER_OF_SUBTOPOLOGY_OPEN = prove (`!top u s:A->bool. open_in top u ==> (subtopology top u) frontier_of s = u INTER top frontier_of s`, SIMP_TAC[frontier_of; CLOSURE_OF_SUBTOPOLOGY_OPEN; INTERIOR_OF_SUBTOPOLOGY_OPEN] THEN SET_TAC[]);; let DISCRETE_TOPOLOGY_FRONTIER_OF = prove (`!u s:A->bool. (discrete_topology u) frontier_of s = {}`, REWRITE_TAC[frontier_of; DISCRETE_TOPOLOGY_CLOSURE_OF; DISCRETE_TOPOLOGY_INTERIOR_OF; DIFF_EQ_EMPTY]);; let OPEN_IN_SUBSET_TOPSPACE_EQ = prove (`!top u s:A->bool. DISJOINT s (top frontier_of u) ==> (open_in (subtopology top u) s <=> open_in top s /\ s SUBSET u)`, ONCE_REWRITE_TAC[FRONTIER_OF_RESTRICT] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[OPEN_IN_SUBSET_TOPSPACE] THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN DISCH_TAC THEN CONJ_TAC THENL [MP_TAC(SET_RULE `topspace top INTER (u:A->bool) SUBSET topspace top`); FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]] THEN REPEAT(POP_ASSUM MP_TAC) THEN SPEC_TAC(`topspace top INTER u:A->bool`,`u:A->bool`) THEN X_GEN_TAC `u:A->bool` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_SUBTOPOLOGY]) THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `t INTER u:A->bool = t INTER top interior_of u` SUBST1_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[frontier_of]) THEN MP_TAC(ISPECL [`top:A topology`; `u:A->bool`] INTERIOR_OF_SUBSET) THEN MP_TAC(ISPECL [`top:A topology`; `u:A->bool`] CLOSURE_OF_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]; ASM_SIMP_TAC[OPEN_IN_INTER; OPEN_IN_INTERIOR_OF]]);; (* ------------------------------------------------------------------------- *) (* Iteration of interior and closure. *) (* ------------------------------------------------------------------------- *) let INTERIOR_OF_CLOSURE_OF_IDEMP = prove (`!top s:A->bool. top interior_of top closure_of top interior_of top closure_of s = top interior_of top closure_of s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERIOR_OF_UNIQUE THEN REWRITE_TAC[OPEN_IN_INTERIOR_OF] THEN SIMP_TAC[CLOSURE_OF_SUBSET; INTERIOR_OF_SUBSET_TOPSPACE] THEN SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ] THEN X_GEN_TAC `t:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF; INTERIOR_OF_SUBSET]);; let CLOSURE_OF_INTERIOR_OF_IDEMP = prove (`!top s:A->bool. top closure_of top interior_of top closure_of top interior_of s = top closure_of top interior_of s`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `topspace top DIFF s:A->bool`] INTERIOR_OF_CLOSURE_OF_IDEMP) THEN REWRITE_TAC[CLOSURE_OF_COMPLEMENT; INTERIOR_OF_COMPLEMENT] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u /\ t SUBSET u ==> u DIFF s = u DIFF t ==> s = t`) THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE; INTERIOR_OF_SUBSET_TOPSPACE]);; let INTERIOR_OF_FRONTIER_OF = prove (`!top s:A->bool. top interior_of (top frontier_of s) = top interior_of (top closure_of s) DIFF top closure_of (top interior_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[FRONTIER_OF_CLOSURES; INTERIOR_OF_INTER] THEN REWRITE_TAC[CLOSURE_OF_COMPLEMENT; INTERIOR_OF_COMPLEMENT] THEN MP_TAC(ISPECL [`top:A topology`; `top closure_of s:A->bool`] INTERIOR_OF_SUBSET_TOPSPACE) THEN SET_TAC[]);; let THIN_FRONTIER_OF_SUBSET = prove (`!top s:A->bool. top interior_of (top frontier_of s) = {} <=> top interior_of (top closure_of s) SUBSET top closure_of (top interior_of s)`, REWRITE_TAC[INTERIOR_OF_FRONTIER_OF] THEN SET_TAC[]);; let THIN_FRONTIER_OF_CIC = prove (`!top s:A->bool. top interior_of (top frontier_of s) = {} <=> top closure_of (top interior_of (top closure_of s)) = top closure_of (top interior_of s)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[THIN_FRONTIER_OF_SUBSET] THEN MATCH_MP_TAC(TAUT `(p <=> q) /\ r==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [SIMP_TAC[CLOSURE_OF_MINIMAL_EQ; CLOSED_IN_CLOSURE_OF; INTERIOR_OF_SUBSET_TOPSPACE]; GEN_REWRITE_TAC LAND_CONV [GSYM CLOSURE_OF_INTERIOR_OF_IDEMP] THEN SIMP_TAC[CLOSURE_OF_MONO; INTERIOR_OF_MONO; INTERIOR_OF_SUBSET]]);; let THIN_FRONTIER_OF_ICI = prove (`!s:A->bool. top interior_of (top frontier_of s) = {} <=> top interior_of (top closure_of (top interior_of s)) = top interior_of (top closure_of s)`, GEN_TAC THEN REWRITE_TAC[THIN_FRONTIER_OF_CIC] THEN MESON_TAC[INTERIOR_OF_CLOSURE_OF_IDEMP; CLOSURE_OF_INTERIOR_OF_IDEMP]);; let INTERIOR_OF_FRONTIER_OF_EMPTY = prove (`!top s:A->bool. open_in top s \/ closed_in top s ==> top interior_of (top frontier_of s) = {}`, REPEAT STRIP_TAC THENL [REWRITE_TAC[THIN_FRONTIER_OF_ICI]; REWRITE_TAC[THIN_FRONTIER_OF_CIC]] THEN ASM_SIMP_TAC[INTERIOR_OF_OPEN_IN; CLOSURE_OF_CLOSED_IN]);; let FRONTIER_OF_FRONTIER_OF = prove (`!top s:A->bool. open_in top s \/ closed_in top s ==> top frontier_of (top frontier_of s) = top frontier_of s`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [frontier_of] THEN SIMP_TAC[INTERIOR_OF_FRONTIER_OF_EMPTY; CLOSURE_OF_CLOSED_IN; CLOSED_IN_FRONTIER_OF; DIFF_EMPTY]);; let FRONTIER_OF_FRONTIER_OF_FRONTIER_OF = prove (`!top s:A->bool. top frontier_of top frontier_of top frontier_of s = top frontier_of top frontier_of s`, SIMP_TAC[FRONTIER_OF_FRONTIER_OF; CLOSED_IN_FRONTIER_OF]);; let REGULAR_CLOSURE_OF_INTERIOR_OF = prove (`!top s:A->bool. s SUBSET top closure_of top interior_of s <=> s SUBSET topspace top /\ top closure_of top interior_of s = top closure_of s`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN SIMP_TAC[CLOSURE_OF_MONO; INTERIOR_OF_SUBSET] THEN MESON_TAC[CLOSURE_OF_MINIMAL_EQ; CLOSED_IN_CLOSURE_OF; CLOSURE_OF_SUBSET_TOPSPACE; SUBSET_TRANS]);; let REGULAR_INTERIOR_OF_CLOSURE_OF = prove (`!top s:A->bool. top interior_of top closure_of s SUBSET s <=> top interior_of top closure_of s = top interior_of s`, REPEAT GEN_TAC THEN SUBST1_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_RESTRICT) THEN SUBST1_TAC(ISPECL [`top:A topology`; `s:A->bool`] INTERIOR_OF_RESTRICT) THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN SIMP_TAC[INTERIOR_OF_MONO; CLOSURE_OF_SUBSET; INTER_SUBSET] THEN SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ; OPEN_IN_INTERIOR_OF] THEN REWRITE_TAC[SUBSET_INTER; INTERIOR_OF_SUBSET_TOPSPACE]);; let REGULAR_CLOSED_IN = prove (`!top s:A->bool. top closure_of top interior_of s = s <=> closed_in top s /\ s SUBSET top closure_of top interior_of s`, REWRITE_TAC[REGULAR_CLOSURE_OF_INTERIOR_OF; GSYM CLOSURE_OF_EQ] THEN MESON_TAC[CLOSURE_OF_SUBSET_TOPSPACE; CLOSURE_OF_CLOSURE_OF]);; let REGULAR_OPEN_IN = prove (`!top s:A->bool. top interior_of top closure_of s = s <=> open_in top s /\ top interior_of top closure_of s SUBSET s`, REWRITE_TAC[REGULAR_INTERIOR_OF_CLOSURE_OF; GSYM INTERIOR_OF_EQ] THEN MESON_TAC[INTERIOR_OF_INTERIOR_OF]);; let REGULAR_CLOSURE_OF_IMP_THIN_FRONTIER_OF = prove (`!top s:A->bool. s SUBSET top closure_of top interior_of s ==> top interior_of top frontier_of s = {}`, SIMP_TAC[REGULAR_CLOSURE_OF_INTERIOR_OF; THIN_FRONTIER_OF_ICI]);; let REGULAR_INTERIOR_OF_IMP_THIN_FRONTIER_OF = prove (`!top s:A->bool. top interior_of top closure_of s SUBSET s ==> top interior_of top frontier_of s = {}`, SIMP_TAC[REGULAR_INTERIOR_OF_CLOSURE_OF; THIN_FRONTIER_OF_CIC]);; (* ------------------------------------------------------------------------- *) (* Locally finite collections and their properties. *) (* ------------------------------------------------------------------------- *) let locally_finite_in = new_definition `locally_finite_in top U <=> (!u. u IN U ==> u SUBSET topspace top) /\ (!x. x IN topspace top ==> ?v. open_in top v /\ x IN v /\ FINITE {u | u IN U /\ ~(u INTER v = {})})`;; let FINITE_IMP_LOCALLY_FINITE_IN = prove (`!(top:A topology) u. FINITE u /\ UNIONS u SUBSET topspace top ==> locally_finite_in top u`, SIMP_TAC[UNIONS_SUBSET; locally_finite_in; FINITE_RESTRICT] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let LOCALLY_FINITE_IN_SUBSET = prove (`!(top:A topology) u v. locally_finite_in top u /\ v SUBSET u ==> locally_finite_in top v`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_finite_in] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN ASM SET_TAC[]);; let LOCALLY_FINITE_IN_REFINEMENT = prove (`!top u (f:(A->bool)->(A->bool)). locally_finite_in top u /\ (!s. s IN u ==> f s SUBSET s) ==> locally_finite_in top {f s | s IN u}`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_finite_in] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]) THEN DISCH_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{y | y IN {f x | P x} /\ Q y} = IMAGE f {x | P x /\ Q(f x)}`] THEN MATCH_MP_TAC FINITE_IMAGE THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN ASM SET_TAC[]);; let LOCALLY_FINITE_IN_SUBTOPOLOGY = prove (`!top s (u:(A->bool)->bool). locally_finite_in top u /\ (!t. t IN u ==> t SUBSET s) ==> locally_finite_in (subtopology top s) u`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_finite_in] THEN STRIP_TAC THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; IN_INTER] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN REPEAT(MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN SET_TAC[]);; let LOCALLY_FINITE_IN_SUBTOPOLOGY_EQ = prove (`!top s (u:(A->bool)->bool). closed_in top s ==> (locally_finite_in (subtopology top s) u <=> locally_finite_in top u /\ (!t. t IN u ==> t SUBSET s))`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[LOCALLY_FINITE_IN_SUBTOPOLOGY] THEN REWRITE_TAC[locally_finite_in; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_CASES_TAC `(x:A) IN s` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[IN_INTER] THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN ASM SET_TAC[]; EXISTS_TAC `topspace top DIFF s:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; IN_DIFF] THEN MATCH_MP_TAC(MESON[FINITE_EMPTY] `s = {} ==> FINITE s`) THEN ASM SET_TAC[]]);; let CLOSED_IN_LOCALLY_FINITE_UNIONS = prove (`!top f:(A->bool)->bool. (!s. s IN f ==> closed_in top s) /\ locally_finite_in top f ==> closed_in top (UNIONS f)`, REWRITE_TAC[locally_finite_in] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[closed_in] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[closed_in]) THEN ASM_SIMP_TAC[UNIONS_SUBSET]; ALL_TAC] THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `v DIFF UNIONS {s | s IN f /\ ~(s INTER v = {})}:A->bool` THEN ASM_REWRITE_TAC[IN_DIFF; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[IN_ELIM_THM]; FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let LOCALLY_FINITE_IN_CLOSURES = prove (`!top f:(A->bool)->bool. locally_finite_in top f ==> locally_finite_in top {top closure_of s | s IN f}`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_finite_in] THEN REWRITE_TAC[FORALL_IN_GSPEC; CLOSURE_OF_SUBSET_TOPSPACE] THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SET_RULE `{y | y IN {f x | P x} /\ Q y} = IMAGE f {x | P x /\ Q(f x)}`] THEN MATCH_MP_TAC FINITE_IMAGE THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY; SUBSET_REFL]);; let CLOSED_IN_UNIONS_LOCALLY_FINITE_CLOSURES = prove (`!top f:(A->bool)->bool. locally_finite_in top f ==> closed_in top (UNIONS {top closure_of s | s IN f})`, SIMP_TAC[CLOSED_IN_LOCALLY_FINITE_UNIONS; LOCALLY_FINITE_IN_CLOSURES; CLOSED_IN_CLOSURE_OF; FORALL_IN_GSPEC]);; let CLOSURE_OF_UNIONS_SUBSET = prove (`!top (f:(A->bool)->bool). UNIONS {top closure_of s | s IN f} SUBSET top closure_of (UNIONS f)`, REPEAT GEN_TAC THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN ASM SET_TAC[]);; let CLOSURE_OF_LOCALLY_FINITE_UNIONS = prove (`!top (f:(A->bool)->bool). locally_finite_in top f ==> top closure_of (UNIONS f) = UNIONS {top closure_of s | s IN f}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_OF_UNIQUE THEN ASM_SIMP_TAC[CLOSED_IN_UNIONS_LOCALLY_FINITE_CLOSURES] THEN SIMP_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; CLOSURE_OF_MINIMAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[locally_finite_in]) THEN MP_TAC(ISPEC `top:A topology` CLOSURE_OF_SUBSET) THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Continuous maps. *) (* ------------------------------------------------------------------------- *) let continuous_map = new_definition `!top top' f:A->B. continuous_map (top,top') f <=> (!x. x IN topspace top ==> f x IN topspace top') /\ (!u. open_in top' u ==> open_in top {x | x IN topspace top /\ f x IN u})`;; let CONTINUOUS_MAP = prove (`!top top' f. continuous_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !u. open_in top' u ==> open_in top {x | x IN topspace top /\ f x IN u}`, REWRITE_TAC[continuous_map; SUBSET; FORALL_IN_IMAGE]);; let CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE = prove (`!top top' f:A->B. continuous_map (top,top') f ==> IMAGE f (topspace top) SUBSET topspace top'`, REWRITE_TAC[continuous_map] THEN SET_TAC[]);; let CONTINUOUS_MAP_ON_EMPTY = prove (`!top top' (f:A->B). topspace top = {} ==> continuous_map(top,top') f`, SIMP_TAC[continuous_map; NOT_IN_EMPTY; EMPTY_GSPEC; OPEN_IN_EMPTY]);; let CONTINUOUS_MAP_INTO_EMPTY = prove (`!top top' (f:A->B). topspace top' = {} ==> (continuous_map(top,top') f <=> topspace top = {})`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_ON_EMPTY] THEN DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_CLOSED_IN = prove (`!top top' f:A->B. continuous_map (top,top') f <=> (!x. x IN topspace top ==> f x IN topspace top') /\ (!c. closed_in top' c ==> closed_in top {x | x IN topspace top /\ f x IN c})`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `t:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `topspace top' DIFF t:B->bool`) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE] THEN GEN_REWRITE_TAC LAND_CONV [closed_in; OPEN_IN_CLOSED_IN_EQ] THEN REWRITE_TAC[SUBSET_RESTRICT] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let OPEN_IN_CONTINUOUS_MAP_PREIMAGE = prove (`!f:A->B top top' u. continuous_map (top,top') f /\ open_in top' u ==> open_in top {x | x IN topspace top /\ f x IN u}`, REWRITE_TAC[continuous_map] THEN SET_TAC[]);; let CLOSED_IN_CONTINUOUS_MAP_PREIMAGE = prove (`!f:A->B top top' c. continuous_map (top,top') f /\ closed_in top' c ==> closed_in top {x | x IN topspace top /\ f x IN c}`, REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN] THEN SET_TAC[]);; let OPEN_IN_CONTINUOUS_MAP_PREIMAGE_GEN = prove (`!f:A->B top top' u v. continuous_map (top,top') f /\ open_in top u /\ open_in top' v ==> open_in top {x | x IN u /\ f x IN v}`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x | x IN u /\ (f:A->B) x IN v} = u INTER {x | x IN topspace top /\ f x IN v}` SUBST1_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN SET_TAC[]; MATCH_MP_TAC OPEN_IN_INTER THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]]);; let CLOSED_IN_CONTINUOUS_MAP_PREIMAGE_GEN = prove (`!f:A->B top top' u v. continuous_map (top,top') f /\ closed_in top u /\ closed_in top' v ==> closed_in top {x | x IN u /\ f x IN v}`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x | x IN u /\ (f:A->B) x IN v} = u INTER {x | x IN topspace top /\ f x IN v}` SUBST1_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN SET_TAC[]; MATCH_MP_TAC CLOSED_IN_INTER THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]]);; let CONTINUOUS_MAP_IMAGE_CLOSURE_SUBSET = prove (`!top top' (f:A->B) s. continuous_map (top,top') f ==> IMAGE f (top closure_of s) SUBSET top' closure_of IMAGE f s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN TRANS_TAC SUBSET_TRANS `top' closure_of (IMAGE (f:A->B) (topspace top INTER s))` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC CLOSURE_OF_MONO THEN ASM SET_TAC[]] THEN MP_TAC(SET_RULE `(topspace top INTER s:A->bool) SUBSET topspace top`) THEN SPEC_TAC(`topspace top INTER s:A->bool`,`s:A->bool`) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `IMAGE f s SUBSET t <=> s SUBSET {x | x IN s /\ f x IN t}`] THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ IMAGE f s SUBSET t' ==> s SUBSET {x | x IN s' /\ f x IN t'}`) THEN CONJ_TAC THEN MATCH_MP_TAC CLOSURE_OF_SUBSET THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE_GEN THEN EXISTS_TAC `top':B topology` THEN ASM_REWRITE_TAC[CLOSED_IN_CLOSURE_OF]]);; let [CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET; CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET_ALT; CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET_GEN] = (CONJUNCTS o prove) (`(!top top' f:A->B. continuous_map (top,top') f <=> !s. IMAGE f (top closure_of s) SUBSET top' closure_of IMAGE f s) /\ (!top top' f:A->B. continuous_map (top,top') f <=> !s. s SUBSET topspace top ==> IMAGE f (top closure_of s) SUBSET top' closure_of IMAGE f s) /\ (!top top' f:A->B. continuous_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !s. IMAGE f (top closure_of s) SUBSET top' closure_of IMAGE f s)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> q') /\ (p ==> r) /\ (q' ==> p) ==> (p <=> q) /\ (p <=> q') /\ (p <=> r /\ q)`) THEN SIMP_TAC[CONTINUOUS_MAP_IMAGE_CLOSURE_SUBSET] THEN REWRITE_TAC[CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE] THEN DISCH_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `topspace top:A->bool`) THEN REWRITE_TAC[SUBSET_REFL; CLOSURE_OF_TOPSPACE] THEN MATCH_MP_TAC(SET_RULE `v' SUBSET v ==> IMAGE f u SUBSET v' ==> !x. x IN u ==> f x IN v`) THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE]; X_GEN_TAC `c:B->bool` THEN DISCH_TAC THEN REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ; SUBSET_RESTRICT] THEN REWRITE_TAC[SET_RULE `s SUBSET {x | x IN t /\ f x IN u} <=> s SUBSET t /\ IMAGE f s SUBSET u`] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE] THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o lhand o snd)) THEN REWRITE_TAC[SUBSET_RESTRICT] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ASM SET_TAC[]]);; let CONTINUOUS_MAP_CLOSURE_PREIMAGE_SUBSET = prove (`!top top' (f:A->B) t. continuous_map (top,top') f ==> top closure_of {x | x IN topspace top /\ f x IN t} SUBSET {x | x IN topspace top /\ f x IN top' closure_of t}`, REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ASM_SIMP_TAC[CLOSED_IN_CLOSURE_OF] THEN MP_TAC(ISPECL [`top':B topology`; `topspace top' INTER t:B->bool`] CLOSURE_OF_SUBSET) THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT] THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_EQ_CLOSURE_PREIMAGE_SUBSET, CONTINUOUS_MAP_EQ_CLOSURE_PREIMAGE_SUBSET_ALT = (CONJ_PAIR o prove) (`(!top top' f:A->B. continuous_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !t. top closure_of {x | x IN topspace top /\ f x IN t} SUBSET {x | x IN topspace top /\ f x IN top' closure_of t}) /\ (!top top' f:A->B. continuous_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !t. t SUBSET topspace top' ==> top closure_of {x | x IN topspace top /\ f x IN t} SUBSET {x | x IN topspace top /\ f x IN top' closure_of t})`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE; CONTINUOUS_MAP_CLOSURE_PREIMAGE_SUBSET] THEN STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN] THEN (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN X_GEN_TAC `t:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:B->bool`) THEN ASM_SIMP_TAC[CLOSURE_OF_CLOSED_IN; CLOSED_IN_SUBSET] THEN SIMP_TAC[GSYM CLOSURE_OF_SUBSET_EQ; SUBSET_RESTRICT]);; let CONTINUOUS_MAP_INTERIOR_PREIMAGE_SUBSET = prove (`!top top' (f:A->B) t. continuous_map (top,top') f ==> {x | x IN topspace top /\ f x IN top' interior_of t} SUBSET top interior_of {x | x IN topspace top /\ f x IN t}`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN FIRST_ASSUM(MP_TAC o SPEC `topspace top' DIFF (t:B->bool)` o MATCH_MP CONTINUOUS_MAP_CLOSURE_PREIMAGE_SUBSET) THEN ASM_SIMP_TAC[INTERIOR_OF_CLOSURE_OF; SET_RULE `IMAGE f t SUBSET u ==> {x | x IN t /\ f x IN u DIFF v} = t DIFF {x | x IN t /\ f x IN v}`] THEN SET_TAC[]);; let CONTINUOUS_MAP_EQ_INTERIOR_PREIMAGE_SUBSET, CONTINUOUS_MAP_EQ_INTERIOR_PREIMAGE_SUBSET_ALT = (CONJ_PAIR o prove) (`(!top top' f:A->B. continuous_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !t. {x | x IN topspace top /\ f x IN top' interior_of t} SUBSET top interior_of {x | x IN topspace top /\ f x IN t}) /\ (!top top' f:A->B. continuous_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !t. t SUBSET topspace top' ==> {x | x IN topspace top /\ f x IN top' interior_of t} SUBSET top interior_of {x | x IN topspace top /\ f x IN t})`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> r) /\ (r ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN SIMP_TAC[CONTINUOUS_MAP_INTERIOR_PREIMAGE_SUBSET; CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_EQ_CLOSURE_PREIMAGE_SUBSET_ALT] THEN X_GEN_TAC `t:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `topspace top' DIFF (t:B->bool)`) THEN ASM_SIMP_TAC[CLOSURE_OF_INTERIOR_OF; SET_RULE `IMAGE f t SUBSET u ==> {x | x IN t /\ f x IN u DIFF v} = t DIFF {x | x IN t /\ f x IN v}`] THEN SET_TAC[]);; let CONTINUOUS_MAP_FRONTIER_FRONTIER_PREIMAGE_SUBSET = prove (`!top top' (f:A->B) t. continuous_map (top,top') f ==> top frontier_of {x | x IN topspace top /\ f x IN t} SUBSET {x | x IN topspace top /\ f x IN top' frontier_of t}`, REPEAT STRIP_TAC THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN MATCH_MP_TAC(SET_RULE `s SUBSET {x | x IN t /\ f x IN u} /\ s' SUBSET {x | x IN t /\ f x IN u'} ==> s INTER s' SUBSET {x | x IN t /\ f x IN u INTER u'}`) THEN SUBGOAL_THEN `topspace top DIFF {x | x IN topspace top /\ (f:A->B) x IN t} = {x | x IN topspace top /\ f x IN topspace top' DIFF t}` (fun th -> ASM_SIMP_TAC[th; CONTINUOUS_MAP_CLOSURE_PREIMAGE_SUBSET]) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_ID = prove (`!top:A topology. continuous_map (top,top) (\x. x)`, REWRITE_TAC[continuous_map] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(MESON[] `(P x ==> x = y) ==> P x ==> P y`) THEN REWRITE_TAC[SET_RULE `u = {x | x IN s /\ x IN u} <=> u SUBSET s`] THEN REWRITE_TAC[OPEN_IN_SUBSET]);; let TOPOLOGY_FINER_CONTINUOUS_ID = prove (`!top top':A topology. topspace top' = topspace top ==> ((!s. open_in top s ==> open_in top' s) <=> continuous_map (top',top) (\x. x))`, REWRITE_TAC[continuous_map] THEN SIMP_TAC[OPEN_IN_SUBSET; SET_RULE `u SUBSET s ==> {x | x IN s /\ x IN u} = u`]);; let CONTINUOUS_MAP_CONST = prove (`!top1:A topology top2:B topology c. continuous_map (top1,top2) (\x. c) <=> topspace top1 = {} \/ c IN topspace top2`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map] THEN ASM_CASES_TAC `topspace top1:A->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; OPEN_IN_EMPTY] THEN ASM_CASES_TAC `(c:B) IN topspace top2` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM SET_TAC[]] THEN X_GEN_TAC `u:B->bool` THEN ASM_CASES_TAC `(c:B) IN u` THEN ASM_REWRITE_TAC[EMPTY_GSPEC; OPEN_IN_EMPTY] THEN REWRITE_TAC[SET_RULE `{x | x IN s} = s`; OPEN_IN_TOPSPACE]);; let CONTINUOUS_MAP_COMPOSE = prove (`!top top' top'' f:A->B g:B->C. continuous_map (top,top') f /\ continuous_map (top',top'') g ==> continuous_map (top,top'') (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; o_THM] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `u:C->bool`] THEN SUBGOAL_THEN `{x:A | x IN topspace top /\ (g:B->C) (f x) IN u} = {x:A | x IN topspace top /\ f x IN {y | y IN topspace top' /\ g y IN u}}` SUBST1_TAC THENL [ASM SET_TAC[]; ASM SIMP_TAC[]]);; let CONTINUOUS_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ continuous_map (top,top') f ==> continuous_map (top,top') g`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[continuous_map] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let RESTRICTION_CONTINUOUS_MAP = prove (`!top top' f:A->B s. topspace top SUBSET s ==> (continuous_map (top,top') (RESTRICTION s f) <=> continuous_map (top,top') f)`, REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTINUOUS_MAP_EQ) THEN REWRITE_TAC[RESTRICTION] THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_IN_SUBTOPOLOGY = prove (`!top top' s f:A->B. continuous_map (top,subtopology top' s) f <=> continuous_map (top,top') f /\ IMAGE f (topspace top) SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; TOPSPACE_SUBTOPOLOGY; IN_INTER; OPEN_IN_SUBTOPOLOGY] THEN EQ_TAC THEN SIMP_TAC[] THENL [INTRO_TAC "img cont" THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN INTRO_TAC "!u; u" THEN SUBGOAL_THEN `{x:A | x IN topspace top /\ f x:B IN u} = {x | x IN topspace top /\ f x IN u INTER s}` (fun th -> REWRITE_TAC[th]) THENL [HYP SET_TAC "img" []; ALL_TAC] THEN REMOVE_THEN "cont" MATCH_MP_TAC THEN EXISTS_TAC `u:B->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; INTRO_TAC "(img cont) img'" THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN INTRO_TAC "!u; @t. t ueq" THEN REMOVE_THEN "ueq" SUBST_VAR_TAC THEN SUBGOAL_THEN `{x:A | x IN topspace top /\ f x:B IN t INTER s} = {x | x IN topspace top /\ f x IN t}` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM SET_TAC[]]);; let CONTINUOUS_MAP_FROM_SUBTOPOLOGY = prove (`!top top' f:A->B s. continuous_map (top,top') f ==> continuous_map (subtopology top s,top') f`, SIMP_TAC[continuous_map; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `u:B->bool` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN EXISTS_TAC `{x | x IN topspace top /\ (f:A->B) x IN u}` THEN ASM_SIMP_TAC[] THEN SET_TAC[]);; let CONTINUOUS_MAP_INTO_FULLTOPOLOGY = prove (`!top top' f:A->B t. continuous_map (top,subtopology top' t) f ==> continuous_map (top,top') f`, SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY]);; let CONTINUOUS_MAP_INTO_SUBTOPOLOGY = prove (`!top top' f:A->B t. continuous_map (top,top') f /\ IMAGE f (topspace top) SUBSET t ==> continuous_map (top,subtopology top' t) f`, SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY]);; let CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO = prove (`!top top' f s t. continuous_map (subtopology top t,top') f /\ s SUBSET t ==> continuous_map (subtopology top s,top') f`, MESON_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY; SET_RULE `s SUBSET t ==> t INTER s = s`]);; let CONTINUOUS_MAP_FROM_DISCRETE_TOPOLOGY = prove (`!(f:A->B) top u. continuous_map (discrete_topology u,top) f <=> IMAGE f u SUBSET topspace top`, REWRITE_TAC[continuous_map; OPEN_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; SUBSET_RESTRICT] THEN SET_TAC[]);; let PASTING_LEMMA = prove (`!top top' (f:K->A->B) g t k. (!i. i IN k ==> open_in top (t i) /\ continuous_map(subtopology top (t i),top') (f i)) /\ (!i j x. i IN k /\ j IN k /\ x IN topspace top INTER t i INTER t j ==> f i x = f j x) /\ (!x. x IN topspace top ==> ?j. j IN k /\ x IN t j /\ g x = f j x) ==> continuous_map(top,top') g`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; TOPSPACE_SUBTOPOLOGY] THEN ASM_CASES_TAC `!i. i IN k ==> (t:K->A->bool) i SUBSET topspace top` THENL [ALL_TAC; ASM_MESON_TAC[OPEN_IN_SUBSET]] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s`] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `u:B->bool` THEN DISCH_TAC] THEN SUBGOAL_THEN `{x | x IN topspace top /\ g x IN u} = UNIONS {{x | x IN (t i) /\ ((f:K->A->B) i x) IN u} | i IN k}` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]; MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[OPEN_IN_TRANS_FULL]]);; let PASTING_LEMMA_EXISTS = prove (`!top top' (f:K->A->B) t k. topspace top SUBSET UNIONS {t i | i IN k} /\ (!i. i IN k ==> open_in top (t i) /\ continuous_map(subtopology top (t i),top') (f i)) /\ (!i j x. i IN k /\ j IN k /\ x IN topspace top INTER t i INTER t j ==> f i x = f j x) ==> ?g. continuous_map(top,top') g /\ !x i. i IN k /\ x IN topspace top INTER t i ==> g x = f i x`, REPEAT STRIP_TAC THEN EXISTS_TAC `\x. (f:K->A->B)(@i. i IN k /\ x IN t i) x` THEN CONJ_TAC THENL [MATCH_MP_TAC PASTING_LEMMA THEN MAP_EVERY EXISTS_TAC [`f:K->A->B`; `t:K->A->bool`; `k:K->bool`] THEN ASM SET_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[OPEN_IN_CLOSED_IN_EQ]) THEN ASM SET_TAC[]]);; let PASTING_LEMMA_LOCALLY_FINITE = prove (`!top top' (f:K->A->B) g t k. (!x. x IN topspace top ==> ?v. open_in top v /\ x IN v /\ FINITE {i | i IN k /\ ~(t i INTER v = {})}) /\ (!i. i IN k ==> closed_in top (t i) /\ continuous_map(subtopology top (t i),top') (f i)) /\ (!i j x. i IN k /\ j IN k /\ x IN topspace top INTER t i INTER t j ==> f i x = f j x) /\ (!x. x IN topspace top ==> ?j. j IN k /\ x IN t j /\ g x = f j x) ==> continuous_map(top,top') g`, REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; TOPSPACE_SUBTOPOLOGY] THEN ASM_CASES_TAC `!i. i IN k ==> (t:K->A->bool) i SUBSET topspace top` THENL [ALL_TAC; ASM_MESON_TAC[CLOSED_IN_SUBSET]] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s`] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `u:B->bool` THEN DISCH_TAC] THEN SUBGOAL_THEN `{x | x IN topspace top /\ g x IN u} = UNIONS {{x | x IN (t i) /\ ((f:K->A->B) i x) IN u} | i IN k}` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_LOCALLY_FINITE_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_TRANS_FULL]; ALL_TAC] THEN REWRITE_TAC[locally_finite_in; SET_RULE `{y | y IN {f x | x IN s} /\ P y} = IMAGE f {x | x IN s /\ P(f x)}`] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `x:A` th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS) THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_IMAGE THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]]);; let PASTING_LEMMA_EXISTS_LOCALLY_FINITE = prove (`!top top' (f:K->A->B) t k. (!x. x IN topspace top ==> ?v. open_in top v /\ x IN v /\ FINITE {i | i IN k /\ ~(t i INTER v = {})}) /\ topspace top SUBSET UNIONS {t i | i IN k} /\ (!i. i IN k ==> closed_in top (t i) /\ continuous_map(subtopology top (t i),top') (f i)) /\ (!i j x. i IN k /\ j IN k /\ x IN topspace top INTER t i INTER t j ==> f i x = f j x) ==> ?g. continuous_map(top,top') g /\ !x i. i IN k /\ x IN topspace top INTER t i ==> g x = f i x`, REPEAT STRIP_TAC THEN EXISTS_TAC `\x. (f:K->A->B)(@i. i IN k /\ x IN t i) x` THEN CONJ_TAC THENL [MATCH_MP_TAC PASTING_LEMMA_LOCALLY_FINITE THEN MAP_EVERY EXISTS_TAC [`f:K->A->B`; `t:K->A->bool`; `k:K->bool`] THEN ASM SET_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[closed_in]) THEN ASM SET_TAC[]]);; let PASTING_LEMMA_CLOSED = prove (`!top top' (f:K->A->B) g t k. FINITE k /\ (!i. i IN k ==> closed_in top (t i) /\ continuous_map(subtopology top (t i),top') (f i)) /\ (!i j x. i IN k /\ j IN k /\ x IN topspace top INTER t i INTER t j ==> f i x = f j x) /\ (!x. x IN topspace top ==> ?j. j IN k /\ x IN t j /\ g x = f j x) ==> continuous_map(top,top') g`, MP_TAC PASTING_LEMMA_LOCALLY_FINITE THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MATCH_MP_TAC MONO_IMP THEN SIMP_TAC[FINITE_RESTRICT] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let PASTING_LEMMA_EXISTS_CLOSED = prove (`!top top' (f:K->A->B) t k. FINITE k /\ topspace top SUBSET UNIONS {t i | i IN k} /\ (!i. i IN k ==> closed_in top (t i) /\ continuous_map(subtopology top (t i),top') (f i)) /\ (!i j x. i IN k /\ j IN k /\ x IN topspace top INTER t i INTER t j ==> f i x = f j x) ==> ?g. continuous_map(top,top') g /\ !x i. i IN k /\ x IN topspace top INTER t i ==> g x = f i x`, MP_TAC PASTING_LEMMA_EXISTS_LOCALLY_FINITE THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MATCH_MP_TAC MONO_IMP THEN SIMP_TAC[FINITE_RESTRICT] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let CONTINUOUS_MAP_CASES = prove (`!top top' P f g:A->B. continuous_map (subtopology top (top closure_of {x | P x}),top') f /\ continuous_map (subtopology top (top closure_of {x | ~P x}),top') g /\ (!x. x IN top frontier_of {x | P x} ==> f x = g x) ==> continuous_map (top,top') (\x. if P x then f x else g x)`, REPEAT GEN_TAC THEN REWRITE_TAC[FRONTIER_OF_CLOSURES] THEN REWRITE_TAC[SET_RULE `u DIFF {x | P x} = u INTER {x | ~P x}`] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `\p. if p then (f:A->B) else g`; `\x. if P x then (f:A->B) x else g x`; `\p. if p then top closure_of {x:A | P x} else top closure_of {x | ~P x}`; `{T,F}`] PASTING_LEMMA_CLOSED) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[EXISTS_IN_INSERT; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[FINITE_INSERT; CLOSED_IN_CLOSURE_OF; FINITE_EMPTY] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN MATCH_MP_TAC] THEN MP_TAC(ISPECL [`top:A topology`; `topspace top INTER {x:A | P x}`] CLOSURE_OF_SUBSET) THEN MP_TAC(ISPECL [`top:A topology`; `topspace top INTER {x:A | ~P x}`] CLOSURE_OF_SUBSET) THEN REWRITE_TAC[INTER_SUBSET; GSYM CLOSURE_OF_RESTRICT] THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_CASES_ALT = prove (`!top top' P f g:A->B. continuous_map (subtopology top (top closure_of {x | x IN topspace top /\ P x}),top') f /\ continuous_map (subtopology top (top closure_of {x | x IN topspace top /\ ~P x}),top') g /\ (!x. x IN top frontier_of {x | x IN topspace top /\ P x} ==> f x = g x) ==> continuous_map (top,top') (\x. if P x then f x else g x)`, REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT; GSYM FRONTIER_OF_RESTRICT] THEN REWRITE_TAC[CONTINUOUS_MAP_CASES]);; let CONTINUOUS_MAP_CASES_FUNCTION = prove (`!top top' top'' (p:A->C) f (g:A->B) u. continuous_map (top,top'') p /\ continuous_map (subtopology top {x | x IN topspace top /\ p x IN top'' closure_of u},top') f /\ continuous_map (subtopology top {x | x IN topspace top /\ p x IN top'' closure_of (topspace top'' DIFF u)},top') g /\ (!x. x IN topspace top /\ p x IN top'' frontier_of u ==> f x = g x) ==> continuous_map (top,top') (\x. if p x IN u then f x else g x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_CASES_ALT THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO THEN EXISTS_TAC `{x | x IN topspace top /\ (p:A->C) x IN top'' closure_of u}` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_CLOSURE_PREIMAGE_SUBSET]; MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO THEN EXISTS_TAC `{x | x IN topspace top /\ (p:A->C) x IN top'' closure_of (topspace top'' DIFF u)}` THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (rand o rand) CONTINUOUS_MAP_CLOSURE_PREIMAGE_SUBSET o rand o snd) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; GEN_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `u:C->bool` o MATCH_MP CONTINUOUS_MAP_FRONTIER_FRONTIER_PREIMAGE_SUBSET) THEN ASM SET_TAC[]]);; let CONTINUOUS_MAP_SEPARATED_UNION = prove (`!top top' (f:A->B) s t. continuous_map (subtopology top s,top') f /\ continuous_map (subtopology top t,top') f /\ DISJOINT s (top closure_of t) /\ DISJOINT t (top closure_of s) ==> continuous_map (subtopology top (s UNION t),top') f`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (s UNION t:A->bool)`; `top':B topology`; `\x:A. x IN s`; `f:A->B`; `f:A->B`] CONTINUOUS_MAP_CASES) THEN REWRITE_TAC[COND_ID; ETA_AX] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO THENL [EXISTS_TAC `s:A->bool`; EXISTS_TAC `t:A->bool`] THEN ASM_REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY] THEN ASM_REWRITE_TAC[IN_GSPEC; SET_RULE `(s UNION t) INTER s = s`] THEN ASM_REWRITE_TAC[SET_RULE `(s UNION t) INTER t = t`] THENL [ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `(s UNION t) INTER top closure_of t:A->bool` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> (s INTER t) SUBSET (s INTER u)`) THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Open and closed maps (not a priori assumed continuous). *) (* ------------------------------------------------------------------------- *) let open_map = new_definition `open_map (top1,top2) (f:A->B) <=> !u. open_in top1 u ==> open_in top2 (IMAGE f u)`;; let closed_map = new_definition `closed_map (top1,top2) (f:A->B) <=> !u. closed_in top1 u ==> closed_in top2 (IMAGE f u)`;; let OPEN_MAP_IMP_SUBSET_TOPSPACE = prove (`!top1 top2 f:A->B. open_map (top1,top2) f ==> IMAGE f (topspace top1) SUBSET topspace top2`, MESON_TAC[OPEN_IN_SUBSET; open_map; OPEN_IN_TOPSPACE]);; let OPEN_MAP_IMP_SUBSET = prove (`!top1 top2 f:A->B s. open_map (top1,top2) f /\ s SUBSET topspace top1 ==> IMAGE f s SUBSET topspace top2`, MESON_TAC[OPEN_MAP_IMP_SUBSET_TOPSPACE; IMAGE_SUBSET; SUBSET_TRANS]);; let TOPOLOGY_FINER_OPEN_ID = prove (`!top top':A topology. (!s. open_in top s ==> open_in top' s) <=> open_map (top,top') (\x. x)`, REWRITE_TAC[open_map; IMAGE_ID]);; let OPEN_MAP_ID = prove (`!top:A topology. open_map(top,top) (\x. x)`, REWRITE_TAC[GSYM TOPOLOGY_FINER_OPEN_ID]);; let OPEN_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ open_map (top,top') f ==> open_map (top,top') g`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN STRIP_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let OPEN_MAP_INCLUSION_EQ = prove (`!top s:A->bool. open_map (subtopology top s,top) (\x. x) <=> open_in top (topspace top INTER s)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INTER_COMM] THEN REWRITE_TAC[open_map; OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[IMAGE_ID; FORALL_IN_GSPEC] THEN EQ_TAC THEN SIMP_TAC[OPEN_IN_TOPSPACE] THEN DISCH_TAC THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `s INTER t:A->bool = (s INTER topspace top) INTER t` SUBST1_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]; ASM_SIMP_TAC[OPEN_IN_INTER]]);; let OPEN_MAP_INCLUSION = prove (`!top s:A->bool. open_in top s ==> open_map (subtopology top s,top) (\x. x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[OPEN_MAP_INCLUSION_EQ] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);; let OPEN_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). open_map(top,top') f /\ open_map(top',top'') g ==> open_map(top,top'') (g o f)`, REWRITE_TAC[open_map; IMAGE_o] THEN MESON_TAC[]);; let CLOSED_MAP_IMP_SUBSET_TOPSPACE = prove (`!top1 top2 f:A->B. closed_map (top1,top2) f ==> IMAGE f (topspace top1) SUBSET topspace top2`, MESON_TAC[CLOSED_IN_SUBSET; closed_map; CLOSED_IN_TOPSPACE]);; let CLOSED_MAP_IMP_SUBSET = prove (`!top1 top2 f:A->B s. closed_map (top1,top2) f /\ s SUBSET topspace top1 ==> IMAGE f s SUBSET topspace top2`, MESON_TAC[CLOSED_MAP_IMP_SUBSET_TOPSPACE; IMAGE_SUBSET; SUBSET_TRANS]);; let TOPOLOGY_FINER_CLOSED_ID = prove (`!top top':A topology. (!s. closed_in top s ==> closed_in top' s) <=> closed_map (top,top') (\x. x)`, REWRITE_TAC[closed_map; IMAGE_ID]);; let CLOSED_MAP_ID = prove (`!top:A topology. closed_map(top,top) (\x. x)`, REWRITE_TAC[GSYM TOPOLOGY_FINER_CLOSED_ID]);; let CLOSED_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ closed_map (top,top') f ==> closed_map (top,top') g`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map] THEN STRIP_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]);; let CLOSED_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). closed_map(top,top') f /\ closed_map(top',top'') g ==> closed_map(top,top'') (g o f)`, REWRITE_TAC[closed_map; IMAGE_o] THEN MESON_TAC[]);; let CLOSED_MAP_INCLUSION_EQ = prove (`!top s:A->bool. closed_map (subtopology top s,top) (\x. x) <=> closed_in top (topspace top INTER s)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[INTER_COMM] THEN REWRITE_TAC[closed_map; CLOSED_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[IMAGE_ID; FORALL_IN_GSPEC] THEN EQ_TAC THEN SIMP_TAC[CLOSED_IN_TOPSPACE] THEN DISCH_TAC THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `s INTER t:A->bool = (s INTER topspace top) INTER t` SUBST1_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]; ASM_SIMP_TAC[CLOSED_IN_INTER]]);; let CLOSED_MAP_INCLUSION = prove (`!top s:A->bool. closed_in top s ==> closed_map (subtopology top s,top) (\x. x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[CLOSED_MAP_INCLUSION_EQ] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);; let OPEN_MAP_INTO_SUBTOPOLOGY = prove (`!top top' (f:A->B) s. open_map (top,top') f /\ IMAGE f (topspace top) SUBSET s ==> open_map (top,subtopology top' s) f`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map; OPEN_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (f:A->B) u` THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let CLOSED_MAP_INTO_SUBTOPOLOGY = prove (`!top top' (f:A->B) s. closed_map (top,top') f /\ IMAGE f (topspace top) SUBSET s ==> closed_map (top,subtopology top' s) f`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map; CLOSED_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (f:A->B) u` THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]);; let OPEN_MAP_INTO_DISCRETE_TOPOLOGY = prove (`!(f:A->B) top u. open_map (top,discrete_topology u) f <=> IMAGE f (topspace top) SUBSET u`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map; OPEN_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN MESON_TAC[OPEN_IN_TOPSPACE; OPEN_IN_SUBSET; SUBSET]);; let CLOSED_MAP_INTO_DISCRETE_TOPOLOGY = prove (`!(f:A->B) top u. closed_map (top,discrete_topology u) f <=> IMAGE f (topspace top) SUBSET u`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map; CLOSED_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN MESON_TAC[CLOSED_IN_TOPSPACE; CLOSED_IN_SUBSET; SUBSET]);; let BIJECTIVE_OPEN_IMP_CLOSED_MAP = prove (`!top top' f:A->B. open_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) ==> closed_map (top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map; closed_map; INJECTIVE_ON_ALT] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[FORALL_CLOSED_IN] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[closed_in] THEN DISCH_THEN(fun th -> CONJ_TAC THENL [ASM SET_TAC[]; MP_TAC th]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let BIJECTIVE_CLOSED_IMP_OPEN_MAP = prove (`!top top' f:A->B. closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) ==> open_map (top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map; closed_map; INJECTIVE_ON_ALT] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[FORALL_OPEN_IN] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ] THEN DISCH_THEN(fun th -> CONJ_TAC THENL [ASM SET_TAC[]; MP_TAC th]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]);; let OPEN_MAP_ON_EMPTY = prove (`!top top' (f:A->B). topspace top = {} ==> open_map(top,top') f`, SIMP_TAC[open_map; OPEN_IN_TOPSPACE_EMPTY] THEN REWRITE_TAC[IMAGE_CLAUSES; OPEN_IN_EMPTY]);; let CLOSED_MAP_ON_EMPTY = prove (`!top top' (f:A->B). topspace top = {} ==> closed_map(top,top') f`, SIMP_TAC[closed_map; CLOSED_IN_TOPSPACE_EMPTY] THEN REWRITE_TAC[IMAGE_CLAUSES; CLOSED_IN_EMPTY]);; let OPEN_MAP_FROM_SUBTOPOLOGY = prove (`!top top' (f:A->B) u. open_map(top,top') f /\ open_in top u ==> open_map (subtopology top u,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN STRIP_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN ASM_SIMP_TAC[OPEN_IN_INTER]);; let CLOSED_MAP_FROM_SUBTOPOLOGY = prove (`!top top' (f:A->B) u. closed_map(top,top') f /\ closed_in top u ==> closed_map (subtopology top u,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map] THEN STRIP_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN ASM_SIMP_TAC[CLOSED_IN_INTER]);; let OPEN_MAP_RESTRICTION = prove (`!top top' (f:A->B) u v. open_map(top,top') f /\ {x | x IN topspace top /\ f x IN v} = u ==> open_map (subtopology top u,subtopology top' v) f`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN STRIP_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `IMAGE (f:A->B) t` THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let CLOSED_MAP_RESTRICTION = prove (`!top top' (f:A->B) u v. closed_map(top,top') f /\ {x | x IN topspace top /\ f x IN v} = u ==> closed_map (subtopology top u,subtopology top' v) f`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map] THEN STRIP_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `IMAGE (f:A->B) t` THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]);; let CLOSED_MAP_CLOSURE_OF_IMAGE = prove (`!top top' f:A->B. closed_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !s. s SUBSET topspace top ==> top' closure_of (IMAGE f s) SUBSET IMAGE f (top closure_of s)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `IMAGE (f:A->B) (topspace top) SUBSET topspace top'` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[CLOSED_MAP_IMP_SUBSET_TOPSPACE]] THEN REWRITE_TAC[closed_map] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THENL [MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ASM_SIMP_TAC[CLOSED_IN_CLOSURE_OF] THEN MATCH_MP_TAC IMAGE_SUBSET THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET]; FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_SIMP_TAC[CLOSURE_OF_CLOSED_IN; GSYM CLOSURE_OF_SUBSET_EQ] THEN ASM SET_TAC[]]);; let [OPEN_MAP_INTERIOR_OF_IMAGE_SUBSET; OPEN_MAP_INTERIOR_OF_IMAGE_SUBSET_ALT; OPEN_MAP_INTERIOR_OF_IMAGE_SUBSET_GEN] = (CONJUNCTS o prove) (`(!top top' f:A->B. open_map (top,top') f <=> !s. IMAGE f (top interior_of s) SUBSET top' interior_of (IMAGE f s)) /\ (!top top' f:A->B. open_map (top,top') f <=> !s. s SUBSET topspace top ==> IMAGE f (top interior_of s) SUBSET top' interior_of (IMAGE f s)) /\ (!top top' f:A->B. open_map (top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !s. IMAGE f (top interior_of s) SUBSET top' interior_of (IMAGE f s))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(q ==> q') /\ (p ==> r) /\ (p ==> q) /\ (q' ==> p) ==> (p <=> q) /\ (p <=> q') /\ (p <=> r /\ q)`) THEN SIMP_TAC[OPEN_MAP_IMP_SUBSET_TOPSPACE] THEN CONJ_TAC THEN DISCH_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_MAP_IMP_SUBSET_TOPSPACE) THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `s:A->bool` THEN MATCH_MP_TAC INTERIOR_OF_MAXIMAL THEN SIMP_TAC[IMAGE_SUBSET; INTERIOR_OF_SUBSET] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[open_map]) THEN REWRITE_TAC[OPEN_IN_INTERIOR_OF]; REWRITE_TAC[open_map] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; GSYM SUBSET_INTERIOR_OF_EQ] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN MATCH_MP_TAC IMAGE_SUBSET THEN ASM_REWRITE_TAC[SUBSET_INTERIOR_OF_EQ]]);; let OPEN_MAP_PREIMAGE_NEIGHBOURHOOD = prove (`!top top' (f:A->B). open_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !u t. closed_in top u /\ t SUBSET topspace top' /\ {x | x IN topspace top /\ f x IN t} SUBSET u ==> ?v. closed_in top' v /\ t SUBSET v /\ {x | x IN topspace top /\ f x IN v} SUBSET u`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_MAP_IMP_SUBSET_TOPSPACE) THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `t:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `topspace top' DIFF IMAGE (f:A->B) (topspace top DIFF u)` THEN RULE_ASSUM_TAC(REWRITE_RULE[open_map]) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]; STRIP_TAC THEN REWRITE_TAC[open_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`topspace top DIFF c:A->bool`; `topspace top' DIFF IMAGE (f:A->B) c`]) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `v:B->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `IMAGE (f:A->B) c = topspace top' DIFF v` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]; ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE]]]);; let CLOSED_MAP_PREIMAGE_NEIGHBOURHOOD = prove (`!top top' (f:A->B). closed_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !u t. open_in top u /\ t SUBSET topspace top' /\ {x | x IN topspace top /\ f x IN t} SUBSET u ==> ?v. open_in top' v /\ t SUBSET v /\ {x | x IN topspace top /\ f x IN v} SUBSET u`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE) THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `t:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `topspace top' DIFF IMAGE (f:A->B) (topspace top DIFF u)` THEN RULE_ASSUM_TAC(REWRITE_RULE[closed_map]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN ASM SET_TAC[]; STRIP_TAC THEN REWRITE_TAC[closed_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`topspace top DIFF c:A->bool`; `topspace top' DIFF IMAGE (f:A->B) c`]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `v:B->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `IMAGE (f:A->B) c = topspace top' DIFF v` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]; ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]]]);; let CLOSED_MAP_FIBRE_NEIGHBOURHOOD = prove (`!top top' (f:A->B). closed_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !u y. open_in top u /\ y IN topspace top' /\ {x | x IN topspace top /\ f x = y} SUBSET u ==> ?v. open_in top' v /\ y IN v /\ {x | x IN topspace top /\ f x IN v} SUBSET u`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_MAP_PREIMAGE_NEIGHBOURHOOD] THEN REWRITE_TAC[TAUT `(p /\ q <=> p /\ r) <=> p ==> (q <=> r)`] THEN DISCH_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[] THEN EQ_TAC THENL [SIMP_TAC[GSYM IN_SING; GSYM SING_SUBSET]; ALL_TAC] THEN ASM_CASES_TAC `open_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `vv:B->B->bool` THEN DISCH_TAC THEN X_GEN_TAC `t:B->bool` THEN STRIP_TAC THEN EXISTS_TAC `UNIONS { (vv:B->B->bool) y | y IN t}` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]; ASM SET_TAC[]]);; let OPEN_MAP_IN_SUBTOPOLOGY = prove (`!top top' s (f:A->B). open_in top' s ==> (open_map(top,subtopology top' s) f <=> open_map(top,top') f /\ IMAGE f (topspace top) SUBSET s)`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[OPEN_MAP_INTO_SUBTOPOLOGY] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_MAP_IMP_SUBSET_TOPSPACE) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [open_map]) THEN ASM_SIMP_TAC[open_map; OPEN_IN_OPEN_SUBTOPOLOGY]);; let OPEN_MAP_FROM_OPEN_SUBTOPOLOGY = prove (`!top top' s (f:A->B). open_in top' s /\ open_map(top,subtopology top' s) f ==> open_map(top,top') f`, MESON_TAC[OPEN_MAP_IN_SUBTOPOLOGY]);; let CLOSED_MAP_IN_SUBTOPOLOGY = prove (`!top top' s (f:A->B). closed_in top' s ==> (closed_map(top,subtopology top' s) f <=> closed_map(top,top') f /\ IMAGE f (topspace top) SUBSET s)`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[CLOSED_MAP_INTO_SUBTOPOLOGY] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [closed_map]) THEN ASM_SIMP_TAC[closed_map; CLOSED_IN_CLOSED_SUBTOPOLOGY]);; let CLOSED_MAP_FROM_CLOSED_SUBTOPOLOGY = prove (`!top top' s (f:A->B). closed_in top' s /\ closed_map(top,subtopology top' s) f ==> closed_map(top,top') f`, MESON_TAC[CLOSED_MAP_IN_SUBTOPOLOGY]);; let CLOSED_MAP_FROM_COMPOSITION_LEFT = prove (`!top top' top'' (f:A->B) (g:B->C). closed_map(top,top'') (g o f) /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> closed_map(top',top'') g`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map] THEN STRIP_TAC THEN X_GEN_TAC `c:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN c}`) THEN ANTS_TAC THENL [MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]]);; let CLOSED_MAP_FROM_COMPOSITION_RIGHT = prove (`!top top' top'' (f:A->B) (g:B->C). closed_map(top,top'') (g o f) /\ IMAGE f (topspace top) SUBSET topspace top' /\ continuous_map(top',top'') g /\ (!x y. x IN topspace top' /\ y IN topspace top' /\ g x = g y ==> x = y) ==> closed_map(top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_map] THEN STRIP_TAC THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `IMAGE f c = {x | x IN topspace top' /\ g x IN IMAGE ((g:B->C) o (f:A->B)) c}` SUBST1_TAC THENL [REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]]);; let OPEN_MAP_FROM_COMPOSITION_LEFT = prove (`!top top' top'' (f:A->B) (g:B->C). open_map(top,top'') (g o f) /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> open_map(top',top'') g`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN STRIP_TAC THEN X_GEN_TAC `u:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN u}`) THEN ANTS_TAC THENL [MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]]);; let OPEN_MAP_FROM_COMPOSITION_RIGHT = prove (`!top top' top'' (f:A->B) (g:B->C). open_map(top,top'') (g o f) /\ IMAGE f (topspace top) SUBSET topspace top' /\ continuous_map(top',top'') g /\ (!x y. x IN topspace top' /\ y IN topspace top' /\ g x = g y ==> x = y) ==> open_map(top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN STRIP_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `IMAGE f u = {x | x IN topspace top' /\ g x IN IMAGE ((g:B->C) o (f:A->B)) u}` SUBST1_TAC THENL [REWRITE_TAC[IMAGE_o] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]]);; let CLOSED_MAP_CONST = prove (`!(top:A topology) top' (c:B). closed_map(top,top') (\x. c) <=> topspace top = {} \/ closed_in top' {c}`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[CLOSED_MAP_ON_EMPTY] THEN REWRITE_TAC[closed_map] THEN REWRITE_TAC[IMAGE_CONST] THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[CLOSED_IN_EMPTY; TAUT `(if p then T else q) <=> p \/ q`] THEN ASM_MESON_TAC[CLOSED_IN_TOPSPACE]);; let DISCRETE_SPACE_OPEN_MAP_IMAGE = prove (`!top top' (f:A->B). open_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ discrete_space top ==> discrete_space top'`, REWRITE_TAC[open_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[DISCRETE_SPACE_OPEN] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN ASM_MESON_TAC[DISCRETE_SPACE_OPEN_EQ]);; let DISCRETE_SPACE_CLOSED_MAP_IMAGE = prove (`!top top' (f:A->B). closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ discrete_space top ==> discrete_space top'`, REWRITE_TAC[closed_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[DISCRETE_SPACE_CLOSED] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN ASM_MESON_TAC[DISCRETE_SPACE_CLOSED_EQ]);; (* ------------------------------------------------------------------------- *) (* Quotient maps. *) (* ------------------------------------------------------------------------- *) let quotient_map = new_definition `quotient_map (top,top') (f:A->B) <=> IMAGE f (topspace top) = topspace top' /\ !u. u SUBSET topspace top' ==> (open_in top {x | x IN topspace top /\ f x IN u} <=> open_in top' u)`;; let QUOTIENT_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ quotient_map (top,top') f ==> quotient_map (top,top') g`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let QUOTIENT_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). quotient_map(top,top') f /\ quotient_map(top',top'') g ==> quotient_map(top,top'') (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map; IMAGE_o; o_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `w:C->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `{y | y IN topspace top' /\ (g:B->C) y IN w}`) THEN ASM_SIMP_TAC[SUBSET_RESTRICT] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let QUOTIENT_MAP_FROM_COMPOSITION = prove (`!top top' top'' (f:A->B) (g:B->C). continuous_map(top,top') f /\ continuous_map(top',top'') g /\ quotient_map(top,top'') (g o f) ==> quotient_map(top',top'') g`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map; continuous_map; IMAGE_o; o_THM] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `w:C->bool` THEN DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o snd)) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN SUBGOAL_THEN `{x:A | x IN topspace top /\ (g:B->C) (f x) IN w} = {x | x IN topspace top /\ f x IN {y | y IN topspace top' /\ g y IN w}}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `top':B topology` THEN ASM_SIMP_TAC[continuous_map]);; let QUOTIENT_IMP_CONTINUOUS_MAP = prove (`!top top' f:A->B. quotient_map (top,top') f ==> continuous_map (top,top') f`, SIMP_TAC[quotient_map; CONTINUOUS_MAP; OPEN_IN_SUBSET; SUBSET_REFL]);; let QUOTIENT_IMP_SURJECTIVE_MAP = prove (`!top top' f:A->B. quotient_map (top,top') f ==> IMAGE f (topspace top) = topspace top'`, SIMP_TAC[quotient_map]);; let QUOTIENT_MAP = prove (`!top top' f:A->B. quotient_map (top,top') f <=> IMAGE f (topspace top) = topspace top' /\ !u. u SUBSET topspace top' ==> (closed_in top {x | x IN topspace top /\ f x IN u} <=> closed_in top' u)`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `s:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `topspace top' DIFF s:B->bool`) THEN ASM_SIMP_TAC[closed_in; SUBSET_RESTRICT; SUBSET_DIFF; SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let CONTINUOUS_OPEN_IMP_QUOTIENT_MAP = prove (`!top top' f:A->B. continuous_map (top,top') f /\ open_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> quotient_map (top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; open_map; quotient_map] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let CONTINUOUS_CLOSED_IMP_QUOTIENT_MAP = prove (`!top top' f:A->B. continuous_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> quotient_map (top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; closed_map; QUOTIENT_MAP] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let CONTINUOUS_OPEN_QUOTIENT_MAP = prove (`!top top' f:A->B. continuous_map (top,top') f /\ open_map (top,top') f ==> (quotient_map (top,top') f <=> IMAGE f (topspace top) = topspace top')`, MESON_TAC[CONTINUOUS_OPEN_IMP_QUOTIENT_MAP; quotient_map]);; let CONTINUOUS_CLOSED_QUOTIENT_MAP = prove (`!top top' f:A->B. continuous_map (top,top') f /\ closed_map (top,top') f ==> (quotient_map (top,top') f <=> IMAGE f (topspace top) = topspace top')`, MESON_TAC[CONTINUOUS_CLOSED_IMP_QUOTIENT_MAP; quotient_map]);; let INJECTIVE_QUOTIENT_MAP = prove (`!top top' f:A->B. (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> (quotient_map (top,top') f <=> continuous_map (top,top') f /\ open_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top')`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[CONTINUOUS_OPEN_IMP_QUOTIENT_MAP]] THEN SIMP_TAC[QUOTIENT_IMP_CONTINUOUS_MAP; QUOTIENT_IMP_SURJECTIVE_MAP] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[open_map; closed_map] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THENL [FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [quotient_map]); FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [QUOTIENT_MAP])] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `IMAGE (f:A->B) u`)) THEN (ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)]) THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x IN IMAGE f u} = u` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM SET_TAC[]);; let CONTINUOUS_COMPOSE_QUOTIENT_MAP = prove (`!top top' top'' (f:A->B) (g:B->C). quotient_map (top,top') f /\ continuous_map (top,top'') (g o f) ==> continuous_map (top',top'') g`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map; continuous_map; o_THM] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `v:C->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o snd)) THEN REWRITE_TAC[SUBSET_RESTRICT] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:C->bool`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let CONTINUOUS_COMPOSE_QUOTIENT_MAP_EQ = prove (`!top top' top'' (f:A->B) (g:B->C). quotient_map (top,top') f ==> (continuous_map (top,top'') (g o f) <=> continuous_map (top',top'') g)`, MESON_TAC[CONTINUOUS_COMPOSE_QUOTIENT_MAP; QUOTIENT_IMP_CONTINUOUS_MAP; CONTINUOUS_MAP_COMPOSE]);; let QUOTIENT_MAP_COMPOSE_EQ = prove (`!top top' top'' (f:A->B) (g:B->C). quotient_map(top,top') f ==> (quotient_map(top,top'') (g o f) <=> quotient_map(top',top'') g)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[QUOTIENT_MAP_COMPOSE]] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] QUOTIENT_MAP_FROM_COMPOSITION)) THEN ASM_MESON_TAC[CONTINUOUS_COMPOSE_QUOTIENT_MAP_EQ; QUOTIENT_IMP_CONTINUOUS_MAP]);; let QUOTIENT_MAP_RESTRICTION = prove (`!top top' (f:A->B) u v. quotient_map(top,top') f /\ (open_in top' v \/ closed_in top' v) /\ {x | x IN topspace top /\ f x IN v} = u ==> quotient_map (subtopology top u,subtopology top' v) f`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THENL [REWRITE_TAC[quotient_map] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET); REWRITE_TAC[QUOTIENT_MAP] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET)] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; CLOSED_IN_CLOSED_SUBTOPOLOGY] THEN ASM_SIMP_TAC[SET_RULE `u SUBSET v ==> (x IN t INTER {x | x IN t /\ f x IN v} /\ f x IN u <=> x IN t /\ f x IN u)`] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let QUOTIENT_MAP_SATURATED_OPEN = prove (`!top top' f:A->B. quotient_map (top,top') f <=> continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ !u. open_in top u /\ {x | x IN topspace top /\ f x IN IMAGE f u} SUBSET u ==> open_in top' (IMAGE f u)`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map; continuous_map] THEN REWRITE_TAC[GSYM CONJ_ASSOC; FORALL_AND_THM; TAUT `(p ==> (q <=> r)) <=> (p /\ q ==> r) /\ (r ==> p ==> q)`] THEN SIMP_TAC[OPEN_IN_SUBSET] THEN MATCH_MP_TAC(TAUT `(i ==> j) /\ (i /\ c ==> (p <=> q)) ==> (i /\ p /\ c <=> j /\ c /\ i /\ q)`) THEN CONJ_TAC THENL [SET_TAC[]; STRIP_TAC] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `open_in top (u:A->bool)` THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]; X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN v}`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]]);; let QUOTIENT_MAP_SATURATED_CLOSED = prove (`!top top' f:A->B. quotient_map (top,top') f <=> continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ !u. closed_in top u /\ {x | x IN topspace top /\ f x IN IMAGE f u} SUBSET u ==> closed_in top' (IMAGE f u)`, REPEAT GEN_TAC THEN REWRITE_TAC[QUOTIENT_MAP; CONTINUOUS_MAP_CLOSED_IN] THEN REWRITE_TAC[GSYM CONJ_ASSOC; FORALL_AND_THM; TAUT `(p ==> (q <=> r)) <=> (p /\ q ==> r) /\ (r ==> p ==> q)`] THEN SIMP_TAC[CLOSED_IN_SUBSET] THEN MATCH_MP_TAC(TAUT `(i ==> j) /\ (i /\ c ==> (p <=> q)) ==> (i /\ p /\ c <=> j /\ c /\ i /\ q)`) THEN CONJ_TAC THENL [SET_TAC[]; STRIP_TAC] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `closed_in top (u:A->bool)` THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]; X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN v}`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]]);; let QUOTIENT_MAP_ONTO_IMAGE = prove (`!top top' (f:A->B). IMAGE f (topspace top) SUBSET topspace top' /\ (!u. u SUBSET topspace top' ==> (open_in top {x | x IN topspace top /\ f x IN u} <=> open_in top' u)) ==> quotient_map(top,subtopology top' (IMAGE f (topspace top))) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[quotient_map; TOPSPACE_SUBTOPOLOGY] THEN ASM_REWRITE_TAC[SET_RULE `s = t INTER s <=> s SUBSET t`] THEN REWRITE_TAC[SUBSET_INTER; FORALL_AND_THM; TAUT `(p ==> (q <=> r)) <=> (p /\ q ==> r) /\ (r ==> p ==> q)`] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[FORALL_IN_GSPEC; SUBSET_INTER] THEN CONJ_TAC THEN X_GEN_TAC `u:B->bool` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:B->bool`) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET_TOPSPACE; OPEN_IN_SUBSET] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let QUOTIENT_MAP_LIFT_EXISTS = prove (`!top top' top'' (f:A->B) (h:A->C). quotient_map (top,top') f /\ continuous_map (top,top'') h /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> h x = h y) ==> ?g. continuous_map (top',top'') g /\ IMAGE g (topspace top') = IMAGE h (topspace top) /\ !x. x IN topspace top ==> g(f x) = h x`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUNCTION_FACTORS_LEFT_GEN]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:B->C` THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] CONTINUOUS_COMPOSE_QUOTIENT_MAP)) THEN MATCH_MP_TAC CONTINUOUS_MAP_EQ THEN EXISTS_TAC `h:A->C` THEN ASM_SIMP_TAC[o_THM]; RULE_ASSUM_TAC(REWRITE_RULE[quotient_map; continuous_map]) THEN ASM SET_TAC[]]);; let DISCRETE_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map (top,top') q /\ discrete_space top ==> discrete_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ_ALT; quotient_map] THEN GEN_REWRITE_TAC LAND_CONV [discrete_space] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; SUBSET_RESTRICT; TOPSPACE_DISCRETE_TOPOLOGY] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[DISCRETE_SPACE_UNIQUE] THEN ASM_SIMP_TAC[SING_SUBSET]);; (* ------------------------------------------------------------------------- *) (* A binary product topology where the two types can be different. *) (* ------------------------------------------------------------------------- *) let prod_topology = new_definition `prod_topology (top1:A topology) (top2:B topology) = topology (ARBITRARY UNION_OF {s CROSS t | open_in top1 s /\ open_in top2 t})`;; let OPEN_IN_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. open_in (prod_topology top1 top2) = (ARBITRARY UNION_OF {s CROSS t | open_in top1 s /\ open_in top2 t})`, REWRITE_TAC[prod_topology; GSYM(CONJUNCT2 topology_tybij)] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC ISTOPOLOGY_BASE THEN ONCE_REWRITE_TAC[SET_RULE `GSPEC p x <=> x IN GSPEC p`] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN MAP_EVERY (fun t -> X_GEN_TAC t THEN DISCH_TAC) [`s1:A->bool`; `t1:B->bool`; `s2:A->bool`; `t2:B->bool`] THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`s1 INTER s2:A->bool`; `t1 INTER t2:B->bool`] THEN ASM_SIMP_TAC[OPEN_IN_INTER; INTER_CROSS]);; let TOPSPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. topspace(prod_topology top1 top2) = topspace top1 CROSS topspace top2`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [topspace] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; OPEN_IN_PROD_TOPOLOGY] THEN X_GEN_TAC `s:A#B->bool` THEN REWRITE_TAC[UNION_OF; ARBITRARY] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM)) THEN REWRITE_TAC[UNIONS_SUBSET] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN P ==> Q x) ==> (!x. R x ==> P x) ==> (!x. R x ==> Q x)`) THEN REWRITE_TAC[ETA_AX; FORALL_IN_GSPEC; SUBSET_CROSS] THEN MESON_TAC[OPEN_IN_SUBSET]; MATCH_MP_TAC(SET_RULE `x IN s ==> x SUBSET UNIONS s`) THEN REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY; IN_ELIM_THM] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`topspace top1:A->bool`; `topspace top2:B->bool`] THEN REWRITE_TAC[OPEN_IN_TOPSPACE]]);; let SUBTOPOLOGY_CROSS = prove (`!top1:A topology top2:B topology s t. subtopology (prod_topology top1 top2) (s CROSS t) = prod_topology (subtopology top1 s) (subtopology top2 t)`, REPEAT GEN_TAC THEN REWRITE_TAC[TOPOLOGY_EQ] THEN REWRITE_TAC[GSYM OPEN_IN_RELATIVE_TO; OPEN_IN_PROD_TOPOLOGY] THEN REWRITE_TAC[ARBITRARY_UNION_OF_RELATIVE_TO] THEN X_GEN_TAC `t:A#B->bool` THEN AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:A#B->bool` THEN REWRITE_TAC[relative_to] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV) [GSYM IN] THEN REWRITE_TAC[EXISTS_IN_GSPEC; INTER_CROSS] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]);; let PROD_TOPOLOGY_SUBTOPOLOGY = prove (`(!(top:A topology) (top':B topology) s. prod_topology (subtopology top s) top' = subtopology (prod_topology top top') (s CROSS topspace top')) /\ (!(top:A topology) (top':B topology) t. prod_topology top (subtopology top' t) = subtopology (prod_topology top top') (topspace top CROSS t))`, REWRITE_TAC[SUBTOPOLOGY_CROSS; SUBTOPOLOGY_TOPSPACE]);; let PROD_TOPOLOGY_DISCRETE_TOPOLOGY = prove (`!s:A->bool t:B->bool. prod_topology (discrete_topology s) (discrete_topology t) = discrete_topology (s CROSS t)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; TOPSPACE_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY; OPEN_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`{x:A}`; `{y:B}`] THEN REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_SING; IN_CROSS; SUBSET] THEN REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[]);; let OPEN_IN_PROD_TOPOLOGY_ALT = prove (`!top1:A topology top2:B topology s. open_in (prod_topology top1 top2) s <=> !x y. (x,y) IN s ==> ?u v. open_in top1 u /\ open_in top2 v /\ x IN u /\ y IN v /\ u CROSS v SUBSET s`, REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY] THEN REWRITE_TAC[ARBITRARY_UNION_OF_ALT; EXISTS_IN_GSPEC] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; GSYM CONJ_ASSOC]);; let OPEN_IN_CROSS = prove (`!top1:A topology top2:B topology s t. open_in (prod_topology top1 top2) (s CROSS t) <=> s = {} \/ t = {} \/ open_in top1 s /\ open_in top2 t`, REPEAT GEN_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[CROSS_EMPTY; OPEN_IN_EMPTY] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_REWRITE_TAC[CROSS_EMPTY; OPEN_IN_EMPTY] THEN REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY_ALT; FORALL_PASTECART; IN_CROSS] THEN GEN_REWRITE_TAC (RAND_CONV o BINOP_CONV) [OPEN_IN_SUBOPEN] THEN REWRITE_TAC[SUBSET_CROSS] THEN EQ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 (MP_TAC o SPEC `x:A`) (MP_TAC o SPEC `y:B`)) THEN ASM SET_TAC[]);; let CLOSURE_OF_CROSS = prove (`!top1:A topology top2:B topology s t. (prod_topology top1 top2) closure_of (s CROSS t) = (top1 closure_of s) CROSS (top2 closure_of t)`, REPEAT GEN_TAC THEN REWRITE_TAC[closure_of; SET_RULE `(?y. y IN s /\ y IN t) <=> ~(s INTER t = {})`] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN ASM_CASES_TAC `(x:A) IN topspace top1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(y:B) IN topspace top2` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(u CROSS topspace top2):A#B->bool`); X_GEN_TAC `v:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(topspace top1 CROSS v):A#B->bool`)] THEN ASM_REWRITE_TAC[IN_CROSS; OPEN_IN_CROSS; OPEN_IN_TOPSPACE] THEN SIMP_TAC[INTER_CROSS; CROSS_EQ_EMPTY; DE_MORGAN_THM]; REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY_ALT] THEN X_GEN_TAC `w:A#B->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPECL [`x:A`; `y:B`])) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(SET_RULE `~(u INTER s = {}) ==> s SUBSET t ==> ~(u INTER t = {})`) THEN REWRITE_TAC[INTER_CROSS; CROSS_EQ_EMPTY] THEN ASM_MESON_TAC[]]);; let CLOSED_IN_CROSS = prove (`!top1:A topology top2:B topology s t. closed_in (prod_topology top1 top2) (s CROSS t) <=> s = {} \/ t = {} \/ closed_in top1 s /\ closed_in top2 t`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CLOSURE_OF_EQ; CLOSURE_OF_CROSS; CROSS_EQ] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[CLOSURE_OF_EMPTY] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_REWRITE_TAC[CLOSURE_OF_EMPTY]);; let INTERIOR_OF_CROSS = prove (`!top1:A topology top2:B topology s t. (prod_topology top1 top2) interior_of (s CROSS t) = (top1 interior_of s) CROSS (top2 interior_of t)`, REPEAT GEN_TAC THEN MATCH_MP_TAC INTERIOR_OF_UNIQUE THEN REWRITE_TAC[SUBSET_CROSS; INTERIOR_OF_SUBSET] THEN REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_INTERIOR_OF] THEN X_GEN_TAC `w:A#B->bool` THEN STRIP_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `((u CROSS v):A#B->bool) SUBSET s CROSS t` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SUBSET_CROSS]] THEN ASM_CASES_TAC `u:A->bool = {}` THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `v:B->bool = {}` THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[interior_of; IN_ELIM_THM] THEN ASM_MESON_TAC[]);; let DISCRETE_SPACE_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). discrete_space(prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ discrete_space top1 /\ discrete_space top2`, REWRITE_TAC[DISCRETE_SPACE_UNIQUE; FORALL_PAIR_THM; GSYM CROSS_SING] THEN REWRITE_TAC[OPEN_IN_CROSS; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN REWRITE_TAC[NOT_INSERT_EMPTY; CROSS_EQ_EMPTY] THEN SET_TAC[]);; let CONTINUOUS_MAP_PAIRWISE = prove (`!top top1 top2 f:A->B#C. continuous_map (top,prod_topology top1 top2) f <=> continuous_map (top,top1) (FST o f) /\ continuous_map (top,top2) (SND o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; TOPSPACE_PROD_TOPOLOGY] THEN MAP_EVERY ABBREV_TAC [`g = FST o (f:A->B#C)`; `h = SND o (f:A->B#C)`] THEN SUBGOAL_THEN `!x. (f:A->B#C) x = g x,h x` (fun th -> REWRITE_TAC[th]) THENL [MAP_EVERY EXPAND_TAC ["g"; "h"] THEN REWRITE_TAC[o_THM]; ALL_TAC] THEN REWRITE_TAC[IN_CROSS] THEN ASM_CASES_TAC `!x. x IN topspace top ==> (g:A->B) x IN topspace top1` THEN ASM_SIMP_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_CASES_TAC `!x. x IN topspace top ==> (h:A->C) x IN topspace top2` THEN ASM_SIMP_TAC[] THEN EQ_TAC THEN DISCH_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `u:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(u:B->bool) CROSS (topspace top2:C->bool)`); X_GEN_TAC `v:C->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(topspace top1:B->bool) CROSS (v:C->bool)`)] THEN ASM_REWRITE_TAC[IN_CROSS; OPEN_IN_CROSS; OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]; X_GEN_TAC `w:B#C->bool` THEN STRIP_TAC THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN DISCH_THEN(MP_TAC o SPECL [`(g:A->B) x`; `(h:A->C) x`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:B->bool`; `v:C->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 (MP_TAC o SPEC `u:B->bool`) (MP_TAC o SPEC `v:C->bool`)) THEN ASM_REWRITE_TAC[IMP_IMP] THEN MATCH_MP_TAC(MESON[OPEN_IN_INTER] `P(s INTER t) ==> open_in top s /\ open_in top t ==> ?u. open_in top u /\ P u`) THEN ASM_REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_PAIR_THM; IN_CROSS]) THEN ASM SET_TAC[]]);; let CONTINUOUS_MAP_PAIRED = prove (`!top top1 top2 (f:A->B) (g:A->C). continuous_map (top,prod_topology top1 top2) (\x. f x,g x) <=> continuous_map(top,top1) f /\ continuous_map(top,top2) g`, REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let CONTINUOUS_MAP_FST,CONTINUOUS_MAP_SND = (CONJ_PAIR o prove) (`(!top1:A topology top2:B topology. continuous_map (prod_topology top1 top2,top1) FST) /\ (!top1:A topology top2:B topology. continuous_map (prod_topology top1 top2,top2) SND)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(ISPECL [`prod_topology top1 top2 :(A#B)topology`; `top1:A topology`; `top2:B topology`; `\x:A#B. x`] CONTINUOUS_MAP_PAIRWISE) THEN SIMP_TAC[CONTINUOUS_MAP_ID; o_DEF; ETA_AX]);; let CONTINUOUS_MAP_FST_OF = prove (`!top top1 top2 f:A->B#C. continuous_map (top,prod_topology top1 top2) f ==> continuous_map (top,top1) (\x. FST(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE; CONTINUOUS_MAP_FST]);; let CONTINUOUS_MAP_SND_OF = prove (`!top top1 top2 f:A->B#C. continuous_map (top,prod_topology top1 top2) f ==> continuous_map (top,top2) (\x. SND(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE; CONTINUOUS_MAP_SND]);; let OPEN_MAP_FST,OPEN_MAP_SND = (CONJ_PAIR o prove) (`(!top1:A topology top2:B topology. open_map (prod_topology top1 top2,top1) FST) /\ (!top1:A topology top2:B topology. open_map (prod_topology top1 top2,top2) SND)`, REPEAT STRIP_TAC THEN REWRITE_TAC[open_map; OPEN_IN_PROD_TOPOLOGY_ALT] THEN X_GEN_TAC `w:A#B->bool` THEN STRIP_TAC THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THENL [EXISTS_TAC `u:A->bool` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC SUBSET_TRANS `IMAGE FST ((u:A->bool) CROSS (v:B->bool))`; EXISTS_TAC `v:B->bool` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC SUBSET_TRANS `IMAGE SND ((u:A->bool) CROSS (v:B->bool))`] THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REWRITE_TAC[IMAGE_FST_CROSS; IMAGE_SND_CROSS] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM SET_TAC[]);; let QUOTIENT_MAP_FST = prove (`!top:A topology top':B topology. quotient_map(prod_topology top top',top) FST <=> (topspace top' = {} ==> topspace top = {})`, SIMP_TAC[CONTINUOUS_OPEN_QUOTIENT_MAP; OPEN_MAP_FST; CONTINUOUS_MAP_FST] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IMAGE_FST_CROSS] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EQ_SYM_EQ]);; let QUOTIENT_MAP_SND = prove (`!top:A topology top':B topology. quotient_map(prod_topology top top',top') SND <=> (topspace top = {} ==> topspace top' = {})`, SIMP_TAC[CONTINUOUS_OPEN_QUOTIENT_MAP; OPEN_MAP_SND; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IMAGE_SND_CROSS] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EQ_SYM_EQ]);; let CONTINUOUS_MAP_OF_FST = prove (`!top:C topology top1:A topology top2:B topology f. continuous_map (prod_topology top1 top2,top) (\x. f(FST x)) <=> topspace top2 = {} \/ continuous_map (top1,top) f`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top2:B->bool = {}` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_ON_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EMPTY] THEN REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_COMPOSE_QUOTIENT_MAP_EQ THEN ASM_REWRITE_TAC[QUOTIENT_MAP_FST]);; let CONTINUOUS_MAP_OF_SND = prove (`!top:C topology top1:A topology top2:B topology f. continuous_map (prod_topology top1 top2,top) (\x. f(SND x)) <=> topspace top1 = {} \/ continuous_map (top2,top) f`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top1:A->bool = {}` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_ON_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EMPTY] THEN REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_COMPOSE_QUOTIENT_MAP_EQ THEN ASM_REWRITE_TAC[QUOTIENT_MAP_SND]);; let CONTINUOUS_MAP_PROD = prove (`!top1 top2 top3 top4 (f:A->B) (g:C->D). continuous_map (prod_topology top1 top2,prod_topology top3 top4) (\(x,y). f x,g y) <=> topspace(prod_topology top1 top2) = {} \/ continuous_map (top1,top3) f /\ continuous_map (top2,top4) g`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#C->bool = {}` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_ON_EMPTY] THEN REWRITE_TAC[LAMBDA_PAIR] THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRED] THEN REWRITE_TAC[CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY]) THEN ASM_MESON_TAC[]);; let OPEN_MAP_PROD = prove (`!top1 top1' top2 top2' (f:A->C) (g:B->D). open_map (prod_topology top1 top2,prod_topology top1' top2') (\(x,y). f x,g y) <=> topspace(prod_topology top1 top2) = {} \/ open_map (top1,top1') f /\ open_map (top2,top2') g`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THEN ASM_SIMP_TAC[OPEN_MAP_ON_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PROD_TOPOLOGY]) THEN RULE_ASSUM_TAC(REWRITE_RULE[CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN EQ_TAC THEN REPEAT STRIP_TAC THEN REWRITE_TAC[open_map] THENL [X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `IMAGE f u = IMAGE FST (IMAGE (\(x,y). (f:A->C) x,(g:B->D) y) (u CROSS topspace top2))` SUBST1_TAC THENL [REWRITE_TAC[GSYM IMAGE_o; o_DEF; LAMBDA_PAIR] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN ASM_REWRITE_TAC[IMAGE_FST_CROSS; IMAGE_o]; MATCH_MP_TAC(REWRITE_RULE[open_map] OPEN_MAP_FST) THEN EXISTS_TAC `top2':D topology` THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[open_map]) THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE]]; X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `IMAGE g v = IMAGE SND (IMAGE (\(x,y). (f:A->C) x,(g:B->D) y) (topspace top1 CROSS v))` SUBST1_TAC THENL [REWRITE_TAC[GSYM IMAGE_o; o_DEF; LAMBDA_PAIR] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN ASM_REWRITE_TAC[IMAGE_SND_CROSS; IMAGE_o]; MATCH_MP_TAC(REWRITE_RULE[open_map] OPEN_MAP_SND) THEN EXISTS_TAC `top1':C topology` THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[open_map]) THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE]]; X_GEN_TAC `w:A#B->bool` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `y:B`] o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (f:A->C) u CROSS IMAGE (g:B->D) v` THEN REWRITE_TAC[OPEN_IN_CROSS; IN_CROSS] THEN CONJ_TAC THENL [ASM_MESON_TAC[open_map]; ALL_TAC] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; PAIR_EQ; EXISTS_PAIR_THM] THEN SET_TAC[]]);; let IN_PROD_TOPOLOGY_CLOSURE_OF = prove (`!top1 top2 s z:A#B. z IN (prod_topology top1 top2) closure_of s ==> FST z IN top1 closure_of (IMAGE FST s) /\ SND z IN top2 closure_of (IMAGE SND s)`, REPEAT STRIP_TAC THENL [MATCH_MP_TAC(REWRITE_RULE [SUBSET; FORALL_IN_IMAGE; CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET] CONTINUOUS_MAP_FST); MATCH_MP_TAC(REWRITE_RULE [SUBSET; FORALL_IN_IMAGE; CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET] CONTINUOUS_MAP_SND)] THEN ASM_MESON_TAC[]);; let CLOSED_MAP_PROD = prove (`!top1 top1' top2 top2' (f:A->C) (g:B->D). closed_map (prod_topology top1 top2,prod_topology top1' top2') (\(x,y). f x,g y) ==> topspace(prod_topology top1 top2) = {} \/ closed_map (top1,top1') f /\ closed_map (top2,top2') g`, REPEAT STRIP_TAC THEN REWRITE_TAC[TAUT `p \/ q <=> ~p ==> q`] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[closed_map] THENL [X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `c:A->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; CLOSED_IN_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(c CROSS topspace top2):A#B->bool` o GEN_REWRITE_RULE I [closed_map]) THEN REWRITE_TAC[IMAGE_PAIRED_CROSS; CLOSED_IN_CROSS] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; CLOSED_IN_TOPSPACE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]; X_GEN_TAC `c:B->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `c:B->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; CLOSED_IN_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(topspace top1 CROSS c):A#B->bool` o GEN_REWRITE_RULE I [closed_map]) THEN REWRITE_TAC[IMAGE_PAIRED_CROSS; CLOSED_IN_CROSS] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; CLOSED_IN_TOPSPACE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]]);; let PROD_TOPOLOGY_EQ = prove (`!(top1:A topology) (top2:B topology) top1' top2'. prod_topology top1 top2 = prod_topology top1' top2' <=> topspace(prod_topology top1 top2) = {} /\ topspace(prod_topology top1' top2') = {} \/ top1 = top1' /\ top2 = top2'`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1' top2' :(A#B)topology) = topspace(prod_topology top1 top2)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[]] THEN ASM_CASES_TAC `topspace(prod_topology top1 top2 :(A#B)topology) = {}` THENL [ASM_MESON_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY]; ASM_REWRITE_TAC[]] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[TOPOLOGY_EQ] THEN DISCH_THEN(fun th -> MP_TAC(GEN `u:A->bool` (SPEC `(u CROSS topspace top2):A#B->bool` th)) THEN MP_TAC(GEN `v:B->bool` (SPEC `(topspace top1 CROSS v):A#B->bool` th))) THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PROD_TOPOLOGY; CROSS_EQ; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE] THEN ASM_MESON_TAC[OPEN_IN_EMPTY; OPEN_IN_TOPSPACE]);; (* ------------------------------------------------------------------------- *) (* The usual (Tychonoff) product topology for general cartesian products. *) (* ------------------------------------------------------------------------- *) let product_topology = new_definition `product_topology t (tops:K->A topology) = topology (ARBITRARY UNION_OF ((FINITE INTERSECTION_OF { {x:K->A | x k IN u} | k,u | k IN t /\ open_in (tops k) u}) relative_to {x | EXTENSIONAL t x /\ !k. k IN t ==> x k IN topspace(tops k)}))`;; let TOPSPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) t. topspace (product_topology t tops) = cartesian_product t (topspace o tops)`, REWRITE_TAC[product_topology; cartesian_product; o_THM; TOPSPACE_SUBBASE]);; let TOPSPACE_PRODUCT_TOPOLOGY_ALT = prove (`!(tops:K->A topology) t. topspace (product_topology t tops) = {x | EXTENSIONAL t x /\ !k. k IN t ==> x k IN topspace(tops k)}`, REWRITE_TAC[product_topology; TOPSPACE_SUBBASE]);; let PRODUCT_TOPOLOGY_EMPTY_DISCRETE = prove (`!tops:K->A topology. product_topology {} tops = discrete_topology {(\x. ARB)}`, REWRITE_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_SING] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; CARTESIAN_PRODUCT_EMPTY]);; let OPEN_IN_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) t. open_in (product_topology t tops) = ARBITRARY UNION_OF ((FINITE INTERSECTION_OF { {x:K->A | x k IN u} | k,u | k IN t /\ open_in (tops k) u}) relative_to topspace (product_topology t tops))`, REWRITE_TAC[product_topology; TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN REWRITE_TAC[GSYM(CONJUNCT2 topology_tybij); ISTOPOLOGY_SUBBASE]);; let SUBTOPOLOGY_CARTESIAN_PRODUCT = prove (`!tops:K->A topology s k. subtopology (product_topology k tops) (cartesian_product k s) = product_topology k (\i. subtopology (tops i) (s i))`, REPEAT GEN_TAC THEN REWRITE_TAC[TOPOLOGY_EQ] THEN REWRITE_TAC[GSYM OPEN_IN_RELATIVE_TO; OPEN_IN_PRODUCT_TOPOLOGY] THEN X_GEN_TAC `u:(K->A)->bool` THEN REWRITE_TAC[ARBITRARY_UNION_OF_RELATIVE_TO] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_DEF; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[GSYM INTER_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RELATIVE_TO_RELATIVE_TO] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[FINITE_INTERSECTION_OF_RELATIVE_TO] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[SUBSET] THEN REWRITE_TAC[RELATIVE_TO; FORALL_IN_GSPEC] THEN GEN_REWRITE_TAC (BINOP_CONV o BINDER_CONV o LAND_CONV) [GSYM IN] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN CONJ_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THENL [ALL_TAC; GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM IN]] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC I [IN_ELIM_THM] THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM IN] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `i:K` THEN ASM_REWRITE_TAC[] THENL [GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM IN]; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `u:A->bool` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM; cartesian_product] THEN ASM SET_TAC[]);; let PRODUCT_TOPOLOGY_SUBBASE_ALT = prove (`!tops:K->A topology. ((FINITE INTERSECTION_OF { {x | x k IN u} | k,u | k IN t /\ open_in (tops k) u}) relative_to topspace (product_topology t tops)) = ((FINITE INTERSECTION_OF { {x | x k IN u} | k,u | k IN t /\ open_in (tops k) u /\ u PSUBSET topspace (tops k)}) relative_to topspace (product_topology t tops))`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:(K->A)->bool` THEN ONCE_REWRITE_TAC[FINITE_INTERSECTION_OF_RELATIVE_TO] THEN REWRITE_TAC[INTERSECTION_OF; relative_to; IN_ELIM_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> r /\ p /\ q`] THEN REWRITE_TAC[UNWIND_THM1; GSYM CONJ_ASSOC] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `w:((K->A)->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `w DELETE topspace(product_topology t (tops:K->A topology))` THEN ASM_REWRITE_TAC[FINITE_DELETE; IN_DELETE] THEN REWRITE_TAC[GSYM INTERS_INSERT] THEN REWRITE_TAC[SET_RULE `x INSERT (s DELETE x) = x INSERT s`] THEN ASM_REWRITE_TAC[INTERS_INSERT] THEN X_GEN_TAC `w:(K->A)->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `w:(K->A)->bool`) THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_REWRITE_TAC[PSUBSET] THEN CONJ_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET]; DISCH_THEN SUBST_ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY_ALT]) THEN ASM SET_TAC[]);; let PRODUCT_TOPOLOGY_BASE_ALT = prove (`!(tops:K->A topology) k. FINITE INTERSECTION_OF {{x | x i IN u} | i IN k /\ open_in (tops i) u} relative_to topspace(product_topology k tops) = { cartesian_product k u | u | FINITE {i | i IN k /\ ~(u i = topspace(tops i))} /\ !i. i IN k ==> open_in (tops i) (u i)}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [IN] THEN REWRITE_TAC[FORALL_AND_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN REWRITE_TAC[IMP_CONJ; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `(\i. topspace(tops i)):K->A->bool` THEN REWRITE_TAC[EMPTY_GSPEC; INTERS_0; INTER_UNIV] THEN REWRITE_TAC[FINITE_EMPTY; OPEN_IN_TOPSPACE] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF]; MAP_EVERY X_GEN_TAC [`v:(K->A)->bool`; `ovs:((K->A)->bool)->bool`] THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(fun th -> DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC th) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:K->(A->bool)` THEN STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `i:K` (X_CHOOSE_THEN `v:A->bool` (STRIP_ASSUME_TAC o GSYM))) THEN EXISTS_TAC `\j. (u:K->(A->bool)) j INTER (if j = i then v else topspace(tops j))` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `i INSERT {i | i IN k /\ ~((u:K->A->bool) i = topspace (tops i))}` THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN SET_TAC[]; REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[OPEN_IN_INTER; OPEN_IN_TOPSPACE]; ASM_REWRITE_TAC[INTERS_INSERT; SET_RULE `s INTER (t INTER u) = (s INTER u) INTER t`] THEN REWRITE_TAC[GSYM INTER_CARTESIAN_PRODUCT] THEN EXPAND_TAC "v" THEN REWRITE_TAC[EXTENSION; cartesian_product; IN_ELIM_THM; IN_INTER] THEN X_GEN_TAC `f:K->A` THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[]] THEN X_GEN_TAC `j:K` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]]]; REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `u:K->A->bool` THEN STRIP_TAC THEN REWRITE_TAC[relative_to] THEN EXISTS_TAC `INTERS (IMAGE (\i. {x | x i IN u i}) {i | i IN k /\ ~(u i = topspace((tops:K->A topology) i))})` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_INTERSECTION_OF_INTERS THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN X_GEN_TAC `i:K` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`i:K`; `(u:K->A->bool) i`] THEN ASM_MESON_TAC[]; REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; IN_INTER; INTERS_IMAGE] THEN ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]]]);; let OPEN_IN_PRODUCT_TOPOLOGY_ALT = prove (`!k (tops:K->A topology) s. open_in (product_topology k tops) s <=> !x. x IN s ==> ?u. FINITE {i | i IN k /\ ~(u i = topspace(tops i))} /\ (!i. i IN k ==> open_in (tops i) (u i)) /\ x IN cartesian_product k u /\ cartesian_product k u SUBSET s`, REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; ARBITRARY_UNION_OF_ALT] THEN REWRITE_TAC[PRODUCT_TOPOLOGY_BASE_ALT; EXISTS_IN_GSPEC; GSYM CONJ_ASSOC]);; let OPEN_IN_PRODUCT_TOPOLOGY_ALT_EXPAND = prove (`!k (tops:K->A topology) s. open_in (product_topology k tops) s <=> s SUBSET topspace(product_topology k tops) /\ !x. x IN s ==> ?u. FINITE {i | i IN k /\ ~(u i = topspace(tops i))} /\ (!i. i IN k ==> open_in (tops i) (u i) /\ x i IN u i) /\ cartesian_product k u SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY_ALT] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SUBSET] THEN REWRITE_TAC[AND_FORALL_THM] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:K->A` THEN ASM_CASES_TAC `(x:K->A) IN s` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_THM] THEN EQ_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let CONTINUOUS_MAP_COMPONENTWISE = prove (`!top:A topology (tops:K->B topology) t f. continuous_map (top,product_topology t tops) f <=> IMAGE f (topspace top) SUBSET EXTENSIONAL t /\ !k. k IN t ==> continuous_map (top,tops k) (\x. f x k)`, let lemma = prove (`{x | x IN s /\ f x IN UNIONS v} = UNIONS {{x | x IN s /\ f x IN u} | u IN v} /\ {x | x IN s /\ f x IN INTERS v} = s INTER INTERS {{x | x IN s /\ f x IN u} | u IN v}`, REWRITE_TAC[UNIONS_GSPEC; INTERS_GSPEC] THEN SET_TAC[]) in REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; TOPSPACE_PRODUCT_TOPOLOGY_ALT; IN_ELIM_THM] THEN ASM_CASES_TAC `!x. x IN topspace top ==> EXTENSIONAL t ((f:A->K->B) x)` THENL [ASM_SIMP_TAC[]; ASM SET_TAC[]] THEN ASM_CASES_TAC `!k x. k IN t /\ x IN topspace top ==> (f:A->K->B) x k IN topspace(tops k)` THENL [ASM_SIMP_TAC[]; ASM SET_TAC[]] THEN MATCH_MP_TAC(TAUT `q /\ (p <=> r) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN EQ_TAC THENL [DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`k:K`; `u:B->bool`] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{y:K->B | y k IN u} INTER topspace(product_topology t tops)`) THEN ANTS_TAC THENL [REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[GSYM ARBITRARY_UNION_OF_RELATIVE_TO] THEN REWRITE_TAC[relative_to; TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN EXISTS_TAC `{y:K->B | y k IN u}` THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`k:K`; `u:B->bool`] THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN ASM SET_TAC[]]; DISCH_TAC THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; FORALL_UNION_OF; ARBITRARY] THEN X_GEN_TAC `v:((K->B)->bool)->bool` THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN X_GEN_TAC `w:((K->B)->bool)->bool` THEN STRIP_TAC THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ f x IN t INTER u} = {x | x IN {x | x IN s /\ f x IN t} /\ f x IN u}`] THEN REWRITE_TAC[lemma] THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->K->B) x IN topspace (product_topology t tops)} = topspace top` SUBST1_TAC THENL [REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `w:((K->B)->bool)->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; SET_RULE `{f x | x | F} = {}`; INTERS_0; INTER_UNIV; OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC OPEN_IN_INTER THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. x IN Q ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[ETA_AX; FORALL_IN_GSPEC] THEN ASM_REWRITE_TAC[IN_ELIM_THM]]);; let CONTINUOUS_MAP_COMPONENTWISE_UNIV = prove (`!top tops (f:A->K->B). continuous_map (top,product_topology (:K) tops) f <=> !k. continuous_map (top,tops k) (\x. f x k)`, REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE; IN_UNIV] THEN REWRITE_TAC[SET_RULE `IMAGE f s SUBSET P <=> !x. x IN s ==> P(f x)`] THEN REWRITE_TAC[EXTENSIONAL_UNIV]);; let CONTINUOUS_MAP_PRODUCT_PROJECTION = prove (`!(tops:K->A topology) t k. k IN t ==> continuous_map (product_topology t tops,tops k) (\x. x k)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`product_topology t (tops:K->A topology)`; `tops:K->A topology`; `t:K->bool`; `\x:K->A. x`] CONTINUOUS_MAP_COMPONENTWISE) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_ID]);; let OPEN_MAP_PRODUCT_PROJECTION = prove (`!(tops:K->A topology) t k. k IN t ==> open_map (product_topology t tops,tops k) (\x. x k)`, let lemma = prove (`k IN t ==> {a | a IN v /\ (\i. if i = k then a else if i IN t then x i else b) IN u} SUBSET IMAGE (\x:K->A. x k) u`, REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_IMAGE] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `(\i. if i = k then a else if i IN t then x i else b):K->A` THEN ASM_REWRITE_TAC[]) in REPEAT STRIP_TAC THEN REWRITE_TAC[open_map] THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; FORALL_UNION_OF; ARBITRARY] THEN X_GEN_TAC `v:((K->A)->bool)->bool` THEN DISCH_TAC THEN REWRITE_TAC[IMAGE_UNIONS] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN X_GEN_TAC `w:((K->A)->bool)->bool` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `x:K->A` THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN STRIP_TAC THEN EXISTS_TAC `{a | a IN topspace(tops k) /\ (\i:K. if i = k then a:A else if i IN t then x i else ARB) IN topspace(product_topology t tops) INTER INTERS w}` THEN ASM_SIMP_TAC[lemma] THEN CONJ_TAC THENL [ALL_TAC; RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PRODUCT_TOPOLOGY_ALT; EXTENSIONAL; IN_ELIM_THM]) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT; EXTENSIONAL; IN_ELIM_THM] THEN ASM SET_TAC[]] THEN MATCH_MP_TAC(MESON[continuous_map] `!top'. continuous_map (top,top') f /\ open_in top' u ==> open_in top {x | x IN topspace top /\ f x IN u}`) THEN EXISTS_TAC `product_topology t (tops:K->A topology)` THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; EXTENSIONAL; IN_ELIM_THM] THEN ASM SET_TAC[]; X_GEN_TAC `j:K` THEN ASM_CASES_TAC `j:K = k` THEN ASM_REWRITE_TAC[ETA_AX; CONTINUOUS_MAP_ID] THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PRODUCT_TOPOLOGY_ALT; IN_ELIM_THM]) THEN ASM_CASES_TAC `(j:K) IN t` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_CONST]; REWRITE_TAC[INTER_INTERS] THEN COND_CASES_TAC THEN REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY_ALT; OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[FINITE_IMAGE; IMAGE_EQ_EMPTY; SIMPLE_IMAGE] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. x IN Q ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[FORALL_IN_GSPEC; ETA_AX] THEN MAP_EVERY X_GEN_TAC [`i:K`; `v:A->bool`] THEN STRIP_TAC THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN REWRITE_TAC[relative_to] THEN EXISTS_TAC `{x:K->A | x i IN v}` THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`i:K`; `v:A->bool`] THEN ASM_REWRITE_TAC[]]);; let OPEN_IN_CARTESIAN_PRODUCT_GEN = prove (`!(tops:K->A topology) s k. open_in (product_topology k tops) (cartesian_product k s) <=> cartesian_product k s = {} \/ FINITE {i | i IN k /\ ~(s i = topspace(tops i))} /\ (!i. i IN k ==> open_in (tops i) (s i))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `cartesian_product k (s:K->A->bool) = {}` THEN ASM_REWRITE_TAC[OPEN_IN_EMPTY] THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN REWRITE_TAC[PRODUCT_TOPOLOGY_BASE_ALT; IN_ELIM_THM] THEN EXISTS_TAC `s:K->A->bool` THEN ASM_REWRITE_TAC[]] THEN DISCH_TAC THEN CONJ_TAC THENL [ALL_TAC; X_GEN_TAC `i:K` THEN DISCH_TAC THEN MP_TAC(ISPECL [`tops:K->A topology`; `k:K->bool`; `i:K`] OPEN_MAP_PRODUCT_PROJECTION) THEN ASM_REWRITE_TAC[open_map] THEN DISCH_THEN(MP_TAC o SPEC `cartesian_product k (s:K->A->bool)`) THEN ASM_REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT]] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PRODUCT_TOPOLOGY_ALT]) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:K->A`) THEN DISCH_THEN(MP_TAC o SPEC `z:K->A`) THEN ASM_REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN DISCH_THEN(X_CHOOSE_THEN `u:K->A->bool` STRIP_ASSUME_TAC) THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `t SUBSET s /\ s SUBSET u ==> ~(s = u) ==> ~(t = u)`) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM_SIMP_TAC[TOPSPACE_PRODUCT_TOPOLOGY; SUBSET_CARTESIAN_PRODUCT; o_DEF]);; let OPEN_IN_CARTESIAN_PRODUCT = prove (`!(tops:K->A topology) (s:K->A->bool) k. FINITE k ==> (open_in (product_topology k tops) (cartesian_product k s) <=> cartesian_product k s = {} \/ (!i. i IN k ==> open_in (tops i) (s i)))`, SIMP_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN; FINITE_RESTRICT]);; let PRODUCT_TOPOLOGY_EMPTY,OPEN_IN_PRODUCT_TOPOLOGY_EMPTY = (CONJ_PAIR o prove) (`(!tops:K->A topology. product_topology {} tops = topology {{},{\k. ARB}}) /\ (!tops:K->A topology s. open_in (product_topology {} tops) s <=> s IN {{},{\k. ARB}})`, REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN REWRITE_TAC[product_topology; EXTENSIONAL_EMPTY; NOT_IN_EMPTY] THEN CONJ_TAC THENL [AP_TERM_TAC; ONCE_REWRITE_TAC[SET_RULE `(!x. P x <=> x IN s) <=> P = s`] THEN REWRITE_TAC[ETA_AX]] THEN REWRITE_TAC[SET_RULE `{f x y | x,y| F} = {}`] THEN REWRITE_TAC[SET_RULE `{x | s x} = s`; ETA_AX] THEN ABBREV_TAC `g:K->A = \x. ARB` THEN REWRITE_TAC[INTERSECTION_OF] THEN REWRITE_TAC[SET_RULE `(!x. x IN s ==> t x) <=> s SUBSET t`] THEN REWRITE_TAC[MESON[SUBSET_EMPTY; FINITE_EMPTY] `(?u. FINITE u /\ u SUBSET {} /\ P u) <=> P {}`] THEN REWRITE_TAC[SET_RULE `(\s. a = s) = {a}`; INTERS_0] THEN REWRITE_TAC[UNION_OF] THEN REWRITE_TAC[SET_RULE `(!x. x IN s ==> t x) <=> s SUBSET t`] THEN REWRITE_TAC[ETA_AX; ARBITRARY] THEN REWRITE_TAC[RELATIVE_TO; SET_RULE `{f x | s x} = IMAGE f s`] THEN REWRITE_TAC[IMAGE_CLAUSES; ETA_AX; INTER_UNIV] THEN REWRITE_TAC[SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; RIGHT_OR_DISTRIB] THEN REWRITE_TAC[UNIONS_0; UNIONS_1] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; let TOPSPACE_PRODUCT_TOPOLOGY_EMPTY = prove (`!tops:K->A topology. topspace(product_topology {} tops) = {\k. ARB}`, REWRITE_TAC[topspace; OPEN_IN_PRODUCT_TOPOLOGY_EMPTY] THEN REWRITE_TAC[SET_RULE `{x | x IN s} = s`; UNIONS_2; UNION_EMPTY]);; let CLOSURE_OF_CARTESIAN_PRODUCT = prove (`!k tops s:K->A->bool. (product_topology k tops) closure_of (cartesian_product k s) = cartesian_product k (\i. (tops i) closure_of (s i))`, REPEAT GEN_TAC THEN REWRITE_TAC[closure_of; SET_RULE `(?y. y IN s /\ y IN t) <=> ~(s INTER t = {})`] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN REWRITE_TAC[GSYM INTER_CARTESIAN_PRODUCT] THEN X_GEN_TAC `f:K->A` THEN REWRITE_TAC[IN_INTER; o_DEF; IN_ELIM_THM] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[GSYM cartesian_product] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `topspace (product_topology k tops) INTER {x:K->A | x i IN u}`) THEN ASM_REWRITE_TAC[IN_INTER; TOPSPACE_PRODUCT_TOPOLOGY; IN_ELIM_THM] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_DEF]; REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN ASM SET_TAC[]]; REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; NOT_FORALL_THM] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_DEF] THEN ASM SET_TAC[]]; DISCH_TAC THEN X_GEN_TAC `u:(K->A)->bool` THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; UNION_OF; ARBITRARY] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `x IN s /\ (?u. (!c. c IN u ==> P c) /\ UNIONS u = s) ==> ?c. P c /\ c SUBSET s /\ x IN c`)) THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM; FORALL_RELATIVE_TO] THEN REWRITE_TAC[FORALL_INTERSECTION_OF] THEN X_GEN_TAC `t:((K->A)->bool)->bool` THEN STRIP_TAC THEN REWRITE_TAC[IN_INTER; TOPSPACE_PRODUCT_TOPOLOGY] THEN DISCH_TAC THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN FIRST_ASSUM(MP_TAC o GEN `i:K` o SPECL [`i:K`; `topspace((tops:K->A topology) i) INTER INTERS {u | open_in (tops i) u /\ {x | x i IN u} IN t}`]) THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] `(!i. P i /\ Q i /\ R i ==> S i) ==> (!i. P i ==> Q i /\ R i) ==> (!i. P i ==> S i)`)) THEN ANTS_TAC THENL [X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[IN_INTER] THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM; o_DEF]) THEN ASM_SIMP_TAC[IN_INTERS; IN_ELIM_THM] THEN CONJ_TAC THENL [X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERS]) THEN DISCH_THEN(MP_TAC o SPEC `{x:K->A | x i IN v}`) THEN ASM_REWRITE_TAC[IN_ELIM_THM]; REWRITE_TAC[GSYM INTERS_INSERT] THEN MATCH_MP_TAC OPEN_IN_INTERS THEN REWRITE_TAC[NOT_INSERT_EMPTY; FORALL_IN_INSERT] THEN SIMP_TAC[IN_ELIM_THM; OPEN_IN_TOPSPACE; FINITE_INSERT] THEN ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | x IN P /\ Q x}`] THEN MATCH_MP_TAC FINITE_FINITE_PREIMAGE_GENERAL THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> R x) ==> (!x. P x ==> R x)`)) THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[FINITE_SING; FINITE_SUBSET] `(?a. s SUBSET {a}) ==> FINITE s`) THEN MATCH_MP_TAC(SET_RULE `(!x y. f x = f y ==> x = y) ==> ?a. {x | P x /\ f x = c} SUBSET {a}`) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`z1:A->bool`; `z2:A->bool`] THEN DISCH_THEN(fun th -> X_GEN_TAC `z:A` THEN MP_TAC(SPEC `(\i. z):K->A` th)) THEN REWRITE_TAC[]]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; IN_INTER; IN_INTERS; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:K->A` (LABEL_TAC "*")) THEN EXISTS_TAC `\i. if i IN k then (x:K->A) i else ARB` THEN CONJ_TAC THENL [ASM_SIMP_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL]; FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET])] THEN REWRITE_TAC[IN_INTER; cartesian_product; IN_ELIM_THM; o_DEF] THEN ASM_SIMP_TAC[EXTENSIONAL; IN_ELIM_THM; IN_INTERS] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. x IN Q ==> P x ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[ETA_AX; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[IN_ELIM_THM]]]);; let CLOSED_IN_CARTESIAN_PRODUCT = prove (`!(tops:K->A topology) (s:K->A->bool) k. closed_in (product_topology k tops) (cartesian_product k s) <=> cartesian_product k s = {} \/ (!i. i IN k ==> closed_in (tops i) (s i))`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CLOSURE_OF_EQ; CLOSURE_OF_CARTESIAN_PRODUCT] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ] THEN ASM_CASES_TAC `cartesian_product k (s:K->A->bool) = {}` THEN ASM_REWRITE_TAC[] THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[CLOSURE_OF_EMPTY]);; let INTERIOR_IN_CARTESIAN_PRODUCT = prove (`!k tops s:K->A->bool. FINITE k ==> ((product_topology k tops) interior_of (cartesian_product k s) = cartesian_product k (\i. (tops i) interior_of (s i)))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERIOR_OF_UNIQUE THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT; INTERIOR_OF_SUBSET] THEN ASM_SIMP_TAC[OPEN_IN_CARTESIAN_PRODUCT; OPEN_IN_INTERIOR_OF] THEN X_GEN_TAC `w:(K->A)->bool` THEN STRIP_TAC THEN REWRITE_TAC[SUBSET; cartesian_product; IN_ELIM_THM] THEN X_GEN_TAC `f:K->A` THEN DISCH_TAC THEN CONJ_TAC THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_SIMP_TAC[cartesian_product; IN_ELIM_THM]; X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[interior_of; IN_ELIM_THM] THEN EXISTS_TAC `IMAGE (\x:K->A. x i) w` THEN REPEAT CONJ_TAC THENL [MP_TAC(ISPECL [`tops:K->A topology`; `k:K->bool`; `i:K`] OPEN_MAP_PRODUCT_PROJECTION) THEN ASM_SIMP_TAC[open_map]; ASM SET_TAC[]; FIRST_ASSUM(MP_TAC o ISPEC `\x:K->A. x i` o MATCH_MP IMAGE_SUBSET) THEN ASM_REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN SET_TAC[]]]);; let QUOTIENT_MAP_PRODUCT_PROJECTION = prove (`!(tops:K->A topology) k i. i IN k ==> (quotient_map(product_topology k tops,tops i) (\x. x i) <=> topspace(product_topology k tops) = {} ==> topspace(tops i) = {})`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CONTINUOUS_OPEN_QUOTIENT_MAP; OPEN_MAP_PRODUCT_PROJECTION; CONTINUOUS_MAP_PRODUCT_PROJECTION] THEN ASM_REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY; o_THM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EQ_SYM_EQ]);; let CONTINUOUS_MAP_PRODUCT = prove (`!k top top' (f:K->A->B). continuous_map (product_topology k top,product_topology k top') (product_map k f) <=> topspace(product_topology k top) = {} \/ !i. i IN k ==> continuous_map(top i,top' i) (f i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (top:K->A topology)) = {}` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_ON_EMPTY] THEN REWRITE_TAC[product_map; CONTINUOUS_MAP_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; TOPSPACE_PRODUCT_TOPOLOGY; o_DEF] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN SUBGOAL_THEN `(f:K->A->B) i = (\x. f i (x i)) o (\x. RESTRICTION k (\j. if j = i then x else z j))` SUBST1_TAC THENL [ASM_SIMP_TAC[o_DEF; RESTRICTION; ETA_AX]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `product_topology k (top:K->A topology)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN X_GEN_TAC `j:K` THEN DISCH_TAC THEN ASM_CASES_TAC `j:K = i` THEN ASM_SIMP_TAC[RESTRICTION; CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]; GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `(top:K->A topology) i` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION]]);; let OPEN_MAP_PRODUCT = prove (`!k top top' (f:K->A->B). open_map (product_topology k top,product_topology k top') (product_map k f) <=> topspace(product_topology k top) = {} \/ FINITE {i | i IN k /\ IMAGE (f i) (topspace(top i)) PSUBSET topspace(top' i)} /\ !i. i IN k ==> open_map(top i,top' i) (f i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (top:K->A topology)) = {}` THEN ASM_SIMP_TAC[OPEN_MAP_ON_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PRODUCT_TOPOLOGY; o_THM; CARTESIAN_PRODUCT_EQ_EMPTY]) THEN EQ_TAC THEN STRIP_TAC THEN TRY CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `cartesian_product k (\i. topspace((top:K->A topology) i))` o GEN_REWRITE_RULE I [open_map]) THEN REWRITE_TAC[IMAGE_PRODUCT_MAP; OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN ASM_REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY; OPEN_IN_TOPSPACE] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN SET_TAC[]; X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[open_map] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `IMAGE ((f:K->A->B) i) u = IMAGE (\x. x i) (IMAGE (product_map k f) (cartesian_product k (\j. if j = i then u else topspace(top j))))` SUBST1_TAC THENL [REWRITE_TAC[IMAGE_PRODUCT_MAP; IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; IMAGE_EQ_EMPTY] THEN ASM_MESON_TAC[IMAGE_CLAUSES]; FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[open_map] o MATCH_MP OPEN_MAP_PRODUCT_PROJECTION) THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[open_map]) THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN ONCE_REWRITE_TAC[COND_RAND] THEN DISJ2_TAC THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; COND_ID] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING; SUBSET] THEN GEN_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN SIMP_TAC[IN_SING; IN_ELIM_THM]]; REWRITE_TAC[open_map] THEN X_GEN_TAC `w:(K->A)->bool` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `x:K->A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:K->A` o GEN_REWRITE_RULE I [OPEN_IN_PRODUCT_TOPOLOGY_ALT]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:K->A->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (product_map k (f:K->A->B)) (cartesian_product k u)` THEN ASM_SIMP_TAC[IMAGE_SUBSET; FUN_IN_IMAGE] THEN REWRITE_TAC[IMAGE_PRODUCT_MAP; OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN DISJ2_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[open_map]) THEN ASM_SIMP_TAC[] THEN UNDISCH_TAC `FINITE {i | i IN k /\ ~((u:K->A->bool) i = topspace (top i))}` THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[FINITE_SUBSET; FINITE_UNION] `FINITE s ==> u SUBSET s UNION t ==> FINITE t ==> FINITE u`)) THEN REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[PSUBSET; OPEN_IN_SUBSET; OPEN_IN_TOPSPACE] THEN MESON_TAC[]]);; let CLOSED_MAP_PRODUCT = prove (`!k top top' (f:K->A->B). closed_map (product_topology k top,product_topology k top') (product_map k f) ==> topspace(product_topology k top) = {} \/ !i. i IN k ==> closed_map(top i,top' i) (f i)`, REPEAT STRIP_TAC THEN REWRITE_TAC[TAUT `p \/ q <=> ~p ==> q`] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`] THEN DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[closed_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `c:A->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; CLOSED_IN_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o SPEC `cartesian_product k (\j. if j = i then c else topspace(top j)):(K->A)->bool` o GEN_REWRITE_RULE I [closed_map]) THEN REWRITE_TAC[IMAGE_PRODUCT_MAP; CLOSED_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[IMAGE_EQ_EMPTY; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN ASM_SIMP_TAC[CLOSED_IN_TOPSPACE; COND_ID] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[]);; let IN_PRODUCT_TOPOLOGY_CLOSURE_OF = prove (`!(tops:K->A topology) s k z. z IN (product_topology k tops) closure_of s ==> !i. i IN k ==> z i IN ((tops i) closure_of (IMAGE (\x. x i) s))`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [SUBSET; FORALL_IN_IMAGE; CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET] o MATCH_MP CONTINUOUS_MAP_PRODUCT_PROJECTION) THEN ASM_REWRITE_TAC[]);; let PRODUCT_TOPOLOGY_EQ = prove (`!k top (top':K->A topology). product_topology k top = product_topology k top' <=> topspace(product_topology k top) = {} /\ topspace(product_topology k top') = {} \/ (!i. i IN k ==> top i = top' i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (top':K->A topology)) = topspace(product_topology k top)` THENL [ASM_REWRITE_TAC[]; EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY]) THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_DEF] THEN MESON_TAC[]] THEN ASM_CASES_TAC `topspace (product_topology k (top:K->A topology)) = {}` THENL [ASM_MESON_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY]; ASM_REWRITE_TAC[]] THEN EQ_TAC THENL [REWRITE_TAC[TOPOLOGY_EQ] THEN DISCH_THEN(fun th -> X_GEN_TAC `i:K` THEN DISCH_TAC THEN MP_TAC th) THEN REWRITE_TAC[FORALL_AND_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN DISCH_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN (ASM_CASES_TAC `u:A->bool = {}` THEN ASM_REWRITE_TAC[OPEN_IN_EMPTY]) THENL [FIRST_X_ASSUM(MP_TAC o SPEC `cartesian_product k (\j:K. if j = i then (u:A->bool) else topspace(top j))`); FIRST_X_ASSUM((fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) o SYM) THEN FIRST_X_ASSUM(MP_TAC o SPEC `cartesian_product k (\j:K. if j = i then (u:A->bool) else topspace(top' j))`)] THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN MATCH_MP_TAC(TAUT `(r ==> s) /\ ~p /\ q ==> (p \/ q ==> p \/ r) ==> s`) THEN (CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PRODUCT_TOPOLOGY; o_DEF; CARTESIAN_PRODUCT_EQ_EMPTY]) THEN REWRITE_TAC[o_DEF; CARTESIAN_PRODUCT_EQ_EMPTY] THEN (CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN (CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[OPEN_IN_TOPSPACE]]) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING; SUBSET; IN_SING; IN_ELIM_THM; NOT_IMP] THEN MESON_TAC[]; DISCH_TAC THEN ASM_SIMP_TAC[product_topology] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]]);; let DISCRETE_TOPOLOGY_CARTESIAN_PRODUCT_EQ = prove (`!k (s:K->A->bool). discrete_topology(cartesian_product k s) = product_topology k (discrete_topology o s) <=> cartesian_product k s = {} \/ FINITE {i | i IN k /\ ~(?a. s i SUBSET {a})}`, REPEAT GEN_TAC THEN REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; ETA_AX] THEN SIMP_TAC[IN_CARTESIAN_PRODUCT; GSYM CARTESIAN_PRODUCT_SINGS] THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY] THEN SIMP_TAC[TOPSPACE_DISCRETE_TOPOLOGY; SING_SUBSET] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; NOT_INSERT_EMPTY] THEN ONCE_REWRITE_TAC[SET_RULE `P /\ ~({x} = s) <=> P /\ (P ==> x IN s ==> ~(?a. s SUBSET {a}))`] THEN SIMP_TAC[] THEN REWRITE_TAC[TAUT `p /\ (p ==> q) <=> p /\ q`; LEFT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM IN_CARTESIAN_PRODUCT; MEMBER_NOT_EMPTY] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; TAUT `~p ==> q <=> p \/ q`]);; let DISCRETE_TOPOLOGY_CARTESIAN_PRODUCT = prove (`!k (s:K->A->bool). FINITE {i | i IN k /\ ~(?a. s i SUBSET {a})} ==> discrete_topology(cartesian_product k s) = product_topology k (discrete_topology o s)`, SIMP_TAC[DISCRETE_TOPOLOGY_CARTESIAN_PRODUCT_EQ]);; let DISCRETE_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) k. discrete_space(product_topology k tops) <=> topspace(product_topology k tops) = {} \/ FINITE {i | i IN k /\ ~(?a. topspace(tops i) SUBSET {a})} /\ !i. i IN k ==> discrete_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THEN ASM_SIMP_TAC[DISCRETE_SPACE_TOPSPACE_EMPTY] THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [DISCRETE_SPACE_UNIQUE] THEN DISCH_THEN(MP_TAC o SPEC `z:K->A`) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN SIMP_TAC[IN_CARTESIAN_PRODUCT; GSYM CARTESIAN_PRODUCT_SINGS] THEN ASM_REWRITE_TAC[GSYM IN_CARTESIAN_PRODUCT; ETA_AX] THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; NOT_INSERT_EMPTY] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN SET_TAC[]; DISCH_THEN(fun th -> X_GEN_TAC `i:K` THEN DISCH_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] DISCRETE_SPACE_OPEN_MAP_IMAGE)) THEN EXISTS_TAC `\x:K->A. x i` THEN ASM_SIMP_TAC[OPEN_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY; o_THM]]; ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [DISCRETE_SPACE] THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `u:K->A->bool` (ASSUME_TAC o GSYM)) THEN ONCE_REWRITE_TAC[TAUT `p /\ ~q <=> ~(p ==> q)`] THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; TOPSPACE_DISCRETE_TOPOLOGY] THEN DISCH_TAC THEN REWRITE_TAC[DISCRETE_SPACE] THEN EXISTS_TAC `cartesian_product k (u:K->A->bool)` THEN ASM_SIMP_TAC[DISCRETE_TOPOLOGY_CARTESIAN_PRODUCT] THEN ASM_SIMP_TAC[PRODUCT_TOPOLOGY_EQ; o_THM]]);; (* ------------------------------------------------------------------------- *) (* Disjoint sum of arbitarily many spaces. *) (* ------------------------------------------------------------------------- *) let sum_topology = new_definition `sum_topology (k:K->bool) (top:K->A topology) = topology { u | u SUBSET disjoint_union k (topspace o top) /\ !i. i IN k ==> open_in (top i) {x | (i,x) IN u}}`;; let OPEN_IN_SUM_TOPOLOGY = prove (`!k (top:K->A topology) u. open_in (sum_topology k top) u <=> u SUBSET disjoint_union k (topspace o top) /\ !i. i IN k ==> open_in (top i) {x | (i,x) IN u}`, let lemma = prove (`{x | i,x IN UNIONS v} = UNIONS {{x | i,x IN k} | k IN v}`, REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]) in REPEAT GEN_TAC THEN REWRITE_TAC[sum_topology] THEN W(MP_TAC o fst o EQ_IMP_RULE o PART_MATCH (lhand o rand) (CONJUNCT2 topology_tybij) o rator o lhand o snd) THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[IN_ELIM_THM]] THEN REWRITE_TAC[istopology] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; EMPTY_SUBSET] THEN SIMP_TAC[OPEN_IN_EMPTY; OPEN_IN_INTER; SET_RULE `{x | (i,x) IN s INTER t} = {x | (i,x) IN s} INTER {x | (i,x) IN t}`] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `v:(K#A->bool)->bool` THEN REWRITE_TAC[UNIONS_SUBSET] THEN GEN_REWRITE_TAC LAND_CONV [SUBSET] THEN SIMP_TAC[IN_ELIM_THM; lemma; OPEN_IN_UNIONS; FORALL_IN_GSPEC]);; let OPEN_IN_DISJOINT_UNION = prove (`!k (top:K->A topology) u. open_in (sum_topology k top) (disjoint_union k u) <=> !i. i IN k ==> open_in (top i) (u i)`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUM_TOPOLOGY; disjoint_union] THEN SIMP_TAC[IN_ELIM_PAIR_THM; SUBSET; FORALL_IN_GSPEC; o_THM; IN_GSPEC] THEN MESON_TAC[SUBSET; OPEN_IN_SUBSET]);; let TOPSPACE_SUM_TOPOLOGY = prove (`!k (top:K->A topology). topspace(sum_topology k top) = disjoint_union k (topspace o top)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN CONJ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [topspace] THEN SIMP_TAC[UNIONS_SUBSET; IN_ELIM_THM; OPEN_IN_SUM_TOPOLOGY]; MATCH_MP_TAC OPEN_IN_SUBSET THEN REWRITE_TAC[OPEN_IN_DISJOINT_UNION; o_THM; OPEN_IN_TOPSPACE]]);; let OPEN_IN_SUM_TOPOLOGY_ALT = prove (`!k (top:K->A topology) u. open_in (sum_topology k top) u <=> ?t. u = disjoint_union k t /\ !i. i IN k ==> open_in (top i) (t i)`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUM_TOPOLOGY] THEN REWRITE_TAC[SUBSET_DISJOINT_UNION_EXISTS] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN EQ_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[IMP_CONJ] THEN REWRITE_TAC[disjoint_union; IN_ELIM_PAIR_THM] THEN SIMP_TAC[IN_GSPEC; o_THM; OPEN_IN_SUBSET]);; let FORALL_OPEN_IN_SUM_TOPOLOGY = prove (`!k (top:K->A topology). (!u. open_in (sum_topology k top) u ==> P u) <=> (!t. (!i. i IN k ==> open_in (top i) (t i)) ==> P(disjoint_union k t))`, REWRITE_TAC[OPEN_IN_SUM_TOPOLOGY_ALT] THEN MESON_TAC[]);; let EXISTS_OPEN_IN_SUM_TOPOLOGY = prove (`!k (top:K->A topology). (?u. open_in (sum_topology k top) u /\ P u) <=> (?t. (!i. i IN k ==> open_in (top i) (t i)) /\ P(disjoint_union k t))`, REWRITE_TAC[OPEN_IN_SUM_TOPOLOGY_ALT] THEN MESON_TAC[]);; let CLOSED_IN_SUM_TOPOLOGY = prove (`!k (top:K->A topology) u. closed_in (sum_topology k top) u <=> u SUBSET disjoint_union k (topspace o top) /\ !i. i IN k ==> closed_in (top i) {x | (i,x) IN u}`, REWRITE_TAC[closed_in; TOPSPACE_SUM_TOPOLOGY; OPEN_IN_SUM_TOPOLOGY] THEN REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET_DIFF] THEN SIMP_TAC[IN_DIFF; disjoint_union; SUBSET; IN_ELIM_PAIR_THM; o_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[DIFF; IN_ELIM_THM] THEN MESON_TAC[]);; let CLOSED_IN_DISJOINT_UNION = prove (`!k (top:K->A topology) u. closed_in (sum_topology k top) (disjoint_union k u) <=> !i. i IN k ==> closed_in (top i) (u i)`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_SUM_TOPOLOGY; disjoint_union] THEN SIMP_TAC[IN_ELIM_PAIR_THM; SUBSET; FORALL_IN_GSPEC; o_THM; IN_GSPEC] THEN MESON_TAC[SUBSET; CLOSED_IN_SUBSET]);; let CLOSED_IN_SUM_TOPOLOGY_ALT = prove (`!k (top:K->A topology) u. closed_in (sum_topology k top) u <=> ?t. u = disjoint_union k t /\ !i. i IN k ==> closed_in (top i) (t i)`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_SUM_TOPOLOGY] THEN REWRITE_TAC[SUBSET_DISJOINT_UNION_EXISTS] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN EQ_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[IMP_CONJ] THEN REWRITE_TAC[disjoint_union; IN_ELIM_PAIR_THM] THEN SIMP_TAC[IN_GSPEC; o_THM; CLOSED_IN_SUBSET]);; let FORALL_CLOSED_IN_SUM_TOPOLOGY = prove (`!k (top:K->A topology). (!u. closed_in (sum_topology k top) u ==> P u) <=> (!t. (!i. i IN k ==> closed_in (top i) (t i)) ==> P(disjoint_union k t))`, REWRITE_TAC[CLOSED_IN_SUM_TOPOLOGY_ALT] THEN MESON_TAC[]);; let EXISTS_CLOSED_IN_SUM_TOPOLOGY = prove (`!k (top:K->A topology). (?u. closed_in (sum_topology k top) u /\ P u) <=> (?t. (!i. i IN k ==> closed_in (top i) (t i)) /\ P(disjoint_union k t))`, REWRITE_TAC[CLOSED_IN_SUM_TOPOLOGY_ALT] THEN MESON_TAC[]);; let OPEN_MAP_COMPONENT_INJECTION = prove (`!k (top:K->A topology) i. i IN k ==> open_map(top i,sum_topology k top) (\x. (i,x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[open_map; OPEN_IN_SUM_TOPOLOGY] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; disjoint_union; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[o_THM; PAIR_EQ] THEN ASM SET_TAC[]; X_GEN_TAC `j:K` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE; PAIR_EQ] THEN ASM_CASES_TAC `j:K = i` THEN ASM_REWRITE_TAC[UNWIND_THM1; EMPTY_GSPEC; IN_GSPEC] THEN ASM_SIMP_TAC[OPEN_IN_EMPTY]]);; let CLOSED_MAP_COMPONENT_INJECTION = prove (`!k (top:K->A topology) i. i IN k ==> closed_map(top i,sum_topology k top) (\x. (i,x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[closed_map; CLOSED_IN_SUM_TOPOLOGY] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; disjoint_union; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[o_THM; PAIR_EQ] THEN ASM SET_TAC[]; X_GEN_TAC `j:K` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE; PAIR_EQ] THEN ASM_CASES_TAC `j:K = i` THEN ASM_REWRITE_TAC[UNWIND_THM1; EMPTY_GSPEC; IN_GSPEC] THEN ASM_SIMP_TAC[CLOSED_IN_EMPTY]]);; let CONTINUOUS_MAP_COMPONENT_INJECTION = prove (`!k (top:K->A topology) i. i IN k ==> continuous_map(top i,sum_topology k top) (\x. (i,x))`, REWRITE_TAC[continuous_map; OPEN_IN_SUM_TOPOLOGY; TOPSPACE_SUM_TOPOLOGY] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN SIMP_TAC[OPEN_IN_INTER; OPEN_IN_TOPSPACE] THEN SIMP_TAC[disjoint_union; IN_ELIM_PAIR_THM; o_THM]);; let SUBTOPOLOGY_SUM_TOPOLOGY = prove (`!k top s:K->A->bool. subtopology (sum_topology k top) (disjoint_union k s) = sum_topology k (\i. subtopology (top i) (s i))`, REPEAT GEN_TAC THEN REWRITE_TAC[TOPOLOGY_EQ] THEN REWRITE_TAC[FORALL_AND_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN REWRITE_TAC[FORALL_OPEN_IN_SUM_TOPOLOGY] THEN REWRITE_TAC[INTER_DISJOINT_UNION; OPEN_IN_DISJOINT_UNION] THEN SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:K->A->bool`; `t:K->A->bool`] THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `disjoint_union k (t:K->A->bool)` THEN ASM_SIMP_TAC[OPEN_IN_DISJOINT_UNION; INTER_DISJOINT_UNION] THEN REWRITE_TAC[DISJOINT_UNION_EQ] THEN ASM_SIMP_TAC[INTER_COMM]);; (* ------------------------------------------------------------------------- *) (* Homeomorphisms (1-way and 2-way versions may be useful in places). *) (* ------------------------------------------------------------------------- *) let homeomorphic_map = new_definition `homeomorphic_map (top,top') (f:A->B) <=> quotient_map (top,top') f /\ !x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)`;; let homeomorphic_maps = new_definition `homeomorphic_maps(top,top') (f:A->B,g) <=> continuous_map(top,top') f /\ continuous_map(top',top) g /\ (!x. x IN topspace top ==> g(f x) = x) /\ (!y. y IN topspace top' ==> f(g y) = y)`;; let HOMEOMORPHIC_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ homeomorphic_map (top,top') f ==> homeomorphic_map (top,top') g`, REWRITE_TAC[homeomorphic_map] THEN MESON_TAC[QUOTIENT_MAP_EQ]);; let HOMEOMORPHIC_MAPS_EQ = prove (`!top top' f (f':A->B) g g'. (!x. x IN topspace top ==> f x = f' x) /\ (!x. x IN topspace top' ==> g x = g' x) /\ homeomorphic_maps (top,top') (f,g) ==> homeomorphic_maps (top,top') (f',g')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_EQ]; ALL_TAC] THEN REPEAT(FIRST_X_ASSUM (MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAPS_SYM = prove (`!(f:A->B) g top top'. homeomorphic_maps(top,top') (f,g) <=> homeomorphic_maps(top',top) (g,f)`, REWRITE_TAC[homeomorphic_maps; CONJ_ACI]);; let HOMEOMORPHIC_MAPS_ID = prove (`!top top':A topology. homeomorphic_maps(top,top') ((\x. x),(\x. x)) <=> top' = top`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[homeomorphic_maps; CONTINUOUS_MAP_ID] THEN REWRITE_TAC[continuous_map; IMAGE_ID] THEN ASM_CASES_TAC `topspace top':A->bool = topspace top` THENL [ASM_REWRITE_TAC[]; ASM SET_TAC[]] THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; SET_RULE `s SUBSET u ==> {x | x IN u /\ x IN s} = s`] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; SET_RULE `s SUBSET u ==> {x | x IN u /\ x IN s} = s`] THEN REWRITE_TAC[TOPOLOGY_EQ] THEN MESON_TAC[]);; let HOMEOMORPHIC_MAP_ID = prove (`!top top':A topology. homeomorphic_map(top,top') (\x. x) <=> top' = top`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_map; quotient_map; IMAGE_ID] THEN EQ_TAC THENL [DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) MP_TAC); ALL_TAC] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> {x | x IN u /\ x IN s} = s`] THEN GEN_REWRITE_TAC RAND_CONV [TOPOLOGY_EQ] THEN ASM_MESON_TAC[OPEN_IN_SUBSET]);; let HOMEOMORPHIC_MAPS_I = prove (`!top top':A topology. homeomorphic_maps(top,top') (I,I) <=> top' = top`, REWRITE_TAC[I_DEF; HOMEOMORPHIC_MAPS_ID]);; let HOMEOMORPHIC_MAP_I = prove (`!top top':A topology. homeomorphic_map(top,top') I <=> top' = top`, REWRITE_TAC[I_DEF; HOMEOMORPHIC_MAP_ID]);; let HOMEOMORPHIC_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). homeomorphic_map(top,top') f /\ homeomorphic_map(top',top'') g ==> homeomorphic_map(top,top'') (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_map; o_THM] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[QUOTIENT_MAP_COMPOSE]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE [quotient_map; GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[]);; let HOMEOMORPHIC_MAPS_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C) h k. homeomorphic_maps(top,top') (f,h) /\ homeomorphic_maps(top',top'') (g,k) ==> homeomorphic_maps(top,top'') (g o f,h o k)`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps; o_THM] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]; ALL_TAC] THEN REPEAT(FIRST_X_ASSUM (MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_EQ_EVERYTHING_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f <=> continuous_map (top,top') f /\ open_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ !x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_map] THEN ASM_CASES_TAC `!x y. x IN topspace top /\ y IN topspace top ==> ((f:A->B) x = f y <=> x = y)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INJECTIVE_QUOTIENT_MAP THEN ASM_REWRITE_TAC[]);; let HOMEOMORPHIC_IMP_QUOTIENT_MAP = prove (`!top top' (f:A->B). homeomorphic_map(top,top') f ==> quotient_map(top,top') f`, SIMP_TAC[homeomorphic_map]);; let HOMEOMORPHIC_IMP_CONTINUOUS_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> continuous_map (top,top') f`, SIMP_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]);; let HOMEOMORPHIC_IMP_OPEN_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> open_map (top,top') f`, SIMP_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]);; let HOMEOMORPHIC_IMP_CLOSED_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> closed_map (top,top') f`, SIMP_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]);; let HOMEOMORPHIC_IMP_SURJECTIVE_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> IMAGE f (topspace top) = topspace top'`, SIMP_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]);; let HOMEOMORPHIC_IMP_INJECTIVE_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> !x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)`, SIMP_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]);; let BIJECTIVE_OPEN_IMP_HOMEOMORPHIC_MAP = prove (`!top top' f:A->B. continuous_map (top,top') f /\ open_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> homeomorphic_map(top,top') f`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[homeomorphic_map] THEN MATCH_MP_TAC CONTINUOUS_OPEN_IMP_QUOTIENT_MAP THEN ASM_REWRITE_TAC[]);; let BIJECTIVE_CLOSED_IMP_HOMEOMORPHIC_MAP = prove (`!top top' f:A->B. continuous_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> homeomorphic_map(top,top') f`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[homeomorphic_map] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IMP_QUOTIENT_MAP THEN ASM_REWRITE_TAC[]);; let OPEN_EQ_CONTINUOUS_INVERSE_MAP = prove (`!top top' (f:A->B) g. (!x. x IN topspace top ==> f x IN topspace top' /\ g(f x) = x) /\ (!y. y IN topspace top' ==> g y IN topspace top /\ f(g y) = y) ==> (open_map (top,top') f <=> continuous_map (top',top) g)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[open_map; continuous_map] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN ASM_CASES_TAC `open_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let CLOSED_EQ_CONTINUOUS_INVERSE_MAP = prove (`!top top' (f:A->B) g. (!x. x IN topspace top ==> f x IN topspace top' /\ g(f x) = x) /\ (!y. y IN topspace top' ==> g y IN topspace top /\ f(g y) = y) ==> (closed_map (top,top') f <=> continuous_map (top',top) g)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[closed_map; CONTINUOUS_MAP_CLOSED_IN] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN ASM_CASES_TAC `closed_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAPS_MAP = prove (`!top top' (f:A->B) g. homeomorphic_maps(top,top') (f:A->B,g) <=> homeomorphic_map(top,top') f /\ homeomorphic_map(top',top) g /\ (!x. x IN topspace top ==> g(f x) = x) /\ (!y. y IN topspace top' ==> f(g y) = y)`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps] THEN EQ_TAC THENL [STRIP_TAC; MESON_TAC[HOMEOMORPHIC_IMP_CONTINUOUS_MAP]] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC BIJECTIVE_OPEN_IMP_HOMEOMORPHIC_MAP THEN ASM_REWRITE_TAC[] THENL [MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `f:A->B`; `g:B->A`] OPEN_EQ_CONTINUOUS_INVERSE_MAP); MP_TAC(ISPECL [`top':B topology`; `top:A topology`; `g:B->A`; `f:A->B`] OPEN_EQ_CONTINUOUS_INVERSE_MAP)] THEN ASM_REWRITE_TAC[] THEN REPEAT (FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAPS_IMP_MAP = prove (`!top top' (f:A->B) g. homeomorphic_maps (top,top') (f,g) ==> homeomorphic_map (top,top') f`, SIMP_TAC[HOMEOMORPHIC_MAPS_MAP]);; let HOMEOMORPHIC_MAP_MAPS = prove (`!top top' f:A->B. homeomorphic_map (top,top') f <=> ?g. homeomorphic_maps (top,top') (f,g)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[HOMEOMORPHIC_MAPS_MAP]] THEN REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM INJECTIVE_ON_ALT]) THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:B->A` THEN DISCH_TAC THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `f:A->B`; `g:B->A`] OPEN_EQ_CONTINUOUS_INVERSE_MAP) THEN ASM_REWRITE_TAC[homeomorphic_maps] THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAPS_INVOLUTION = prove (`!top (f:A->A). continuous_map(top,top) f /\ (!x. x IN topspace top ==> f(f x) = x) ==> homeomorphic_maps (top,top) (f,f)`, SIMP_TAC[homeomorphic_maps]);; let HOMEOMORPHIC_MAP_INVOLUTION = prove (`!top (f:A->A). continuous_map(top,top) f /\ (!x. x IN topspace top ==> f(f x) = x) ==> homeomorphic_map (top,top) f`, REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS] THEN MESON_TAC[HOMEOMORPHIC_MAPS_INVOLUTION]);; let HOMEOMORPHIC_MAP_OPENNESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (open_in top' (IMAGE f u) <=> open_in top u)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_MAP_MAPS]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; HOMEOMORPHIC_MAPS_MAP] THEN X_GEN_TAC `g:B->A` THEN STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[HOMEOMORPHIC_IMP_OPEN_MAP; open_map]] THEN SUBGOAL_THEN `u = IMAGE (g:B->A) (IMAGE f u)` SUBST1_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[HOMEOMORPHIC_IMP_OPEN_MAP; open_map]]);; let HOMEOMORPHIC_MAP_CLOSEDNESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (closed_in top' (IMAGE f u) <=> closed_in top u)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_MAP_MAPS]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; HOMEOMORPHIC_MAPS_MAP] THEN X_GEN_TAC `g:B->A` THEN STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[HOMEOMORPHIC_IMP_CLOSED_MAP; closed_map]] THEN SUBGOAL_THEN `u = IMAGE (g:B->A) (IMAGE f u)` SUBST1_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[HOMEOMORPHIC_IMP_CLOSED_MAP; closed_map]]);; let HOMEOMORPHIC_MAP_OPENNESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (open_in top u <=> u SUBSET topspace top /\ open_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_OPENNESS; OPEN_IN_SUBSET]);; let HOMEOMORPHIC_MAP_CLOSEDNESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (closed_in top u <=> u SUBSET topspace top /\ closed_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_CLOSEDNESS; CLOSED_IN_SUBSET]);; let FORALL_OPEN_IN_HOMEOMORPHIC_IMAGE = prove (`!(f:A->B) top top' P. homeomorphic_map(top,top') f ==> ((!v. open_in top' v ==> P v) <=> (!u. open_in top u ==> P(IMAGE f u)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_MAP_OPENNESS; OPEN_IN_SUBSET]; DISCH_TAC THEN X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_MAP_MAPS]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; HOMEOMORPHIC_MAPS_MAP] THEN X_GEN_TAC `g:B->A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (g:B->A) v`) THEN ANTS_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_MAP_OPENNESS; OPEN_IN_SUBSET]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]]);; let FORALL_CLOSED_IN_HOMEOMORPHIC_IMAGE = prove (`!(f:A->B) top top' P. homeomorphic_map(top,top') f ==> ((!v. closed_in top' v ==> P v) <=> (!u. closed_in top u ==> P(IMAGE f u)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[FORALL_CLOSED_IN] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP FORALL_OPEN_IN_HOMEOMORPHIC_IMAGE th]) THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN ASM_CASES_TAC `open_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_MAP_MAPS; homeomorphic_maps; continuous_map]) THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_DERIVED_SET_OF = prove (`!(f:A->B) top top' s. homeomorphic_map (top,top') f /\ s SUBSET topspace top ==> top' derived_set_of (IMAGE f s) = IMAGE f (top derived_set_of s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[derived_set_of] THEN MATCH_MP_TAC(SET_RULE `t = IMAGE f s /\ (!x. x IN s ==> (P x <=> Q(f x))) ==> {y | y IN t /\ Q y} = IMAGE f {x | x IN s /\ P x}`) THEN CONJ_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MESON[OPEN_IN_SUBSET] `P /\ open_in top s <=> s SUBSET topspace top /\ P /\ open_in top s`] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP HOMEOMORPHIC_IMP_SURJECTIVE_MAP) THEN REWRITE_TAC[IMP_CONJ; FORALL_SUBSET_IMAGE] THEN FIRST_ASSUM (fun th -> REWRITE_TAC[MATCH_MP HOMEOMORPHIC_MAP_OPENNESS_EQ th]) THEN AP_TERM_TAC THEN ABS_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_CLOSURE_OF = prove (`!(f:A->B) top top' s. homeomorphic_map (top,top') f /\ s SUBSET topspace top ==> top' closure_of (IMAGE f s) = IMAGE f (top closure_of s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSURE_OF] THEN FIRST_ASSUM(MP_TAC o SPEC `s:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] HOMEOMORPHIC_MAP_DERIVED_SET_OF)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[GSYM IMAGE_UNION] THEN MATCH_MP_TAC(SET_RULE `IMAGE f u = t /\ s SUBSET u ==> t INTER IMAGE f s = IMAGE f (u INTER s)`) THEN ASM_REWRITE_TAC[UNION_SUBSET; DERIVED_SET_OF_SUBSET_TOPSPACE] THEN ASM_MESON_TAC[HOMEOMORPHIC_IMP_SURJECTIVE_MAP]);; let HOMEOMORPHIC_MAP_INTERIOR_OF = prove (`!(f:A->B) top top' s. homeomorphic_map (top,top') f /\ s SUBSET topspace top ==> top' interior_of (IMAGE f s) = IMAGE f (top interior_of s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[INTERIOR_OF_CLOSURE_OF] THEN MATCH_MP_TAC(SET_RULE `(IMAGE f t = v /\ (!x y. x IN t /\ y IN t /\ f x = f y ==> x = y)) /\ IMAGE f s = u /\ s SUBSET t ==> v DIFF u = IMAGE f (t DIFF s)`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]; REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE]] THEN SUBGOAL_THEN `topspace top' DIFF IMAGE (f:A->B) s = IMAGE f (topspace top DIFF s)` SUBST1_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]; CONV_TAC SYM_CONV THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_CLOSURE_OF THEN ASM_REWRITE_TAC[SUBSET_DIFF]]);; let HOMEOMORPHIC_MAP_FRONTIER_OF = prove (`!(f:A->B) top top' s. homeomorphic_map (top,top') f /\ s SUBSET topspace top ==> top' frontier_of (IMAGE f s) = IMAGE f (top frontier_of s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[frontier_of] THEN MATCH_MP_TAC(SET_RULE `!u. IMAGE f s = s' /\ IMAGE f t = t' /\ s SUBSET t /\ t SUBSET u /\ (!x y. x IN u /\ y IN u /\ f x = f y ==> x = y) ==> t' DIFF s' = IMAGE f (t DIFF s)`) THEN EXISTS_TAC `topspace top:A->bool` THEN REWRITE_TAC[INTERIOR_OF_SUBSET_CLOSURE_OF] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_MAP_INTERIOR_OF]; ASM_MESON_TAC[HOMEOMORPHIC_MAP_CLOSURE_OF]; ASM_MESON_TAC[HOMEOMORPHIC_IMP_INJECTIVE_MAP]]);; let HOMEOMORPHIC_MAPS_SUBTOPOLOGIES = prove (`!top top' (f:A->B) g s t. homeomorphic_maps(top,top') (f,g) /\ IMAGE f (topspace top INTER s) = topspace top' INTER t ==> homeomorphic_maps(subtopology top s,subtopology top' t) (f,g)`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps] THEN STRIP_TAC THEN ASM_SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN REPEAT(FIRST_X_ASSUM (MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAPS_SUBTOPOLOGIES_ALT = prove (`!top top' (f:A->B) g s t. homeomorphic_maps (top,top') (f,g) /\ IMAGE f (topspace top INTER s) SUBSET t /\ IMAGE g (topspace top' INTER t) SUBSET s ==> homeomorphic_maps (subtopology top s,subtopology top' t) (f,g)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_MAPS_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphic_maps; continuous_map]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_SUBTOPOLOGIES = prove (`!top top' (f:A->B) s t. homeomorphic_map(top,top') f /\ IMAGE f (topspace top INTER s) = topspace top' INTER t ==> homeomorphic_map(subtopology top s,subtopology top' t) f`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[HOMEOMORPHIC_MAPS_SUBTOPOLOGIES]);; let HOMEOMORPHIC_MAP_SUBTOPOLOGIES_ALT = prove (`!top top' (f:A->B) s t. homeomorphic_map (top,top') f /\ (!x. x IN topspace top /\ f x IN topspace top' ==> (f x IN t <=> x IN s)) ==> homeomorphic_map (subtopology top s,subtopology top' t) f`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_MAPS_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphic_maps; continuous_map]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAPS_PROD = prove (`!top1 top2 top3 top4 (f:A->B) (g:C->D) f' g'. homeomorphic_maps (prod_topology top1 top2,prod_topology top3 top4) ((\(x,y). f x,g y),(\(x,y). f' x,g' y)) <=> topspace(prod_topology top1 top2) = {} /\ topspace(prod_topology top3 top4) = {} \/ homeomorphic_maps (top1,top3) (f,f') /\ homeomorphic_maps (top2,top4) (g,g')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps; CONTINUOUS_MAP_PROD] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[CROSS_EQ_EMPTY; PAIR_EQ] THEN REWRITE_TAC[continuous_map] THEN SET_TAC[]);; let HOMEOMORPHIC_MAPS_SWAP = prove (`!(top:A topology) (top':B topology). homeomorphic_maps (prod_topology top top',prod_topology top' top) ((\(x,y). y,x),(\(y,x). x,y))`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps; CONTINUOUS_MAP_PAIRED; LAMBDA_PAIR; CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]);; let HOMEOMORPHIC_MAP_SWAP = prove (`!(top:A topology) (top':B topology). homeomorphic_map (prod_topology top top',prod_topology top' top) (\(x,y). y,x)`, REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS] THEN MESON_TAC[HOMEOMORPHIC_MAPS_SWAP]);; (* ------------------------------------------------------------------------- *) (* Relation of homeomorphism between topological spaces. *) (* ------------------------------------------------------------------------- *) parse_as_infix("homeomorphic_space",(12,"right"));; let homeomorphic_space = new_definition `(top:A topology) homeomorphic_space (top':B topology) <=> ?f g. homeomorphic_maps(top,top') (f,g)`;; let HOMEOMORPHIC_SPACE_REFL = prove (`!top:A topology. top homeomorphic_space top`, REWRITE_TAC[homeomorphic_space] THEN MESON_TAC[HOMEOMORPHIC_MAPS_I]);; let HOMEOMORPHIC_SPACE_SYM = prove (`!top:A topology top':B topology. top homeomorphic_space top' <=> top' homeomorphic_space top`, REWRITE_TAC[homeomorphic_space] THEN MESON_TAC[HOMEOMORPHIC_MAPS_SYM]);; let HOMEOMORPHIC_SPACE_TRANS = prove (`!top1:A topology top2:B topology top3:C topology. top1 homeomorphic_space top2 /\ top2 homeomorphic_space top3 ==> top1 homeomorphic_space top3`, REWRITE_TAC[homeomorphic_space; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_MAPS_COMPOSE) THEN MESON_TAC[]);; let HOMEOMORPHIC_SPACE = prove (`!top:A topology top':B topology. top homeomorphic_space top' <=> ?f. homeomorphic_map (top,top') f`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAP_MAPS]);; let HOMEOMORPHIC_MAPS_IMP_HOMEOMORPHIC_SPACE = prove (`!top top' (f:A->B) g. homeomorphic_maps (top,top') (f,g) ==> top homeomorphic_space top'`, REWRITE_TAC[homeomorphic_space] THEN MESON_TAC[]);; let HOMEOMORPHIC_MAP_IMP_HOMEOMORPHIC_SPACE = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> top homeomorphic_space top'`, REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_IMP_HOMEOMORPHIC_SPACE]);; let HOMEOMORPHIC_SPACE_IMP_CARD_EQ = prove (`!top:A topology top':B topology. top homeomorphic_space top' ==> topspace top =_c topspace top'`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps; continuous_map; eq_c] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);; let HOMEOMORPHIC_SPACE_FINITENESS = prove (`!top:A topology top':B topology. top homeomorphic_space top' ==> (FINITE(topspace top) <=> FINITE(topspace top'))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_SPACE_IMP_CARD_EQ) THEN DISCH_THEN(ACCEPT_TAC o MATCH_MP CARD_FINITE_CONG));; let HOMEOMORPHIC_SPACE_INFINITENESS = prove (`!top:A topology top':B topology. top homeomorphic_space top' ==> (INFINITE(topspace top) <=> INFINITE(topspace top'))`, REWRITE_TAC[INFINITE] THEN MESON_TAC[HOMEOMORPHIC_SPACE_FINITENESS]);; let HOMEOMORPHIC_SPACE_COUNTABILITY = prove (`!top:A topology top':B topology. top homeomorphic_space top' ==> (COUNTABLE(topspace top) <=> COUNTABLE(topspace top'))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_SPACE_IMP_CARD_EQ) THEN DISCH_THEN(ACCEPT_TAC o MATCH_MP CARD_COUNTABLE_CONG));; let HOMEOMORPHIC_EMPTY_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (topspace top = {} <=> topspace top' = {})`, REWRITE_TAC[homeomorphic_space; homeomorphic_maps; continuous_map] THEN SET_TAC[]);; let HOMEOMORPHIC_EMPTY_SPACE_EQ = prove (`(!(top:A topology) (top':B topology). topspace top = {} ==> (top homeomorphic_space top' <=> topspace top' = {})) /\ (!(top:A topology) (top':B topology). topspace top' = {} ==> (top homeomorphic_space top' <=> topspace top = {}))`, REPEAT STRIP_TAC THEN (EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_EMPTY_SPACE) THEN ASM_REWRITE_TAC[]; DISCH_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps] THEN ASM_SIMP_TAC[NOT_IN_EMPTY; CONTINUOUS_MAP_ON_EMPTY]]));; let PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_LEFT = prove (`!(top:A topology) (top':B topology) b. topspace top' = {b} ==> prod_topology top top' homeomorphic_space top`, REPEAT STRIP_TAC THEN REWRITE_TAC[homeomorphic_space] THEN EXISTS_TAC `FST:A#B->A` THEN REWRITE_TAC[GSYM HOMEOMORPHIC_MAP_MAPS; homeomorphic_map] THEN ASM_REWRITE_TAC[QUOTIENT_MAP_FST; NOT_INSERT_EMPTY] THEN REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; PAIR_EQ] THEN ASM_SIMP_TAC[IN_SING]);; let PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_RIGHT = prove (`!(top:A topology) (top':B topology) a. topspace top = {a} ==> prod_topology top top' homeomorphic_space top'`, REPEAT STRIP_TAC THEN REWRITE_TAC[homeomorphic_space] THEN EXISTS_TAC `SND:A#B->B` THEN REWRITE_TAC[GSYM HOMEOMORPHIC_MAP_MAPS; homeomorphic_map] THEN ASM_REWRITE_TAC[QUOTIENT_MAP_SND; NOT_INSERT_EMPTY] THEN REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; PAIR_EQ] THEN ASM_SIMP_TAC[IN_SING]);; let HOMEOMORPHIC_SPACE_PROD_TOPOLOGY_SING = prove (`(!top:A topology top':B topology b. b IN topspace top' ==> top homeomorphic_space (prod_topology top (subtopology top' {b}))) /\ (!top:A topology top':B topology a. a IN topspace top ==> top' homeomorphic_space (prod_topology (subtopology top {a}) top'))`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THENL [MATCH_MP_TAC PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_LEFT; MATCH_MP_TAC PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_RIGHT] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SET_RULE `a IN s ==> s INTER {a} = {a}`] THEN ASM_MESON_TAC[]);; let TOPOLOGICAL_PROPERTY_OF_PROD_COMPONENT = prove (`!P Q R (top1:A topology) (top2:B topology). (!a. a IN topspace top1 /\ P(prod_topology top1 top2) ==> P(subtopology (prod_topology top1 top2) ({a} CROSS topspace top2))) /\ (!b. b IN topspace top2 /\ P(prod_topology top1 top2) ==> P(subtopology (prod_topology top1 top2) (topspace top1 CROSS {b}))) /\ (!top top'. top homeomorphic_space top' ==> (P top <=> Q top')) /\ (!top top'. top homeomorphic_space top' ==> (P top <=> R top')) ==> P(prod_topology top1 top2) ==> topspace(prod_topology top1 top2) = {} \/ Q top1 /\ R top2`, REPEAT STRIP_TAC THEN REWRITE_TAC[TAUT `p \/ q <=> ~p ==> q`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:B`] THEN REPEAT STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `b:B`); FIRST_X_ASSUM(MP_TAC o SPEC `a:A`)] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SUBTOPOLOGY_CROSS; SUBTOPOLOGY_TOPSPACE] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN ASM_SIMP_TAC[HOMEOMORPHIC_SPACE_PROD_TOPOLOGY_SING]);; let PRODUCT_TOPOLOGY_HOMEOMORPHIC_COMPONENT = prove (`!(tops:K->A topology) k i. i IN k /\ (!j. j IN k /\ ~(j = i) ==> ?a. topspace(tops j) = {a}) ==> product_topology k tops homeomorphic_space (tops i)`, REPEAT STRIP_TAC THEN REWRITE_TAC[homeomorphic_space] THEN EXISTS_TAC `\x:K->A. x i` THEN REWRITE_TAC[GSYM HOMEOMORPHIC_MAP_MAPS; homeomorphic_map] THEN ASM_SIMP_TAC[QUOTIENT_MAP_PRODUCT_PROJECTION; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; o_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[NOT_INSERT_EMPTY]; ALL_TAC] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC CARTESIAN_PRODUCT_EQ_MEMBERS THEN MAP_EVERY EXISTS_TAC [`k:K->bool`; `topspace o (tops:K->A topology)`] THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [cartesian_product; EXTENSIONAL; IN_ELIM_THM; o_THM]) THEN X_GEN_TAC `j:K` THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:K`) THEN ASM_MESON_TAC[IN_SING]);; let TOPOLOGICAL_PROPERTY_OF_PRODUCT_COMPONENT = prove (`!P Q (tops:K->A topology) k. (!z i. z IN topspace(product_topology k tops) /\ P(product_topology k tops) /\ i IN k ==> P(subtopology (product_topology k tops) (cartesian_product k (\j. if j = i then topspace(tops i) else {z j})))) /\ (!top top'. top homeomorphic_space top' ==> (P top <=> Q top')) ==> P(product_topology k tops) ==> topspace(product_topology k tops) = {} \/ !i. i IN k ==> Q(tops i)`, REPEAT STRIP_TAC THEN REWRITE_TAC[TAUT `p \/ q <=> ~p ==> q`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`z:K->A`; `i:K`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SUBTOPOLOGY_CARTESIAN_PRODUCT] THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP (REWRITE_RULE[IMP_CONJ] PRODUCT_TOPOLOGY_HOMEOMORPHIC_COMPONENT) th) o lhand o snd)) THEN REWRITE_TAC[SUBTOPOLOGY_TOPSPACE] THEN DISCH_THEN MATCH_MP_TAC THEN X_GEN_TAC `j:K` THEN REPEAT DISCH_TAC THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM; o_THM]) THEN ASM_MESON_TAC[SET_RULE `a IN s ==> s INTER {a} = {a}`]);; let HOMEOMORPHIC_SPACE_PROD_TOPOLOGY = prove (`!(top1:A topology) (top1':B topology) (top2:C topology) (top2':D topology). top1 homeomorphic_space top1' /\ top2 homeomorphic_space top2' ==> prod_topology top1 top2 homeomorphic_space prod_topology top1' top2'`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (MATCH_MP (TAUT `(p <=> q \/ r) ==> (r ==> p)`) (SPEC_ALL HOMEOMORPHIC_MAPS_PROD))) THEN MESON_TAC[]);; let HOMEOMORPHIC_SPACE_PROD_TOPOLOGY_SWAP = prove (`!(top:A topology) (top':B topology). (prod_topology top top') homeomorphic_space (prod_topology top' top)`, REWRITE_TAC[homeomorphic_space] THEN MESON_TAC[HOMEOMORPHIC_MAPS_SWAP]);; let HOMEOMORPHIC_SPACE_SINGLETON_PRODUCT = prove (`!(tops:K->A topology) k. product_topology {k} tops homeomorphic_space (tops k)`, REPEAT GEN_TAC THEN REWRITE_TAC[HOMEOMORPHIC_SPACE] THEN EXISTS_TAC `\x:K->A. x k` THEN MATCH_MP_TAC BIJECTIVE_OPEN_IMP_HOMEOMORPHIC_MAP THEN SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_SING; OPEN_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; IMAGE_PROJECTION_CARTESIAN_PRODUCT; CARTESIAN_PRODUCT_EQ_EMPTY; IN_SING; UNWIND_THM2; o_THM] THEN CONJ_TAC THENL [MESON_TAC[]; REPEAT GEN_TAC] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP CARTESIAN_PRODUCT_EQ_MEMBERS_EQ) THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Embedding maps. *) (* ------------------------------------------------------------------------- *) let embedding_map = new_definition `embedding_map (top,top') (f:A->B) <=> homeomorphic_map (top,subtopology top' (IMAGE f (topspace top))) f`;; let EMBEDDING_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ embedding_map (top,top') f ==> embedding_map (top,top') g`, REPEAT GEN_TAC THEN REWRITE_TAC[embedding_map] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`)) THEN ASM_MESON_TAC[HOMEOMORPHIC_MAP_EQ]);; let EMBEDDING_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). embedding_map(top,top') f /\ embedding_map(top',top'') g ==> embedding_map(top,top'') (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[embedding_map] THEN DISCH_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_COMPOSE THEN EXISTS_TAC `subtopology top' (IMAGE (f:A->B) (topspace top))` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o SPECL [`IMAGE (f:A->B) (topspace top)`; `IMAGE (g:B->C) (IMAGE (f:A->B) (topspace top))`] o MATCH_MP (REWRITE_RULE[IMP_CONJ] HOMEOMORPHIC_MAP_SUBTOPOLOGIES) o CONJUNCT2) THEN FIRST_X_ASSUM(CONJUNCTS_THEN (MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_SURJECTIVE_MAP)) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY] THEN DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[IMAGE_o] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC EQ_IMP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let SURJECTIVE_EMBEDDING_MAP = prove (`!top top' f:A->B. embedding_map (top,top') f /\ IMAGE f (topspace top) = topspace top' <=> homeomorphic_map (top,top') f`, REWRITE_TAC[embedding_map; HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN MESON_TAC[SUBTOPOLOGY_TOPSPACE]);; let EMBEDDING_MAP_IN_SUBTOPOLOGY = prove (`!top top' s f:A->B. embedding_map (top,subtopology top' s) f <=> embedding_map (top,top') f /\ IMAGE f (topspace top) SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[embedding_map; SUBTOPOLOGY_SUBTOPOLOGY] THEN ASM_CASES_TAC `IMAGE (f:A->B) (topspace top) SUBSET s` THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN REWRITE_TAC[homeomorphic_map; quotient_map; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let INJECTIVE_OPEN_IMP_EMBEDDING_MAP = prove (`!top top' (f:A->B). continuous_map (top,top') f /\ open_map (top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> embedding_map (top,top') f`, REPEAT STRIP_TAC THEN REWRITE_TAC[embedding_map] THEN MATCH_MP_TAC BIJECTIVE_OPEN_IMP_HOMEOMORPHIC_MAP THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN ASM_SIMP_TAC[OPEN_MAP_INTO_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let INJECTIVE_CLOSED_IMP_EMBEDDING_MAP = prove (`!top top' (f:A->B). continuous_map (top,top') f /\ closed_map (top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> embedding_map (top,top') f`, REPEAT STRIP_TAC THEN REWRITE_TAC[embedding_map] THEN MATCH_MP_TAC BIJECTIVE_CLOSED_IMP_HOMEOMORPHIC_MAP THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN ASM_SIMP_TAC[CLOSED_MAP_INTO_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE = prove (`!top top' f:A->B. embedding_map (top,top') f ==> top homeomorphic_space (subtopology top' (IMAGE f (topspace top)))`, REPEAT GEN_TAC THEN REWRITE_TAC[embedding_map] THEN REWRITE_TAC[HOMEOMORPHIC_MAP_IMP_HOMEOMORPHIC_SPACE]);; let EMBEDDING_IMP_CONTINUOUS_MAP = prove (`!top top' (f:A->B). embedding_map(top,top') f ==> continuous_map(top,top') f`, MESON_TAC[embedding_map; HOMEOMORPHIC_IMP_CONTINUOUS_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]);; let EMBEDDING_IMP_INJECTIVE_MAP = prove (`!top top' (f:A->B). embedding_map(top,top') f ==> !x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)`, MESON_TAC[embedding_map; HOMEOMORPHIC_IMP_INJECTIVE_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]);; let EMBEDDING_IMP_CLOSED_MAP = prove (`!top top' (f:A->B). embedding_map(top,top') f /\ closed_in top' (IMAGE f (topspace top)) ==> closed_map(top,top') f`, REPEAT STRIP_TAC THEN REWRITE_TAC[closed_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [embedding_map]) THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_CLOSED_MAP) THEN REWRITE_TAC[closed_map] THEN DISCH_THEN(MP_TAC o SPEC `c:A->bool`) THEN ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY]);; let EMBEDDING_IMP_CLOSED_MAP_EQ = prove (`!top top' (f:A->B). embedding_map(top,top') f ==> (closed_map(top,top') f <=> closed_in top' (IMAGE f (topspace top)))`, MESON_TAC[EMBEDDING_IMP_CLOSED_MAP; closed_map; CLOSED_IN_TOPSPACE]);; let EMBEDDING_IMP_OPEN_MAP = prove (`!top top' (f:A->B). embedding_map(top,top') f /\ open_in top' (IMAGE f (topspace top)) ==> open_map(top,top') f`, REPEAT STRIP_TAC THEN REWRITE_TAC[open_map] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [embedding_map]) THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_OPEN_MAP) THEN REWRITE_TAC[open_map] THEN DISCH_THEN(MP_TAC o SPEC `u:A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY]);; let EMBEDDING_IMP_OPEN_MAP_EQ = prove (`!top top' (f:A->B). embedding_map(top,top') f ==> (open_map(top,top') f <=> open_in top' (IMAGE f (topspace top)))`, MESON_TAC[EMBEDDING_IMP_OPEN_MAP; open_map; OPEN_IN_TOPSPACE]);; let EMBEDDING_MAP_ON_EMPTY = prove (`!top top' (f:A->B). topspace top = {} ==> embedding_map(top,top') f`, SIMP_TAC[embedding_map; IMAGE_CLAUSES; HOMEOMORPHIC_MAP_MAPS; homeomorphic_maps; CONTINUOUS_MAP_ON_EMPTY; TOPSPACE_SUBTOPOLOGY; INTER_EMPTY; NOT_IN_EMPTY]);; let EMBEDDING_MAP_COMPONENT_INJECTION = prove (`!k (top:K->A topology) i. i IN k ==> embedding_map(top i,sum_topology k top) (\x. (i,x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC INJECTIVE_OPEN_IMP_EMBEDDING_MAP THEN ASM_SIMP_TAC[OPEN_MAP_COMPONENT_INJECTION; PAIR_EQ; CONTINUOUS_MAP_COMPONENT_INJECTION]);; let TOPOLOGICAL_PROPERTY_OF_SUM_COMPONENT = prove (`!P Q (tops:K->A topology) k. (!top s. P top /\ closed_in top s /\ open_in top s ==> P(subtopology top s)) /\ (!top top'. top homeomorphic_space top' ==> (P top <=> Q top')) ==> P(sum_topology k tops) ==> !i. i IN k ==> Q(tops i)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`sum_topology k (tops:K->A topology)`; `IMAGE (\x:A. (i:K),x) (topspace(tops i))`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[closed_map; RIGHT_IMP_FORALL_THM; IMP_IMP] CLOSED_MAP_COMPONENT_INJECTION) THEN ASM_REWRITE_TAC[CLOSED_IN_TOPSPACE]; MATCH_MP_TAC(REWRITE_RULE[open_map; RIGHT_IMP_FORALL_THM; IMP_IMP] OPEN_MAP_COMPONENT_INJECTION) THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE]]; MATCH_MP_TAC EQ_IMP THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN ASM_SIMP_TAC[EMBEDDING_MAP_COMPONENT_INJECTION]]);; (* ------------------------------------------------------------------------- *) (* Retraction and section maps (having 1-sided inverses). *) (* ------------------------------------------------------------------------- *) let retraction_maps = new_definition `retraction_maps (top,top') (f:A->B,g) <=> continuous_map(top,top') f /\ continuous_map(top',top) g /\ (!x. x IN topspace top' ==> f(g x) = x)`;; let section_map = new_definition `section_map (top,top') (f:A->B) <=> ?g. retraction_maps (top',top) (g,f)`;; let retraction_map = new_definition `retraction_map (top,top') (f:A->B) <=> ?g. retraction_maps (top,top') (f,g)`;; let RETRACTION_IMP_CONTINUOUS_MAP = prove (`!top top' (f:A->B). retraction_map (top,top') f ==> continuous_map(top,top') f`, REWRITE_TAC[retraction_map; retraction_maps] THEN MESON_TAC[]);; let SECTION_IMP_CONTINUOUS_MAP = prove (`!top top' (f:A->B). section_map (top,top') f ==> continuous_map(top,top') f`, REWRITE_TAC[section_map; retraction_maps] THEN MESON_TAC[]);; let RETRACTION_MAPS_EQ = prove (`!top top' f (f':A->B) g g'. (!x. x IN topspace top ==> f x = f' x) /\ (!x. x IN topspace top' ==> g x = g' x) /\ retraction_maps (top,top') (f,g) ==> retraction_maps (top,top') (f',g')`, REPEAT GEN_TAC THEN REWRITE_TAC[retraction_maps] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_EQ]; ALL_TAC] THEN REPEAT(FIRST_X_ASSUM (MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let SECTION_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ section_map (top,top') f ==> section_map (top,top') g`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[section_map] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[RETRACTION_MAPS_EQ]);; let RETRACTION_MAP_EQ = prove (`!top top' f g:A->B. (!x. x IN topspace top ==> f x = g x) /\ retraction_map (top,top') f ==> retraction_map (top,top') g`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[retraction_map] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[RETRACTION_MAPS_EQ]);; let HOMEOMORPHIC_IMP_RETRACTION_MAPS = prove (`!top top' (f:A->B) g. homeomorphic_maps(top,top') (f,g) ==> retraction_maps (top,top') (f,g)`, REWRITE_TAC[homeomorphic_maps; retraction_maps] THEN MESON_TAC[]);; let SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP = prove (`!top top' (f:A->B). section_map (top,top') f /\ retraction_map (top,top') f <=> homeomorphic_map (top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[section_map; retraction_map; HOMEOMORPHIC_MAP_MAPS] THEN REWRITE_TAC[retraction_maps; homeomorphic_maps] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `g:B->A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `h:B->A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `g:B->A` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_IMP_RETRACTION_MAP = prove (`!top top' (f:A->B). homeomorphic_map(top,top') f ==> retraction_map (top,top') f`, SIMP_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP]);; let HOMEOMORPHIC_IMP_SECTION_MAP = prove (`!top top' (f:A->B). homeomorphic_map(top,top') f ==> section_map (top,top') f`, SIMP_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP]);; let SECTION_IMP_EMBEDDING_MAP = prove (`!top top' (f:A->B). section_map(top,top') f ==> embedding_map(top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[section_map; embedding_map; HOMEOMORPHIC_MAP_MAPS] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:B->A` THEN REWRITE_TAC[retraction_maps; homeomorphic_maps] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IMP_CONJ_ALT] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE]);; let RETRACTION_IMP_QUOTIENT_MAP = prove (`!top top' (f:A->B). retraction_map(top,top') f ==> quotient_map(top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[retraction_map; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:B->A` THEN REWRITE_TAC[retraction_maps; quotient_map; continuous_map] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN EQ_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN v}`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let RETRACTION_MAPS_COMPOSE = prove (`!top1 top2 top3 (f:A->B) (g:B->C) f' g'. retraction_maps (top1,top2) (f,f') /\ retraction_maps (top2,top3) (g,g') ==> retraction_maps (top1,top3) (g o f,f' o g')`, REPEAT GEN_TAC THEN REWRITE_TAC[retraction_maps; o_THM; CONJ_ASSOC] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]; RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]]);; let RETRACTION_MAP_COMPOSE = prove (`!top1 top2 top3 (f:A->B) (g:B->C). retraction_map (top1,top2) f /\ retraction_map (top2,top3) g ==> retraction_map (top1,top3) (g o f)`, REWRITE_TAC[retraction_map] THEN MESON_TAC[RETRACTION_MAPS_COMPOSE]);; let SECTION_MAP_COMPOSE = prove (`!top1 top2 top3 (f:A->B) (g:B->C). section_map (top1,top2) f /\ section_map (top2,top3) g ==> section_map (top1,top3) (g o f)`, REWRITE_TAC[section_map] THEN MESON_TAC[RETRACTION_MAPS_COMPOSE]);; let SURJECTIVE_SECTION_EQ_HOMEOMORPHIC_MAP = prove (`!top top' (f:A->B). section_map(top,top') f /\ IMAGE f (topspace top) = topspace top' <=> homeomorphic_map (top,top') f`, MESON_TAC[SURJECTIVE_EMBEDDING_MAP; SECTION_IMP_EMBEDDING_MAP; SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP]);; let SURJECTIVE_RETRACTION_OR_SECTION_MAP = prove (`!top top' (f:A->B). IMAGE f (topspace top) = topspace top' ==> (retraction_map(top,top') f \/ section_map(top,top') f <=> retraction_map(top,top') f)`, MESON_TAC[SURJECTIVE_EMBEDDING_MAP; SECTION_IMP_EMBEDDING_MAP; SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP]);; let RETRACTION_IMP_SURJECTIVE_MAP = prove (`!top top' (f:A->B). retraction_map(top,top') f ==> IMAGE f (topspace top) = topspace top'`, REWRITE_TAC[retraction_map; retraction_maps; continuous_map] THEN SET_TAC[]);; let SECTION_IMP_INJECTIVE_MAP = prove (`!top top' (f:A->B). section_map(top,top') f ==> (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y))`, REWRITE_TAC[section_map; retraction_maps] THEN SET_TAC[]);; let RETRACTION_MAPS_TO_RETRACT_MAPS = prove (`!top top' (r:A->B) s. retraction_maps(top,top') (r,s) ==> retraction_maps (top,subtopology top (IMAGE s (topspace top'))) (s o r,I)`, REWRITE_TAC[retraction_maps] THEN SIMP_TAC[I_DEF; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID] THEN SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY_SUBSET; o_THM; CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE; IMAGE_o; IMAGE_SUBSET] THEN SIMP_TAC[FORALL_IN_IMAGE] THEN MESON_TAC[CONTINUOUS_MAP_COMPOSE]);; let EMBEDDING_EQ_SECTION_MAP = prove (`!top top' (f:A->B). embedding_map(top,top') f <=> section_map(top,subtopology top' (IMAGE f (topspace top))) f`, REWRITE_TAC[embedding_map; section_map; HOMEOMORPHIC_MAP_MAPS] THEN REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_maps; retraction_maps] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let RETRACTION_MAP_INTO_SUBTOPOLOGY = prove (`!top top' t (r:A->B). retraction_map(top,top') r /\ IMAGE r (topspace top) SUBSET t ==> retraction_map(top,subtopology top' t) r`, REPEAT GEN_TAC THEN REWRITE_TAC[retraction_map; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r':B->A` THEN SIMP_TAC[retraction_maps; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; IN_INTER]);; let RETRACTION_MAPS_SUBTOPOLOGIES = prove (`!top top' s t (r:A->B) r'. retraction_maps(top,top') (r,r') /\ IMAGE r s SUBSET t /\ IMAGE r' t SUBSET s ==> retraction_maps(subtopology top s,subtopology top' t) (r,r')`, REWRITE_TAC[retraction_maps] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN REWRITE_TAC[continuous_map] THEN SET_TAC[]);; let RETRACTION_MAP_FST = prove (`!(top1:A topology) (top2:B topology). retraction_map (prod_topology top1 top2,top1) FST <=> topspace top2 = {} ==> topspace top1 = {}`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top2:B->bool = {}` THEN ASM_REWRITE_TAC[retraction_map; retraction_maps] THENL [EQ_TAC THENL [DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE o CONJUNCT1 o CONJUNCT2)) THEN ASM_REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; CROSS_EMPTY] THEN SET_TAC[]; DISCH_TAC]; FIRST_X_ASSUM(X_CHOOSE_TAC `b:B` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY])] THEN EXISTS_TAC `(\x. x,b):A->A#B` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_PAIRED] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]);; let RETRACTION_MAP_SND = prove (`!(top1:A topology) (top2:B topology). retraction_map (prod_topology top1 top2,top2) SND <=> topspace top1 = {} ==> topspace top2 = {}`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top1:A->bool = {}` THEN ASM_REWRITE_TAC[retraction_map; retraction_maps] THENL [EQ_TAC THENL [DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE o CONJUNCT1 o CONJUNCT2)) THEN ASM_REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; CROSS_EMPTY] THEN SET_TAC[]; DISCH_TAC]; FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY])] THEN EXISTS_TAC `(\y. a,y):B->A#B` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_SND; CONTINUOUS_MAP_PAIRED] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]);; let RETRACTION_MAP_PRODUCT_PROJECTION = prove (`!k (tops:K->A topology) i. i IN k ==> (retraction_map (product_topology k tops,tops i) (\x. x i) <=> topspace (product_topology k tops) = {} ==> topspace (tops i) = {})`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP RETRACTION_IMP_SURJECTIVE_MAP) THEN SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `topspace (product_topology k (tops:K->A topology)) = {}` THEN ASM_REWRITE_TAC[] THENL [DISCH_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:K->A`)] THEN REWRITE_TAC[retraction_map; retraction_maps] THEN EXISTS_TAC `\x j. if j = i then x else (z:K->A) j` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; CONTINUOUS_MAP_ON_EMPTY] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN CONJ_TAC THENL [ALL_TAC; X_GEN_TAC `j:K` THEN DISCH_TAC THEN ASM_CASES_TAC `j:K = i` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [TOPSPACE_PRODUCT_TOPOLOGY]) THEN REWRITE_TAC[cartesian_product; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM; o_THM] THEN ASM_MESON_TAC[]);; let DISCRETE_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map (top,top') r /\ discrete_space top ==> discrete_space top'`, MESON_TAC[RETRACTION_IMP_QUOTIENT_MAP; DISCRETE_SPACE_QUOTIENT_MAP_IMAGE]);; let HOMEOMORPHIC_DISCRETE_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (discrete_space top <=> discrete_space top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN REWRITE_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP] THEN MESON_TAC[DISCRETE_SPACE_RETRACTION_MAP_IMAGE]);; let HOMEOMORPHIC_DISCRETE_SPACES = prove (`!(top:A topology) (top':B topology). discrete_space top /\ discrete_space top' ==> (top homeomorphic_space top' <=> topspace top =_c topspace top')`, REPEAT STRIP_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps] THEN ASM_SIMP_TAC[REWRITE_RULE[GSYM FORALL_DISCRETE_SPACES] CONTINUOUS_MAP_FROM_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* When a subset is a retract of a topological space. *) (* ------------------------------------------------------------------------- *) parse_as_infix("retract_of_space",(12,"right"));; let retract_of_space = new_definition `(s:A->bool) retract_of_space top <=> s SUBSET topspace top /\ ?r. continuous_map(top,subtopology top s) r /\ !x. x IN s ==> r x = x`;; let RETRACT_OF_SPACE_RETRACTION_MAPS = prove (`!top s:A->bool. s retract_of_space top <=> s SUBSET topspace top /\ ?r. retraction_maps (top,subtopology top s) (r,I)`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of_space; retraction_maps] THEN SIMP_TAC[I_DEF; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let RETRACT_OF_SPACE_SECTION_MAP = prove (`!top s:A->bool. s retract_of_space top <=> s SUBSET topspace top /\ section_map (subtopology top s,top) (\x. x)`, REWRITE_TAC[retract_of_space; section_map; retraction_maps] THEN SIMP_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET; IN_INTER] THEN MESON_TAC[]);; let RETRACT_OF_SPACE_IMP_SUBSET = prove (`!top s:A->bool. s retract_of_space top ==> s SUBSET topspace top`, SIMP_TAC[retract_of_space]);; let RETRACT_OF_SPACE_TOPSPACE = prove (`!top:A topology. topspace top retract_of_space top`, GEN_TAC THEN REWRITE_TAC[retract_of_space; SUBTOPOLOGY_TOPSPACE; SUBSET_REFL] THEN EXISTS_TAC `\x:A. x` THEN REWRITE_TAC[CONTINUOUS_MAP_ID]);; let RETRACT_OF_SPACE_EMPTY = prove (`!top:A topology. {} retract_of_space top <=> topspace top = {}`, GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[RETRACT_OF_SPACE_TOPSPACE]] THEN REWRITE_TAC[retract_of_space; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[EMPTY_SUBSET; SUBSET_EMPTY; IMAGE_EQ_EMPTY] THEN SET_TAC[]);; let RETRACT_OF_SPACE_IMP_NONEMPTY = prove (`!top s:A->bool. s retract_of_space top /\ ~(topspace top = {}) ==> ~(s = {})`, MESON_TAC[RETRACT_OF_SPACE_EMPTY]);; let RETRACT_OF_SPACE_SING = prove (`!top a:A. {a} retract_of_space top <=> a IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[GSYM SING_SUBSET; RETRACT_OF_SPACE_IMP_SUBSET] THEN SIMP_TAC[SING_SUBSET; retract_of_space; IN_SING] THEN DISCH_TAC THEN EXISTS_TAC `(\x. a):A->A` THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; CONTINUOUS_MAP_CONST] THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let RETRACT_OF_SPACE_TRANS = prove (`!top s t:A->bool. s retract_of_space top /\ t retract_of_space (subtopology top s) ==> t retract_of_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[RETRACT_OF_SPACE_RETRACTION_MAPS] THEN REWRITE_TAC[SUBSET_INTER; TOPSPACE_SUBTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`] THEN X_GEN_TAC `r2:A->A` THEN DISCH_TAC THEN X_GEN_TAC `r1:A->A` THEN DISCH_TAC THEN EXISTS_TAC `(r2:A->A) o (r1:A->A)` THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM I_O_ID] THEN MATCH_MP_TAC RETRACTION_MAPS_COMPOSE THEN ASM_MESON_TAC[]);; let RETRACT_OF_SPACE_SUBTOPOLOGY = prove (`!top s u:A->bool. s retract_of_space top /\ s SUBSET u ==> s retract_of_space (subtopology top u)`, REPEAT GEN_TAC THEN SIMP_TAC[retract_of_space; SUBTOPOLOGY_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN MESON_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY]);; let RETRACT_OF_SPACE_CLOPEN = prove (`!top s:A->bool. open_in top s /\ closed_in top s /\ (s = {} ==> topspace top = {}) ==> s retract_of_space top`, REPEAT GEN_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_SIMP_TAC[RETRACT_OF_SPACE_EMPTY] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[retract_of_space] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `\x:A. if x IN s then x else a` THEN SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_MAP_CASES THEN ASM_SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_CONST; CONTINUOUS_MAP_ID; IN_GSPEC] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[NOT_IN_EMPTY] `s = {} ==> !x. x IN s ==> P x`) THEN ASM_SIMP_TAC[FRONTIER_OF_EQ_EMPTY]);; let RETRACT_OF_SPACE_DISJOINT_UNION = prove (`!top s t:A->bool. open_in top s /\ open_in top t /\ DISJOINT s t /\ s UNION t = topspace top /\ (s = {} ==> topspace top = {}) ==> s retract_of_space top`, REPEAT STRIP_TAC THEN MATCH_MP_TAC RETRACT_OF_SPACE_CLOPEN THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[closed_in] THEN ASM_CASES_TAC `topspace top DIFF s:A->bool = t` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let RETRACTION_MAPS_SECTION_IMAGE = prove (`!top top' (r:A->B) s. retraction_maps(top,top') (r,s) ==> IMAGE s (topspace top') retract_of_space top /\ subtopology top (IMAGE s (topspace top')) homeomorphic_space top'`, REWRITE_TAC[RETRACT_OF_SPACE_SECTION_MAP] THEN REPEAT STRIP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[retraction_maps; continuous_map]) THEN ASM SET_TAC[]; REWRITE_TAC[section_map] THEN EXISTS_TAC `(s:B->A) o (r:A->B)` THEN ASM_SIMP_TAC[GSYM I_DEF; RETRACTION_MAPS_TO_RETRACT_MAPS]; ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_SPACE] THEN EXISTS_TAC `s:B->A` THEN REWRITE_TAC[GSYM embedding_map] THEN ASM_MESON_TAC[SECTION_IMP_EMBEDDING_MAP; section_map]]);; let HEREDITARY_IMP_RETRACTIVE_PROPERTY = prove (`!(P:A topology->bool) (Q:B topology->bool). (!top s. P top ==> P(subtopology top s)) /\ (!top top'. top homeomorphic_space top' ==> (P top <=> Q top')) ==> !top top' r. retraction_map(top,top') r /\ P top ==> Q top'`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retraction_map]) THEN DISCH_THEN(X_CHOOSE_THEN `s:B->A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`subtopology top (IMAGE (s:B->A) (topspace top'))`; `top':B topology`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[RETRACTION_MAPS_SECTION_IMAGE]; ALL_TAC] THEN ASM_SIMP_TAC[]);; (* ------------------------------------------------------------------------- *) (* Compact sets and compact topological spaces. *) (* ------------------------------------------------------------------------- *) let compact_in = new_definition `!top s:A->bool. compact_in top s <=> s SUBSET topspace top /\ (!U. (!u. u IN U ==> open_in top u) /\ s SUBSET UNIONS U ==> (?V. FINITE V /\ V SUBSET U /\ s SUBSET UNIONS V))`;; let compact_space = new_definition `compact_space(top:A topology) <=> compact_in top (topspace top)`;; let COMPACT_SPACE_ALT = prove (`!top:A topology. compact_space top <=> !U. (!u. u IN U ==> open_in top u) /\ topspace top SUBSET UNIONS U ==> ?V. FINITE V /\ V SUBSET U /\ topspace top SUBSET UNIONS V`, REWRITE_TAC[compact_space; compact_in; SUBSET_REFL]);; let COMPACT_SPACE = prove (`!top:A topology. compact_space top <=> !U. (!u. u IN U ==> open_in top u) /\ UNIONS U = topspace top ==> ?V. FINITE V /\ V SUBSET U /\ UNIONS V = topspace top`, GEN_TAC THEN REWRITE_TAC[COMPACT_SPACE_ALT] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET] THEN AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[SUBSET; OPEN_IN_SUBSET]);; let COMPACT_IN_ABSOLUTE = prove (`!top s:A->bool. compact_in (subtopology top s) s <=> compact_in top s`, REWRITE_TAC[compact_in] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; SUBSET_REFL] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; SET_RULE `(!x. x IN s ==> ?y. P y /\ x = f y) <=> s SUBSET IMAGE f {y | P y}`] THEN REWRITE_TAC[IMP_CONJ; FORALL_SUBSET_IMAGE] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; GSYM INTER_UNIONS] THEN REWRITE_TAC[SUBSET_INTER; SUBSET_REFL] THEN SET_TAC[]);; let COMPACT_IN_SUBSPACE = prove (`!top s:A->bool. compact_in top s <=> s SUBSET topspace top /\ compact_space (subtopology top s)`, REWRITE_TAC[compact_space; COMPACT_IN_ABSOLUTE; TOPSPACE_SUBTOPOLOGY] THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s`] THEN REWRITE_TAC[COMPACT_IN_ABSOLUTE] THEN REWRITE_TAC[TAUT `(p <=> ~(q ==> ~p)) <=> (p ==> q)`] THEN SIMP_TAC[compact_in]);; let COMPACT_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. compact_in top s ==> compact_space (subtopology top s)`, SIMP_TAC[COMPACT_IN_SUBSPACE]);; let COMPACT_IN_SUBTOPOLOGY = prove (`!top s t:A->bool. compact_in (subtopology top s) t <=> compact_in top t /\ t SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[COMPACT_IN_SUBSPACE; SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM_CASES_TAC `(t:A->bool) SUBSET s` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`]);; let COMPACT_IN_SUBSET_TOPSPACE = prove (`!top s:A->bool. compact_in top s ==> s SUBSET topspace top`, SIMP_TAC[compact_in]);; let COMPACT_IN_CONTRACTIVE = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) ==> !s. compact_in top' s ==> compact_in top s`, REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[compact_in] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_FORALL THEN ASM SET_TAC[]]);; let COMPACT_SPACE_CONTRACTIVE = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) ==> compact_space top' ==> compact_space top`, SIMP_TAC[compact_space] THEN MESON_TAC[COMPACT_IN_CONTRACTIVE]);; let FINITE_IMP_COMPACT_IN = prove (`!top s:A->bool. s SUBSET topspace top /\ FINITE s ==> compact_in top s`, SIMP_TAC[compact_in] THEN INTRO_TAC "!top s; sub fin; !U; U s" THEN EXISTS_TAC `IMAGE (\x:A. @u. u IN U /\ x IN u) s` THEN HYP SIMP_TAC "fin" [FINITE_IMAGE] THEN ASM SET_TAC []);; let COMPACT_IN_EMPTY = prove (`!top:A topology. compact_in top {}`, GEN_TAC THEN MATCH_MP_TAC FINITE_IMP_COMPACT_IN THEN REWRITE_TAC[FINITE_EMPTY; EMPTY_SUBSET]);; let COMPACT_SPACE_TOPSPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> compact_space top`, MESON_TAC[SUBTOPOLOGY_TOPSPACE; COMPACT_IN_EMPTY; compact_space]);; let FINITE_IMP_COMPACT_IN_EQ = prove (`!top s:A->bool. FINITE s ==> (compact_in top s <=> s SUBSET topspace top)`, MESON_TAC[COMPACT_IN_SUBSET_TOPSPACE; FINITE_IMP_COMPACT_IN]);; let COMPACT_IN_SING = prove (`!top a:A. compact_in top {a} <=> a IN topspace top`, SIMP_TAC[FINITE_IMP_COMPACT_IN_EQ; FINITE_SING; SING_SUBSET]);; let CLOSED_COMPACT_IN = prove (`!top k c:A->bool. compact_in top k /\ c SUBSET k /\ closed_in top c ==> compact_in top c`, INTRO_TAC "! *; cpt sub cl" THEN REWRITE_TAC[compact_in] THEN CONJ_TAC THENL [HYP SET_TAC "sub cpt" [compact_in]; INTRO_TAC "!U; U c"] THEN HYP_TAC "cpt: ksub cpt" (REWRITE_RULE[compact_in]) THEN REMOVE_THEN "cpt" (MP_TAC o SPEC `(topspace top DIFF c:A->bool) INSERT U`) THEN ANTS_TAC THENL [CONJ_TAC THENL [CUT_TAC `open_in top (topspace top DIFF c:A->bool)` THENL [HYP SET_TAC "U" [IN_DIFF]; HYP SIMP_TAC "cl" [OPEN_IN_DIFF; OPEN_IN_TOPSPACE]]; HYP_TAC "cl: c' cl" (REWRITE_RULE[closed_in]) THEN REWRITE_TAC[SUBSET; IN_INSERT; IN_DIFF; IN_UNIONS] THEN INTRO_TAC "!x; x" THEN ASM_CASES_TAC `x:A IN c` THEN POP_ASSUM (LABEL_TAC "x'") THENL [HYP SET_TAC "c x'" []; EXISTS_TAC `topspace top DIFF c:A->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC []]]; INTRO_TAC "@V. fin v k" THEN EXISTS_TAC `V DELETE (topspace top DIFF c:A->bool)` THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN CONJ_TAC THENL [ASM SET_TAC []; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_DELETE] THEN ASM SET_TAC []]);; let CLOSED_IN_COMPACT_SPACE = prove (`!top s:A->bool. compact_space top /\ closed_in top s ==> compact_in top s`, REWRITE_TAC[compact_space] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_COMPACT_IN THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_MESON_TAC[CLOSED_IN_SUBSET]);; let COMPACT_INTER_CLOSED_IN = prove (`!top s t:A->bool. compact_in top s /\ closed_in top t ==> compact_in top (s INTER t)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `compact_in (subtopology top s) (s INTER t:A->bool)` MP_TAC THENL [MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN CONJ_TAC THENL [ASM_MESON_TAC[COMPACT_IN_SUBSPACE]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED_IN THEN ASM_REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY_REFL] THEN ASM_MESON_TAC[compact_in]; REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; INTER_SUBSET]]);; let CLOSED_INTER_COMPACT_IN = prove (`!top s t:A->bool. closed_in top s /\ compact_in top t ==> compact_in top (s INTER t)`, ONCE_REWRITE_TAC[INTER_COMM] THEN SIMP_TAC[COMPACT_INTER_CLOSED_IN]);; let COMPACT_IN_UNION = prove (`!top s t:A->bool. compact_in top s /\ compact_in top t ==> compact_in top (s UNION t)`, REPEAT GEN_TAC THEN SIMP_TAC[compact_in; UNION_SUBSET] THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `u:(A->bool)->bool` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `v:(A->bool)->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `w:(A->bool)->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `v UNION w:(A->bool)->bool` THEN ASM_REWRITE_TAC[FINITE_UNION; UNIONS_UNION] THEN ASM SET_TAC[]);; let COMPACT_IN_UNIONS = prove (`!top f:(A->bool)->bool. FINITE f /\ (!s. s IN f ==> compact_in top s) ==> compact_in top (UNIONS f)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; COMPACT_IN_EMPTY; IN_INSERT; UNIONS_INSERT] THEN MESON_TAC[COMPACT_IN_UNION]);; let COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT = prove (`!top k s:A->bool. compact_in (subtopology top s) k ==> compact_in top k`, REWRITE_TAC[compact_in; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN INTRO_TAC "!top k s; (k sub) cpt" THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!U; open cover" THEN HYP_TAC "cpt: +" (SPEC `{u INTER s | u | u:A->bool IN U}`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[GSYM INTER_UNIONS; SUBSET_INTER] THEN REWRITE_TAC[IN_ELIM_THM; OPEN_IN_SUBTOPOLOGY] THEN INTRO_TAC "!u; @v. v ueq" THEN REMOVE_THEN "ueq" SUBST_VAR_TAC THEN EXISTS_TAC `v:A->bool` THEN REMOVE_THEN "v" (HYP_TAC "open" o C MATCH_MP) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN INTRO_TAC "@V. fin V k" THEN EXISTS_TAC `IMAGE (\v:A->bool. if v IN V then @u. u IN U /\ v = u INTER s else {}) V` THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_IMAGE] THEN INTRO_TAC "![u]; @v. ueq v" THEN REMOVE_THEN "ueq" SUBST_VAR_TAC THEN ASM_REWRITE_TAC[] THEN HYP_TAC "V" (REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN REMOVE_THEN "v" (HYP_TAC "V: @u. u veq" o C MATCH_MP) THEN REMOVE_THEN "veq" SUBST_VAR_TAC THEN HYP MESON_TAC "u" []; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_IMAGE] THEN INTRO_TAC "!x; x" THEN HYP_TAC "k" (REWRITE_RULE[SUBSET; IN_UNIONS]) THEN USE_THEN "x" (HYP_TAC "k: @v. v xINv" o C MATCH_MP) THEN LABEL_ABBREV_TAC `u:A->bool = @u. u IN U /\ v = u INTER s` THEN CLAIM_TAC "u' veq" `u:A->bool IN U /\ v = u INTER s` THENL [REMOVE_THEN "u" SUBST_VAR_TAC THEN CUT_TAC `?u:A->bool. u IN U /\ v = u INTER s` THENL [MESON_TAC[]; ALL_TAC] THEN HYP_TAC "V" (REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN USE_THEN "v" (HYP_TAC "V" o C MATCH_MP) THEN REMOVE_THEN "V" MATCH_ACCEPT_TAC; EXISTS_TAC `u:A->bool` THEN CONJ_TAC THENL [EXISTS_TAC `v:A->bool` THEN ASM_REWRITE_TAC[]; HYP SET_TAC "veq xINv" []]]);; let COMPACT_IMP_COMPACT_IN_SUBTOPOLOGY = prove (`!top k s:A->bool. compact_in top k /\ k SUBSET s ==> compact_in (subtopology top s) k`, INTRO_TAC "!top k s; cpt sub" THEN ASM_SIMP_TAC[compact_in; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; COMPACT_IN_SUBSET_TOPSPACE] THEN INTRO_TAC "!U; open cover" THEN HYP_TAC "cpt: sub' cpt" (REWRITE_RULE[compact_in]) THEN (HYP_TAC "cpt: +" o SPEC) `{v:A->bool | v | open_in top v /\ ?u. u IN U /\ u = v INTER s}` THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM] THEN TRANS_TAC SUBSET_TRANS `UNIONS U:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC UNIONS_MONO THEN INTRO_TAC "![u]; u" THEN USE_THEN "u" (HYP_TAC "open" o C MATCH_MP) THEN HYP_TAC "open: @v. v ueq" (REWRITE_RULE[OPEN_IN_SUBTOPOLOGY]) THEN EXISTS_TAC `v:A->bool` THEN REMOVE_THEN "ueq" SUBST_VAR_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [EXISTS_TAC `v INTER s:A->bool` THEN ASM_REWRITE_TAC[]; SET_TAC[]]; ALL_TAC] THEN INTRO_TAC "@V. fin open cover" THEN EXISTS_TAC `{v INTER s | v | v:A->bool IN V}` THEN CONJ_TAC THENL [(SUBST1_TAC o SET_RULE) `{v INTER s | v | v:A->bool IN V} = IMAGE (\v. v INTER s) V` THEN ASM_SIMP_TAC[FINITE_IMAGE]; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM INTER_UNIONS; SUBSET_INTER] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN INTRO_TAC "![u]; @v. v ueq" THEN REMOVE_THEN "ueq" SUBST_VAR_TAC THEN HYP_TAC "open" (REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN REMOVE_THEN "v" (HYP_TAC "open: v @u. u ueq" o C MATCH_MP) THEN REMOVE_THEN "ueq" SUBST_VAR_TAC THEN ASM_REWRITE_TAC[]);; let CLOSED_IN_COMPACT_SUBTOPOLOGY = prove (`!top k s. compact_in top k /\ closed_in(subtopology top k) s ==> compact_in top s`, MESON_TAC[COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT; CLOSED_IN_COMPACT_SPACE; COMPACT_SPACE_SUBTOPOLOGY]);; let COMPACT_SPACE_FIP = prove (`!top:A topology. compact_space top <=> !f. (!c. c IN f ==> closed_in top c) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(INTERS f' = {})) ==> ~(INTERS f = {})`, GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THENL [ASM_SIMP_TAC[compact_space; CLOSED_IN_TOPSPACE_EMPTY] THEN REWRITE_TAC[COMPACT_IN_EMPTY; SET_RULE `(!x. x IN s ==> x = a) <=> s = {} \/ s = {a}`] THEN X_GEN_TAC `f:(A->bool)->bool` THEN ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; UNIV_NOT_EMPTY] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `f:(A->bool)->bool`)) THEN ASM_REWRITE_TAC[INTERS_1; FINITE_SING; SUBSET_REFL]; ALL_TAC] THEN REWRITE_TAC[COMPACT_SPACE_ALT] THEN EQ_TAC THEN INTRO_TAC "0" THEN X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN REMOVE_THEN "0" (MP_TAC o SPEC `IMAGE (\s:A->bool. topspace top DIFF s) U`) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; CLOSED_IN_DIFF; OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE] THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN GEN_REWRITE_TAC LAND_CONV [GSYM CONTRAPOS_THM] THENL [REWRITE_TAC[GSYM SIMPLE_IMAGE; GSYM DIFF_INTERS] THEN ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `V:(A->bool)->bool` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `V:(A->bool)->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; UNIV_NOT_EMPTY] THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `V:(A->bool)->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `~(u = {}) /\ s SUBSET u ==> ~(s = {}) ==> ~(u SUBSET u DIFF s)`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INTERS_SUBSET THEN ASM_MESON_TAC[SUBSET; CLOSED_IN_SUBSET]; ASM_CASES_TAC `U:(A->bool)->bool = {}` THENL [ASM_MESON_TAC[UNIONS_0; SUBSET_EMPTY]; ALL_TAC] THEN UNDISCH_TAC `(topspace top:A->bool) SUBSET UNIONS U` THEN REWRITE_TAC[UNIONS_INTERS] THEN ONCE_REWRITE_TAC[SET_RULE `u SUBSET UNIV DIFF t <=> u SUBSET u DIFF u INTER u INTER t`] THEN ONCE_REWRITE_TAC[GSYM INTERS_INSERT] THEN REWRITE_TAC[INTER_INTERS; NOT_INSERT_EMPTY] THEN REWRITE_TAC[SIMPLE_IMAGE; INTERS_INSERT; IMAGE_CLAUSES] THEN REWRITE_TAC[SET_RULE `u DIFF (u INTER u) INTER t = u DIFF t`] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN REWRITE_TAC[SET_RULE `u INTER (UNIV DIFF s) = u DIFF s`] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `u SUBSET u DIFF s ==> u = {} \/ (s SUBSET u ==> s = {})`)) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC INTERS_SUBSET THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN SET_TAC[]; DISCH_TAC THEN ASM_REWRITE_TAC[NOT_FORALL_THM]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `V:(A->bool)->bool` THEN SIMP_TAC[NOT_IMP; DIFF_EMPTY; SUBSET_REFL]]);; let COMPACT_IN_FIP = prove (`!top s:A->bool. compact_in top s <=> s SUBSET topspace top /\ !f. (!c. c IN f ==> closed_in top c) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(s INTER INTERS f' = {})) ==> ~(s INTER INTERS f = {})`, REPEAT GEN_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_REWRITE_TAC[COMPACT_IN_EMPTY; INTER_EMPTY; EMPTY_SUBSET] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `{}:(A->bool)->bool` o CONJUNCT2) THEN REWRITE_TAC[FINITE_EMPTY; EMPTY_SUBSET]; ALL_TAC] THEN REWRITE_TAC[COMPACT_IN_SUBSPACE; COMPACT_SPACE_FIP] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY_ALT; GSYM SUBSET; IMP_CONJ] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN REWRITE_TAC[IMP_IMP; FORALL_FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[INTER_INTERS; GSYM SIMPLE_IMAGE] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `f:(A->bool)->bool` THEN ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN ASM_SIMP_TAC[SUBSET_EMPTY] THENL [REWRITE_TAC[SET_RULE `{f x | x IN {}} = {}`; INTERS_0; UNIV_NOT_EMPTY] THEN DISCH_THEN(MATCH_MP_TAC o CONJUNCT2) THEN MESON_TAC[FINITE_EMPTY]; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_CASES_TAC `!c:A->bool. c IN f ==> closed_in top c` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `INTERS {s INTER t:A->bool | t IN f} = {}` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `g:(A->bool)->bool` THEN ASM_CASES_TAC `g:(A->bool)->bool = {}` THEN ASM_SIMP_TAC[SET_RULE `{f x | x IN {}} = {}`; INTERS_0; UNIV_NOT_EMPTY]]);; let COMPACT_SPACE_IMP_NEST = prove (`!top c:num->A->bool. compact_space top /\ (!n. closed_in top (c n)) /\ (!n. ~(c n = {})) /\ (!m n. m <= n ==> c n SUBSET c m) ==> ~(INTERS {c n | n IN (:num)} = {})`, REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_SPACE_FIP]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (\n. INTERS {(c:num->A->bool) m | m <= n}) (:num)`) THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE; SUBSET_UNIV] THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN GEN_TAC THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC(SET_RULE `(?x. P x) ==> ?x. x IN {f a | P a}`) THEN MESON_TAC[LE_0]; X_GEN_TAC `k:num->bool` THEN DISCH_THEN(MP_TAC o ISPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `!t. ~(t = {}) /\ t SUBSET s ==> ~(s = {})`) THEN EXISTS_TAC `(c:num->A->bool) n` THEN ASM_SIMP_TAC[SUBSET_INTERS; FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN ASM SET_TAC[]]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[INTERS_GSPEC; INTERS_IMAGE; IN_UNIV; IN_ELIM_THM] THEN MESON_TAC[LE_REFL]]);; let COMPACT_IN_DISCRETE_TOPOLOGY = prove (`!u s:A->bool. compact_in (discrete_topology u) s <=> s SUBSET u /\ FINITE s`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FINITE_IMP_COMPACT_IN; TOPSPACE_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[compact_in; TOPSPACE_DISCRETE_TOPOLOGY] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (\x:A. {x}) u`) THEN REWRITE_TAC[FORALL_IN_IMAGE; OPEN_IN_DISCRETE_TOPOLOGY; SING_SUBSET] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN ASM_REWRITE_TAC[UNIONS_IMAGE; SET_RULE `(?x. x IN u /\ y IN {x}) <=> y IN u`; SET_RULE `{x | x IN s} = s`] THEN MESON_TAC[FINITE_SUBSET]);; let COMPACT_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. compact_space(discrete_topology u) <=> FINITE u`, REWRITE_TAC[compact_space; COMPACT_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; SUBSET_REFL]);; let COMPACT_SPACE_IMP_BOLZANO_WEIERSTRASS = prove (`!top s:A->bool. compact_space top /\ INFINITE s /\ s SUBSET topspace top ==> ~(top derived_set_of s = {})`, REPEAT STRIP_TAC THEN UNDISCH_TAC `INFINITE(s:A->bool)` THEN REWRITE_TAC[INFINITE] THEN SUBGOAL_THEN `compact_in top (s:A->bool)` MP_TAC THENL [MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[CLOSED_IN_CONTAINS_DERIVED_SET; NOT_IN_EMPTY] THEN ASM SET_TAC[]; ASM_SIMP_TAC[COMPACT_IN_SUBSPACE; SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY; INTER_EMPTY; COMPACT_SPACE_DISCRETE_TOPOLOGY]]);; let COMPACT_IN_IMP_BOLZANO_WEIERSTRASS = prove (`!top s t:A->bool. compact_in top s /\ INFINITE t /\ t SUBSET s ==> ~(s INTER top derived_set_of t = {})`, REWRITE_TAC[COMPACT_IN_SUBSPACE] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (s:A->bool)`; `t:A->bool`] COMPACT_SPACE_IMP_BOLZANO_WEIERSTRASS) THEN ASM_REWRITE_TAC[DERIVED_SET_OF_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);; let COMPACT_CLOSURE_OF_IMP_BOLZANO_WEIERSTRASS = prove (`!top s t:A->bool. compact_in top (top closure_of s) /\ INFINITE t /\ t SUBSET s /\ t SUBSET topspace top ==> ~(top derived_set_of t = {})`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `t:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] COMPACT_IN_IMP_BOLZANO_WEIERSTRASS)) THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN TRANS_TAC SUBSET_TRANS `top closure_of t:A->bool` THEN ASM_SIMP_TAC[CLOSURE_OF_MONO; CLOSURE_OF_SUBSET]);; let DISCRETE_COMPACT_IN_EQ_FINITE = prove (`!top s:A->bool. s INTER top derived_set_of s = {} ==> (compact_in top s <=> s SUBSET topspace top /\ FINITE s)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[FINITE_IMP_COMPACT_IN]] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[compact_in]] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[GSYM INFINITE] THEN ASM_MESON_TAC[COMPACT_IN_IMP_BOLZANO_WEIERSTRASS; SUBSET_REFL]);; let DISCRETE_COMPACT_SPACE_EQ_FINITE = prove (`!top:A topology. top derived_set_of (topspace top) = {} ==> (compact_space top <=> FINITE(topspace top))`, SIMP_TAC[compact_space; DISCRETE_COMPACT_IN_EQ_FINITE; INTER_EMPTY] THEN REWRITE_TAC[SUBSET_REFL]);; let IMAGE_COMPACT_IN = prove (`!top top' (f:A->B) s. compact_in top s /\ continuous_map (top,top') f ==> compact_in top' (IMAGE f s)`, INTRO_TAC "!top top' f s; cpt cont" THEN REWRITE_TAC[compact_in] THEN CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `IMAGE (f:A->B) (topspace top)` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE; IMAGE_SUBSET; COMPACT_IN_SUBSET_TOPSPACE]; INTRO_TAC "!U; U img"] THEN HYP_TAC "cpt : sub cpt" (REWRITE_RULE[compact_in]) THEN REMOVE_THEN "cpt" (MP_TAC o SPEC `{{x | x | x IN topspace top /\ (f:A->B) x IN u} | u | u IN U}`) THEN ANTS_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIONS] THEN INTRO_TAC "{![w]; @v. v eq & !x; x}" THENL [REMOVE_THEN "eq" SUBST1_TAC THEN HYP_TAC "cont : wd cont" (REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; REMOVE_THEN "img" (MP_TAC o SPEC `f (x:A):B` o REWRITE_RULE[SUBSET]) THEN ANTS_TAC THENL [HYP SET_TAC "x" []; REWRITE_TAC[IN_UNIONS]] THEN INTRO_TAC "@t. t fx" THEN EXISTS_TAC `{x:A | x IN topspace top /\ f x:B IN t}` THEN ASM SET_TAC[]]; ALL_TAC] THEN INTRO_TAC "@V. fin sub s" THEN CLAIM_TAC "@u. u" `?u. !v. v IN V ==> u v IN U /\ v = {x:A | x IN topspace top /\ f x:B IN u v}` THENL [REWRITE_TAC[GSYM SKOLEM_THM; RIGHT_EXISTS_IMP_THM] THEN INTRO_TAC "!v; v" THEN HYP_TAC "sub" (REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN REMOVE_THEN "v" (HYP_TAC "sub: @u. u eq" o C MATCH_MP) THEN EXISTS_TAC `u:B->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN EXISTS_TAC `IMAGE (u:(A->bool)->(B->bool)) V` THEN CONJ_TAC THENL [HYP SIMP_TAC "fin" [FINITE_IMAGE]; ASM SET_TAC []]);; let HOMEOMORPHIC_COMPACT_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (compact_space top <=> compact_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN REWRITE_TAC[compact_space] THEN EQ_TAC THEN DISCH_TAC THENL [SUBGOAL_THEN `topspace top' = IMAGE (f:A->B) (topspace top)` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[IMAGE_COMPACT_IN]]; SUBGOAL_THEN `topspace top = IMAGE (g:B->A) (topspace top')` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[IMAGE_COMPACT_IN]]] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_COMPACTNESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (compact_in top' (IMAGE f u) <=> compact_in top u)`, REPEAT STRIP_TAC THEN REWRITE_TAC[COMPACT_IN_SUBSPACE] THEN BINOP_TAC THENL [ALL_TAC; MATCH_MP_TAC HOMEOMORPHIC_COMPACT_SPACE THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_SPACE] THEN EXISTS_TAC `f:A->B` THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[]] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_COMPACTNESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (compact_in top u <=> u SUBSET topspace top /\ compact_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_COMPACTNESS; COMPACT_IN_SUBSET_TOPSPACE]);; let COMPACT_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map(top,top') q /\ compact_space top ==> compact_space top'`, REWRITE_TAC[compact_space] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP QUOTIENT_IMP_SURJECTIVE_MAP) THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN ASM_MESON_TAC[QUOTIENT_IMP_CONTINUOUS_MAP]);; let COMPACT_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ compact_space top ==> compact_space top'`, MESON_TAC[COMPACT_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let ALEXANDER_SUBBASE_THEOREM = prove (`!top:A topology B. topology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF B relative_to UNIONS B)) = top /\ (!C. C SUBSET B /\ UNIONS C = topspace top ==> ?C'. FINITE C' /\ C' SUBSET C /\ UNIONS C' = topspace top) ==> compact_space top`, REPEAT GEN_TAC THEN INTRO_TAC "top fin" THEN SUBGOAL_THEN `UNIONS B:A->bool = topspace top` ASSUME_TAC THENL [EXPAND_TAC "top" THEN REWRITE_TAC[TOPSPACE_SUBBASE]; ALL_TAC] THEN REWRITE_TAC[compact_space; compact_in; SUBSET_REFL] THEN MP_TAC(ISPEC `\C. (!u:A->bool. u IN C ==> open_in top u) /\ topspace top SUBSET UNIONS C /\ !C'. FINITE C' /\ C' SUBSET C ==> ~(topspace top SUBSET UNIONS C')` ZL_SUBSETS_UNIONS_NONEMPTY) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(~p' ==> p) /\ q /\ ~r ==> (p /\ q ==> r) ==> p'`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [X_GEN_TAC `c:((A->bool)->bool)->bool` THEN REWRITE_TAC[MEMBER_NOT_EMPTY] THEN STRIP_TAC THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN X_GEN_TAC `c':(A->bool)->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`c:((A->bool)->bool)->bool`; `c':(A->bool)->bool`] FINITE_SUBSET_UNIONS_CHAIN) THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `C:(A->bool)->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (LABEL_TAC "*")) THEN SUBGOAL_THEN `?x:A. x IN topspace top /\ ~(x IN UNIONS(B INTER C))` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC(SET_RULE `s SUBSET t /\ ~(s = t) ==> ?x. x IN t /\ ~(x IN s)`) THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_SUBSET; IN_INTER] THEN ASM_MESON_TAC[OPEN_IN_SUBSET]; DISCH_TAC] THEN REMOVE_THEN "fin" (MP_TAC o SPEC `B INTER C:(A->bool)->bool`) THEN ASM_REWRITE_TAC[INTER_SUBSET; SUBSET_INTER] THEN ASM_MESON_TAC[SUBSET_REFL]; ALL_TAC] THEN SUBGOAL_THEN `?c B'. c IN C /\ open_in top c /\ ~(c = topspace top) /\ FINITE B' /\ B' SUBSET B /\ ~(B' = {}) /\ (x:A) IN INTERS B' /\ INTERS B' SUBSET c` STRIP_ASSUME_TAC THENL [SUBGOAL_THEN `?u:A->bool. open_in top u /\ u IN C /\ x IN u` MP_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[SING_SUBSET; FINITE_SING; UNIONS_1; SUBSET_REFL]; UNDISCH_TAC `(x:A) IN c`] THEN UNDISCH_TAC `open_in top (c:A->bool)` THEN EXPAND_TAC "top" THEN REWRITE_TAC[REWRITE_RULE[topology_tybij] ISTOPOLOGY_SUBBASE] THEN SPEC_TAC(`c:A->bool`,`d:A->bool`) THEN ASM_REWRITE_TAC[FORALL_UNION_OF; ARBITRARY] THEN X_GEN_TAC `v:(A->bool)->bool` THEN DISCH_THEN(LABEL_TAC "+") THEN ONCE_REWRITE_TAC[TAUT `p ==> q ==> r <=> q ==> p ==> r`] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `~(UNIONS v = u) ==> UNIONS v SUBSET u ==> ~(u IN v)`)) THEN ANTS_TAC THENL [REWRITE_TAC[UNIONS_SUBSET] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[FORALL_RELATIVE_TO; INTER_SUBSET]; DISCH_TAC] THEN REWRITE_TAC[IN_UNIONS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `w:A->bool` THEN STRIP_TAC THEN REMOVE_THEN "+" (MP_TAC o SPEC `w:A->bool`) THEN ASM_REWRITE_TAC[relative_to; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[IMP_CONJ; FORALL_INTERSECTION_OF] THEN REWRITE_TAC[IMP_IMP; LEFT_FORALL_IMP_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `B':(A->bool)->bool` THEN ASM_CASES_TAC `B':(A->bool)->bool = {}` THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_REWRITE_TAC[INTERS_0; INTER_UNIV; FINITE_EMPTY; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!b. (b:A->bool) IN B' ==> ?C'. FINITE C' /\ C' SUBSET C /\ topspace top SUBSET UNIONS(b INSERT C')` MP_TAC THENL [X_GEN_TAC `b:A->bool` THEN DISCH_TAC THEN REMOVE_THEN "*" (MP_TAC o SPEC `(b:A->bool) INSERT C`) THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; SET_RULE `s SUBSET a INSERT s`] THEN MATCH_MP_TAC(TAUT `q /\ ~s /\ p /\ (~r ==> t) ==> (p /\ q /\ r ==> s) ==> t`) THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN CONJ_TAC THENL [EXPAND_TAC "top" THEN REWRITE_TAC[OPEN_IN_SUBBASE] THEN MATCH_MP_TAC UNION_OF_INC THEN REWRITE_TAC[ARBITRARY] THEN REWRITE_TAC[INTERSECTION_OF; relative_to] THEN EXISTS_TAC `b:A->bool` THEN CONJ_TAC THENL [EXISTS_TAC `{b:A->bool}`; ASM SET_TAC[]] THEN REWRITE_TAC[FINITE_SING; FORALL_IN_INSERT; INTERS_1; NOT_IN_EMPTY] THEN ASM SET_TAC[]; REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `C':(A->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `C' DELETE (b:A->bool)` THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN ASM SET_TAC[]]; REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM]] THEN DISCH_THEN(X_CHOOSE_TAC `cc:(A->bool)->(A->bool)->bool`) THEN SUBGOAL_THEN `topspace top SUBSET UNIONS(c INSERT UNIONS(IMAGE (cc:(A->bool)->(A->bool)->bool) B'))` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[FINITE_INSERT; FINITE_UNIONS] THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM SET_TAC[]);; let ALEXANDER_SUBBASE_THEOREM_ALT = prove (`!top:A topology B u. u SUBSET UNIONS B /\ topology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF B relative_to u)) = top /\ (!C. C SUBSET B /\ u SUBSET UNIONS C ==> ?C'. FINITE C' /\ C' SUBSET C /\ u SUBSET UNIONS C') ==> compact_space top`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `topspace top:A->bool = u` ASSUME_TAC THENL [ASM_MESON_TAC[TOPSPACE_SUBBASE]; ALL_TAC] THEN MATCH_MP_TAC ALEXANDER_SUBBASE_THEOREM THEN EXISTS_TAC `B relative_to (topspace top:A->bool)` THEN CONJ_TAC THENL [FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [FINITE_INTERSECTION_OF_RELATIVE_TO] THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[RELATIVE_TO] THEN ONCE_REWRITE_TAC[SET_RULE `{f x | s x} = {f x | x IN s}`] THEN REWRITE_TAC[GSYM INTER_UNIONS] THEN ASM SET_TAC[]; REWRITE_TAC[RELATIVE_TO; IMP_CONJ] THEN ONCE_REWRITE_TAC[SET_RULE `{f x | s x} = IMAGE f s`] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; GSYM INTER_UNIONS] THEN REWRITE_TAC[SET_RULE `s INTER t = s <=> s SUBSET t`] THEN ASM_MESON_TAC[]]);; let COMPACT_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. compact_space(prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ compact_space top1 /\ compact_space top2`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THEN ASM_SIMP_TAC[COMPACT_SPACE_TOPSPACE_EMPTY] THEN EQ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN REWRITE_TAC[compact_space] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`prod_topology top1 top2:(A#B)topology`; `top1:A topology`; `FST:A#B->A`; `topspace(prod_topology top1 top2:(A#B)topology)`] IMAGE_COMPACT_IN); MP_TAC(ISPECL [`prod_topology top1 top2:(A#B)topology`; `top2:B topology`; `SND:A#B->B`; `topspace(prod_topology top1 top2:(A#B)topology)`] IMAGE_COMPACT_IN)] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THEN ASM_REWRITE_TAC[IMAGE_FST_CROSS; IMAGE_SND_CROSS]; STRIP_TAC THEN MATCH_MP_TAC ALEXANDER_SUBBASE_THEOREM_ALT THEN EXISTS_TAC `{(topspace top1 CROSS v):A#B->bool | open_in top2 v} UNION {u CROSS topspace top2 | open_in top1 u}` THEN EXISTS_TAC `(topspace top1 CROSS topspace top2):A#B->bool` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `(?s. s IN f /\ x SUBSET s) ==> x SUBSET UNIONS f`) THEN REWRITE_TAC[EXISTS_IN_UNION; EXISTS_IN_GSPEC] THEN DISJ2_TAC THEN EXISTS_TAC `topspace top1:A->bool` THEN REWRITE_TAC[OPEN_IN_TOPSPACE; SUBSET_REFL]; GEN_REWRITE_TAC RAND_CONV [prod_topology] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SET_RULE `s SUBSET t <=> !x. s x ==> x IN t`] THEN REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [REWRITE_TAC[NOT_IN_EMPTY; INTERS_0; INTER_UNIV; IN_ELIM_THM] THEN ASM_MESON_TAC[OPEN_IN_TOPSPACE]; MAP_EVERY X_GEN_TAC [`c:A#B->bool`; `t:(A#B->bool)->bool`] THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(fun th -> DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM; UNION] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[INTERS_INSERT] THEN ONCE_REWRITE_TAC[SET_RULE `s INTER t INTER u = (s INTER u) INTER t`] THEN ASM_REWRITE_TAC[INTER_CROSS] THEN ASM_MESON_TAC[OPEN_IN_INTER; OPEN_IN_TOPSPACE]]; REWRITE_TAC[SET_RULE `s SUBSET t <=> !x. x IN s ==> t x`] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `(u CROSS v):A#B->bool = (topspace top1 CROSS topspace top2) INTER (u CROSS v)` SUBST1_TAC THENL [REWRITE_TAC[SET_RULE `s = u INTER s <=> s SUBSET u`] THEN ASM_SIMP_TAC[SUBSET_CROSS; OPEN_IN_SUBSET]; MATCH_MP_TAC RELATIVE_TO_INC] THEN REWRITE_TAC[INTERSECTION_OF] THEN EXISTS_TAC `{(u CROSS topspace top2),(topspace top1 CROSS v)} :(A#B->bool)->bool` THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY; INTERS_2] THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL [REWRITE_TAC[UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; REWRITE_TAC[INTER_CROSS; CROSS_EQ] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN SET_TAC[]]]; REWRITE_TAC[FORALL_SUBSET_UNION; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE; UNIONS_UNION] THEN REWRITE_TAC[SUBSET; UNIONS_IMAGE; IN_UNION; IN_ELIM_THM] THEN X_GEN_TAC `v:(B->bool)->bool` THEN DISCH_TAC THEN X_GEN_TAC `u:(A->bool)->bool` THEN DISCH_TAC THEN SIMP_TAC[FORALL_PAIR_THM; IN_CROSS] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (RAND_CONV o LAND_CONV) [TOPSPACE_PROD_TOPOLOGY]) THEN REWRITE_TAC[CROSS_EQ_EMPTY; DE_MORGAN_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `topspace top1 SUBSET (UNIONS u:A->bool) \/ topspace top2 SUBSET (UNIONS v:B->bool)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[SUBSET; IN_UNIONS] THEN ASM SET_TAC[]; UNDISCH_TAC `compact_space(top1:A topology)`; UNDISCH_TAC `compact_space(top2:B topology)`] THEN REWRITE_TAC[compact_in; compact_space; SUBSET_REFL] THENL [DISCH_THEN(MP_TAC o SPEC `u:(A->bool)->bool`); DISCH_THEN(MP_TAC o SPEC `v:(B->bool)->bool`)] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [X_GEN_TAC `u':(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\c. (c:A->bool) CROSS topspace(top2:B topology)) u'`; X_GEN_TAC `v':(B->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\c. topspace(top1:A topology) CROSS (c:B->bool)) v'`] THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM; IN_CROSS] THEN ASM SET_TAC[]]]);; let COMPACT_IN_CROSS = prove (`!top1 top2 s:A->bool t:B->bool. compact_in (prod_topology top1 top2) (s CROSS t) <=> s = {} \/ t = {} \/ compact_in top1 s /\ compact_in top2 t`, REPEAT GEN_TAC THEN REWRITE_TAC[COMPACT_IN_SUBSPACE; SUBTOPOLOGY_CROSS] THEN REWRITE_TAC[COMPACT_SPACE_PROD_TOPOLOGY; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[SUBSET_CROSS; CROSS_EQ_EMPTY; TOPSPACE_SUBTOPOLOGY] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(t:B->bool) SUBSET topspace top2` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);; let COMPACT_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) t. compact_space(product_topology t tops) <=> topspace(product_topology t tops) = {} \/ !k. k IN t ==> compact_space(tops k)`, REPEAT GEN_TAC THEN REWRITE_TAC[compact_space] THEN ASM_CASES_TAC `topspace(product_topology t (tops:K->A topology)) = {}` THEN ASM_REWRITE_TAC[COMPACT_IN_EMPTY] THEN EQ_TAC THENL [REWRITE_TAC[compact_space] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`(tops:K->A topology) k`; `\(f:K->A). f k`] o MATCH_MP (REWRITE_RULE[IMP_CONJ] IMAGE_COMPACT_IN)) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN ASM_SIMP_TAC[IN_IMAGE; EXTENSIONAL] THEN DISCH_THEN(X_CHOOSE_TAC `z:K->A`) THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN EXISTS_TAC `\i. if i = k then a else if i IN t then (z:K->A) i else ARB` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; DISCH_TAC] THEN ASM_CASES_TAC `t:K->bool = {}` THENL [ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_EMPTY] THEN MATCH_MP_TAC FINITE_IMP_COMPACT_IN THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_EMPTY; FINITE_SING; SUBSET_REFL]; REWRITE_TAC[GSYM compact_space]] THEN MATCH_MP_TAC ALEXANDER_SUBBASE_THEOREM_ALT THEN EXISTS_TAC `{{x:K->A | x k IN u} | k IN t /\ open_in (tops k) u}` THEN EXISTS_TAC `topspace(product_topology t (tops:K->A topology))` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `(?s. s IN f /\ x SUBSET s) ==> x SUBSET UNIONS f`) THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:K` THEN DISCH_TAC THEN EXISTS_TAC `topspace((tops:K->A topology) k)` THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE] THEN GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN ASM SET_TAC[]; GEN_REWRITE_TAC RAND_CONV [product_topology] THEN REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY_ALT]; ALL_TAC] THEN X_GEN_TAC `C:((K->A)->bool)->bool` THEN STRIP_TAC THEN ASM_CASES_TAC `?k. k IN t /\ topspace ((tops:K->A topology) k) SUBSET UNIONS {u | open_in (tops k) u /\ {x | x k IN u} IN C}` THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `k:K` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:K`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [compact_in]) THEN REWRITE_TAC[SUBSET_REFL] THEN DISCH_THEN(MP_TAC o SPEC `{u | open_in (tops k) u /\ {x:K->A | x k IN u} IN C}`) THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `D:(A->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (\u. {x:K->A | x k IN u}) D` THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SUBSET; TOPSPACE_PRODUCT_TOPOLOGY_ALT; UNIONS_IMAGE] THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN REWRITE_TAC[TAUT `~(p /\ q) <=> p ==> ~q`; SET_RULE `(!x. x IN t ==> ~(f x SUBSET g x)) <=> (!x. ?a. x IN t ==> a IN f x /\ ~(a IN g x))`] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN UNDISCH_TAC `topspace (product_topology t (tops:K->A topology)) SUBSET UNIONS C` THEN MATCH_MP_TAC(SET_RULE `(?x. x IN s /\ ~(x IN t)) ==> s SUBSET t ==> Q`) THEN EXISTS_TAC `\i. if i IN t then (z:K->A) i else ARB` THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT; EXTENSIONAL; IN_ELIM_THM] THEN ASM_SIMP_TAC[IN_UNIONS] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `t SUBSET s ==> (!x. x IN s ==> x IN t ==> ~P x) ==> ~(?x. x IN t /\ P x)`)) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN SIMP_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]]);; let COMPACT_IN_CARTESIAN_PRODUCT = prove (`!tops:K->A topology s k. compact_in (product_topology k tops) (cartesian_product k s) <=> cartesian_product k s = {} \/ !i. i IN k ==> compact_in (tops i) (s i)`, REWRITE_TAC[COMPACT_IN_SUBSPACE; SUBTOPOLOGY_CARTESIAN_PRODUCT] THEN REWRITE_TAC[COMPACT_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; o_DEF; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let TUBE_LEMMA_LEFT = prove (`!top top' (k:A->bool) (y:B) w. open_in (prod_topology top top') w /\ compact_in top k /\ y IN topspace top' /\ k CROSS {y} SUBSET w ==> ?u v. open_in top u /\ open_in top' v /\ k SUBSET u /\ y IN v /\ u CROSS v SUBSET w`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `k:A->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`{}:A->bool`; `topspace top':B->bool`] THEN ASM_SIMP_TAC[EMPTY_SUBSET; OPEN_IN_EMPTY; OPEN_IN_TOPSPACE; CROSS_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN k ==> ?u v. open_in top u /\ open_in top' v /\ (x:A) IN u /\ (y:B) IN v /\ u CROSS v SUBSET w` MP_TAC THENL [X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[IN_CROSS; IN_SING]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->A->bool`; `v:A->B->bool`] THEN DISCH_TAC THEN FIRST_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o REWRITE_RULE[compact_in]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (u:A->A->bool) k`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `l:A->bool` MP_TAC) THEN ASM_CASES_TAC `l:A->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_0; SUBSET_EMPTY] THEN DISCH_THEN(STRIP_ASSUME_TAC o REWRITE_RULE[SUBSET]) THEN EXISTS_TAC `UNIONS(IMAGE (u:A->A->bool) l)` THEN EXISTS_TAC `INTERS(IMAGE (v:A->B->bool) l)` THEN ASM_SIMP_TAC[OPEN_IN_UNIONS; FORALL_IN_IMAGE; OPEN_IN_INTERS; FINITE_IMAGE; IMAGE_EQ_EMPTY; IN_INTERS] THEN ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_PAIR_THM; IN_CROSS]) THEN ASM SET_TAC[]]);; let TUBE_LEMMA_RIGHT = prove (`!top top' (x:A) (k:B->bool) w. open_in (prod_topology top top') w /\ compact_in top' k /\ x IN topspace top /\ {x} CROSS k SUBSET w ==> ?u v. open_in top u /\ open_in top' v /\ x IN u /\ k SUBSET v /\ u CROSS v SUBSET w`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `k:B->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`topspace top:A->bool`; `{}:B->bool`] THEN ASM_SIMP_TAC[EMPTY_SUBSET; OPEN_IN_EMPTY; OPEN_IN_TOPSPACE; CROSS_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `!y. y IN k ==> ?u v. open_in top u /\ open_in top' v /\ (x:A) IN u /\ (y:B) IN v /\ u CROSS v SUBSET w` MP_TAC THENL [X_GEN_TAC `y:B` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[IN_CROSS; IN_SING]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:B->A->bool`; `v:B->B->bool`] THEN DISCH_TAC THEN FIRST_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o REWRITE_RULE[compact_in]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (v:B->B->bool) k`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `l:B->bool` MP_TAC) THEN ASM_CASES_TAC `l:B->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_0; SUBSET_EMPTY] THEN DISCH_THEN(STRIP_ASSUME_TAC o REWRITE_RULE[SUBSET]) THEN EXISTS_TAC `INTERS(IMAGE (u:B->A->bool) l)` THEN EXISTS_TAC `UNIONS(IMAGE (v:B->B->bool) l)` THEN ASM_SIMP_TAC[OPEN_IN_UNIONS; FORALL_IN_IMAGE; OPEN_IN_INTERS; FINITE_IMAGE; IMAGE_EQ_EMPTY; IN_INTERS] THEN ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_PAIR_THM; IN_CROSS]) THEN ASM SET_TAC[]]);; let CLOSED_MAP_FST = prove (`!(top:A topology) (top':B topology). compact_space top' ==> closed_map(prod_topology top top',top) FST`, REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSED_MAP_FIBRE_NEIGHBOURHOOD] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IMAGE_FST_CROSS] THEN CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[GSYM IN_SING]] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> ~(p /\ q ==> ~r)`] THEN SUBGOAL_THEN `!u. u SUBSET topspace top ==> {x:A#B | x IN topspace top CROSS topspace top' /\ FST x IN u} = u CROSS topspace top'` (fun th -> SIMP_TAC[th; OPEN_IN_SUBSET; SING_SUBSET]) THENL [SIMP_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM; IN_CROSS] THEN SET_TAC[]; MAP_EVERY X_GEN_TAC [`w:A#B->bool`; `x:A`]] THEN REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `x:A`; `topspace top':B->bool`; `w:A#B->bool`] TUBE_LEMMA_RIGHT) THEN ASM_REWRITE_TAC[GSYM compact_space] THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[SUBSET_ANTISYM_EQ; OPEN_IN_SUBSET]);; let CLOSED_MAP_SND = prove (`!(top:A topology) (top':B topology). compact_space top ==> closed_map(prod_topology top top',top') SND`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `SND = FST o (\x:A#B. SND x,FST x)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top' top:(B#A)topology` THEN ASM_SIMP_TAC[CLOSED_MAP_FST] THEN MATCH_MP_TAC HOMEOMORPHIC_IMP_CLOSED_MAP THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS] THEN EXISTS_TAC `\x:B#A. SND x,FST x` THEN REWRITE_TAC[homeomorphic_maps; CONTINUOUS_MAP_PAIRED] THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]);; let WALLACE_THEOREM_PROD_TOPOLOGY = prove (`!top top' w (k:A->bool) (l:B->bool). compact_in top k /\ compact_in top' l /\ open_in (prod_topology top top') w /\ k CROSS l SUBSET w ==> ?u v. open_in top u /\ open_in top' v /\ k SUBSET u /\ l SUBSET v /\ u CROSS v SUBSET w`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `!y. y IN l ==> ?u v. open_in top u /\ open_in top' v /\ k SUBSET u /\ y IN v /\ u CROSS v SUBSET (w:A#B->bool)` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC TUBE_LEMMA_LEFT THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN ASM SET_TAC[]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:B->A->bool`; `v:B->B->bool`] THEN DISCH_TAC THEN UNDISCH_TAC `compact_in top' (l:B->bool)` THEN REWRITE_TAC[compact_in] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `IMAGE (v:B->B->bool) l`)) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `m:B->bool` MP_TAC) THEN ASM_CASES_TAC `m:B->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_0; SUBSET_EMPTY] THEN DISCH_THEN(STRIP_ASSUME_TAC o REWRITE_RULE[SUBSET]) THENL [MAP_EVERY EXISTS_TAC [`topspace top:A->bool`; `{}:B->bool`] THEN ASM_REWRITE_TAC[OPEN_IN_EMPTY; OPEN_IN_TOPSPACE; CROSS_EMPTY] THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; EMPTY_SUBSET]; EXISTS_TAC `INTERS(IMAGE (u:B->A->bool) m)` THEN EXISTS_TAC `UNIONS(IMAGE (v:B->B->bool) m)` THEN ASM_SIMP_TAC[OPEN_IN_UNIONS; FORALL_IN_IMAGE; OPEN_IN_INTERS; FINITE_IMAGE; IMAGE_EQ_EMPTY; IN_INTERS] THEN ASM_REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_PAIR_THM; IN_CROSS]) THEN ASM SET_TAC[]]]);; let LOCALLY_FINITE_COVER_OF_COMPACT_SPACE = prove (`!(top:A topology) u. compact_space top /\ topspace top SUBSET UNIONS u /\ locally_finite_in top u ==> FINITE u`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally_finite_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; LEFT_IMP_EXISTS_THM; SKOLEM_THM] THEN X_GEN_TAC `t:A->A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_SPACE_ALT]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (t:A->A->bool) (topspace top)`) THEN ASM_SIMP_TAC[UNIONS_IMAGE; FORALL_IN_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> p /\ q ==> r ==> s`] THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE] THEN X_GEN_TAC `k:A->bool` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{} INSERT UNIONS {{c | c IN u /\ ~(c INTER (t:A->A->bool) a = {})} | a IN k}` THEN ASM_SIMP_TAC[FINITE_UNIONS; FORALL_IN_GSPEC; UNIONS_GSPEC; FINITE_INSERT] THEN ASM_SIMP_TAC[FINITE_IMAGE; SIMPLE_IMAGE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; EXTENSION; IN_ELIM_THM] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Separated sets. *) (* ------------------------------------------------------------------------- *) let separated_in = new_definition `separated_in top s t <=> s SUBSET topspace top /\ t SUBSET topspace top /\ s INTER top closure_of t = {} /\ t INTER top closure_of s = {}`;; let SEPARATED_IN_EMPTY = prove (`(!top s:A->bool. separated_in top s {} <=> s SUBSET topspace top) /\ (!top s:A->bool. separated_in top {} s <=> s SUBSET topspace top)`, REWRITE_TAC[separated_in; CLOSURE_OF_EMPTY; EMPTY_SUBSET; INTER_EMPTY]);; let SEPARATED_IN_REFL = prove (`!top s:A->bool. separated_in top s s <=> s = {}`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[SEPARATED_IN_EMPTY; EMPTY_SUBSET] THEN REWRITE_TAC[separated_in; DISJOINT_EMPTY_REFL] THEN SIMP_TAC[CLOSURE_OF_SUBSET; IMP_CONJ; SET_RULE `s SUBSET t ==> s INTER t = s`]);; let SEPARATED_IN_SYM = prove (`!top s t:A->bool. separated_in top s t <=> separated_in top t s`, REWRITE_TAC[separated_in; CONJ_ACI]);; let SEPARATED_IN_IMP_DISJOINT = prove (`!top s t:A->bool. separated_in top s t ==> DISJOINT s t`, REWRITE_TAC[separated_in] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET) THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] CLOSURE_OF_SUBSET) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let SEPARATED_IN_MONO = prove (`!top s t s' t':A->bool. separated_in top s t /\ s' SUBSET s /\ t' SUBSET t ==> separated_in top s' t'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[separated_in; GSYM SUBSET_EMPTY] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t SUBSET t' ==> s INTER t SUBSET s' INTER t'`) THEN ASM_SIMP_TAC[CLOSURE_OF_MONO]);; let SEPARATED_IN_OPEN_SETS = prove (`!top s t:A->bool. open_in top s /\ open_in top t ==> (separated_in top s t <=> DISJOINT s t)`, REWRITE_TAC[DISJOINT; separated_in] THEN SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY; OPEN_IN_SUBSET] THEN SET_TAC[]);; let SEPARATED_IN_CLOSED_SETS = prove (`!top s t:A->bool. closed_in top s /\ closed_in top t ==> (separated_in top s t <=> DISJOINT s t)`, SIMP_TAC[CLOSURE_OF_CLOSED_IN; separated_in; CLOSED_IN_SUBSET] THEN SET_TAC[]);; let SEPARATED_IN_COMPLEMENT = prove (`!top s:A->bool. separated_in top s (topspace top DIFF s) <=> closed_in top s /\ open_in top s`, SIMP_TAC[separated_in; CLOSURE_OF_SUBSET_TOPSPACE; SET_RULE `c SUBSET u /\ d SUBSET u ==> (s SUBSET u /\ u DIFF s SUBSET u /\ s INTER c = {} /\ (u DIFF s) INTER d = {} <=> s SUBSET u /\ c SUBSET u DIFF s /\ d SUBSET s)`] THEN REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ; OPEN_IN_CLOSED_IN_EQ] THEN SET_TAC[]);; let SEPARATED_IN_SUBTOPOLOGY = prove (`!top u s t:A->bool. separated_in (subtopology top u) s t <=> s SUBSET u /\ t SUBSET u /\ separated_in top s t`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_in; CLOSURE_OF_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM_CASES_TAC `(s:A->bool) SUBSET u` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(t:A->bool) SUBSET u` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> s INTER u INTER t = s INTER t`]);; let SEPARATED_IN_DISCRETE_TOPOLOGY = prove (`!u s t:A->bool. separated_in (discrete_topology u) s t <=> s SUBSET u /\ t SUBSET u /\ DISJOINT s t`, REWRITE_TAC[separated_in; DISCRETE_TOPOLOGY_CLOSURE_OF] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let SEPARATED_EQ_DISTINGUISHABLE = prove (`!top x y:A. separated_in top {x} {y} <=> x IN topspace top /\ y IN topspace top /\ (?u. open_in top u /\ x IN u /\ ~(y IN u)) /\ (?v. open_in top v /\ y IN v /\ ~(x IN v))`, REWRITE_TAC[separated_in; closure_of; IN_ELIM_THM; IN_SING; UNWIND_THM2] THEN SET_TAC[]);; let SEPARATED_IN_UNION = prove (`(!top s t u:A->bool. separated_in top s (t UNION u) <=> separated_in top s t /\ separated_in top s u) /\ (!top s t u:A->bool. separated_in top (s UNION t) u <=> separated_in top s u /\ separated_in top t u)`, REWRITE_TAC[separated_in; CLOSURE_OF_UNION] THEN SET_TAC[]);; let SEPARATED_IN_UNIONS = prove (`(!top s u:(A->bool)->bool. FINITE u ==> (separated_in top s (UNIONS u) <=> s SUBSET topspace top /\ !t. t IN u ==> separated_in top s t)) /\ (!top s u:(A->bool)->bool. FINITE u ==> (separated_in top (UNIONS u) s <=> (!t. t IN u ==> separated_in top s t) /\ s SUBSET topspace top))`, SIMP_TAC[separated_in; CLOSURE_OF_UNIONS] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[INTER_UNIONS; UNIONS_SUBSET] THEN REWRITE_TAC[EMPTY_UNIONS; FORALL_IN_GSPEC] THEN SET_TAC[]);; let SEPARATED_IN_DIFFS = prove (`!top s t:A->bool. open_in top s /\ open_in top t \/ closed_in top s /\ closed_in top t ==> separated_in top (s DIFF t) (t DIFF s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `(s:A->bool) SUBSET topspace top /\ t SUBSET topspace top` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; CLOSED_IN_SUBSET]; ASM_REWRITE_TAC[separated_in]] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC) THENL [CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `s INTER u = {} ==> (s DIFF t) INTER u = {}`); CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `w SUBSET u ==> (u DIFF x) INTER v = {} ==> (w DIFF x) INTER v = {}`))] THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY] THEN ASM SET_TAC[]);; let SEPARATION_CLOSED_IN_UNION_GEN = prove (`!top s t:A->bool. separated_in top s t <=> s SUBSET topspace top /\ t SUBSET topspace top /\ DISJOINT s t /\ closed_in (subtopology top (s UNION t)) s /\ closed_in (subtopology top (s UNION t)) t`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_in; CLOSED_IN_INTER_CLOSURE_OF] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET) THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] CLOSURE_OF_SUBSET) THEN SET_TAC[]);; let SEPARATION_OPEN_IN_UNION_GEN = prove (`!top s t:A->bool. separated_in top s t <=> s SUBSET topspace top /\ t SUBSET topspace top /\ DISJOINT s t /\ open_in (subtopology top (s UNION t)) s /\ open_in (subtopology top (s UNION t)) t`, REPEAT STRIP_TAC THEN REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; SUBSET_UNION] THEN ASM_SIMP_TAC[SEPARATION_CLOSED_IN_UNION_GEN] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(t:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `DISJOINT (s:A->bool) t` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV[CONJ_SYM] THEN BINOP_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let SEPARATED_IN_FULL = prove (`!top s t:A->bool. s UNION t = topspace top ==> (separated_in top s t <=> DISJOINT s t /\ closed_in top s /\ open_in top s /\ closed_in top t /\ open_in top t)`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SEPARATION_OPEN_IN_UNION_GEN] THEN REWRITE_TAC[SUBTOPOLOGY_TOPSPACE] THEN EQ_TAC THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; CLOSED_IN_SUBSET] THEN STRIP_TAC THEN ASM_REWRITE_TAC[closed_in] THEN CONJ_TAC THENL [UNDISCH_TAC `open_in top (t:A->bool)`; UNDISCH_TAC `open_in top (s:A->bool)`] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_SEPARATION = prove (`!(f:A->B) top top' s t. homeomorphic_map (top,top') f /\ s SUBSET topspace top /\ t SUBSET topspace top ==> (separated_in top' (IMAGE f s) (IMAGE f t) <=> separated_in top s t)`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[separated_in] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP HOMEOMORPHIC_IMP_SURJECTIVE_MAP) THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN BINOP_TAC THEN MATCH_MP_TAC(SET_RULE `!u. IMAGE f t = t' /\ s SUBSET u /\ t SUBSET u /\ (!x y. x IN u /\ y IN u /\ f x = f y ==> x = y) ==> (IMAGE f s INTER t' = {} <=> s INTER t = {})`) THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE] THEN ASM_MESON_TAC[HOMEOMORPHIC_MAP_CLOSURE_OF; HOMEOMORPHIC_IMP_INJECTIVE_MAP]);; (* ------------------------------------------------------------------------- *) (* T_1 spaces with equivalences to many naturally "nice" properties. *) (* ------------------------------------------------------------------------- *) let t1_space = new_definition `t1_space top <=> !x y. x IN topspace top /\ y IN topspace top /\ ~(x = y) ==> ?u. open_in top u /\ x IN u /\ ~(y IN u)`;; let T1_SPACE_EXPANSIVE = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) ==> t1_space top ==> t1_space top'`, REWRITE_TAC[t1_space] THEN METIS_TAC[]);; let T1_SPACE_ALT = prove (`!top:A topology. t1_space top <=> !x y. x IN topspace top /\ y IN topspace top /\ ~(x = y) ==> ?u. closed_in top u /\ x IN u /\ ~(y IN u)`, SIMP_TAC[t1_space; EXISTS_CLOSED_IN; IN_DIFF] THEN MESON_TAC[]);; let T1_SPACE_SEPARATED_IN = prove (`!top:A topology. t1_space top <=> !x y. x IN topspace top /\ y IN topspace top /\ ~(x = y) ==> separated_in top {x} {y}`, SIMP_TAC[t1_space; SEPARATED_EQ_DISTINGUISHABLE] THEN MESON_TAC[]);; let T1_SPACE_DERIVED_SET_OF_SING = prove (`!top:A topology. t1_space top <=> !x. x IN topspace top ==> top derived_set_of {x} = {}`, GEN_TAC THEN REWRITE_TAC[t1_space; derived_set_of; SET_RULE `(?y. P y /\ y IN {a} /\ Q y) <=> P a /\ Q a`] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let T1_SPACE_DERIVED_SET_OF_FINITE = prove (`!top:A topology. t1_space top <=> !s. FINITE s ==> top derived_set_of s = {}`, GEN_TAC THEN REWRITE_TAC[T1_SPACE_DERIVED_SET_OF_SING] THEN EQ_TAC THEN SIMP_TAC[FINITE_SING] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DERIVED_SET_OF_RESTRICT] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM UNIONS_SINGS] THEN ASM_SIMP_TAC[DERIVED_SET_OF_UNIONS; SIMPLE_IMAGE; FINITE_IMAGE; IN_INTER; FINITE_INTER; EMPTY_UNIONS; FORALL_IN_IMAGE]);; let T1_SPACE_CLOSED_IN_SING = prove (`!top:A topology. t1_space top <=> !x. x IN topspace top ==> closed_in top {x}`, GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[T1_SPACE_DERIVED_SET_OF_SING; CLOSED_IN_CONTAINS_DERIVED_SET] THEN REWRITE_TAC[NOT_IN_EMPTY; SING_SUBSET] THEN SET_TAC[]; DISCH_TAC THEN REWRITE_TAC[T1_SPACE_ALT] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN EXISTS_TAC `{x:A}` THEN ASM_SIMP_TAC[IN_SING]]);; let CLOSED_IN_T1_SING = prove (`!top a:A. t1_space top /\ a IN topspace top ==> closed_in top {a}`, MESON_TAC[T1_SPACE_CLOSED_IN_SING]);; let T1_SPACE_CLOSED_IN_FINITE = prove (`!top:A topology. t1_space top <=> !s. FINITE s /\ s SUBSET topspace top ==> closed_in top s`, GEN_TAC THEN REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN EQ_TAC THEN SIMP_TAC[FINITE_SING; SING_SUBSET] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM UNIONS_SINGS] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; FINITE_IMAGE] THEN ASM SET_TAC[]);; let CLOSURE_OF_SING = prove (`!top a:A. t1_space top ==> top closure_of {a} = if a IN topspace top then {a} else {}`, REPEAT STRIP_TAC THEN COND_CASES_TAC THENL [MATCH_MP_TAC CLOSURE_OF_CLOSED_IN THEN ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING]; ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> s INTER {a} = {}`] THEN REWRITE_TAC[CLOSURE_OF_EMPTY]]);; let SEPARATED_IN_SING = prove (`(!top s a:A. t1_space top ==> (separated_in top {a} s <=> a IN topspace top /\ s SUBSET topspace top /\ ~(a IN top closure_of s))) /\ (!top s a:A. t1_space top ==> (separated_in top s {a} <=> a IN topspace top /\ s SUBSET topspace top /\ ~(a IN top closure_of s)))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[separated_in; CLOSURE_OF_SING] THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET) THEN ASM SET_TAC[]);; let T1_SPACE_OPEN_IN_DELETE = prove (`!top:A topology. t1_space top <=> !u x. open_in top u /\ x IN u ==> open_in top (u DELETE x)`, GEN_TAC THEN REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN EQ_TAC THENL [REWRITE_TAC[SET_RULE `u DELETE x = u DIFF {x}`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]; DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN SUBGOAL_THEN `{x:A} = topspace top DIFF (topspace top DELETE x)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE]]);; let T1_SPACE_OPEN_IN_DELETE_ALT = prove (`!top:A topology. t1_space top <=> !u x. open_in top u ==> open_in top (u DELETE x)`, REWRITE_TAC[T1_SPACE_OPEN_IN_DELETE] THEN MESON_TAC[SET_RULE `x IN u \/ u DELETE x = u`]);; let T1_SPACE_SING_INTERS_OPEN,T1_SPACE_INTERS_OPEN_SUPERSETS = (CONJ_PAIR o prove) (`(!top:A topology. t1_space top <=> !x. x IN topspace top ==> INTERS {u | open_in top u /\ x IN u} = {x}) /\ (!top:A topology. t1_space top <=> !s. s SUBSET topspace top ==> INTERS {u | open_in top u /\ s SUBSET u} = s)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(r ==> q) /\ (q ==> p) /\ (p ==> r) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [SIMP_TAC[GSYM SING_SUBSET]; REWRITE_TAC[t1_space; INTERS_GSPEC] THEN SET_TAC[]; REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[INTERS_GSPEC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [SUBSET]; SET_TAC[]] THEN REWRITE_TAC[FORALL_OPEN_IN; IN_ELIM_THM; IMP_CONJ] THEN X_GEN_TAC `x:A` THEN DISCH_THEN(fun th -> MP_TAC(SPEC `{x:A}` th) THEN MP_TAC(SPEC `{}:A->bool` th)) THEN ASM_SIMP_TAC[CLOSED_IN_EMPTY; DIFF_EMPTY] THEN ASM SET_TAC[]]);; let T1_SPACE_DERIVED_SET_OF_INFINITE_OPEN_IN = prove (`!top:A topology. t1_space top <=> !s. top derived_set_of s = {x | x IN topspace top /\ !u. x IN u /\ open_in top u ==> INFINITE(s INTER u)}`, GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN EQ_TAC THENL [DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[DERIVED_SET_OF_SUBSET_TOPSPACE; SUBSET]; X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[INFINITE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `s INTER u:A->bool` o REWRITE_RULE[T1_SPACE_DERIVED_SET_OF_FINITE]) THEN FIRST_ASSUM(MP_TAC o SPEC `s:A->bool` o MATCH_MP OPEN_IN_INTER_DERIVED_SET_OF_SUBSET) THEN ASM_REWRITE_TAC[INTER_COMM] THEN ASM SET_TAC[]]; REWRITE_TAC[derived_set_of; IN_ELIM_THM; INFINITE; SET_RULE `(?y. ~(y = x) /\ y IN s /\ y IN t) <=> ~((s INTER t) SUBSET {x})`] THEN MESON_TAC[FINITE_SUBSET; FINITE_SING]]; ASM_REWRITE_TAC[T1_SPACE_DERIVED_SET_OF_SING] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN SIMP_TAC[FINITE_INTER; FINITE_SING; INFINITE] THEN MESON_TAC[OPEN_IN_TOPSPACE]]);; let FINITE_T1_SPACE_IMP_DISCRETE_TOPOLOGY = prove (`!top u:A->bool. topspace top = u /\ FINITE u /\ t1_space top ==> top = discrete_topology u`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE_DERIVED_SET] THEN ASM_MESON_TAC[T1_SPACE_DERIVED_SET_OF_FINITE]);; let T1_SPACE_SUBTOPOLOGY = prove (`!top u:A->bool. t1_space top ==> t1_space(subtopology top u)`, REPEAT GEN_TAC THEN REWRITE_TAC[t1_space; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_IN_GSPEC; IN_INTER] THEN MESON_TAC[]);; let CLOSED_IN_DERIVED_SET_OF_GEN = prove (`!top s:A->bool. t1_space top ==> closed_in top (top derived_set_of s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSED_IN_CONTAINS_DERIVED_SET] THEN REWRITE_TAC[DERIVED_SET_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x'':A` THEN REWRITE_TAC[IN_DERIVED_SET_OF] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `x':A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [t1_space]) THEN DISCH_THEN(MP_TAC o SPECL [`x':A`; `x'':A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `u INTER v:A->bool`) THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_INTER] THEN ASM SET_TAC[]);; let DERIVED_SET_OF_DERIVED_SET_SUBSET_GEN = prove (`!top s:A->bool. t1_space top ==> top derived_set_of (top derived_set_of s) SUBSET top derived_set_of s`, SIMP_TAC[DERIVED_SET_SUBSET; DERIVED_SET_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[CLOSED_IN_DERIVED_SET_OF_GEN]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_GEN_FINITE = prove (`!top s:A->bool. t1_space top /\ FINITE s ==> subtopology top s = discrete_topology(topspace top INTER s)`, REWRITE_TAC[T1_SPACE_DERIVED_SET_OF_FINITE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_GEN THEN ASM_SIMP_TAC[INTER_EMPTY]);; let SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_FINITE = prove (`!top s:A->bool. t1_space top /\ s SUBSET topspace top /\ FINITE s ==> subtopology top s = discrete_topology s`, REWRITE_TAC[T1_SPACE_DERIVED_SET_OF_FINITE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY THEN ASM_SIMP_TAC[INTER_EMPTY]);; let T1_SPACE_CLOSED_MAP_IMAGE = prove (`!f:A->B top top'. closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ t1_space top ==> t1_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; closed_map] THEN STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ONCE_REWRITE_TAC[SET_RULE `{f x} = IMAGE f {x}`] THEN ASM_SIMP_TAC[]);; let HOMEOMORPHIC_T1_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (t1_space top <=> t1_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] T1_SPACE_CLOSED_MAP_IMAGE)) THEN ASM_MESON_TAC[]);; let T1_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ t1_space top ==> t1_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[T1_SPACE_SUBTOPOLOGY; HOMEOMORPHIC_T1_SPACE]);; let T1_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. t1_space(prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ t1_space top1 /\ t1_space top2`, REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; FORALL_PAIR_THM] THEN REWRITE_TAC[GSYM CROSS_SING; CLOSED_IN_CROSS; NOT_INSERT_EMPTY] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; IN_CROSS] THEN SET_TAC[]);; let T1_SPACE_PRODUCT_TOPOLOGY = prove (`!tops:K->A topology k. t1_space (product_topology k tops) <=> topspace(product_topology k tops) = {} \/ !i. i IN k ==> t1_space (tops i)`, REPEAT GEN_TAC THEN REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; IMP_IMP; RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[o_DEF; GSYM FORALL_CARTESIAN_PRODUCT_ELEMENTS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) CLOSED_IN_CARTESIAN_PRODUCT o rand o rand o snd) THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; NOT_INSERT_EMPTY] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p ==> q <=> p ==> r)`) THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN DISCH_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_SING; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);; let CARD_LE_TOPSPACE_CLOSED_SETS = prove (`!top:A topology. t1_space top ==> topspace top <=_c {s | closed_in top s}`, REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. {x}` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN SET_TAC[]);; let CARD_LE_TOPSPACE_OPEN_SETS = prove (`!top:A topology. t1_space top ==> topspace top <=_c {s | open_in top s}`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_TOPSPACE_CLOSED_SETS) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EQ_OPEN_CLOSED_IN_SETS]);; let INFINITE_PERFECT_SET_GEN = prove (`!top s:A->bool. t1_space top /\ s SUBSET top derived_set_of s /\ ~(s = {}) ==> INFINITE s`, REWRITE_TAC[T1_SPACE_DERIVED_SET_OF_INFINITE_OPEN_IN] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?a:A. a IN top derived_set_of s` MP_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[IN_ELIM_THM]] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `topspace top:A->bool`))) THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE] THEN MESON_TAC[INFINITE_SUPERSET; INTER_SUBSET]);; (* ------------------------------------------------------------------------- *) (* Hausdorff spaces. *) (* ------------------------------------------------------------------------- *) let hausdorff_space = new_definition `hausdorff_space (top:A topology) <=> !x y. x IN topspace top /\ y IN topspace top /\ ~(x = y) ==> ?u v. open_in top u /\ open_in top v /\ x IN u /\ y IN v /\ DISJOINT u v`;; let HAUSDORFF_SPACE_EXPANSIVE = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) ==> hausdorff_space top ==> hausdorff_space top'`, REWRITE_TAC[hausdorff_space] THEN METIS_TAC[]);; let HAUSDORFF_SPACE_TOPSPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> hausdorff_space top`, SIMP_TAC[hausdorff_space; NOT_IN_EMPTY]);; let HAUSDORFF_IMP_T1_SPACE = prove (`!top:A topology. hausdorff_space top ==> t1_space top`, REWRITE_TAC[hausdorff_space; t1_space] THEN SET_TAC[]);; let CLOSED_IN_DERIVED_SET_OF = prove (`!(top:A topology) s. hausdorff_space top ==> closed_in top (top derived_set_of s)`, MESON_TAC[CLOSED_IN_DERIVED_SET_OF_GEN; HAUSDORFF_IMP_T1_SPACE]);; let T1_OR_HAUSDORFF_SPACE = prove (`!top:A topology. t1_space top \/ hausdorff_space top <=> t1_space top`, MESON_TAC[HAUSDORFF_IMP_T1_SPACE]);; let HAUSDORFF_SPACE_SING_INTERS_OPENS = prove (`!top a:A. hausdorff_space top /\ a IN topspace top ==> INTERS {u | open_in top u /\ a IN u} = {a}`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM T1_SPACE_SING_INTERS_OPEN] THEN REWRITE_TAC[HAUSDORFF_IMP_T1_SPACE]);; let HAUSDORFF_SPACE_SING_INTERS_CLOSED = prove (`!top:A topology. hausdorff_space top <=> !x. x IN topspace top ==> INTERS {u | closed_in top u /\ x IN top interior_of u} = {x}`, REWRITE_TAC[SET_RULE `s = {a} <=> a IN s /\ !b. ~(b = a) ==> ~(b IN s)`] THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IMP_CONJ] THEN REWRITE_TAC[REWRITE_RULE[SUBSET] INTERIOR_OF_SUBSET] THEN GEN_TAC THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; MESON[] `(!x. x IN s ==> !y. ~(y = x) ==> R x y) <=> (!x y. x IN s /\ ~(y IN s) ==> R x y) /\ (!y x. y IN s /\ x IN s /\ ~(y = x) ==> R x y)`] THEN MATCH_MP_TAC(TAUT `q /\ (p <=> r) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [MESON_TAC[CLOSED_IN_TOPSPACE; INTERIOR_OF_TOPSPACE]; ALL_TAC] THEN REWRITE_TAC[hausdorff_space; EXISTS_CLOSED_IN] THEN SIMP_TAC[INTERIOR_OF_COMPLEMENT; IN_DIFF; RIGHT_EXISTS_AND_THM] THEN SIMP_TAC[closure_of; IN_ELIM_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN SET_TAC[]);; let HAUSDORFF_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. hausdorff_space top ==> hausdorff_space(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[hausdorff_space; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_IN_GSPEC; IN_INTER] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);; let HAUSDORFF_SPACE_COMPACT_SEPARATION = prove (`!top s t:A->bool. hausdorff_space top /\ compact_in top s /\ compact_in top t /\ DISJOINT s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, let lemma = prove (`!top s a:A. hausdorff_space top /\ compact_in top s /\ a IN topspace top /\ ~(a IN s) ==> ?u v. open_in top u /\ open_in top v /\ DISJOINT u v /\ a IN u /\ s SUBSET v`, REWRITE_TAC[hausdorff_space; compact_in] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`topspace top:A->bool`; `{}:A->bool`] THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; OPEN_IN_EMPTY] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN `x:A` o SPECL [`x:A`; `a:A`]) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->A->bool`; `v:A->A->bool`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (u:A->A->bool) s`) THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN ANTS_TAC THENL [SIMP_TAC[UNIONS_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[UNIONS_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `INTERS(IMAGE (v:A->A->bool) k)` THEN EXISTS_TAC `UNIONS(IMAGE (u:A->A->bool) k)` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN ASM SET_TAC[]; CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_UNIONS; ALL_TAC] THEN ASM SET_TAC[]]) in REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`{}:A->bool`; `topspace top:A->bool`] THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; OPEN_IN_EMPTY] THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x:A. ?u v. x IN s ==> open_in top u /\ open_in top v /\ x IN u /\ t SUBSET v /\ DISJOINT u v` MP_TAC THENL [X_GEN_TAC `x:A` THEN REWRITE_TAC[RIGHT_EXISTS_IMP_THM] THEN DISCH_TAC THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`; `x:A`] lemma) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; MESON_TAC[]] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->A->bool`; `v:A->A->bool`] THEN DISCH_TAC THEN UNDISCH_TAC `compact_in top (s:A->bool)` THEN REWRITE_TAC[compact_in] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `IMAGE (u:A->A->bool) s`)) THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN ANTS_TAC THENL [SIMP_TAC[UNIONS_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[UNIONS_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `UNIONS(IMAGE (u:A->A->bool) k)` THEN EXISTS_TAC `INTERS(IMAGE (v:A->A->bool) k)` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN ASM SET_TAC[]);; let HAUSDORFF_SPACE_COMPACT_SETS = prove (`!top:A topology. hausdorff_space top <=> !s t. compact_in top s /\ compact_in top t /\ DISJOINT s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[HAUSDORFF_SPACE_COMPACT_SEPARATION] THEN DISCH_TAC THEN REWRITE_TAC[hausdorff_space] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `{y:A}`]) THEN ASM_REWRITE_TAC[SING_SUBSET; COMPACT_IN_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; MESON_TAC[]]);; let COMPACT_IN_IMP_CLOSED_IN = prove (`!top s:A->bool. hausdorff_space top /\ compact_in top s ==> closed_in top s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM_REWRITE_TAC[closed_in] THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN X_GEN_TAC `y:A` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `{y:A}`; `s:A->bool`] HAUSDORFF_SPACE_COMPACT_SEPARATION) THEN ASM_REWRITE_TAC[COMPACT_IN_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let CLOSED_IN_HAUSDORFF_SING = prove (`!top x:A. hausdorff_space top /\ x IN topspace top ==> closed_in top {x}`, MESON_TAC[COMPACT_IN_IMP_CLOSED_IN; FINITE_IMP_COMPACT_IN; FINITE_SING; SING_SUBSET]);; let CLOSED_IN_HAUSDORFF_SING_EQ = prove (`!top x:A. hausdorff_space top ==> (closed_in top {x} <=> x IN topspace top)`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[CLOSED_IN_HAUSDORFF_SING] THEN DISCH_THEN(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SET_TAC[]);; let HAUSDORFF_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. hausdorff_space(discrete_topology u)`, GEN_TAC THEN REWRITE_TAC[hausdorff_space; OPEN_IN_DISCRETE_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x:A}`; `{y:A}`] THEN ASM SET_TAC[]);; let COMPACT_IN_INTER = prove (`!top s t:A->bool. hausdorff_space top /\ compact_in top s /\ compact_in top t ==> compact_in top (s INTER t)`, MESON_TAC[COMPACT_IN_IMP_CLOSED_IN; COMPACT_INTER_CLOSED_IN]);; let FINITE_TOPSPACE_IMP_DISCRETE_TOPOLOGY = prove (`!top:A topology. topspace top = u /\ FINITE u /\ hausdorff_space top ==> top = discrete_topology u`, ASM_MESON_TAC[HAUSDORFF_IMP_T1_SPACE; FINITE_T1_SPACE_IMP_DISCRETE_TOPOLOGY]);; let DERIVED_SET_OF_FINITE = prove (`!top s:A->bool. hausdorff_space top /\ FINITE s ==> top derived_set_of s = {}`, MESON_TAC[T1_SPACE_DERIVED_SET_OF_FINITE; HAUSDORFF_IMP_T1_SPACE]);; let DERIVED_SET_OF_SING = prove (`!top x:A. hausdorff_space top ==> top derived_set_of {x} = {}`, SIMP_TAC[DERIVED_SET_OF_FINITE; FINITE_SING]);; let CLOSED_IN_HAUSDORFF_FINITE = prove (`!top s:A->bool. hausdorff_space top /\ s SUBSET topspace top /\ FINITE s ==> closed_in top s`, MESON_TAC[T1_SPACE_CLOSED_IN_FINITE; HAUSDORFF_IMP_T1_SPACE]);; let OPEN_IN_HAUSDORFF_DELETE = prove (`!top s x:A. hausdorff_space top /\ open_in top s ==> open_in top (s DELETE x)`, MESON_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; HAUSDORFF_IMP_T1_SPACE]);; let CLOSED_IN_HAUSDORFF_FINITE_EQ = prove (`!top s:A->bool. hausdorff_space top /\ FINITE s ==> (closed_in top s <=> s SUBSET topspace top)`, MESON_TAC[CLOSED_IN_HAUSDORFF_FINITE; CLOSED_IN_SUBSET]);; let DERIVED_SET_OF_INFINITE_OPEN_IN = prove (`!top s:A->bool. hausdorff_space top ==> top derived_set_of s = {x | x IN topspace top /\ !u. x IN u /\ open_in top u ==> INFINITE(s INTER u)}`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM T1_SPACE_DERIVED_SET_OF_INFINITE_OPEN_IN] THEN REWRITE_TAC[HAUSDORFF_IMP_T1_SPACE]);; let HAUSDORFF_SPACE_DISCRETE_COMPACT_IN = prove (`!top s:A->bool. hausdorff_space top ==> (s INTER top derived_set_of s = {} /\ compact_in top s <=> s SUBSET topspace top /\ FINITE s)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[DISCRETE_COMPACT_IN_EQ_FINITE]; STRIP_TAC] THEN ASM_SIMP_TAC[FINITE_IMP_COMPACT_IN] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EQ) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC FINITE_TOPSPACE_IMP_DISCRETE_TOPOLOGY THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]);; let HAUSDORFF_SPACE_FINITE_TOPSPACE = prove (`!top:A topology. hausdorff_space top ==> (top derived_set_of (topspace top) = {} /\ compact_space top <=> FINITE(topspace top))`, GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `topspace top:A->bool` o MATCH_MP HAUSDORFF_SPACE_DISCRETE_COMPACT_IN) THEN REWRITE_TAC[SUBSET_REFL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM compact_space] THEN REWRITE_TAC[derived_set_of] THEN SET_TAC[]);; let DERIVED_SET_OF_DERIVED_SET_SUBSET = prove (`!top s:A->bool. hausdorff_space top ==> top derived_set_of (top derived_set_of s) SUBSET top derived_set_of s`, SIMP_TAC[DERIVED_SET_OF_DERIVED_SET_SUBSET_GEN; HAUSDORFF_IMP_T1_SPACE]);; let HAUSDORFF_SPACE_INJECTIVE_PREIMAGE = prove (`!top top' f:A->B. continuous_map (top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) /\ hausdorff_space top' ==> hausdorff_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[hausdorff_space; continuous_map] THEN REWRITE_TAC[INJECTIVE_ON_ALT] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(f:A->B) x`; `(f:A->B) y`]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:B->bool`; `v:B->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x | x IN topspace top /\ (f:A->B) x IN u}`; `{x | x IN topspace top /\ (f:A->B) x IN v}`] THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]);; let HOMEOMORPHIC_HAUSDORFF_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (hausdorff_space top <=> hausdorff_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] HAUSDORFF_SPACE_INJECTIVE_PREIMAGE)) THEN ASM_MESON_TAC[]);; let HAUSDORFF_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ hausdorff_space top ==> hausdorff_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HOMEOMORPHIC_HAUSDORFF_SPACE]);; let COMPACT_HAUSDORFF_SPACE_OPTIMAL = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) /\ hausdorff_space top /\ compact_space top' ==> top' = top`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[TOPOLOGY_EQ; FORALL_AND_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN ASM_SIMP_TAC[TOPOLOGY_FINER_CLOSED_IN] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM] COMPACT_IN_CONTRACTIVE) THEN EXISTS_TAC `top':A topology` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_REWRITE_TAC[]);; let CONTINUOUS_IMP_CLOSED_MAP = prove (`!top top' f:A->B. compact_space top /\ hausdorff_space top' /\ continuous_map (top,top') f ==> closed_map (top,top') f`, REWRITE_TAC[closed_map] THEN MESON_TAC[IMAGE_COMPACT_IN; COMPACT_IN_IMP_CLOSED_IN; CLOSED_IN_COMPACT_SPACE]);; let CONTINUOUS_IMP_QUOTIENT_MAP = prove (`!top top' f:A->B. compact_space top /\ hausdorff_space top' /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> quotient_map (top,top') f`, MESON_TAC[CONTINUOUS_CLOSED_IMP_QUOTIENT_MAP; CONTINUOUS_IMP_CLOSED_MAP]);; let CONTINUOUS_IMP_HOMEOMORPHIC_MAP = prove (`!top top' f:A->B. compact_space top /\ hausdorff_space top' /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> homeomorphic_map(top,top') f`, REWRITE_TAC[homeomorphic_map] THEN MESON_TAC[CONTINUOUS_IMP_QUOTIENT_MAP]);; let CONTINUOUS_IMP_EMBEDDING_MAP = prove (`!top top' f:A->B. compact_space top /\ hausdorff_space top' /\ continuous_map (top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)) ==> embedding_map(top,top') f`, REPEAT STRIP_TAC THEN REWRITE_TAC[embedding_map] THEN MATCH_MP_TAC CONTINUOUS_IMP_HOMEOMORPHIC_MAP THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN SET_TAC[]);; let CONTINUOUS_INVERSE_MAP = prove (`!top top' (f:A->B) g s. compact_space top /\ hausdorff_space top' /\ continuous_map (top,top') f /\ (!x. x IN topspace top ==> g(f x) = x) /\ s SUBSET IMAGE f (topspace top) ==> continuous_map(subtopology top' s,top) g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO THEN EXISTS_TAC `IMAGE (f:A->B) (topspace top)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; X_GEN_TAC `c:A->bool` THEN DISCH_TAC] THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN FIRST_ASSUM(MP_TAC o SPEC `c:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] IMAGE_COMPACT_IN)) THEN ASM_SIMP_TAC[CLOSED_IN_COMPACT_SPACE] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let HAUSDORFF_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. hausdorff_space(prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ hausdorff_space top1 /\ hausdorff_space top2`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PROD_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_HAUSDORFF_SPACE] THEN SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `(topspace top1 CROSS topspace top2):A#B->bool = {}` THEN ASM_REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THENL [ASM_REWRITE_TAC[hausdorff_space; TOPSPACE_PROD_TOPOLOGY; NOT_IN_EMPTY]; FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[CROSS_EQ_EMPTY]) THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC] THEN STRIP_TAC THEN REWRITE_TAC[hausdorff_space; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`; `x':A`; `y':B`] THEN ASM_CASES_TAC `y':B = y` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [UNDISCH_TAC `hausdorff_space(top1:A topology)`; UNDISCH_TAC `hausdorff_space(top2:B topology)`] THEN REWRITE_TAC[hausdorff_space] THENL [DISCH_THEN(MP_TAC o SPECL [`x:A`; `x':A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(u CROSS topspace top2):A#B->bool` THEN EXISTS_TAC `(v CROSS topspace top2):A#B->bool`; DISCH_THEN(MP_TAC o SPECL [`y:B`; `y':B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:B->bool`; `v:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(topspace top1 CROSS u):A#B->bool` THEN EXISTS_TAC `(topspace top1 CROSS v):A#B->bool`] THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE; IN_CROSS] THEN ASM_REWRITE_TAC[DISJOINT_CROSS]);; let HAUSDORFF_SPACE_PRODUCT_TOPOLOGY = prove (`!tops:K->A topology k. hausdorff_space (product_topology k tops) <=> topspace(product_topology k tops) = {} \/ !i. i IN k ==> hausdorff_space (tops i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PRODUCT_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_HAUSDORFF_SPACE] THEN SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `cartesian_product k (topspace o (tops:K->A topology)) = {}` THEN ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THENL [ASM_REWRITE_TAC[hausdorff_space; TOPSPACE_PRODUCT_TOPOLOGY; NOT_IN_EMPTY]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[hausdorff_space; FUN_EQ_THM] THEN MAP_EVERY X_GEN_TAC [`f:K->A`; `g:K->A`] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> r ==> p /\ q ==> s`] THEN REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m:K` THEN DISCH_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN REWRITE_TAC[IN_ELIM_THM; o_DEF; EXTENSIONAL] THEN ASM_CASES_TAC `(m:K) IN k` THENL [STRIP_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [hausdorff_space] o SPEC `m:K`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`(f:K->A) m`; `(g:K->A) m`]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`topspace(product_topology k tops) INTER {x:K->A | x m IN u}`; `topspace(product_topology k tops) INTER {x:K->A | x m IN v}` ] THEN ASM_REWRITE_TAC[IN_ELIM_THM; CONJ_ASSOC; IN_INTER] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY] THEN CONJ_TAC THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `m:K` THENL [EXISTS_TAC `u:A->bool`; EXISTS_TAC `v:A->bool`] THEN ASM_REWRITE_TAC[]);; let HAUSDORFF_SPACE_CLOSED_NEIGHBOURHOOD = prove (`!top:A topology. hausdorff_space top <=> !x. x IN topspace top ==> ?u c. open_in top u /\ closed_in top c /\ hausdorff_space(subtopology top c) /\ x IN u /\ u SUBSET c`, GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN MESON_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE; SUBSET_REFL]; DISCH_TAC] THEN REWRITE_TAC[hausdorff_space] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `c:A->bool`] THEN STRIP_TAC THEN ASM_CASES_TAC `(y:A) IN c` THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [hausdorff_space]) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; RIGHT_EXISTS_AND_THM] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT]] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_INTER] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `w:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `u INTER v:A->bool` THEN EXISTS_TAC `w UNION (topspace top DIFF c):A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN ASM_SIMP_TAC[OPEN_IN_UNION; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]; MAP_EVERY EXISTS_TAC [`u:A->bool`; `topspace top DIFF c:A->bool`] THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]]);; let INFINITE_PERFECT_SET = prove (`!top s:A->bool. hausdorff_space top /\ s SUBSET top derived_set_of s /\ ~(s = {}) ==> INFINITE s`, MESON_TAC[INFINITE_PERFECT_SET_GEN; HAUSDORFF_IMP_T1_SPACE]);; (* ------------------------------------------------------------------------- *) (* Closed diagonals and graphs. *) (* ------------------------------------------------------------------------- *) let HAUSDORFF_SPACE_CLOSED_IN_DIAGONAL = prove (`!top:A topology. hausdorff_space top <=> closed_in (prod_topology top top) {(x,x) | x IN topspace top}`, GEN_TAC THEN REWRITE_TAC[closed_in] THEN REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY_ALT; hausdorff_space] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; NOT_IN_EMPTY; DISJOINT; EXTENSION; IN_INTER; IN_DIFF; FORALL_PAIR_THM] THEN REWRITE_TAC[IN_ELIM_THM; PAIR_EQ; SET_RULE `(?z. P z /\ x = z /\ y = z) <=> P x /\ x = y`] THEN REWRITE_TAC[TAUT `(p /\ q) /\ ~(p /\ r) <=> p /\ q /\ ~r`] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let CLOSED_MAP_DIAG_EQ = prove (`!top:A topology. closed_map(top,prod_topology top top) (\x. x,x) <=> hausdorff_space top`, GEN_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) EMBEDDING_IMP_CLOSED_MAP_EQ o lhand o snd) THEN ANTS_TAC THENL [MATCH_MP_TAC SECTION_IMP_EMBEDDING_MAP THEN REWRITE_TAC[section_map; retraction_maps] THEN EXISTS_TAC `FST:A#A->A` THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_ID]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; HAUSDORFF_SPACE_CLOSED_IN_DIAGONAL]]);; let CLOSED_IN_CONTINUOUS_MAPS_EQ = prove (`!(f:A->B) g top top'. hausdorff_space top' /\ continuous_map (top,top') f /\ continuous_map (top,top') g ==> closed_in top {x | x IN topspace top /\ f x = g x}`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x = g x} = {x | x IN topspace top /\ (f x,g x) IN {y,y | y IN topspace top'}}` SUBST1_TAC THENL [REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `prod_topology (top':B topology) top'` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRED] THEN ASM_REWRITE_TAC[GSYM HAUSDORFF_SPACE_CLOSED_IN_DIAGONAL]]);; let FORALL_IN_CLOSURE_OF_EQ = prove (`!top top' f g:A->B. hausdorff_space top' /\ continuous_map (top,top') f /\ continuous_map (top,top') g /\ (!x. x IN s ==> f x = g x) ==> !x. x IN top closure_of s ==> f x = g x`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC FORALL_IN_CLOSURE_OF THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x = g x} = {x | x IN topspace top /\ (f x,g x) IN {(z,z) | z IN topspace top'}}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; PAIR_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[CONTINUOUS_MAP]) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `prod_topology (top':B topology) top'` THEN ASM_REWRITE_TAC[GSYM HAUSDORFF_SPACE_CLOSED_IN_DIAGONAL] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]]);; let RETRACT_OF_SPACE_IMP_CLOSED_IN = prove (`!top s:A->bool. hausdorff_space top /\ s retract_of_space top ==> closed_in top s`, REWRITE_TAC[retract_of_space] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `s = {x | x IN topspace top /\ (r:A->A) x = x}` SUBST1_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[continuous_map; TOPSPACE_SUBTOPOLOGY]) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAPS_EQ THEN EXISTS_TAC `top:A topology` THEN ASM_MESON_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_IN_SUBTOPOLOGY]]);; let WEAKLY_HEREDITARY_IMP_RETRACTIVE_PROPERTY = prove (`!(P:A topology->bool) (Q:B topology->bool). (!top. P top ==> hausdorff_space top) /\ (!top s. P top /\ closed_in top s ==> P(subtopology top s)) /\ (!top top'. top homeomorphic_space top' ==> (P top <=> Q top')) ==> !top top' r. retraction_map(top,top') r /\ P top ==> Q top'`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [retraction_map]) THEN DISCH_THEN(X_CHOOSE_THEN `s:B->A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`subtopology top (IMAGE (s:B->A) (topspace top'))`; `top':B topology`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[RETRACTION_MAPS_SECTION_IMAGE]; ALL_TAC] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RETRACT_OF_SPACE_IMP_CLOSED_IN THEN ASM_MESON_TAC[RETRACTION_MAPS_SECTION_IMAGE]);; let HOMEOMORPHIC_MAPS_GRAPH = prove (`!top top' (f:A->B). homeomorphic_maps (top,subtopology (prod_topology top top') (IMAGE (\x. x,f x) (topspace top))) ((\x. x,f x),FST) <=> continuous_map(top,top') f`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP] THEN DISCH_THEN (MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_CONTINUOUS_MAP o CONJUNCT1) THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN DISCH_TAC THEN SUBGOAL_THEN `(f:A->B) = SND o (\x. x,f x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; ETA_AX]; ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE; CONTINUOUS_MAP_SND]]; DISCH_TAC THEN ASM_REWRITE_TAC[homeomorphic_maps; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRED; SUBSET_REFL; CONTINUOUS_MAP_ID] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_FST] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IMP_CONJ_ALT] THEN REWRITE_TAC[FORALL_IN_IMAGE]]);; let EMBEDDING_MAP_GRAPH = prove (`!top top' (f:A->B). embedding_map(top,prod_topology top top') (\x. x,f x) <=> continuous_map (top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[embedding_map] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_CONTINUOUS_MAP) THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN DISCH_TAC THEN SUBGOAL_THEN `(f:A->B) = SND o (\x. x,f x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; ETA_AX]; ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE; CONTINUOUS_MAP_SND]]; REWRITE_TAC[GSYM HOMEOMORPHIC_MAPS_GRAPH] THEN SIMP_TAC[HOMEOMORPHIC_MAPS_MAP]]);; let CONTINUOUS_MAP_IMP_CLOSED_GRAPH = prove (`!top top' (f:A->B). continuous_map(top,top') f /\ hausdorff_space top' ==> closed_in (prod_topology top top') {x,f x | x IN topspace top}`, REPEAT STRIP_TAC THEN REWRITE_TAC[closed_in] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; REWRITE_TAC[OPEN_IN_PROD_TOPOLOGY_ALT; TOPSPACE_PROD_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN REWRITE_TAC[IN_CROSS; IN_DIFF; IN_ELIM_THM; PAIR_EQ] THEN ASM_CASES_TAC `(f:A->B) x = y` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT1)] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [hausdorff_space]) THEN DISCH_THEN(MP_TAC o SPECL [`(f:A->B) x`; `y:B`]) THEN SUBGOAL_THEN `(f:A->B) x IN topspace top'` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:B->bool`; `v:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `{x | x IN topspace top /\ (f:A->B) x IN u}` THEN EXISTS_TAC `v:B->bool` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS; IN_ELIM_THM; IN_DIFF] THEN ASM_REWRITE_TAC[PAIR_EQ] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]]);; let CLOSED_MAP_PAIRED_CONTINUOUS_MAP_RIGHT = prove (`!top top' (f:A->B). continuous_map(top,top') f /\ hausdorff_space top' ==> closed_map(top,prod_topology top top') (\x. x,f x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC EMBEDDING_IMP_CLOSED_MAP THEN ASM_REWRITE_TAC[EMBEDDING_MAP_GRAPH] THEN ASM_SIMP_TAC[GSYM SIMPLE_IMAGE; CONTINUOUS_MAP_IMP_CLOSED_GRAPH]);; let CLOSED_MAP_PAIRED_CONTINUOUS_MAP_LEFT = prove (`!top top' (f:A->B). continuous_map(top,top') f /\ hausdorff_space top' ==> closed_map(top,prod_topology top' top) (\x. f x,x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. (f:A->B) x,x) = (\(a,b). b,a) o (\x. x,f x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top top':(A#B)topology` THEN ASM_SIMP_TAC[CLOSED_MAP_PAIRED_CONTINUOUS_MAP_RIGHT] THEN MATCH_MP_TAC HOMEOMORPHIC_IMP_CLOSED_MAP THEN REWRITE_TAC[HOMEOMORPHIC_MAP_SWAP]);; let EMBEDDING_MAP_ON_DENSE_SUBTOPOLOGY = prove (`!top top' (f:A->B) s. hausdorff_space top /\ s SUBSET topspace top /\ top closure_of s = topspace top /\ continuous_map (top,top') f /\ embedding_map (subtopology top s,top') f ==> DISJOINT (IMAGE f s) (IMAGE f (topspace top DIFF s))`, REPEAT STRIP_TAC THEN ABBREV_TAC `t = {x | x IN topspace top /\ f x IN IMAGE (f:A->B) s}` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [embedding_map]) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET] THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f':B->A` THEN REWRITE_TAC[homeomorphic_maps] THEN SUBGOAL_THEN `IMAGE (f:A->B) s SUBSET topspace top'` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET] THEN STRIP_TAC] THEN SUBGOAL_THEN `(s:A->bool) retract_of_space (subtopology top t)` MP_TAC THENL [ASM_REWRITE_TAC[retract_of_space; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY]] THEN SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s`] THEN DISCH_TAC THEN EXISTS_TAC `(f':B->A) o (f:A->B)` THEN ASM_REWRITE_TAC[o_THM] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology top' (IMAGE (f:A->B) s)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]; DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] RETRACT_OF_SPACE_IMP_CLOSED_IN))] THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[CLOSED_IN_INTER_CLOSURE_OF] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* KC spaces, those where all compact sets are closed. *) (* ------------------------------------------------------------------------- *) let kc_space = new_definition `kc_space (top:A topology) <=> !s. compact_in top s ==> closed_in top s`;; let KC_SPACE_EXPANSIVE = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) ==> kc_space top ==> kc_space top'`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[kc_space] THEN ASM_MESON_TAC[TOPOLOGY_FINER_CLOSED_IN; COMPACT_IN_CONTRACTIVE]);; let COMPACT_IN_IMP_CLOSED_IN_GEN = prove (`!top s:A->bool. kc_space top /\ compact_in top s ==> closed_in top s`, SIMP_TAC[kc_space]);; let HAUSDORFF_IMP_KC_SPACE = prove (`!top:A topology. hausdorff_space top ==> kc_space top`, SIMP_TAC[kc_space; COMPACT_IN_IMP_CLOSED_IN]);; let KC_IMP_T1_SPACE = prove (`!top:A topology. kc_space top ==> t1_space top`, SIMP_TAC[kc_space; T1_SPACE_CLOSED_IN_SING; COMPACT_IN_SING]);; let KC_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. kc_space top ==> kc_space(subtopology top s)`, REWRITE_TAC[kc_space; COMPACT_IN_SUBTOPOLOGY] THEN SIMP_TAC[CLOSED_IN_SUBSET_TOPSPACE]);; let KC_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. kc_space(discrete_topology u)`, MESON_TAC[HAUSDORFF_SPACE_DISCRETE_TOPOLOGY; HAUSDORFF_IMP_KC_SPACE]);; let KC_SPACE_CONTINUOUS_INJECTIVE_MAP_PREIMAGE = prove (`!top top' (f:A->B). continuous_map(top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) /\ kc_space top' ==> kc_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[INJECTIVE_ON_ALT; kc_space] THEN STRIP_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `s = {x | x IN topspace top /\ f x IN IMAGE (f:A->B) s}` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2 o REWRITE_RULE[CONTINUOUS_MAP_CLOSED_IN]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN ASM_MESON_TAC[]]);; let KC_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ kc_space top ==> kc_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[retraction_map; retraction_maps] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r':B->A` THEN REWRITE_TAC[kc_space] THEN STRIP_TAC THEN X_GEN_TAC `s:B->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `s = {x | x IN topspace top' /\ r' x IN IMAGE (r':B->A) s}` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN ASM_MESON_TAC[]]);; let HOMEOMORPHIC_KC_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (kc_space top <=> kc_space top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN REWRITE_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP] THEN MESON_TAC[KC_SPACE_RETRACTION_MAP_IMAGE]);; let COMPACT_KC_EQ_MAXIMAL_COMPACT_SPACE = prove (`!top:A topology. compact_space top ==> (kc_space top <=> !top'. topspace top' = topspace top /\ (!s. open_in top s ==> open_in top' s) /\ compact_space top' ==> top' = top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[kc_space] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `top':A topology` THEN SIMP_TAC[IMP_CONJ; TOPOLOGY_FINER_CLOSED_IN] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[TOPOLOGY_EQ_ALT] THEN ASM_MESON_TAC[CLOSED_IN_COMPACT_SPACE; COMPACT_IN_CONTRACTIVE; TOPOLOGY_FINER_CLOSED_IN]; X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN GEN_REWRITE_TAC I [TAUT `p <=> ~p ==> F`] THEN DISCH_TAC THEN ABBREV_TAC `top' = topology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF ((topspace top DIFF s) INSERT open_in top) relative_to (topspace top:A->bool)))` THEN FIRST_X_ASSUM(MP_TAC o SPEC `top':A topology`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [EXPAND_TAC "top'" THEN REWRITE_TAC[TOPSPACE_SUBBASE]; X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN EXPAND_TAC "top'" THEN REWRITE_TAC[OPEN_IN_SUBBASE] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `u SUBSET t ==> u = t INTER u`) o MATCH_MP OPEN_IN_SUBSET) THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[INSERT; IN_ELIM_THM] THEN ASM SET_TAC[]; MATCH_MP_TAC ALEXANDER_SUBBASE_THEOREM_ALT THEN EXISTS_TAC `(topspace top DIFF s:A->bool) INSERT open_in top` THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_INSERT] THEN MATCH_MP_TAC(SET_RULE `UNIONS {x | P x} = s ==> s SUBSET t UNION UNIONS P`) THEN REWRITE_TAC[topspace]; ALL_TAC] THEN REWRITE_TAC[FORALL_SUBSET_INSERT; IMP_CONJ] THEN X_GEN_TAC `U:(A->bool)->bool` THEN GEN_REWRITE_TAC LAND_CONV [SET_RULE `s SUBSET P <=> !x. x IN s ==> P x`] THEN DISCH_TAC THEN CONJ_TAC THENL [DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [compact_space]) THEN REWRITE_TAC[compact_in] THEN ASM_SIMP_TAC[]; ASM_SIMP_TAC[UNIONS_INSERT; SET_RULE `s SUBSET u ==> (u SUBSET (u DIFF s) UNION t <=> s SUBSET t)`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [compact_in]) THEN DISCH_THEN(MP_TAC o SPEC `U:(A->bool)->bool` o CONJUNCT2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `V:(A->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(topspace top DIFF s:A->bool) INSERT V` THEN ASM_REWRITE_TAC[FINITE_INSERT; UNIONS_INSERT] THEN ASM SET_TAC[]]; REWRITE_TAC[TOPOLOGY_EQ_ALT; NOT_FORALL_THM] THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[closed_in] THEN EXPAND_TAC "top'" THEN REWRITE_TAC[TOPSPACE_SUBBASE; OPEN_IN_SUBBASE] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN ONCE_REWRITE_TAC[SET_RULE `u DIFF s = u INTER (u DIFF s)`] THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[INSERT; IN_ELIM_THM] THEN ASM SET_TAC[]]]);; let CONTINUOUS_IMP_CLOSED_MAP_GEN = prove (`!top top' (f:A->B). compact_space top /\ kc_space top' /\ continuous_map(top,top') f ==> closed_map(top,top') f`, REWRITE_TAC[closed_map; kc_space] THEN ASM_MESON_TAC[IMAGE_COMPACT_IN; CLOSED_IN_COMPACT_SPACE]);; let KC_SPACE_COMPACT_SUBTOPOLOGIES = prove (`!top:A topology. kc_space top <=> !k. compact_in top k ==> kc_space(subtopology top k)`, GEN_TAC THEN REWRITE_TAC[kc_space; COMPACT_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [MESON_TAC[CLOSED_IN_SUBSET_TOPSPACE]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM_REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET] CLOSURE_OF_SUBSET_TOPSPACE)) THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A} UNION k`) THEN ASM_SIMP_TAC[COMPACT_IN_UNION; COMPACT_IN_SING] THEN DISCH_THEN(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[SUBSET_UNION; GSYM CLOSURE_OF_SUBSET_EQ] THEN REWRITE_TAC[SUBSET; IN_INTER; CLOSURE_OF_SUBTOPOLOGY] THEN DISCH_THEN(MATCH_MP_TAC o CONJUNCT2) THEN ASM_REWRITE_TAC[SET_RULE `(s UNION t) INTER t = t`; IN_UNION; IN_SING]);; let KC_SPACE_COMPACT_PROD_TOPOLOGY = prove (`!top:A topology. compact_space top ==> (kc_space(prod_topology top top) <=> hausdorff_space top)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[HAUSDORFF_IMP_KC_SPACE; HAUSDORFF_SPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[kc_space; HAUSDORFF_SPACE_CLOSED_IN_DIAGONAL] THEN DISCH_THEN MATCH_MP_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `top:A topology` THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_ID] THEN ASM_REWRITE_TAC[GSYM compact_space]);; let KC_SPACE_PROD_TOPOLOGY = prove (`!top:A topology. kc_space(prod_topology top top) <=> !k. compact_in top k ==> hausdorff_space(subtopology top k)`, GEN_TAC THEN ONCE_REWRITE_TAC[KC_SPACE_COMPACT_SUBTOPOLOGIES] THEN SIMP_TAC[AND_FORALL_THM; TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(k:A->bool) CROSS k`) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_CROSS; COMPACT_IN_CROSS] THEN ASM_SIMP_TAC[KC_SPACE_COMPACT_PROD_TOPOLOGY; COMPACT_SPACE_SUBTOPOLOGY; HAUSDORFF_IMP_KC_SPACE]; X_GEN_TAC `l:A#A->bool` THEN DISCH_TAC THEN ABBREV_TAC `k:A->bool = IMAGE FST l UNION IMAGE SND l` THEN SUBGOAL_THEN `compact_in top (k:A->bool)` ASSUME_TAC THENL [EXPAND_TAC "k" THEN MATCH_MP_TAC COMPACT_IN_UNION THEN CONJ_TAC THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `prod_topology (top:A topology) top` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]; FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[]] THEN ASM_SIMP_TAC[GSYM KC_SPACE_COMPACT_PROD_TOPOLOGY; COMPACT_SPACE_SUBTOPOLOGY] THEN DISCH_THEN(MP_TAC o SPEC `l:A#A->bool` o MATCH_MP KC_SPACE_SUBTOPOLOGY) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM SUBTOPOLOGY_CROSS; SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `s INTER t = t <=> t SUBSET s`] THEN EXPAND_TAC "k" THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_UNION; IN_CROSS; IN_IMAGE] THEN MESON_TAC[FST; SND]]);; let KC_SPACE_PROD_TOPOLOGY_ALT = prove (`!top:A topology. kc_space(prod_topology top top) <=> kc_space top /\ !k. compact_in top k ==> hausdorff_space(subtopology top k)`, REWRITE_TAC[KC_SPACE_PROD_TOPOLOGY] THEN ONCE_REWRITE_TAC[KC_SPACE_COMPACT_SUBTOPOLOGIES] THEN MESON_TAC[HAUSDORFF_IMP_KC_SPACE]);; let KC_SPACE_PROD_TOPOLOGY_LEFT = prove (`!(top:A topology) (top':B topology). kc_space top /\ hausdorff_space top' ==> kc_space (prod_topology top top')`, REPEAT STRIP_TAC THEN REWRITE_TAC[kc_space] THEN X_GEN_TAC `k:A#B->bool` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM_REWRITE_TAC[closed_in] THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_DIFF; IN_CROSS; TOPSPACE_PROD_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{b:B}`; `{y | y IN topspace top' /\ (a,y) IN (k:A#B->bool)}`] o MATCH_MP (ONCE_REWRITE_RULE [IMP_CONJ] HAUSDORFF_SPACE_COMPACT_SEPARATION)) THEN ASM_REWRITE_TAC[COMPACT_IN_SING] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[COMPACT_IN_SUBSPACE; SUBSET_RESTRICT] THEN MP_TAC(ISPECL [`prod_topology top top':(A#B)topology`; `k:A#B->bool`; `{a:A} CROSS (topspace top':B->bool)`] COMPACT_INTER_CLOSED_IN) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[CLOSED_IN_CROSS; CLOSED_IN_TOPSPACE] THEN ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING; KC_IMP_T1_SPACE]; REWRITE_TAC[COMPACT_IN_SUBSPACE] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC EQ_IMP] THEN MATCH_MP_TAC HOMEOMORPHIC_COMPACT_SPACE THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps] THEN MAP_EVERY EXISTS_TAC [`SND:A#B->B`; `(\x. (a,x)):B->A#B`] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_SND; CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST] THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_CROSS; TOPSPACE_PROD_TOPOLOGY; IN_SING] THEN SIMP_TAC[IN_ELIM_THM] THEN MESON_TAC[]; DISCH_THEN(X_CHOOSE_THEN `v:B->bool` MP_TAC)] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; IMP_CONJ] THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [EXISTS_OPEN_IN] THEN DISCH_THEN(X_CHOOSE_THEN `v':B->bool` MP_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[SING_SUBSET; SUBSET_RESTRICT; SET_RULE `s SUBSET t DIFF u <=> s SUBSET t /\ DISJOINT s u`] THEN ASM_SIMP_TAC[SET_RULE `v SUBSET u ==> (DISJOINT v (u DIFF v') <=> v SUBSET v')`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [kc_space]) THEN ABBREV_TAC `c = IMAGE FST (k INTER {z:A#B | z IN topspace(prod_topology top top') /\ SND z IN v'})` THEN DISCH_THEN(MP_TAC o SPEC `c:A->bool`) THEN ANTS_TAC THENL [EXPAND_TAC "c" THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `prod_topology top top':(A#B)topology` THEN REWRITE_TAC[CONTINUOUS_MAP_FST] THEN MATCH_MP_TAC COMPACT_INTER_CLOSED_IN THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `top':B topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_SND]; DISCH_TAC] THEN EXISTS_TAC `(topspace top DIFF c:A->bool) CROSS (v:B->bool)` THEN ASM_SIMP_TAC[OPEN_IN_CROSS; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM_REWRITE_TAC[IN_CROSS; IN_DIFF] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN REWRITE_TAC[DISJOINT] THEN ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[FORALL_PAIR_THM; SUBSET; IN_IMAGE; EXISTS_PAIR_THM] THEN REWRITE_TAC[IN_INTER; IN_ELIM_PAIR_THM; IN_CROSS; IN_DIFF; TOPSPACE_PROD_TOPOLOGY; NOT_IN_EMPTY] THEN SET_TAC[]);; let KC_SPACE_PROD_TOPOLOGY_RIGHT = prove (`!(top:A topology) (top':B topology). hausdorff_space top /\ kc_space top' ==> kc_space (prod_topology top top')`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top':B topology`; `top:A topology`] KC_SPACE_PROD_TOPOLOGY_LEFT) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_KC_SPACE THEN REWRITE_TAC[HOMEOMORPHIC_SPACE_PROD_TOPOLOGY_SWAP]);; let KC_SPACE_PROD_TOPOLOGY_GEN = prove (`!(top:A topology) (top':B topology). kc_space top /\ kc_space top' /\ ((!k. compact_in top k ==> hausdorff_space (subtopology top k)) \/ (!l. compact_in top' l ==> hausdorff_space (subtopology top' l))) ==> kc_space(prod_topology top top')`, REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `!(k:A->bool) (l:B->bool). compact_in top k /\ compact_in top' l ==> kc_space (prod_topology (subtopology top k) (subtopology top' l))` MP_TAC THENL [FIRST_X_ASSUM STRIP_ASSUME_TAC THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`subtopology top (k:A->bool)`; `top':B topology`] KC_SPACE_PROD_TOPOLOGY_RIGHT) THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[CONJUNCT2 PROD_TOPOLOGY_SUBTOPOLOGY] THEN SIMP_TAC[KC_SPACE_SUBTOPOLOGY]; MP_TAC(ISPECL [`top:A topology`; `subtopology top' (l:B->bool)`] KC_SPACE_PROD_TOPOLOGY_LEFT) THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[CONJUNCT1 PROD_TOPOLOGY_SUBTOPOLOGY] THEN SIMP_TAC[KC_SPACE_SUBTOPOLOGY]]; DISCH_TAC THEN GEN_REWRITE_TAC I [KC_SPACE_COMPACT_SUBTOPOLOGIES]] THEN X_GEN_TAC `m:A#B->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `subtopology (prod_topology top top') (m:A#B->bool) = subtopology (prod_topology (subtopology top (IMAGE FST m)) (subtopology top' (IMAGE SND m))) m` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBTOPOLOGY_CROSS; SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `k = s INTER k <=> k SUBSET s`] THEN SIMP_TAC[FORALL_PAIR_THM; IN_CROSS; IN_IMAGE; EXISTS_PAIR_THM; SUBSET] THEN MESON_TAC[]; MATCH_MP_TAC KC_SPACE_SUBTOPOLOGY THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN ASM_MESON_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]]);; (* ------------------------------------------------------------------------- *) (* Proper maps (not a priori assumed continuous) *) (* ------------------------------------------------------------------------- *) let proper_map = new_definition `proper_map (top,top') (f:A->B) <=> closed_map (top,top') f /\ !y. y IN topspace top' ==> compact_in top {x | x IN topspace top /\ f x = y}`;; let PROPER_IMP_CLOSED_MAP = prove (`!top top' (f:A->B). proper_map(top,top') f ==> closed_map(top,top') f`, SIMP_TAC[proper_map]);; let PROPER_MAP_IMP_SUBSET_TOPSPACE = prove (`!top top' (f:A->B). proper_map(top,top') f ==> IMAGE f (topspace top) SUBSET topspace top'`, MESON_TAC[PROPER_IMP_CLOSED_MAP; CLOSED_MAP_IMP_SUBSET_TOPSPACE]);; let CLOSED_INJECTIVE_IMP_PROPER_MAP = prove (`!top top' (f:A->B). closed_map(top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) ==> proper_map(top,top') f`, REWRITE_TAC[INJECTIVE_ON_ALT] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[proper_map] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x = y} = {} \/ ?a. a IN topspace top /\ {x | x IN topspace top /\ (f:A->B) x = y} = {a}` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN STRIP_TAC THEN ASM_REWRITE_TAC[COMPACT_IN_EMPTY; COMPACT_IN_SING]);; let INJECTIVE_IMP_PROPER_EQ_CLOSED_MAP = prove (`!top top' (f:A->B). (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) ==> (proper_map(top,top') f <=> closed_map(top,top') f)`, MESON_TAC[CLOSED_INJECTIVE_IMP_PROPER_MAP; PROPER_IMP_CLOSED_MAP]);; let PROPER_MAP_DIAG_EQ = prove (`!top:A topology. proper_map (top,prod_topology top top) (\x. x,x) <=> hausdorff_space top`, GEN_TAC THEN REWRITE_TAC[GSYM CLOSED_MAP_DIAG_EQ] THEN MATCH_MP_TAC INJECTIVE_IMP_PROPER_EQ_CLOSED_MAP THEN REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ] THEN SIMP_TAC[]);; let HOMEOMORPHIC_IMP_PROPER_MAP = prove (`!top top' (f:A->B). homeomorphic_map(top,top') f ==> proper_map(top,top') f`, REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_INJECTIVE_IMP_PROPER_MAP THEN ASM_REWRITE_TAC[INJECTIVE_ON_ALT]);; let COMPACT_IN_PROPER_MAP_PREIMAGE = prove (`!top top' (f:A->B) k. proper_map(top,top') f /\ compact_in top' k ==> compact_in top {x | x IN topspace top /\ f x IN k}`, REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE) THEN REWRITE_TAC[compact_in; SUBSET_RESTRICT] THEN X_GEN_TAC `u:(A->bool)->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `!y. y IN k ==> ?v. FINITE v /\ v SUBSET u /\ {x | x IN topspace top /\ (f:A->B) x = y} SUBSET UNIONS v` MP_TAC THENL [X_GEN_TAC `y:B` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:B`) THEN ANTS_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; ASM_REWRITE_TAC[compact_in; SUBSET_RESTRICT] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `v:B->(A->bool)->bool` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [compact_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `{ topspace top' DIFF IMAGE (f:A->B) (topspace top DIFF UNIONS (v y)) | (y:B) IN k}`) THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [closed_map]) THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]; REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]]; REWRITE_TAC[SIMPLE_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[UNIONS_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `j:B->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `UNIONS { (v:B->(A->bool)->bool) y | y IN j}` THEN ASM_SIMP_TAC[FINITE_UNIONS; SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE; UNIONS_IMAGE] THEN ASM SET_TAC[]]);; let COMPACT_SPACE_PROPER_MAP_PREIMAGE = prove (`!top top' (f:A->B). proper_map(top,top') f /\ IMAGE f (topspace top) = topspace top' /\ compact_space top' ==> compact_space top`, REWRITE_TAC[compact_space] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `topspace top = {x | x IN topspace top /\ (f:A->B) x IN topspace top'}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM (MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] COMPACT_IN_PROPER_MAP_PREIMAGE)) THEN ASM_REWRITE_TAC[]);; let PROPER_MAP_ALT = prove (`!top top' (f:A->B). proper_map (top,top') f <=> closed_map (top,top') f /\ !k. compact_in top' k ==> compact_in top {x | x IN topspace top /\ f x IN k}`, REPEAT GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PROPER_IMP_CLOSED_MAP] THEN ASM_MESON_TAC[COMPACT_IN_PROPER_MAP_PREIMAGE]; STRIP_TAC THEN ASM_REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM IN_SING] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[COMPACT_IN_SING]]);; let PROPER_MAP_ON_EMPTY = prove (`!top top' (f:A->B). topspace top = {} ==> proper_map(top,top') f`, SIMP_TAC[proper_map; CLOSED_MAP_ON_EMPTY; NOT_IN_EMPTY] THEN REWRITE_TAC[EMPTY_GSPEC; COMPACT_IN_EMPTY]);; let PROPER_MAP_ID = prove (`!top:A topology. proper_map(top,top) (\x. x)`, REWRITE_TAC[PROPER_MAP_ALT; CLOSED_MAP_ID; IMAGE_ID; SUBSET_REFL] THEN SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; SET_RULE `k SUBSET u ==> {x | x IN u /\ x IN k} = k`]);; let PROPER_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). proper_map(top,top') f /\ proper_map(top',top'') g ==> proper_map(top,top'') (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[PROPER_MAP_ALT; o_THM; IMAGE_o] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_MAP_COMPOSE]; ALL_TAC] THEN X_GEN_TAC `k:C->bool` THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE)) THEN SUBGOAL_THEN `{x:A | x IN topspace top /\ (g:B->C) (f x) IN k} = {x | x IN topspace top /\ f x IN {y | y IN topspace top' /\ g y IN k}}` SUBST1_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[]]);; let PROPER_MAP_CONST = prove (`!(top:A topology) top' (c:B). proper_map(top,top') (\x. c) <=> compact_space top /\ (topspace top = {} \/ closed_in top' {c})`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[PROPER_MAP_ON_EMPTY; COMPACT_SPACE_TOPSPACE_EMPTY] THEN ASM_REWRITE_TAC[proper_map; CLOSED_MAP_CONST] THEN ASM_CASES_TAC `closed_in top' {c:B}` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SET_RULE `{x | P x /\ Q} = if Q then {x | P x} else {}`] THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[COMPACT_IN_EMPTY; IN_GSPEC] THEN REWRITE_TAC[TAUT `(if p then q else T) <=> p ==> q`; GSYM compact_space] THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM1] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SIMP_TAC[SING_SUBSET]);; let PROPER_MAP_INCLUSION = prove (`!top s:A->bool. s SUBSET topspace top ==> (proper_map(subtopology top s,top) (\x. x) <=> closed_in top s /\ !k. compact_in top k ==> compact_in top (s INTER k))`, REPEAT STRIP_TAC THEN REWRITE_TAC[PROPER_MAP_ALT; CLOSED_MAP_INCLUSION_EQ] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`; COMPACT_IN_SUBTOPOLOGY; SUBSET_RESTRICT] THEN REWRITE_TAC[GSYM INTER]);; let PROPER_MAP_PAIRED_CONTINUOUS_MAP_RIGHT = prove (`!top top' (f:A->B). continuous_map(top,top') f /\ hausdorff_space top' ==> proper_map(top,prod_topology top top') (\x. x,f x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_INJECTIVE_IMP_PROPER_MAP THEN SIMP_TAC[PAIR_EQ] THEN ASM_SIMP_TAC[CLOSED_MAP_PAIRED_CONTINUOUS_MAP_RIGHT]);; let PROPER_MAP_PAIRED_CONTINUOUS_MAP_LEFT = prove (`!top top' (f:A->B). continuous_map(top,top') f /\ hausdorff_space top' ==> proper_map(top,prod_topology top' top) (\x. f x,x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_INJECTIVE_IMP_PROPER_MAP THEN SIMP_TAC[PAIR_EQ] THEN ASM_SIMP_TAC[CLOSED_MAP_PAIRED_CONTINUOUS_MAP_LEFT]);; let COMPACT_IMP_PROPER_MAP_GEN = prove (`!top'. (!s. s SUBSET topspace top' /\ (!k. compact_in top' k ==> compact_in top' (s INTER k)) ==> closed_in top' s) ==> !top (f:A->B). IMAGE f (topspace top) SUBSET topspace top' /\ (continuous_map(top,top') f \/ kc_space top) /\ (!k. compact_in top' k ==> compact_in top {x | x IN topspace top /\ f x IN k}) ==> proper_map(top,top') f`, GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[PROPER_MAP_ALT; closed_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]; X_GEN_TAC `k:B->bool` THEN DISCH_TAC] THEN SUBGOAL_THEN `IMAGE (f:A->B) c INTER k = IMAGE f ({x | x IN topspace top /\ f x IN k} INTER c)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC IMAGE_COMPACT_IN] THEN EXISTS_TAC `subtopology top {x | x IN topspace top /\ (f:A->B) x IN k}` THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; COMPACT_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED]; ALL_TAC] THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [ASM_SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN ASM SET_TAC[]; MATCH_MP_TAC(MESON[CONTINUOUS_MAP_IN_SUBTOPOLOGY] `!t. continuous_map(top,subtopology top' t) f ==> continuous_map(top,top') f`) THEN EXISTS_TAC `k:B->bool` THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `t:B->bool`] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CLOSED_IN_COMPACT_SPACE)) THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN_GEN THEN ASM_SIMP_TAC[KC_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; SET_RULE `c SUBSET k ==> {x | x IN u INTER {x | x IN u /\ f x IN k} /\ f x IN c} = {x | x IN u /\ f x IN c}`] THEN ASM SET_TAC[]]);; let CONTINUOUS_CLOSED_IMP_PROPER_MAP = prove (`!top top' (f:A->B). compact_space top /\ t1_space top' /\ continuous_map (top,top') f /\ closed_map (top,top') f ==> proper_map (top,top') f`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM IN_SING] THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING]);; let CONTINUOUS_IMP_PROPER_MAP = prove (`!top top' (f:A->B). compact_space top /\ kc_space top' /\ continuous_map (top,top') f ==> proper_map (top,top') f`, MESON_TAC[CONTINUOUS_IMP_CLOSED_MAP_GEN; CONTINUOUS_CLOSED_IMP_PROPER_MAP; KC_IMP_T1_SPACE]);; let PROPER_IMP_CONTINUOUS_MAP = prove (`!top top' (f:A->B). kc_space top /\ compact_space top' /\ proper_map (top,top') f ==> continuous_map (top,top') f`, REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; PROPER_MAP_ALT] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE) THEN REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN_GEN THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[CLOSED_IN_COMPACT_SPACE]);; let PROPER_MAP_FST = prove (`!(top:A topology) (top':B topology). proper_map(prod_topology top top',top) FST <=> topspace top = {} \/ compact_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[proper_map; TOPSPACE_PROD_TOPOLOGY] THEN SUBGOAL_THEN `!x. x IN topspace top ==> {z:A#B | z IN topspace top CROSS topspace top' /\ FST z = x} = {x} CROSS topspace top'` (fun th -> SIMP_TAC[th]) THENL [SIMP_TAC[EXTENSION; IN_ELIM_THM; FORALL_PAIR_THM; IN_CROSS; IN_SING] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[COMPACT_IN_CROSS; COMPACT_IN_SING; GSYM compact_space] THEN SIMP_TAC[NOT_INSERT_EMPTY; MESON[COMPACT_SPACE_TOPSPACE_EMPTY] `topspace top = {} \/ compact_space top <=> compact_space top`] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; MEMBER_NOT_EMPTY; TAUT `(r /\ (~p ==> q) <=> p \/ q) <=> (p ==> r) /\ (q ==> r)`] THEN SIMP_TAC[CLOSED_MAP_FST; CLOSED_MAP_ON_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY]);; let PROPER_MAP_SND = prove (`!(top:A topology) (top':B topology). proper_map(prod_topology top top',top') SND <=> compact_space top \/ topspace top' = {}`, REPEAT GEN_TAC THEN REWRITE_TAC[proper_map; TOPSPACE_PROD_TOPOLOGY] THEN SUBGOAL_THEN `!y. y IN topspace top' ==> {z:A#B | z IN topspace top CROSS topspace top' /\ SND z = y} = topspace top CROSS {y}` (fun th -> SIMP_TAC[th]) THENL [SIMP_TAC[EXTENSION; IN_ELIM_THM; FORALL_PAIR_THM; IN_CROSS; IN_SING] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[COMPACT_IN_CROSS; COMPACT_IN_SING; GSYM compact_space] THEN SIMP_TAC[NOT_INSERT_EMPTY; MESON[COMPACT_SPACE_TOPSPACE_EMPTY] `topspace top = {} \/ compact_space top <=> compact_space top`] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; MEMBER_NOT_EMPTY; TAUT `(r /\ (~p ==> q) <=> q \/ p) <=> (p ==> r) /\ (q ==> r)`] THEN SIMP_TAC[CLOSED_MAP_SND; CLOSED_MAP_ON_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY]);; let PROPER_MAP_INTO_SUBTOPOLOGY = prove (`!top top' (f:A->B) c. proper_map (top,top') f /\ IMAGE f (topspace top) SUBSET c ==> proper_map (top,subtopology top' c) f`, SIMP_TAC[proper_map; CLOSED_MAP_INTO_SUBTOPOLOGY] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER]);; let PROPER_MAP_FROM_SUBTOPOLOGY = prove (`!top top' (f:A->B) c. proper_map (top,top') f /\ closed_in top c ==> proper_map (subtopology top c,top') f`, SIMP_TAC[proper_map; CLOSED_MAP_FROM_SUBTOPOLOGY] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[INTER_SUBSET; SET_RULE `{x | x IN u INTER c /\ P x} = c INTER {x | x IN u /\ P x}`] THEN SIMP_TAC[CLOSED_INTER_COMPACT_IN]);; let PROPER_MAP_RESTRICTION = prove (`!top top' (f:A->B) u v. proper_map (top,top') f /\ {x | x IN topspace top /\ f x IN v} = u ==> proper_map (subtopology top u,subtopology top' v) f`, REPEAT GEN_TAC THEN SIMP_TAC[proper_map; CLOSED_MAP_RESTRICTION] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[INTER_SUBSET; SET_RULE `{x | x IN u INTER c /\ P x} = c INTER {x | x IN u /\ P x}`] THEN STRIP_TAC THEN X_GEN_TAC `y:B` THEN REWRITE_TAC[IN_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:B`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let PROPER_MAP_IN_SUBTOPOLOGY = prove (`!top top' s (f:A->B). closed_in top' s ==> (proper_map(top,subtopology top' s) f <=> proper_map(top,top') f /\ IMAGE f (topspace top) SUBSET s)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[proper_map; CLOSED_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `y:B` THEN ASM_CASES_TAC `(y:B) IN s` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(MESON[COMPACT_IN_EMPTY] `s = {} ==> p ==> compact_in top s`) THEN ASM SET_TAC[]);; let PROPER_MAP_FROM_CLOSED_SUBTOPOLOGY = prove (`!top top' s (f:A->B). closed_in top' s /\ proper_map(top,subtopology top' s) f ==> proper_map(top,top') f`, MESON_TAC[PROPER_MAP_IN_SUBTOPOLOGY]);; let PROPER_MAP_FROM_COMPOSITION_LEFT = prove (`!top top' top'' (f:A->B) (g:B->C). proper_map(top,top'') (g o f) /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> proper_map(top',top'') g`, REPEAT GEN_TAC THEN REWRITE_TAC[proper_map] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_MAP_FROM_COMPOSITION_LEFT]; ALL_TAC] THEN X_GEN_TAC `z:C` THEN DISCH_TAC THEN SUBGOAL_THEN `{y | y IN topspace top' /\ (g:B->C) y = z} = IMAGE (f:A->B) {x | x IN topspace top /\ (g o f) x = z}` SUBST1_TAC THENL [REWRITE_TAC[o_DEF] THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `top:A topology` THEN ASM_SIMP_TAC[]);; let PROPER_MAP_FROM_COMPOSITION_RIGHT_INJ = prove (`!top top' top'' (f:A->B) (g:B->C). proper_map(top,top'') (g o f) /\ IMAGE f (topspace top) SUBSET topspace top' /\ continuous_map(top',top'') g /\ (!x y. x IN topspace top' /\ y IN topspace top' /\ g x = g y ==> x = y) ==> proper_map(top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[proper_map] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_METIS_TAC[CLOSED_MAP_FROM_COMPOSITION_RIGHT]; ALL_TAC] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x = y} = {x | x IN topspace top /\ (g o f) x:C = g y}` SUBST1_TAC THENL [REWRITE_TAC[o_DEF] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let PROPER_MAP_PROD = prove (`!top1 top1' top2 top2' (f:A->C) (g:B->D). proper_map (prod_topology top1 top2,prod_topology top1' top2') (\(x,y). f x,g y) <=> topspace(prod_topology top1 top2) = {} \/ proper_map (top1,top1') f /\ proper_map (top2,top2') g`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THEN ASM_SIMP_TAC[PROPER_MAP_ON_EMPTY] THEN EQ_TAC THENL [REWRITE_TAC[proper_map] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_MAP_PROD) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PROD_TOPOLOGY]) THEN RULE_ASSUM_TAC(REWRITE_RULE[CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE)) THEN CONJ_TAC THENL [X_GEN_TAC `y:C` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY] o CONJUNCT2) THEN DISCH_THEN(X_CHOOSE_TAC `z:B`) THEN SUBGOAL_THEN `{x | x IN topspace top1 /\ f x = y} = IMAGE FST {x | x IN topspace top1 CROSS topspace top2 /\ (\(x,y). (f:A->C) x,(g:B->D) y) x = y,g z}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM; IN_CROSS; PAIR_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `prod_topology top1 top2:(A#B)topology` THEN REWRITE_TAC[CONTINUOUS_MAP_FST] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_CROSS] THEN ASM SET_TAC[]]; X_GEN_TAC `y:D` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY] o CONJUNCT1) THEN DISCH_THEN(X_CHOOSE_TAC `z:A`) THEN SUBGOAL_THEN `{x | x IN topspace top2 /\ g x = y} = IMAGE SND {x | x IN topspace top1 CROSS topspace top2 /\ (\(x,y). (f:A->C) x,(g:B->D) y) x = f z,y}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM; IN_CROSS; PAIR_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `prod_topology top1 top2:(A#B)topology` THEN REWRITE_TAC[CONTINUOUS_MAP_SND] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_CROSS] THEN ASM SET_TAC[]]]; STRIP_TAC THEN REWRITE_TAC[proper_map] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`w:C`; `z:D`] THEN STRIP_TAC THEN SUBGOAL_THEN `{x | x IN topspace top1 CROSS topspace top2 /\ (\(x,y). (f:A->C) x,(g:B->D) y) x = w,z} = {x | x IN topspace top1 /\ f x = w} CROSS {y | y IN topspace top2 /\ g y = z}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[PAIR_EQ] THEN MESON_TAC[]; REWRITE_TAC[COMPACT_IN_CROSS] THEN RULE_ASSUM_TAC(REWRITE_RULE[proper_map]) THEN ASM_SIMP_TAC[]]] THEN REPEAT(FIRST_X_ASSUM(fun th -> ASSUME_TAC(MATCH_MP PROPER_MAP_IMP_SUBSET_TOPSPACE th) THEN STRIP_ASSUME_TAC(REWRITE_RULE[proper_map] th))) THEN REWRITE_TAC[CLOSED_MAP_FIBRE_NEIGHBOURHOOD] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN ASM SET_TAC[]; REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS]] THEN MAP_EVERY X_GEN_TAC [`w:A#B->bool`; `y1:C`; `y2:D`] THEN SUBGOAL_THEN `{x | x IN topspace top1 CROSS topspace top2 /\ (\(x,y). (f:A->C) x,(g:B->D) y) x = y1,y2} = {x | x IN topspace top1 /\ f x = y1} CROSS {y | y IN topspace top2 /\ g y = y2}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[PAIR_EQ] THEN MESON_TAC[]; STRIP_TAC] THEN MP_TAC(ISPECL [`top1:A topology`; `top2:B topology`; `w:A#B->bool`; `{x | x IN topspace top1 /\ (f:A->C) x = y1}`; `{x | x IN topspace top2 /\ (g:B->D) x = y2}`] WALLACE_THEOREM_PROD_TOPOLOGY) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN MAP_EVERY UNDISCH_TAC [`closed_map(top2,top2') (g:B->D)`; `closed_map(top1,top1') (f:A->C)`] THEN REWRITE_TAC[IMP_IMP; CLOSED_MAP_FIBRE_NEIGHBOURHOOD] THEN DISCH_THEN(CONJUNCTS_THEN(MP_TAC o CONJUNCT2)) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPECL [`v:B->bool`; `y2:D`]) (MP_TAC o SPECL [`u:A->bool`; `y1:C`])) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u':C->bool` THEN STRIP_TAC THEN X_GEN_TAC `v':D->bool` THEN STRIP_TAC THEN EXISTS_TAC `(u':C->bool) CROSS (v':D->bool)` THEN ASM_REWRITE_TAC[IN_CROSS; OPEN_IN_CROSS] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET])) THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_PAIR_THM; IN_ELIM_THM; IN_CROSS; SUBSET] THEN SET_TAC[]]);; let PROPER_MAP_PAIRED = prove (`!top top1 top2 (f:A->B) (g:A->C). hausdorff_space top /\ proper_map(top,top1) f /\ proper_map(top,top2) g \/ hausdorff_space top1 /\ continuous_map(top,top1) f /\ proper_map(top,top2) g \/ hausdorff_space top2 /\ proper_map(top,top1) f /\ continuous_map(top,top2) g ==> proper_map (top,prod_topology top1 top2) (\x. f x,g x)`, REPEAT STRIP_TAC THENL [SUBGOAL_THEN `(\x. f x,g x):A->B#C = (\(x,y). f x,g y) o (\x. x,x)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC PROPER_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (top:A topology) top` THEN ASM_REWRITE_TAC[PROPER_MAP_DIAG_EQ; PROPER_MAP_PROD]; SUBGOAL_THEN `(\x. f x,g x):A->B#C = (\(x,y). x,g y) o (\x. f x,x)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC PROPER_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top1 top:(B#A)topology` THEN ASM_SIMP_TAC[PROPER_MAP_PAIRED_CONTINUOUS_MAP_LEFT] THEN ASM_REWRITE_TAC[PROPER_MAP_PROD; PROPER_MAP_ID]; SUBGOAL_THEN `(\x. f x,g x):A->B#C = (\(x,y). f x,y) o (\x. x,g x)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC PROPER_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top top2:(A#C)topology` THEN ASM_SIMP_TAC[PROPER_MAP_PAIRED_CONTINUOUS_MAP_RIGHT] THEN ASM_REWRITE_TAC[PROPER_MAP_PROD; PROPER_MAP_ID]]);; let PROPER_MAP_PAIRWISE = prove (`!top top1 top2 f:A->B#C. hausdorff_space top /\ proper_map(top,top1) (FST o f) /\ proper_map(top,top2) (SND o f) \/ hausdorff_space top1 /\ continuous_map(top,top1) (FST o f) /\ proper_map(top,top2) (SND o f) \/ hausdorff_space top2 /\ proper_map(top,top1) (FST o f) /\ continuous_map(top,top2) (SND o f) ==> proper_map (top,prod_topology top1 top2) f`, REWRITE_TAC[FORALL_PAIR_FUN_THM; o_DEF; ETA_AX] THEN REWRITE_TAC[PROPER_MAP_PAIRED]);; let PROPER_MAP_FROM_COMPOSITION_RIGHT = prove (`!top top' top'' (f:A->B) (g:B->C). hausdorff_space top' /\ proper_map(top,top'') (g o f) /\ continuous_map(top,top') f /\ continuous_map(top',top'') g ==> proper_map(top,top') f`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `f = FST o (\x. f x,((g:B->C) o (f:A->B)) x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; ETA_AX]; MATCH_MP_TAC PROPER_MAP_COMPOSE] THEN EXISTS_TAC `subtopology (prod_topology top' top'') (IMAGE (\x. x,(g:B->C) x) (topspace top'))` THEN CONJ_TAC THENL [MATCH_MP_TAC PROPER_MAP_INTO_SUBTOPOLOGY THEN ASM_SIMP_TAC[PROPER_MAP_PAIRED; ETA_AX] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_THM; IN_IMAGE; PAIR_EQ] THEN SET_TAC[]; UNDISCH_TAC `continuous_map (top',top'') (g:B->C)` THEN REWRITE_TAC[GSYM HOMEOMORPHIC_MAPS_GRAPH] THEN SIMP_TAC[HOMEOMORPHIC_MAPS_MAP; HOMEOMORPHIC_IMP_PROPER_MAP]]);; let CONTINUOUS_EXTENSION_OF_PROPER_MAP_FROM_SUBTOPOLOGY = prove (`!top top' (f:A->B). hausdorff_space top /\ s SUBSET topspace top /\ continuous_map (top,top') f /\ proper_map(subtopology top s,top') f ==> closed_in top s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (s:A->bool)`; `top:A topology`; `top':B topology`; `\x:A. x`; `f:A->B`] PROPER_MAP_FROM_COMPOSITION_RIGHT) THEN ASM_SIMP_TAC[o_DEF; PROPER_MAP_INCLUSION; ETA_AX] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID]);; (* ------------------------------------------------------------------------- *) (* Perfect maps (proper, continuous and surjective). *) (* ------------------------------------------------------------------------- *) let perfect_map = new_definition `perfect_map (top,top') (f:A->B) <=> continuous_map(top,top') f /\ proper_map(top,top') f /\ IMAGE f (topspace top) = topspace top'`;; let HOMEOMORPHIC_IMP_PERFECT_MAP = prove (`!top top' (f:A->B). homeomorphic_map(top,top') f ==> perfect_map(top,top') f`, SIMP_TAC[perfect_map; HOMEOMORPHIC_IMP_PROPER_MAP] THEN REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; let PERFECT_IMP_QUOTIENT_MAP = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> quotient_map(top,top') f`, SIMP_TAC[perfect_map; proper_map; CONTINUOUS_CLOSED_IMP_QUOTIENT_MAP]);; let HOMEOMORPHIC_EQ_INJECTIVE_PERFECT_MAP = prove (`!top top' (f:A->B). homeomorphic_map(top,top') f <=> perfect_map(top,top') f /\ !x y. x IN topspace top /\ y IN topspace top ==> (f x = f y <=> x = y)`, MESON_TAC[HOMEOMORPHIC_IMP_PERFECT_MAP; HOMEOMORPHIC_IMP_INJECTIVE_MAP; homeomorphic_map; PERFECT_IMP_QUOTIENT_MAP]);; let PERFECT_INJECTIVE_EQ_HOMEOMORPHIC_MAP = prove (`!top top' (f:A->B). perfect_map(top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) <=> homeomorphic_map(top,top') f`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[homeomorphic_map] THEN MESON_TAC[PERFECT_IMP_QUOTIENT_MAP]; MESON_TAC[HOMEOMORPHIC_IMP_PERFECT_MAP; HOMEOMORPHIC_IMP_INJECTIVE_MAP]]);; let PERFECT_MAP_ID = prove (`!top:A topology. perfect_map(top,top) (\x. x)`, REWRITE_TAC[perfect_map; IMAGE_ID; PROPER_MAP_ID; CONTINUOUS_MAP_ID]);; let PERFECT_MAP_COMPOSE = prove (`!top top' top'' (f:A->B) (g:B->C). perfect_map(top,top') f /\ perfect_map(top',top'') g ==> perfect_map(top,top'') (g o f)`, REWRITE_TAC[perfect_map] THEN MESON_TAC[PROPER_MAP_COMPOSE; IMAGE_o; CONTINUOUS_MAP_COMPOSE]);; let PERFECT_IMP_CONTINUOUS_MAP = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> continuous_map(top,top') f`, SIMP_TAC[perfect_map]);; let PERFECT_IMP_CLOSED_MAP = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> closed_map(top,top') f`, SIMP_TAC[perfect_map; PROPER_IMP_CLOSED_MAP]);; let PERFECT_IMP_PROPER_MAP = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> proper_map(top,top') f`, SIMP_TAC[perfect_map]);; let PERFECT_IMP_SURJECTIVE_MAP = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> IMAGE f (topspace top) = topspace top'`, SIMP_TAC[perfect_map]);; let CONTINUOUS_CLOSED_IMP_PERFECT_MAP = prove (`!top top' (f:A->B). compact_space top /\ t1_space top' /\ continuous_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> perfect_map (top,top') f`, SIMP_TAC[perfect_map; CONTINUOUS_CLOSED_IMP_PROPER_MAP]);; let CONTINUOUS_IMP_PEFECT_MAP = prove (`!top top' (f:A->B). compact_space top /\ kc_space top' /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> perfect_map (top,top') f`, SIMP_TAC[perfect_map; CONTINUOUS_IMP_PROPER_MAP; CONTINUOUS_IMP_CLOSED_MAP_GEN]);; let PERFECT_MAP_FST = prove (`!(top:A topology) (top':B topology). perfect_map(prod_topology top top',top) FST <=> (topspace top = {} \/ compact_space top') /\ (topspace top' = {} ==> topspace top = {})`, REWRITE_TAC[perfect_map; PROPER_MAP_FST; CONTINUOUS_MAP_FST] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IMAGE_FST_CROSS] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_REWRITE_TAC[COND_ID] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[COMPACT_SPACE_TOPSPACE_EMPTY]);; let PERFECT_MAP_SND = prove (`!(top:A topology) (top':B topology). perfect_map(prod_topology top top',top') SND <=> (topspace top' = {} \/ compact_space top) /\ (topspace top = {} ==> topspace top' = {})`, REWRITE_TAC[perfect_map; PROPER_MAP_SND; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IMAGE_SND_CROSS] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top':B->bool = {}` THEN ASM_REWRITE_TAC[COND_ID] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[COMPACT_SPACE_TOPSPACE_EMPTY]);; let PERFECT_MAP_RESTRICTION = prove (`!top top' (f:A->B) u v. perfect_map (top,top') f /\ {x | x IN topspace top /\ f x IN v} = u ==> perfect_map (subtopology top u,subtopology top' v) f`, REPEAT GEN_TAC THEN SIMP_TAC[perfect_map; PROPER_MAP_RESTRICTION] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; CONTINUOUS_MAP_IN_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN SET_TAC[]);; let PERFECT_MAP_FROM_COMPOSITION_LEFT = prove (`!top top' top'' (f:A->B) (g:B->C). perfect_map(top,top'') (g o f) /\ continuous_map(top,top') f /\ continuous_map(top',top'') g /\ IMAGE f (topspace top) = topspace top' ==> perfect_map(top',top'') g`, REWRITE_TAC[perfect_map] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] PROPER_MAP_FROM_COMPOSITION_LEFT)); ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[IMAGE_o]) THEN ASM SET_TAC[]);; let PERFECT_MAP_FROM_COMPOSITION_RIGHT = prove (`!top top' top'' (f:A->B) (g:B->C). hausdorff_space top' /\ perfect_map(top,top'') (g o f) /\ continuous_map(top,top') f /\ continuous_map(top',top'') g /\ IMAGE f (topspace top) = topspace top' ==> perfect_map(top,top') f`, REWRITE_TAC[perfect_map] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PROPER_MAP_FROM_COMPOSITION_RIGHT]);; let PERFECT_MAP_FROM_COMPOSITION_RIGHT_INJ = prove (`!top top' top'' (f:A->B) (g:B->C). perfect_map(top,top'') (g o f) /\ IMAGE f (topspace top) = topspace top' /\ continuous_map(top,top') f /\ continuous_map(top',top'') g /\ (!x y. x IN topspace top' /\ y IN topspace top' /\ g x = g y ==> x = y) ==> perfect_map(top,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[perfect_map] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_METIS_TAC[PROPER_MAP_FROM_COMPOSITION_RIGHT_INJ; SUBSET_REFL]);; (* ------------------------------------------------------------------------- *) (* Preservation theorems for proper or perfect maps. *) (* ------------------------------------------------------------------------- *) let DISCRETE_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). discrete_space top /\ perfect_map (top,top') f ==> discrete_space top'`, REWRITE_TAC[perfect_map; proper_map] THEN MESON_TAC[DISCRETE_SPACE_CLOSED_MAP_IMAGE]);; let KC_SPACE_PROPER_MAP_IMAGE = prove (`!top top' (f:A->B). kc_space top /\ proper_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> kc_space top'`, REPEAT STRIP_TAC THEN REWRITE_TAC[kc_space] THEN ONCE_REWRITE_TAC[MESON[COMPACT_IN_SUBSET_TOPSPACE] `compact_in top s <=> s SUBSET topspace top /\ compact_in top s`] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[IMP_CONJ; FORALL_SUBSET_IMAGE] THEN X_GEN_TAC `s:A->bool` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:A->B) s = IMAGE f {x | x IN topspace top /\ f x IN IMAGE f s}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[closed_map; kc_space; PROPER_MAP_ALT]) THEN ASM_SIMP_TAC[]);; let KC_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE = prove (`!top top' (f:A->B). kc_space top /\ compact_space top /\ closed_map(top,top') f /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> kc_space top'`, MESON_TAC[KC_SPACE_PROPER_MAP_IMAGE; KC_IMP_T1_SPACE; T1_SPACE_CLOSED_MAP_IMAGE; CONTINUOUS_CLOSED_IMP_PROPER_MAP]);; let KC_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). kc_space top /\ compact_space top /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> (closed_map(top,top') f <=> kc_space top')`, MESON_TAC[KC_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE; CONTINUOUS_IMP_CLOSED_MAP_GEN]);; let HAUSDORFF_SPACE_PROPER_MAP_IMAGE = prove (`!top top' (f:A->B). hausdorff_space top /\ proper_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> hausdorff_space top'`, REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[hausdorff_space] THEN MAP_EVERY X_GEN_TAC [`x:B`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o GEN_REWRITE_RULE I [HAUSDORFF_SPACE_COMPACT_SETS]) THEN DISCH_THEN(MP_TAC o SPECL [`{z | z IN topspace top /\ (f:A->B) z = x}`; `{z | z IN topspace top /\ (f:A->B) z = y}`]) THEN ASM_SIMP_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o GEN_REWRITE_RULE I [CLOSED_MAP_PREIMAGE_NEIGHBOURHOOD]) THEN DISCH_THEN(fun th -> MP_TAC(SPECL [`u:A->bool`; `{x:B}`] th) THEN MP_TAC(SPECL [`v:A->bool`; `{y:B}`] th)) THEN ASM_REWRITE_TAC[SING_SUBSET; IN_SING; IMP_IMP; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let HAUSDORFF_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE = prove (`!top top' (f:A->B). compact_space top /\ hausdorff_space top /\ closed_map(top,top') f /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> hausdorff_space top'`, MESON_TAC[HAUSDORFF_SPACE_PROPER_MAP_IMAGE; CONTINUOUS_CLOSED_IMP_PROPER_MAP; T1_SPACE_CLOSED_MAP_IMAGE; HAUSDORFF_IMP_T1_SPACE]);; let HAUSDORFF_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). compact_space top /\ hausdorff_space top /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> (closed_map(top,top') f <=> hausdorff_space top')`, MESON_TAC[HAUSDORFF_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE; CONTINUOUS_IMP_CLOSED_MAP]);; let HAUSDORFF_SPACE_CONTINUOUS_MAP_IMAGE = prove (`!top top' (f:A->B). compact_space top /\ hausdorff_space top /\ kc_space top' /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> hausdorff_space top'`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `f:A->B`] HAUSDORFF_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[KC_IMP_T1_SPACE] THEN MATCH_MP_TAC CONTINUOUS_IMP_CLOSED_MAP_GEN THEN ASM_REWRITE_TAC[]);; let HAUSDORFF_SPACE_CONTINUOUS_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). compact_space top /\ hausdorff_space top /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> (hausdorff_space top' <=> kc_space top')`, MESON_TAC[HAUSDORFF_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE_EQ; KC_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE_EQ; HAUSDORFF_IMP_KC_SPACE]);; let T1_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). t1_space top /\ perfect_map(top,top') f ==> t1_space top'`, REWRITE_TAC[perfect_map; proper_map] THEN MESON_TAC[T1_SPACE_CLOSED_MAP_IMAGE]);; let HAUSDORFF_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). hausdorff_space top /\ perfect_map(top,top') f ==> hausdorff_space top'`, REWRITE_TAC[perfect_map] THEN MESON_TAC[HAUSDORFF_SPACE_PROPER_MAP_IMAGE]);; let COMPACT_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). compact_space top /\ perfect_map(top,top') f ==> compact_space top'`, MESON_TAC[COMPACT_SPACE_QUOTIENT_MAP_IMAGE; PERFECT_IMP_QUOTIENT_MAP]);; let COMPACT_SPACE_PERFECT_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> (compact_space top <=> compact_space top')`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[COMPACT_SPACE_PERFECT_MAP_IMAGE]; ASM_MESON_TAC[perfect_map; COMPACT_SPACE_PROPER_MAP_PREIMAGE]]);; let KC_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). kc_space top /\ perfect_map(top,top') f ==> kc_space top'`, REWRITE_TAC[perfect_map] THEN MESON_TAC[KC_SPACE_PROPER_MAP_IMAGE]);; (* ------------------------------------------------------------------------- *) (* Lindelof spaces. *) (* ------------------------------------------------------------------------- *) let lindelof_space = new_definition `lindelof_space (top:A topology) <=> !U. (!u. u IN U ==> open_in top u) /\ UNIONS U = topspace top ==> ?V. COUNTABLE V /\ V SUBSET U /\ UNIONS V = topspace top`;; let LINDELOF_SPACE_ALT = prove (`!top:A topology. lindelof_space top <=> !U. (!u. u IN U ==> open_in top u) /\ topspace top SUBSET UNIONS U ==> ?V. COUNTABLE V /\ V SUBSET U /\ topspace top SUBSET UNIONS V`, GEN_TAC THEN REWRITE_TAC[lindelof_space] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET] THEN AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[OPEN_IN_SUBSET; SUBSET]);; let COMPACT_IMP_LINDELOF_SPACE = prove (`!top:A topology. compact_space top ==> lindelof_space top`, REWRITE_TAC[lindelof_space; COMPACT_SPACE] THEN MESON_TAC[FINITE_IMP_COUNTABLE]);; let LINDELOF_SPACE_TOPSPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> lindelof_space top`, SIMP_TAC[COMPACT_IMP_LINDELOF_SPACE; COMPACT_SPACE_TOPSPACE_EMPTY]);; let LINDELOF_SPACE_UNIONS = prove (`!top U:(A->bool)->bool. COUNTABLE U /\ (!c. c IN U ==> lindelof_space (subtopology top c)) ==> lindelof_space (subtopology top (UNIONS U))`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[lindelof_space] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; GSYM SUBSET] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[IMP_CONJ; FORALL_SUBSET_IMAGE] THEN REWRITE_TAC[EXISTS_COUNTABLE_SUBSET_IMAGE] THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; GSYM INTER_UNIONS] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN DISCH_TAC THEN X_GEN_TAC `f:(A->bool)->bool` THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM (MP_TAC o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_FORALL_THM]) THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `f:(A->bool)->bool`) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `UNIONS u INTER s = t INTER UNIONS u ==> !c. c IN u ==> c INTER s = t INTER c`)) THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:(A->bool)->(A->bool)->bool` THEN DISCH_TAC THEN EXISTS_TAC `UNIONS(IMAGE (g:(A->bool)->(A->bool)->bool) U)` THEN ASM_SIMP_TAC[COUNTABLE_UNIONS; FORALL_IN_IMAGE; COUNTABLE_IMAGE] THEN ASM SET_TAC[]);; let COUNTABLE_IMP_LINDELOF_SPACE = prove (`!top:A topology. COUNTABLE(topspace top) ==> lindelof_space top`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM SUBTOPOLOGY_TOPSPACE] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM UNIONS_SINGS] THEN MATCH_MP_TAC LINDELOF_SPACE_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC COMPACT_IMP_LINDELOF_SPACE THEN MATCH_MP_TAC COMPACT_SPACE_SUBTOPOLOGY THEN ASM_REWRITE_TAC[COMPACT_IN_SING]);; let LINDELOF_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. lindelof_space(subtopology top s) <=> !U. (!u. u IN U ==> open_in top u) /\ topspace top INTER s SUBSET UNIONS U ==> ?V. COUNTABLE V /\ V SUBSET U /\ topspace top INTER s SUBSET UNIONS V`, REPEAT STRIP_TAC THEN REWRITE_TAC[lindelof_space] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; GSYM SUBSET] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[IMP_CONJ; FORALL_SUBSET_IMAGE] THEN REWRITE_TAC[EXISTS_COUNTABLE_SUBSET_IMAGE] THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; GSYM INTER_UNIONS] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; INTER_SUBSET; SUBSET_INTER] THEN REWRITE_TAC[SET_RULE `s SUBSET {x | P x} <=> !x. x IN s ==> P x`] THEN SIMP_TAC[OPEN_IN_SUBSET; SET_RULE `(!x. x IN U ==> x SUBSET t) ==> (V SUBSET U /\ s INTER UNIONS V SUBSET t /\ P <=> V SUBSET U /\ P) /\ (s INTER UNIONS U SUBSET t)`]);; let LINDELOF_SPACE_SUBTOPOLOGY_SUBSET = prove (`!top s:A->bool. s SUBSET topspace top ==> (lindelof_space(subtopology top s) <=> !U. (!u. u IN U ==> open_in top u) /\ s SUBSET UNIONS U ==> ?V. COUNTABLE V /\ V SUBSET U /\ s SUBSET UNIONS V)`, SIMP_TAC[LINDELOF_SPACE_SUBTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`]);; let LINDELOF_SPACE_CLOSED_IN_SUBTOPOLOGY = prove (`!top s:A->bool. lindelof_space top /\ closed_in top s ==> lindelof_space(subtopology top s)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LINDELOF_SPACE_SUBTOPOLOGY_SUBSET; CLOSED_IN_SUBSET] THEN X_GEN_TAC `f:(A->bool)->bool` THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(topspace top DIFF s:A->bool) INSERT f` o REWRITE_RULE[lindelof_space]) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN ASM_SIMP_TAC[FORALL_IN_INSERT; OPEN_IN_TOPSPACE; OPEN_IN_DIFF] THEN SUBGOAL_THEN `(UNIONS f:A->bool) SUBSET topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[UNIONS_SUBSET; OPEN_IN_SUBSET]; ALL_TAC] THEN REWRITE_TAC[UNIONS_INSERT] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:(A->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `g DELETE (topspace top DIFF s:A->bool)` THEN ASM_REWRITE_TAC[COUNTABLE_DELETE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `UNIONS((topspace top DIFF s) INSERT (g DELETE (topspace top DIFF s))):A->bool = UNIONS((topspace top DIFF s) INSERT g)` MP_TAC THENL [AP_TERM_TAC THEN ASM SET_TAC[]; ASM_REWRITE_TAC[UNIONS_INSERT] THEN ASM SET_TAC[]]);; let LINDELOF_SPACE_CONTINUOUS_MAP_IMAGE = prove (`!top top' f:A->B. lindelof_space top /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> lindelof_space top'`, REWRITE_TAC[continuous_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[lindelof_space] THEN X_GEN_TAC `U:(B->bool)->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [lindelof_space]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (\u. {x | x IN topspace top /\ (f:A->B) x IN u}) U`) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; UNIONS_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[EXISTS_COUNTABLE_SUBSET_IMAGE]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `V:(B->bool)->bool` THEN REWRITE_TAC[UNIONS_IMAGE] THEN ASM SET_TAC[]);; let LINDELOF_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map(top,top') q /\ lindelof_space top ==> lindelof_space top'`, MESON_TAC[QUOTIENT_IMP_SURJECTIVE_MAP; QUOTIENT_IMP_CONTINUOUS_MAP; LINDELOF_SPACE_CONTINUOUS_MAP_IMAGE]);; let LINDELOF_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ lindelof_space top ==> lindelof_space top'`, MESON_TAC[LINDELOF_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let LOCALLY_FINITE_COVER_OF_LINDELOF_SPACE = prove (`!(top:A topology) u. lindelof_space top /\ topspace top SUBSET UNIONS u /\ locally_finite_in top u ==> COUNTABLE u`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally_finite_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; LEFT_IMP_EXISTS_THM; SKOLEM_THM] THEN X_GEN_TAC `t:A->A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LINDELOF_SPACE_ALT]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (t:A->A->bool) (topspace top)`) THEN ASM_SIMP_TAC[UNIONS_IMAGE; FORALL_IN_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> p /\ q ==> r ==> s`] THEN REWRITE_TAC[FORALL_COUNTABLE_SUBSET_IMAGE] THEN X_GEN_TAC `k:A->bool` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `{} INSERT UNIONS {{c | c IN u /\ ~(c INTER (t:A->A->bool) a = {})} | a IN k}` THEN CONJ_TAC THENL [REWRITE_TAC[COUNTABLE_INSERT] THEN MATCH_MP_TAC COUNTABLE_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_IMP_COUNTABLE THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM; IN_INSERT] THEN ASM SET_TAC[]]);; let LINDELOF_SPACE_PROPER_MAP_PREIMAGE = prove (`!top top' (f:A->B). proper_map(top,top') f /\ lindelof_space top' ==> lindelof_space top`, REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE) THEN REWRITE_TAC[LINDELOF_SPACE_ALT] THEN X_GEN_TAC `u:(A->bool)->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `!y. y IN topspace top' ==> ?v. FINITE v /\ v SUBSET u /\ {x | x IN topspace top /\ (f:A->B) x = y} SUBSET UNIONS v` MP_TAC THENL [X_GEN_TAC `y:B` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:B`) THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[compact_in; SUBSET_RESTRICT] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `v:B->(A->bool)->bool` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LINDELOF_SPACE_ALT]) THEN DISCH_THEN(MP_TAC o SPEC `{ topspace top' DIFF IMAGE (f:A->B) (topspace top DIFF UNIONS (v y)) |y| (y:B) IN topspace top'}`) THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [closed_map]) THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]; REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]]; REWRITE_TAC[SIMPLE_IMAGE; EXISTS_COUNTABLE_SUBSET_IMAGE] THEN REWRITE_TAC[UNIONS_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `j:B->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `UNIONS { (v:B->(A->bool)->bool) y | y IN j}` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC COUNTABLE_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_GSPEC] THEN ASM_MESON_TAC[FINITE_IMP_COUNTABLE; SUBSET]]);; let LINDELOF_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). lindelof_space top /\ perfect_map(top,top') f ==> lindelof_space top'`, MESON_TAC[LINDELOF_SPACE_QUOTIENT_MAP_IMAGE; PERFECT_IMP_QUOTIENT_MAP]);; let LINDELOF_SPACE_PERFECT_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). perfect_map(top,top') f ==> (lindelof_space top <=> lindelof_space top')`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[LINDELOF_SPACE_PERFECT_MAP_IMAGE]; ASM_MESON_TAC[perfect_map; LINDELOF_SPACE_PROPER_MAP_PREIMAGE]]);; (* ------------------------------------------------------------------------- *) (* Other countability properties. *) (* ------------------------------------------------------------------------- *) let second_countable = new_definition `second_countable (top:A topology) <=> ?b. COUNTABLE b /\ (!v. v IN b ==> open_in top v) /\ (!u x. open_in top u /\ x IN u ==> ?v. v IN b /\ x IN v /\ v SUBSET u)`;; let first_countable = new_definition `first_countable (top:A topology) <=> !x. x IN topspace top ==> ?b. COUNTABLE b /\ (!v. v IN b ==> open_in top v) /\ (!u. open_in top u /\ x IN u ==> ?v. v IN b /\ x IN v /\ v SUBSET u)`;; let separable_space = new_definition `separable_space (top:A topology) <=> ?c. COUNTABLE c /\ c SUBSET topspace top /\ top closure_of c = topspace top`;; let SECOND_COUNTABLE = prove (`!top:A topology. second_countable top <=> ?b. COUNTABLE b /\ open_in top = ARBITRARY UNION_OF b`, REWRITE_TAC[OPEN_IN_TOPOLOGY_BASE_UNIQUE; second_countable]);; let SECOND_COUNTABLE_SUBTOPOLOGY = prove (`!top (s:A->bool). second_countable top ==> second_countable(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[second_countable; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\b:A->bool. s INTER b) B` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN ASM SET_TAC[]);; let SECOND_COUNTABLE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. second_countable(discrete_topology u) <=> COUNTABLE u`, GEN_TAC THEN REWRITE_TAC[second_countable] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `b:(A->bool)->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CARD_LE_COUNTABLE)) THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. {x}` THEN SIMP_TAC[SET_RULE `{x} = {y} <=> x = y`] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `x:A`]) THEN ASM_REWRITE_TAC[IN_SING; OPEN_IN_DISCRETE_TOPOLOGY; SING_SUBSET] THEN REWRITE_TAC[SET_RULE `x IN s /\ s SUBSET {x} <=> s = {x}`] THEN MESON_TAC[]; DISCH_TAC THEN EXISTS_TAC `IMAGE (\x:A. {x}) u` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; SING_SUBSET] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN SET_TAC[]]);; let SECOND_COUNTABLE_OPEN_MAP_IMAGE = prove (`!(f:A->B) top top'. continuous_map(top,top') f /\ open_map(top,top') f /\ IMAGE f (topspace top) = topspace top' /\ second_countable top ==> second_countable top'`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[second_countable; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (IMAGE (f:A->B)) B` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN MAP_EVERY X_GEN_TAC [`v:B->bool`; `y:B`] THEN STRIP_TAC THEN SUBGOAL_THEN `?x. x IN topspace top /\ (f:A->B) x = y` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x | x IN topspace top /\ (f:A->B) x IN v}`; `x:A`]) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL [MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]);; let HOMEOMORPHIC_SPACE_SECOND_COUNTABILITY = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (second_countable top <=> second_countable top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN MESON_TAC[SECOND_COUNTABLE_OPEN_MAP_IMAGE]);; let SECOND_COUNTABLE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ second_countable top ==> second_countable top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[SECOND_COUNTABLE_SUBTOPOLOGY; HOMEOMORPHIC_SPACE_SECOND_COUNTABILITY]);; let SECOND_COUNTABLE_IMP_FIRST_COUNTABLE = prove (`!top:A topology. second_countable top ==> first_countable top`, GEN_TAC THEN REWRITE_TAC[second_countable; first_countable] THEN DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]);; let FIRST_COUNTABLE_SUBTOPOLOGY = prove (`!top s:A->bool. first_countable top ==> first_countable(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[first_countable] THEN DISCH_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN REWRITE_TAC[GSYM SUBSET; IMP_CONJ; FORALL_IN_GSPEC] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[EXISTS_COUNTABLE_SUBSET_IMAGE; EXISTS_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);; let FIRST_COUNTABLE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. first_countable(discrete_topology u)`, GEN_TAC THEN REWRITE_TAC[first_countable] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; TOPSPACE_DISCRETE_TOPOLOGY] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `{{x:A}}` THEN REWRITE_TAC[COUNTABLE_SING; FORALL_IN_INSERT; EXISTS_IN_INSERT] THEN ASM_SIMP_TAC[IN_SING; SING_SUBSET; NOT_IN_EMPTY]);; let FIRST_COUNTABLE_OPEN_MAP_IMAGE = prove (`!(f:A->B) top top'. continuous_map(top,top') f /\ open_map(top,top') f /\ IMAGE f (topspace top) = topspace top' /\ first_countable top ==> first_countable top'`, REPEAT GEN_TAC THEN REWRITE_TAC[open_map] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[first_countable] THEN DISCH_TAC THEN X_GEN_TAC `y:B` THEN STRIP_TAC THEN SUBGOAL_THEN `?x. x IN topspace top /\ (f:A->B) x = y` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (IMAGE (f:A->B)) B` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN X_GEN_TAC `v:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN v}`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL [MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]);; let HOMEOMORPHIC_SPACE_FIRST_COUNTABILITY = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (first_countable top <=> first_countable top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN REWRITE_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN MESON_TAC[FIRST_COUNTABLE_OPEN_MAP_IMAGE]);; let FIRST_COUNTABLE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ first_countable top ==> first_countable top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[FIRST_COUNTABLE_SUBTOPOLOGY; HOMEOMORPHIC_SPACE_FIRST_COUNTABILITY]);; let SEPARABLE_SPACE_OPEN_SUBSET = prove (`!top s:A->bool. separable_space top /\ open_in top s ==> separable_space(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; separable_space; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:A->bool` THEN REPEAT STRIP_TAC THEN EXISTS_TAC `s INTER b:A->bool` THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; OPEN_IN_SUBSET] THEN ASM_SIMP_TAC[COUNTABLE_INTER; INTER_SUBSET] THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY] THEN REWRITE_TAC[SET_RULE `s INTER s INTER b = s INTER b`] THEN ASM_SIMP_TAC[GSYM OPEN_IN_INTER_CLOSURE_OF_EQ] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]);; let SEPARABLE_SPACE_CONTINUOUS_MAP_IMAGE = prove (`!top top' f:A->B. separable_space top /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> separable_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_EQ_IMAGE_CLOSURE_SUBSET] THEN REWRITE_TAC[IMP_CONJ; separable_space; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:A->bool` THEN REPEAT DISCH_TAC THEN EXISTS_TAC `IMAGE (f:A->B) c` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; CLOSURE_OF_SUBSET_TOPSPACE] THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:A->bool`) THEN ASM_REWRITE_TAC[]);; let SEPARABLE_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map(top,top') q /\ separable_space top ==> separable_space top'`, MESON_TAC[QUOTIENT_IMP_SURJECTIVE_MAP; QUOTIENT_IMP_CONTINUOUS_MAP; SEPARABLE_SPACE_CONTINUOUS_MAP_IMAGE]);; let SEPARABLE_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ separable_space top ==> separable_space top'`, MESON_TAC[SEPARABLE_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let HOMEOMORPHIC_SEPARABLE_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (separable_space top <=> separable_space top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN REWRITE_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP] THEN MESON_TAC[SEPARABLE_SPACE_RETRACTION_MAP_IMAGE]);; let SEPARABLE_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. separable_space(discrete_topology u) <=> COUNTABLE u`, REWRITE_TAC[separable_space; DISCRETE_TOPOLOGY_CLOSURE_OF] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[SET_RULE `s SUBSET u /\ u INTER s = u <=> s = u`] THEN MESON_TAC[]);; let SECOND_COUNTABLE_IMP_SEPARABLE_SPACE = prove (`!top:A topology. second_countable top ==> separable_space top`, GEN_TAC THEN REWRITE_TAC[second_countable; separable_space] THEN DISCH_THEN(X_CHOOSE_THEN `B:(A->bool)->bool` STRIP_ASSUME_TAC) THEN MP_TAC(SET_RULE `!v. ?x:A. v IN B /\ ~(v = {}) ==> x IN v`) THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:(A->bool)->A` THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (c:(A->bool)->A) (B DELETE {})` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_DELETE; SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE; IN_DELETE] THEN CONJ_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]; ALL_TAC] THEN REWRITE_TAC[closure_of; SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN REWRITE_TAC[IN_DELETE; EXTENSION; NOT_IN_EMPTY] THEN ASM SET_TAC[]);; let SECOND_COUNTABLE_IMP_LINDELOF_SPACE = prove (`!top:A topology. second_countable top ==> lindelof_space top`, GEN_TAC THEN REWRITE_TAC[second_countable; lindelof_space] THEN DISCH_THEN(X_CHOOSE_THEN `B:(A->bool)->bool` STRIP_ASSUME_TAC) THEN X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN ABBREV_TAC `B' = {b:A->bool | b IN B /\ ?u. u IN U /\ b SUBSET u}` THEN SUBGOAL_THEN `COUNTABLE B' /\ UNIONS B' :A->bool = UNIONS U` STRIP_ASSUME_TAC THENL [EXPAND_TAC "B'" THEN ASM_SIMP_TAC[COUNTABLE_RESTRICT] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!b:A->bool. ?u. b IN B' ==> u IN U /\ b SUBSET u` MP_TAC THENL [EXPAND_TAC "B'" THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) B'` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; UNIONS_IMAGE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* A variant of nets (slightly non-standard but good for our purposes). *) (* ------------------------------------------------------------------------- *) let net_tybij = new_type_definition "net" ("mk_net","dest_net") (prove (`?g:((A->bool)->bool)#(A->bool). !s t. s IN FST g /\ t IN FST g ==> (s INTER t) IN FST g`, REWRITE_TAC[EXISTS_PAIR_THM] THEN EXISTS_TAC `(:A->bool)` THEN REWRITE_TAC[IN_UNIV]));; let netfilter = new_definition `netfilter(n:A net) = FST(dest_net n)`;; let netlimits = new_definition `netlimits(n:A net) = SND(dest_net n)`;; let netlimit = new_definition `netlimit(n:A net) = @x. x IN netlimits n`;; let NET = prove (`!n s t. !s t. s IN netfilter n /\ t IN netfilter n ==> (s INTER t) IN netfilter n`, REWRITE_TAC[netfilter] THEN MESON_TAC[net_tybij]);; (* ------------------------------------------------------------------------- *) (* The generic "within" modifier for nets. *) (* ------------------------------------------------------------------------- *) parse_as_infix("within",(14,"right"));; let within = new_definition `net within s = mk_net (netfilter net relative_to s,netlimits net)`;; let WITHIN,NETLIMITS_WITHIN = (CONJ_PAIR o prove) (`(!n s:A->bool. netfilter(n within s) = netfilter n relative_to s) /\ (!n s:A->bool. netlimits(n within s) = netlimits n)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[netfilter; netlimits; GSYM PAIR_EQ] THEN REWRITE_TAC[within] THEN W(MP_TAC o PART_MATCH (lhand o lhand) (GSYM(CONJUNCT2 net_tybij)) o lhand o snd) THEN MATCH_MP_TAC(TAUT `q /\ (p ==> r) ==> (p <=> q) ==> r`) THEN SIMP_TAC[GSYM netfilter; GSYM netlimits; RELATIVE_TO] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[RELATIVE_TO; IN_ELIM_THM] THEN EXISTS_TAC `t INTER u:A->bool` THEN ASM_SIMP_TAC[REWRITE_RULE[IN] NET] THEN SET_TAC[]);; let NET_WITHIN_UNIV = prove (`!net. net within (:A) = net`, GEN_TAC THEN MATCH_MP_TAC(MESON[net_tybij] `dest_net x = dest_net y ==> x = y`) THEN GEN_REWRITE_TAC BINOP_CONV [GSYM PAIR] THEN PURE_REWRITE_TAC[GSYM netlimits; GSYM netfilter] THEN REWRITE_TAC[WITHIN; NETLIMITS_WITHIN] THEN REWRITE_TAC[PAIR_EQ; FUN_EQ_THM; RELATIVE_TO_UNIV]);; let WITHIN_WITHIN = prove (`!net s t. (net within s) within t = net within (s INTER t)`, REPEAT GEN_TAC THEN MATCH_MP_TAC(MESON[net_tybij] `dest_net x = dest_net y ==> x = y`) THEN GEN_REWRITE_TAC BINOP_CONV [GSYM PAIR] THEN PURE_REWRITE_TAC[GSYM netlimits; GSYM netfilter] THEN REWRITE_TAC[WITHIN; NETLIMITS_WITHIN; PAIR_EQ] THEN REWRITE_TAC[RELATIVE_TO_RELATIVE_TO]);; (* ------------------------------------------------------------------------- *) (* Some property holds "eventually" for a net. *) (* ------------------------------------------------------------------------- *) let eventually = new_definition `eventually (P:A->bool) net <=> netfilter net = {} \/ ?u. u IN netfilter net /\ !x. x IN u DIFF netlimits net ==> P x`;; let trivial_limit = new_definition `trivial_limit net <=> eventually (\x. F) net`;; let EVENTUALLY_WITHIN_IMP = prove (`!net (P:A->bool) s. eventually P (net within s) <=> eventually (\x. x IN s ==> P x) net`, REWRITE_TAC[eventually; WITHIN; RELATIVE_TO; EXISTS_IN_GSPEC] THEN REWRITE_TAC[INTERS_GSPEC; NETLIMITS_WITHIN] THEN SET_TAC[]);; let EVENTUALLY_IMP_WITHIN = prove (`!net (P:A->bool) s. eventually P net ==> eventually P (net within s)`, REWRITE_TAC[EVENTUALLY_WITHIN_IMP] THEN REWRITE_TAC[eventually] THEN MESON_TAC[]);; let EVENTUALLY_WITHIN_INTER_IMP = prove (`!net (P:A->bool) s t. eventually P (net within s INTER t) <=> eventually (\x. x IN t ==> P x) (net within s)`, REWRITE_TAC[GSYM WITHIN_WITHIN] THEN REWRITE_TAC[EVENTUALLY_WITHIN_IMP]);; let NONTRIVIAL_LIMIT_WITHIN = prove (`!net s. trivial_limit net ==> trivial_limit(net within s)`, REWRITE_TAC[trivial_limit; EVENTUALLY_IMP_WITHIN]);; let EVENTUALLY_HAPPENS = prove (`!net p. eventually p net ==> trivial_limit net \/ ?x. p x`, REWRITE_TAC[trivial_limit; eventually] THEN SET_TAC[]);; let ALWAYS_EVENTUALLY = prove (`(!x. p x) ==> eventually p net`, SIMP_TAC[eventually] THEN SET_TAC[]);; let EVENTUALLY_MONO = prove (`!net:(A net) p q. (!x. p x ==> q x) /\ eventually p net ==> eventually q net`, REWRITE_TAC[eventually] THEN MESON_TAC[]);; let EVENTUALLY_AND = prove (`!net:(A net) p q. eventually (\x. p x /\ q x) net <=> eventually p net /\ eventually q net`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN SIMP_TAC[]; REWRITE_TAC[eventually] THEN ASM_CASES_TAC `netfilter(net:A net) = {}` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[IN_INTER; NET] THEN ASM SET_TAC[]]);; let EVENTUALLY_MP = prove (`!net:(A net) p q. eventually (\x. p x ==> q x) net /\ eventually p net ==> eventually q net`, REWRITE_TAC[GSYM EVENTUALLY_AND] THEN REWRITE_TAC[eventually] THEN MESON_TAC[]);; let EVENTUALLY_EQ_MP = prove (`!net P Q. eventually (\x:A. P x <=> Q x) net /\ eventually P net ==> eventually Q net`, INTRO_TAC "!net P Q; PQ P" THEN REMOVE_THEN "P" MP_TAC THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN SIMP_TAC[]);; let EVENTUALLY_IFF = prove (`!net P Q. eventually (\x:A. P x <=> Q x) net ==> (eventually P net <=> eventually Q net)`, REPEAT STRIP_TAC THEN EQ_TAC THEN (MATCH_MP_TAC o REWRITE_RULE[IMP_CONJ]) EVENTUALLY_EQ_MP THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN ASM_REWRITE_TAC[]);; let EVENTUALLY_FALSE = prove (`!net. eventually (\x. F) net <=> trivial_limit net`, REWRITE_TAC[trivial_limit]);; let EVENTUALLY_TRUE = prove (`!net. eventually (\x. T) net <=> T`, REWRITE_TAC[eventually] THEN SET_TAC[]);; let EVENTUALLY_WITHIN_SUBSET = prove (`!P net s t:A->bool. eventually P (net within s) /\ t SUBSET s ==> eventually P (net within t)`, REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_WITHIN_IMP] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM SET_TAC[]);; let ALWAYS_WITHIN_EVENTUALLY = prove (`!net P. (!x. x IN s ==> P x) ==> eventually P (net within s)`, SIMP_TAC[EVENTUALLY_WITHIN_IMP; EVENTUALLY_TRUE]);; let NOT_EVENTUALLY = prove (`!net p. (!x. ~(p x)) /\ ~(trivial_limit net) ==> ~(eventually p net)`, REWRITE_TAC[eventually; trivial_limit] THEN MESON_TAC[]);; let EVENTUALLY_FORALL = prove (`!net:(A net) p s:B->bool. FINITE s /\ ~(s = {}) ==> (eventually (\x. !a. a IN s ==> p a x) net <=> !a. a IN s ==> eventually (p a) net)`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; EVENTUALLY_AND; ETA_AX] THEN MAP_EVERY X_GEN_TAC [`b:B`; `t:B->bool`] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_SIMP_TAC[NOT_IN_EMPTY; EVENTUALLY_TRUE]);; let FORALL_EVENTUALLY = prove (`!net:(A net) p s:B->bool. FINITE s /\ ~(s = {}) ==> ((!a. a IN s ==> eventually (p a) net) <=> eventually (\x. !a. a IN s ==> p a x) net)`, SIMP_TAC[EVENTUALLY_FORALL]);; let EVENTUALLY_TRIVIAL = prove (`!net P:A->bool. trivial_limit net ==> eventually P net`, REPEAT GEN_TAC THEN REWRITE_TAC[trivial_limit] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Sequential limits. *) (* ------------------------------------------------------------------------- *) let sequentially = new_definition `sequentially = mk_net({from n | n IN (:num)},{})`;; let SEQUENTIALLY,NETLIMITS_SEQUENTIALLY = (CONJ_PAIR o prove) (`(!n. netfilter sequentially = {from n | n IN (:num)}) /\ (netlimits sequentially = {})`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[netfilter; netlimits; GSYM PAIR_EQ] THEN REWRITE_TAC[sequentially] THEN REWRITE_TAC[GSYM(CONJUNCT2 net_tybij)] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `MAX m n` THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_FROM] THEN ARITH_TAC);; let EVENTUALLY_SEQUENTIALLY = prove (`!p. eventually p sequentially <=> ?N. !n. N <= n ==> p n`, REWRITE_TAC[eventually; SEQUENTIALLY; NETLIMITS_SEQUENTIALLY] THEN SIMP_TAC[SIMPLE_IMAGE; EXISTS_IN_IMAGE; IMAGE_EQ_EMPTY; UNIV_NOT_EMPTY] THEN REWRITE_TAC[IN_UNIV; INTERS_IMAGE; IN_FROM; IN_ELIM_THM; IN_DIFF; NOT_IN_EMPTY] THEN MESON_TAC[ARITH_RULE `~(SUC n <= n)`]);; let TRIVIAL_LIMIT_SEQUENTIALLY = prove (`~(trivial_limit sequentially)`, REWRITE_TAC[trivial_limit; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[LE_REFL]);; let EVENTUALLY_HAPPENS_SEQUENTIALLY = prove (`!P. eventually P sequentially ==> ?n. P n`, MESON_TAC[EVENTUALLY_HAPPENS; TRIVIAL_LIMIT_SEQUENTIALLY]);; let EVENTUALLY_SEQUENTIALLY_WITHIN = prove (`!k p. eventually p (sequentially within k) <=> FINITE k \/ (?N. !n. n IN k /\ N <= n ==> p n)`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[EVENTUALLY_WITHIN_IMP; EVENTUALLY_SEQUENTIALLY] THEN ASM_CASES_TAC `FINITE (k:num->bool)` THEN ASM_REWRITE_TAC[] THENL [POP_ASSUM (STRIP_ASSUME_TAC o REWRITE_RULE[num_FINITE]) THEN EXISTS_TAC `a + 1` THEN REWRITE_TAC[ARITH_RULE `a + 1 <= n <=> a < n`] THEN ASM_MESON_TAC[NOT_LE]; POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM INFINITE; num_INFINITE_EQ] THEN MESON_TAC[]]);; let TRIVIAL_LIMIT_SEQUENTIALLY_WITHIN = prove (`!k. trivial_limit (sequentially within k) <=> FINITE k`, GEN_TAC THEN REWRITE_TAC[trivial_limit] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN ASM_CASES_TAC `FINITE (k:num->bool)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM] THEN GEN_TAC THEN POP_ASSUM (MP_TAC o REWRITE_RULE[GSYM INFINITE; num_INFINITE_EQ]) THEN MESON_TAC[]);; let EVENTUALLY_SUBSEQUENCE = prove (`!P r. (!m n. m < n ==> r m < r n) /\ eventually P sequentially ==> eventually (P o r) sequentially`, REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; o_THM] THEN MESON_TAC[MONOTONE_BIGGER; LE_TRANS]);; let ARCH_EVENTUALLY_LT = prove (`!x. eventually (\n. x < &n) sequentially`, GEN_TAC THEN MP_TAC(ISPEC `x + &1` REAL_ARCH_SIMPLE) THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REAL_ARITH_TAC);; let ARCH_EVENTUALLY_LE = prove (`!x. eventually (\n. x <= &n) sequentially`, GEN_TAC THEN MP_TAC(ISPEC `x:real` REAL_ARCH_SIMPLE) THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REAL_ARITH_TAC);; let ARCH_EVENTUALLY_ABS_INV_OFFSET = prove (`!a e. eventually (\n. abs(inv(&n + a)) < e) sequentially <=> &0 < e`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN REAL_ARITH_TAC; DISCH_TAC THEN MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `\n. max (&0) (max (&2 * abs a) (&2 / e)) < &n` THEN REWRITE_TAC[ARCH_EVENTUALLY_LT] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[REAL_MAX_LT; REAL_OF_NUM_LT] THEN STRIP_TAC THEN TRANS_TAC REAL_LET_TRANS `inv(&n / &2)` THEN REWRITE_TAC[REAL_ABS_INV] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REAL_ARITH_TAC; GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN ASM_REAL_ARITH_TAC]]);; let ARCH_EVENTUALLY_INV_OFFSET = prove (`!a e. eventually (\n. inv (&n + a) < e) sequentially <=> &0 < e`, REPEAT GEN_TAC THEN EQ_TAC THENL [MP_TAC(ISPEC `abs a` ARCH_EVENTUALLY_LT) THEN REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC; DISCH_TAC THEN MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `\n. abs(inv(&n + a)) < e` THEN ASM_SIMP_TAC[ARCH_EVENTUALLY_ABS_INV_OFFSET] THEN REAL_ARITH_TAC]);; let ARCH_EVENTUALLY_INV1 = prove (`!e. eventually (\n. inv(&n + &1) < e) sequentially <=> &0 < e`, MP_TAC(SPEC `&1` ARCH_EVENTUALLY_INV_OFFSET) THEN REWRITE_TAC[]);; let ARCH_EVENTUALLY_INV = prove (`!e. eventually (\n. inv(&n) < e) sequentially <=> &0 < e`, MP_TAC(SPEC `&0` ARCH_EVENTUALLY_INV_OFFSET) THEN REWRITE_TAC[REAL_ADD_RID]);; let ARCH_EVENTUALLY_POW = prove (`!x b. &1 < x ==> eventually (\n. b < x pow n) sequentially`, REPEAT STRIP_TAC THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN FIRST_ASSUM(MP_TAC o SPEC `b:real` o MATCH_MP REAL_ARCH_POW) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN TRANS_TAC REAL_LTE_TRANS `(x:real) pow N` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_POW_MONO THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]);; let ARCH_EVENTUALLY_POW_INV = prove (`!x e. &0 < e /\ abs(x) < &1 ==> eventually (\n. abs(x pow n) < e) sequentially`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = &0` THENL [REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN ASM_SIMP_TAC[REAL_POW_ZERO; LE_1; REAL_ABS_NUM]; ALL_TAC] THEN MP_TAC(ISPECL [`inv(abs x)`; `inv e:real`] ARCH_EVENTUALLY_POW) THEN ANTS_TAC THENL [MATCH_MP_TAC REAL_INV_1_LT THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO)] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[REAL_ABS_POW] THEN DISCH_TAC THEN GEN_REWRITE_TAC BINOP_CONV [GSYM REAL_INV_INV] THEN ASM_SIMP_TAC[GSYM REAL_POW_INV; REAL_LT_INV; REAL_LT_INV2]);; let EVENTUALLY_IN_SEQUENTIALLY = prove (`!P. eventually P sequentially <=> FINITE {n | ~P n}`, GEN_TAC THEN REWRITE_TAC[num_FINITE; EVENTUALLY_SEQUENTIALLY; IN_ELIM_THM] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_LE] THEN MESON_TAC[LT_IMP_LE; ARITH_RULE `a + 1 <= x ==> a < x`]);; let EVENTUALLY_NO_SUBSEQUENCE = prove (`!P. eventually P sequentially <=> ~(?r:num->num. (!m n. m < n ==> r m < r n) /\ (!n. ~P(r n)))`, GEN_TAC THEN REWRITE_TAC[EVENTUALLY_IN_SEQUENTIALLY] THEN ONCE_REWRITE_TAC[TAUT `(p <=> ~q) <=> (~p <=> q)`] THEN REWRITE_TAC[GSYM INFINITE; INFINITE_ENUMERATE_EQ_ALT] THEN REWRITE_TAC[IN_ELIM_THM]);; let EVENTUALLY_UBOUND_LE_SEQUENTIALLY = prove (`!f. (?b. eventually (\n. f n <= b) sequentially) <=> (?b. !n. f n <= b)`, GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THENL [ALL_TAC; INTRO_TAC "@b. b" THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[]] THEN INTRO_TAC "@b N. b" THEN ASM_CASES_TAC `N = 0` THENL [POP_ASSUM SUBST_ALL_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[LE_0] THEN MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `max b (sup {f m | m:num < N})` THEN INTRO_TAC "![m]" THEN REWRITE_TAC[REAL_LE_MAX] THEN ASM_CASES_TAC `m < N:num` THENL [ALL_TAC; DISJ1_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC] THEN DISJ2_TAC THEN CLAIM_TAC "fin" `FINITE {f m:real | m:num < N}` THENL [SUBST1_TAC (SET_RULE `{f m:real | m:num < N} = IMAGE f {m:num | m < N}`) THEN MATCH_MP_TAC FINITE_IMAGE THEN REWRITE_TAC[num_FINITE; FORALL_IN_GSPEC] THEN EXISTS_TAC `N:num` THEN ARITH_TAC; ALL_TAC] THEN CLAIM_TAC "ne" `~({f m:real | m:num < N} = {})` THENL [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `f 0:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `0` THEN CONJ_TAC THENL [ASM_ARITH_TAC; REFL_TAC]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LE_SUP_FINITE] THEN EXISTS_TAC `f (m:num):real` THEN REWRITE_TAC[IN_ELIM_THM; REAL_LE_REFL] THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[]);; let EVENTUALLY_LBOUND_LE_SEQUENTIALLY = prove (`!f. (?b. eventually (\n. b <= f n) sequentially) <=> (?b. !n. b <= f n)`, GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THENL [ALL_TAC; INTRO_TAC "@b. b" THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[]] THEN INTRO_TAC "@b N. b" THEN ASM_CASES_TAC `N = 0` THENL [POP_ASSUM SUBST_ALL_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[LE_0] THEN MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `min b (inf {f m | m:num < N})` THEN INTRO_TAC "![m]" THEN REWRITE_TAC[REAL_MIN_LE] THEN ASM_CASES_TAC `m < N:num` THENL [ALL_TAC; DISJ1_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC] THEN DISJ2_TAC THEN CLAIM_TAC "fin" `FINITE {f m:real | m:num < N}` THENL [SUBST1_TAC (SET_RULE `{f m:real | m:num < N} = IMAGE f {m:num | m < N}`) THEN MATCH_MP_TAC FINITE_IMAGE THEN REWRITE_TAC[num_FINITE; FORALL_IN_GSPEC] THEN EXISTS_TAC `N:num` THEN ARITH_TAC; ALL_TAC] THEN CLAIM_TAC "ne" `~({f m:real | m:num < N} = {})` THENL [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `f 0:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `0` THEN CONJ_TAC THENL [ASM_ARITH_TAC; REFL_TAC]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_INF_LE_FINITE] THEN EXISTS_TAC `f (m:num):real` THEN REWRITE_TAC[IN_ELIM_THM; REAL_LE_REFL] THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* F_sigma and G_delta sets in a topological space. *) (* ------------------------------------------------------------------------- *) let fsigma_in = new_definition `fsigma_in (top:A topology) = COUNTABLE UNION_OF closed_in top`;; let gdelta_in = new_definition `gdelta_in (top:A topology) = (COUNTABLE INTERSECTION_OF open_in top) relative_to topspace top`;; let FSIGMA_IN_ASCENDING = prove (`!top s:A->bool. fsigma_in top s <=> ?c. (!n. closed_in top (c n)) /\ (!n. c n SUBSET c(n + 1)) /\ UNIONS {c n | n IN (:num)} = s`, REWRITE_TAC[fsigma_in] THEN SIMP_TAC[COUNTABLE_UNION_OF_ASCENDING; CLOSED_IN_EMPTY; CLOSED_IN_UNION] THEN REWRITE_TAC[ADD1]);; let GDELTA_IN_ALT = prove (`!top s:A->bool. gdelta_in top s <=> s SUBSET topspace top /\ (COUNTABLE INTERSECTION_OF open_in top) s`, SIMP_TAC[COUNTABLE_INTERSECTION_OF_RELATIVE_TO_ALT; gdelta_in; OPEN_IN_TOPSPACE] THEN REWRITE_TAC[CONJ_ACI]);; let FSIGMA_IN_SUBSET = prove (`!top s:A->bool. fsigma_in top s ==> s SUBSET topspace top`, GEN_TAC THEN REWRITE_TAC[fsigma_in; FORALL_UNION_OF; UNIONS_SUBSET] THEN SIMP_TAC[CLOSED_IN_SUBSET]);; let GDELTA_IN_SUBSET = prove (`!top s:A->bool. gdelta_in top s ==> s SUBSET topspace top`, SIMP_TAC[GDELTA_IN_ALT]);; let CLOSED_IMP_FSIGMA_IN = prove (`!top s:A->bool. closed_in top s ==> fsigma_in top s`, REWRITE_TAC[fsigma_in; COUNTABLE_UNION_OF_INC]);; let OPEN_IMP_GDELTA_IN = prove (`!top s:A->bool. open_in top s ==> gdelta_in top s`, REPEAT STRIP_TAC THEN REWRITE_TAC[gdelta_in] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `s SUBSET u ==> s = u INTER s`) o MATCH_MP OPEN_IN_SUBSET) THEN MATCH_MP_TAC RELATIVE_TO_INC THEN ASM_SIMP_TAC[COUNTABLE_INTERSECTION_OF_INC]);; let FSIGMA_IN_EMPTY = prove (`!top:A topology. fsigma_in top {}`, SIMP_TAC[CLOSED_IMP_FSIGMA_IN; CLOSED_IN_EMPTY]);; let GDELTA_IN_EMPTY = prove (`!top:A topology. gdelta_in top {}`, SIMP_TAC[OPEN_IMP_GDELTA_IN; OPEN_IN_EMPTY]);; let FSIGMA_IN_TOPSPACE = prove (`!top:A topology. fsigma_in top (topspace top)`, SIMP_TAC[CLOSED_IMP_FSIGMA_IN; CLOSED_IN_TOPSPACE]);; let GDELTA_IN_TOPSPACE = prove (`!top:A topology. gdelta_in top (topspace top)`, SIMP_TAC[OPEN_IMP_GDELTA_IN; OPEN_IN_TOPSPACE]);; let FSIGMA_IN_UNIONS = prove (`!top t:(A->bool)->bool. COUNTABLE t /\ (!s. s IN t ==> fsigma_in top s) ==> fsigma_in top (UNIONS t)`, REWRITE_TAC[fsigma_in; COUNTABLE_UNION_OF_UNIONS]);; let FSIGMA_IN_UNION = prove (`!top s t:A->bool. fsigma_in top s /\ fsigma_in top t ==> fsigma_in top (s UNION t)`, REWRITE_TAC[fsigma_in; COUNTABLE_UNION_OF_UNION]);; let FSIGMA_IN_INTER = prove (`!top s t:A->bool. fsigma_in top s /\ fsigma_in top t ==> fsigma_in top (s INTER t)`, GEN_TAC THEN REWRITE_TAC[fsigma_in] THEN MATCH_MP_TAC COUNTABLE_UNION_OF_INTER THEN REWRITE_TAC[CLOSED_IN_INTER]);; let GDELTA_IN_INTERS = prove (`!top t:(A->bool)->bool. COUNTABLE t /\ ~(t = {}) /\ (!s. s IN t ==> gdelta_in top s) ==> gdelta_in top (INTERS t)`, REWRITE_TAC[GDELTA_IN_ALT] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTERS_SUBSET] THEN ASM_SIMP_TAC[COUNTABLE_INTERSECTION_OF_INTERS]);; let GDELTA_IN_INTER = prove (`!top s t:A->bool. gdelta_in top s /\ gdelta_in top t ==> gdelta_in top (s INTER t)`, SIMP_TAC[GSYM INTERS_2; GDELTA_IN_INTERS; COUNTABLE_INSERT; COUNTABLE_EMPTY; NOT_INSERT_EMPTY; FORALL_IN_INSERT; NOT_IN_EMPTY]);; let GDELTA_IN_UNION = prove (`!top s t:A->bool. gdelta_in top s /\ gdelta_in top t ==> gdelta_in top (s UNION t)`, SIMP_TAC[GDELTA_IN_ALT; UNION_SUBSET] THEN MESON_TAC[COUNTABLE_INTERSECTION_OF_UNION; OPEN_IN_UNION]);; let FSIGMA_IN_DIFF = prove (`!top s t:A->bool. fsigma_in top s /\ gdelta_in top t ==> fsigma_in top (s DIFF t)`, GEN_TAC THEN SUBGOAL_THEN `!s:A->bool. gdelta_in top s ==> fsigma_in top (topspace top DIFF s)` ASSUME_TAC THENL [REWRITE_TAC[fsigma_in; gdelta_in; FORALL_RELATIVE_TO] THEN REWRITE_TAC[FORALL_INTERSECTION_OF; DIFF_INTERS; SET_RULE `s DIFF (s INTER t) = s DIFF t`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC COUNTABLE_UNION_OF_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[COUNTABLE_UNION_OF_INC; CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]; REPEAT STRIP_TAC THEN SUBGOAL_THEN `s DIFF t:A->bool = s INTER (topspace top DIFF t)` (fun th -> SUBST1_TAC th THEN ASM_SIMP_TAC[FSIGMA_IN_INTER]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP FSIGMA_IN_SUBSET) THEN ASM SET_TAC[]]);; let GDELTA_IN_DIFF = prove (`!top s t:A->bool. gdelta_in top s /\ fsigma_in top t ==> gdelta_in top (s DIFF t)`, GEN_TAC THEN SUBGOAL_THEN `!s:A->bool. fsigma_in top s ==> gdelta_in top (topspace top DIFF s)` ASSUME_TAC THENL [REWRITE_TAC[fsigma_in; gdelta_in; FORALL_UNION_OF; DIFF_UNIONS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC COUNTABLE_INTERSECTION_OF_INTERS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[COUNTABLE_INTERSECTION_OF_INC; OPEN_IN_DIFF; OPEN_IN_TOPSPACE]; REPEAT STRIP_TAC THEN SUBGOAL_THEN `s DIFF t:A->bool = s INTER (topspace top DIFF t)` (fun th -> SUBST1_TAC th THEN ASM_SIMP_TAC[GDELTA_IN_INTER]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP GDELTA_IN_SUBSET) THEN ASM SET_TAC[]]);; let GDELTA_IN_FSIGMA_IN = prove (`!top s:A->bool. gdelta_in top s <=> s SUBSET topspace top /\ fsigma_in top (topspace top DIFF s)`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[GDELTA_IN_SUBSET; FSIGMA_IN_DIFF; FSIGMA_IN_TOPSPACE] THEN STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `s SUBSET u ==> s = u DIFF (u DIFF s)`)) THEN ASM_SIMP_TAC[GDELTA_IN_DIFF; GDELTA_IN_TOPSPACE]);; let FSIGMA_IN_GDELTA_IN = prove (`!top s:A->bool. fsigma_in top s <=> s SUBSET topspace top /\ gdelta_in top (topspace top DIFF s)`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FSIGMA_IN_SUBSET; GDELTA_IN_DIFF; GDELTA_IN_TOPSPACE] THEN STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `s SUBSET u ==> s = u DIFF (u DIFF s)`)) THEN ASM_SIMP_TAC[FSIGMA_IN_DIFF; FSIGMA_IN_TOPSPACE]);; let GDELTA_IN_DESCENDING = prove (`!top s:A->bool. gdelta_in top s <=> ?c. (!n. open_in top (c n)) /\ (!n. c(n + 1) SUBSET c n) /\ INTERS {c n | n IN (:num)} = s`, REPEAT GEN_TAC THEN REWRITE_TAC[GDELTA_IN_FSIGMA_IN] THEN REWRITE_TAC[FSIGMA_IN_ASCENDING] THEN EQ_TAC THENL [DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `c:num->A->bool` STRIP_ASSUME_TAC)); DISCH_THEN(X_CHOOSE_THEN `c:num->A->bool` STRIP_ASSUME_TAC) THEN CONJ_TAC THENL [FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC INTERS_SUBSET THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; FORALL_IN_GSPEC] THEN SET_TAC[]; ALL_TAC]] THEN EXISTS_TAC `\n. topspace top DIFF (c:num->A->bool) n` THEN ASM_SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE; SET_RULE `s SUBSET t ==> u DIFF t SUBSET u DIFF s`] THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `u = t DIFF s ==> s SUBSET t ==> s = t DIFF u`)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[DIFF_UNIONS]; FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[DIFF_INTERS]] THEN REWRITE_TAC[SET_RULE `{g y | y IN {f x | x IN s}} = {g(f x) | x IN s}`] THEN REWRITE_TAC[SET_RULE `s = t INTER s <=> s SUBSET t`] THEN MATCH_MP_TAC INTERS_SUBSET THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; FORALL_IN_GSPEC] THEN SET_TAC[]);; let HOMEOMORPHIC_MAP_FSIGMANESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (fsigma_in top' (IMAGE f u) <=> fsigma_in top u)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_MAP_MAPS]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; HOMEOMORPHIC_MAPS_MAP] THEN X_GEN_TAC `g:B->A` THEN STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[fsigma_in; UNION_OF; LEFT_IMP_EXISTS_THM] THENL [X_GEN_TAC `v:(B->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (IMAGE (g:B->A)) v` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; GSYM IMAGE_UNIONS] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]]; X_GEN_TAC `v:(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (IMAGE (f:A->B)) v` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; GSYM IMAGE_UNIONS]] THEN ASM_MESON_TAC[HOMEOMORPHIC_IMP_CLOSED_MAP; closed_map]);; let HOMEOMORPHIC_MAP_FSIGMANESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (fsigma_in top u <=> u SUBSET topspace top /\ fsigma_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_FSIGMANESS; FSIGMA_IN_SUBSET]);; let HOMEOMORPHIC_MAP_GDELTANESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (gdelta_in top' (IMAGE f u) <=> gdelta_in top u)`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[GDELTA_IN_FSIGMA_IN] THEN SUBGOAL_THEN `topspace top' DIFF IMAGE (f:A->B) u = IMAGE f (topspace top DIFF u)` SUBST1_TAC THENL [ALL_TAC; ASM_SIMP_TAC[HOMEOMORPHIC_MAP_FSIGMANESS; SUBSET_DIFF]] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_GDELTANESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (gdelta_in top u <=> u SUBSET topspace top /\ gdelta_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_GDELTANESS; GDELTA_IN_SUBSET]);; let FSIGMA_IN_RELATIVE_TO = prove (`!top s:A->bool. (fsigma_in top relative_to s) = fsigma_in (subtopology top s)`, REWRITE_TAC[fsigma_in; COUNTABLE_UNION_OF_RELATIVE_TO] THEN REWRITE_TAC[CLOSED_IN_RELATIVE_TO]);; let FSIGMA_IN_SUBTOPOLOGY = prove (`!top u s:A->bool. fsigma_in (subtopology top u) s <=> ?t. fsigma_in top t /\ s = t INTER u`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FSIGMA_IN_RELATIVE_TO] THEN REWRITE_TAC[relative_to] THEN MESON_TAC[INTER_COMM]);; let GDELTA_IN_RELATIVE_TO = prove (`!top s:A->bool. (gdelta_in top relative_to s) = gdelta_in (subtopology top s)`, REWRITE_TAC[gdelta_in; RELATIVE_TO_RELATIVE_TO] THEN ONCE_REWRITE_TAC[COUNTABLE_INTERSECTION_OF_RELATIVE_TO] THEN REWRITE_TAC[OPEN_IN_RELATIVE_TO] THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[SET_RULE `s INTER u INTER s = u INTER s`]);; let GDELTA_IN_SUBTOPOLOGY = prove (`!top u s:A->bool. gdelta_in (subtopology top u) s <=> ?t. gdelta_in top t /\ s = t INTER u`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GDELTA_IN_RELATIVE_TO] THEN REWRITE_TAC[relative_to] THEN MESON_TAC[INTER_COMM]);; let FSIGMA_IN_FSIGMA_SUBTOPOLOGY = prove (`!top s t:A->bool. fsigma_in top s ==> (fsigma_in (subtopology top s) t <=> fsigma_in top t /\ t SUBSET s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[FSIGMA_IN_SUBTOPOLOGY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[INTER_SUBSET; FSIGMA_IN_INTER] THEN EXISTS_TAC `t:A->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let GDELTA_IN_GDELTA_SUBTOPOLOGY = prove (`!top s t:A->bool. gdelta_in top s ==> (gdelta_in (subtopology top s) t <=> gdelta_in top t /\ t SUBSET s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GDELTA_IN_SUBTOPOLOGY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[INTER_SUBSET; GDELTA_IN_INTER] THEN EXISTS_TAC `t:A->bool` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Metric spaces. *) (* ------------------------------------------------------------------------- *) let is_metric_space = new_definition `is_metric_space (s,d) <=> (!x y:A. x IN s /\ y IN s ==> &0 <= d(x,y)) /\ (!x y. x IN s /\ y IN s ==> (d(x,y) = &0 <=> x = y)) /\ (!x y. x IN s /\ y IN s ==> d(x,y) = d(y,x)) /\ (!x y z. x IN s /\ y IN s /\ z IN s ==> d(x,z) <= d(x,y) + d(y,z))`;; let IS_METRIC_SPACE = prove (`!s d:A#A->real. is_metric_space (s,d) <=> (!x y. x IN s /\ y IN s ==> (d(x,y) = &0 <=> x = y)) /\ (!x y z. x IN s /\ y IN s /\ z IN s ==> d(x,z) <= d(y,x) + d(y,z))`, REPEAT GEN_TAC THEN REWRITE_TAC[is_metric_space] THEN EQ_TAC THENL [MESON_TAC[]; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC(TAUT `(q ==> r) /\ p /\ q ==> p /\ q /\ r`) THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[]; ONCE_REWRITE_TAC[REAL_ARITH `&0 <= x <=> &0 <= x + x`] THEN ASM_MESON_TAC[]; REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN ASM_MESON_TAC[REAL_ADD_RID]]);; let metric_tybij = (new_type_definition "metric" ("metric","dest_metric") o prove) (`?m:(A->bool)#(A#A->real). is_metric_space m`, EXISTS_TAC `({}:A->bool,(\p:A#A. &0))` THEN REWRITE_TAC[is_metric_space; NOT_IN_EMPTY]);; let IS_METRIC_SPACE_SUBSPACE = prove (`!(s:A->bool) d. is_metric_space (s,d) ==> (! s'. s' SUBSET s ==> is_metric_space (s',d))`, SIMP_TAC[SUBSET; is_metric_space]);; let mspace = new_definition `!m:A metric. mspace m = FST (dest_metric m)`;; let mdist = new_definition `!m:A metric. mdist m = SND (dest_metric m)`;; let METRIC = prove (`!s d. is_metric_space (s:A->bool,d) ==> mspace (metric (s,d)) = s /\ mdist (metric (s,d)) = d`, REWRITE_TAC[mspace; mdist] THEN MESON_TAC[metric_tybij; FST; SND]);; let MSPACE = prove (`!s:A->bool d. is_metric_space (s,d) ==> mspace (metric (s,d)) = s`, SIMP_TAC[METRIC]);; let MDIST = prove (`!s:A->bool d. is_metric_space (s,d) ==> mdist (metric (s,d)) = d`, SIMP_TAC[METRIC]);; (* ------------------------------------------------------------------------- *) (* Distance properties. *) (* ------------------------------------------------------------------------- *) let [MDIST_POS_LE; MDIST_0; MDIST_SYM; MDIST_TRIANGLE] = let FORALL_METRIC_THM = prove (`!P. (!m. P m) <=> (!s:A->bool d. is_metric_space(s,d) ==> P(metric (s,d)))`, REWRITE_TAC[GSYM FORALL_PAIR_THM; metric_tybij] THEN MESON_TAC[CONJUNCT1 metric_tybij]) in let METRIC_AXIOMS = (`!m. (!x y:A. x IN mspace m /\ y IN mspace m ==> &0 <= mdist m (x,y)) /\ (!x y. x IN mspace m /\ y IN mspace m ==> (mdist m (x,y) = &0 <=> x = y)) /\ (!x y. x IN mspace m /\ y IN mspace m ==> mdist m (x,y) = mdist m (y,x)) /\ (!x y z. x IN mspace m /\ y IN mspace m /\ z IN mspace m ==> mdist m (x,z) <= mdist m (x,y) + mdist m (y,z))`, SIMP_TAC[FORALL_METRIC_THM; MSPACE; MDIST; is_metric_space]) in (CONJUNCTS o REWRITE_RULE [FORALL_AND_THM] o prove) METRIC_AXIOMS;; let REAL_ABS_MDIST = prove (`!m x y:A. x IN mspace m /\ y IN mspace m ==> abs(mdist m (x,y)) = mdist m (x,y)`, SIMP_TAC[REAL_ABS_REFL; MDIST_POS_LE]);; let MDIST_POS_LT = prove (`!m x y:A. x IN mspace m /\ y IN mspace m /\ ~(x=y) ==> &0 < mdist m (x,y)`, SIMP_TAC [REAL_LT_LE; MDIST_POS_LE] THEN MESON_TAC[MDIST_0]);; let MDIST_REFL = prove (`!m x:A. x IN mspace m ==> mdist m (x,x) = &0`, SIMP_TAC[MDIST_0]);; let MDIST_POS_EQ = prove (`!m x y:A. x IN mspace m /\ y IN mspace m ==> (&0 < mdist m (x,y) <=> ~(x = y))`, MESON_TAC[MDIST_POS_LT; MDIST_REFL; REAL_LT_REFL]);; let MDIST_REVERSE_TRIANGLE = prove (`!m x y z:A. x IN mspace m /\ y IN mspace m /\ z IN mspace m ==> abs(mdist m (x,y) - mdist m (y,z)) <= mdist m (x,z)`, GEN_TAC THEN CLAIM_TAC "rmk" `!x y z:A. x IN mspace m /\ y IN mspace m /\ z IN mspace m ==> mdist m (x,y) - mdist m (y,z) <= mdist m (x,z)` THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[REAL_LE_SUB_RADD] THEN ASM_MESON_TAC[MDIST_TRIANGLE; MDIST_SYM]; REWRITE_TAC[REAL_ABS_BOUNDS; REAL_ARITH `!a b c. --a <= b - c <=> c - a <= b`] THEN ASM_MESON_TAC[MDIST_SYM]]);; (* ------------------------------------------------------------------------- *) (* Open ball. *) (* ------------------------------------------------------------------------- *) let mball = new_definition `mball m (x:A,r) = {y | x IN mspace m /\ y IN mspace m /\ mdist m (x,y) < r}`;; let IN_MBALL = prove (`!m x y:A r. y IN mball m (x,r) <=> x IN mspace m /\ y IN mspace m /\ mdist m (x,y) < r`, REWRITE_TAC[mball; IN_ELIM_THM]);; let CENTRE_IN_MBALL = prove (`!m x:A r. &0 < r /\ x IN mspace m ==> x IN mball m (x,r)`, SIMP_TAC[IN_MBALL; MDIST_REFL; real_gt]);; let CENTRE_IN_MBALL_EQ = prove (`!m x:A r. x IN mball m (x,r) <=> x IN mspace m /\ &0 < r`, REPEAT GEN_TAC THEN REWRITE_TAC[IN_MBALL] THEN ASM_CASES_TAC `x:A IN mspace m` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MDIST_REFL]);; let MBALL_SUBSET_MSPACE = prove (`!m (x:A) r. mball m (x,r) SUBSET mspace m`, SIMP_TAC[SUBSET; IN_MBALL]);; let MBALL_EMPTY = prove (`!m x:A r. r <= &0 ==> mball m (x,r) = {}`, REWRITE_TAC[IN_MBALL; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[MDIST_POS_LE; REAL_ARITH `!x. ~(r <= &0 /\ &0 <= x /\ x < r)`]);; let MBALL_EMPTY_ALT = prove (`!m x:A r. ~(x IN mspace m) ==> mball m (x,r) = {}`, REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_MBALL] THEN MESON_TAC[]);; let MBALL_EQ_EMPTY = prove (`!m x:A r. mball m (x,r) = {} <=> ~(x IN mspace m) \/ r <= &0`, REPEAT GEN_TAC THEN EQ_TAC THENL [MP_TAC CENTRE_IN_MBALL THEN REWRITE_TAC[GSYM REAL_NOT_LE] THEN SET_TAC[]; STRIP_TAC THEN ASM_SIMP_TAC[MBALL_EMPTY; MBALL_EMPTY_ALT]]);; let MBALL_SUBSET = prove (`!m x y:A a b. y IN mspace m /\ mdist m (x,y) + a <= b ==> mball m (x,a) SUBSET mball m (y,b)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `x:A IN mspace m` THENL [STRIP_TAC; ASM SET_TAC [MBALL_EMPTY_ALT]] THEN ASM_REWRITE_TAC[SUBSET; IN_MBALL] THEN FIX_TAC "[z]" THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CUT_TAC `mdist m (y,z) <= mdist m (x:A,y) + mdist m (x,z)` THENL [ASM_REAL_ARITH_TAC; ASM_MESON_TAC[MDIST_SYM; MDIST_TRIANGLE]]);; let DISJOINT_MBALL = prove (`!m x:A x' r r'. r + r' <= mdist m (x,x') ==> DISJOINT (mball m (x,r)) (mball m (x',r'))`, REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; IN_MBALL; NOT_IN_EMPTY; CONJ_ACI] THEN INTRO_TAC "!m x x' r r'; HPrr'; !x''; x x' x'' d1 d2" THEN SUBGOAL_THEN `mdist m (x:A,x') < r + r'` (fun th -> ASM_MESON_TAC[th; REAL_NOT_LE]) THEN TRANS_TAC REAL_LET_TRANS `mdist m (x:A,x'') + mdist m (x'',x')` THEN ASM_SIMP_TAC[MDIST_TRIANGLE; MDIST_SYM] THEN HYP (MP_TAC o end_itlist CONJ) "d1 d2" [] THEN REAL_ARITH_TAC);; let MBALL_SUBSET_CONCENTRIC = prove (`!m (x:A) r1 r2. r1 <= r2 ==> mball m (x,r1) SUBSET mball m (x,r2)`, SIMP_TAC[SUBSET; IN_MBALL] THEN MESON_TAC[REAL_LTE_TRANS]);; (* ------------------------------------------------------------------------- *) (* Subspace of a metric space. *) (* ------------------------------------------------------------------------- *) let submetric = new_definition `submetric (m:A metric) s = metric (s INTER mspace m, mdist m)`;; let SUBMETRIC = prove (`(!m:A metric s. mspace (submetric m s) = s INTER mspace m) /\ (!m:A metric s. mdist (submetric m s) = mdist m)`, CLAIM_TAC "metric" `!m:A metric s. is_metric_space (s INTER mspace m, mdist m)` THENL [REWRITE_TAC[is_metric_space; IN_INTER] THEN SIMP_TAC[MDIST_POS_LE; MDIST_0; MDIST_SYM; MDIST_TRIANGLE]; ASM_SIMP_TAC[submetric; MSPACE; MDIST]]);; let MBALL_SUBMETRIC_EQ = prove (`!m s a:A r. mball (submetric m s) (a,r) = if a IN s then s INTER mball m (a,r) else {}`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_INTER; IN_MBALL; SUBMETRIC] THEN SET_TAC[]);; let MBALL_SUBMETRIC = prove (`!m s x:A r. x IN s ==> mball (submetric m s) (x,r) = mball m (x,r) INTER s`, SIMP_TAC[MBALL_SUBMETRIC_EQ; INTER_COMM]);; let SUBMETRIC_UNIV = prove (`submetric m (:A) = m`, REWRITE_TAC[submetric; INTER_UNIV; mspace; mdist; metric_tybij]);; let SUBMETRIC_SUBMETRIC = prove (`!m s t:A->bool. submetric (submetric m s) t = submetric m (s INTER t)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[submetric] THEN REWRITE_TAC[SUBMETRIC] THEN REWRITE_TAC[SET_RULE `(s INTER t) INTER m = t INTER s INTER m`]);; let SUBMETRIC_MSPACE = prove (`!m:A metric. submetric m (mspace m) = m`, GEN_TAC THEN REWRITE_TAC[submetric; SET_RULE `s INTER s = s`] THEN GEN_REWRITE_TAC RAND_CONV [GSYM(CONJUNCT1 metric_tybij)] THEN REWRITE_TAC[mspace; mdist]);; let SUBMETRIC_RESTRICT = prove (`!m s:A->bool. submetric m s = submetric m (mspace m INTER s)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM SUBMETRIC_MSPACE] THEN REWRITE_TAC[SUBMETRIC_SUBMETRIC]);; (* ------------------------------------------------------------------------- *) (* Metric topology *) (* ------------------------------------------------------------------------- *) let mtopology = new_definition `mtopology (m:A metric) = topology {u | u SUBSET mspace m /\ !x:A. x IN u ==> ?r. &0 < r /\ mball m (x,r) SUBSET u}`;; let IS_TOPOLOGY_METRIC_TOPOLOGY = prove (`istopology {u | u SUBSET mspace m /\ !x:A. x IN u ==> ?r. &0 < r /\ mball m (x,r) SUBSET u}`, REWRITE_TAC[istopology; IN_ELIM_THM; NOT_IN_EMPTY; EMPTY_SUBSET] THEN CONJ_TAC THENL [INTRO_TAC "!s t; (s shp) (t thp)" THEN CONJ_TAC THENL [HYP SET_TAC "s t" []; ALL_TAC] THEN REWRITE_TAC[IN_INTER] THEN INTRO_TAC "!x; sx tx" THEN REMOVE_THEN "shp" (DESTRUCT_TAC "@r1. r1 rs" o C MATCH_MP (ASSUME `x:A IN s`)) THEN REMOVE_THEN "thp" (DESTRUCT_TAC "@r2. r2 rt" o C MATCH_MP (ASSUME `x:A IN t`)) THEN EXISTS_TAC `min r1 r2` THEN ASM_REWRITE_TAC[REAL_LT_MIN; SUBSET_INTER] THEN ASM_MESON_TAC[REAL_MIN_MIN; MBALL_SUBSET_CONCENTRIC; SUBSET_TRANS]; REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]]);; let OPEN_IN_MTOPOLOGY = prove (`!m:A metric u. open_in (mtopology m) u <=> u SUBSET mspace m /\ (!x. x IN u ==> ?r. &0 < r /\ mball m (x,r) SUBSET u)`, REPEAT GEN_TAC THEN REWRITE_TAC[mtopology] THEN (SUBST1_TAC o REWRITE_RULE[IS_TOPOLOGY_METRIC_TOPOLOGY] o SPEC `{u | u SUBSET mspace m /\ !x:A. x IN u ==> ?r. &0 < r /\ mball m (x,r) SUBSET u}` o CONJUNCT2) topology_tybij THEN GEN_REWRITE_TAC LAND_CONV [GSYM IN] THEN REWRITE_TAC[IN_ELIM_THM]);; let TOPSPACE_MTOPOLOGY = prove (`!m:A metric. topspace (mtopology m) = mspace m`, GEN_TAC THEN REWRITE_TAC[mtopology; topspace] THEN (SUBST1_TAC o REWRITE_RULE[IS_TOPOLOGY_METRIC_TOPOLOGY] o SPEC `{u | u SUBSET mspace m /\ !x:A. x IN u ==> ?r. &0 < r /\ mball m (x,r) SUBSET u}` o CONJUNCT2) topology_tybij THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN GEN_TAC THEN EQ_TAC THENL [SET_TAC[]; ALL_TAC] THEN INTRO_TAC "x" THEN EXISTS_TAC `mspace (m:A metric)` THEN ASM_REWRITE_TAC[MBALL_SUBSET_MSPACE; SUBSET_REFL] THEN MESON_TAC[REAL_LT_01]);; let SUBTOPOLOGY_MSPACE = prove (`!m:A metric. subtopology (mtopology m) (mspace m) = mtopology m`, REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; SUBTOPOLOGY_TOPSPACE]);; let OPEN_IN_MSPACE = prove (`!m:A metric. open_in (mtopology m) (mspace m)`, REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; OPEN_IN_TOPSPACE]);; let CLOSED_IN_MSPACE = prove (`!m:A metric. closed_in (mtopology m) (mspace m)`, REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; CLOSED_IN_TOPSPACE]);; let OPEN_IN_MBALL = prove (`!m (x:A) r. open_in (mtopology m) (mball m (x,r))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 < (r:real)` THENL [ALL_TAC; ASM_SIMP_TAC[MBALL_EMPTY; GSYM REAL_NOT_LT; OPEN_IN_EMPTY]] THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY; MBALL_SUBSET_MSPACE; IN_MBALL; SUBSET] THEN INTRO_TAC "![y]; x y xy" THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `r - mdist m (x:A,y)` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "![z]; z lt" THEN ASM_REWRITE_TAC[] THEN TRANS_TAC REAL_LET_TRANS `mdist m (x:A,y) + mdist m (y,z)` THEN ASM_SIMP_TAC[MDIST_TRIANGLE] THEN ASM_REAL_ARITH_TAC);; let MTOPOLOGY_SUBMETRIC = prove (`!m:A metric s. mtopology (submetric m s) = subtopology (mtopology m) s`, REWRITE_TAC[TOPOLOGY_EQ] THEN INTRO_TAC "!m s [u]" THEN EQ_TAC THEN INTRO_TAC "hp" THENL [REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN EXISTS_TAC `UNIONS {mball m (c:A,r) | c,r | mball m (c,r) INTER s SUBSET u}` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[IN_ELIM_THM] THEN INTRO_TAC "![t]; @c r. sub t" THEN REMOVE_THEN "t" SUBST_VAR_TAC THEN MATCH_ACCEPT_TAC OPEN_IN_MBALL; MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN HYP_TAC "hp: (us um) hp" (REWRITE_RULE[OPEN_IN_MTOPOLOGY; SUBMETRIC; SUBSET_INTER]) THEN ASM_REWRITE_TAC[SUBSET_INTER] THEN REWRITE_TAC[SUBSET] THEN INTRO_TAC "!x; x" THEN USE_THEN "x" (HYP_TAC "hp: @r. rpos sub" o C MATCH_MP) THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN EXISTS_TAC `mball m (x:A,r)` THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`x:A`; `r:real`] THEN IMP_REWRITE_TAC [GSYM MBALL_SUBMETRIC] THEN ASM SET_TAC[]; MATCH_MP_TAC CENTRE_IN_MBALL THEN ASM SET_TAC[]]]; ALL_TAC] THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY; SUBMETRIC; SUBSET_INTER] THEN HYP_TAC "hp: @t. t u" (REWRITE_RULE[OPEN_IN_SUBTOPOLOGY]) THEN REMOVE_THEN "u" SUBST_VAR_TAC THEN HYP_TAC "t: tm r" (REWRITE_RULE[OPEN_IN_MTOPOLOGY]) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_INTER] THEN INTRO_TAC "!x; xt xs" THEN USE_THEN "xt" (HYP_TAC "r: @r. rpos sub" o C MATCH_MP) THEN EXISTS_TAC `r:real` THEN IMP_REWRITE_TAC[MBALL_SUBMETRIC] THEN ASM SET_TAC[]);; let METRIC_INJECTIVE_IMAGE = prove (`!(f:A->B) m s. IMAGE f s SUBSET mspace m /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> (mspace(metric(s,\(x,y). mdist m (f x,f y))) = s) /\ (mdist(metric(s,\(x,y). mdist m (f x,f y))) = \(x,y). mdist m (f x,f y))`, REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; INJECTIVE_ON_ALT] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[mspace; mdist; GSYM PAIR_EQ] THEN REWRITE_TAC[GSYM(CONJUNCT2 metric_tybij); is_metric_space] THEN REWRITE_TAC[GSYM mspace; GSYM mdist] THEN ASM_SIMP_TAC[MDIST_POS_LE; MDIST_TRIANGLE; MDIST_0] THEN ASM_MESON_TAC[MDIST_SYM]);; let MTOPOLOGY_BASE = prove (`!m:A metric. mtopology m = topology(ARBITRARY UNION_OF {mball m (x,r) |x,r| x IN mspace m /\ &0 < r})`, GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC TOPOLOGY_BASE_UNIQUE THEN REWRITE_TAC[SET_RULE `GSPEC s x <=> x IN GSPEC s`] THEN REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_IN_GSPEC; OPEN_IN_MBALL] THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `x:A`] THEN STRIP_TAC THEN EXISTS_TAC `x:A` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[CENTRE_IN_MBALL; SUBSET]);; let CLOSED_IN_METRIC = prove (`!m c:A->bool. closed_in (mtopology m) c <=> c SUBSET mspace m /\ (!x. x IN mspace m DIFF c ==> ?r. &0 < r /\ DISJOINT c (mball m (x,r)))`, REWRITE_TAC[closed_in; OPEN_IN_MTOPOLOGY; DISJOINT; TOPSPACE_MTOPOLOGY] THEN MP_TAC MBALL_SUBSET_MSPACE THEN ASM SET_TAC[]);; let mcball = new_definition `mcball m (x:A,r) = {y | x IN mspace m /\ y IN mspace m /\ mdist m (x,y) <= r}`;; let IN_MCBALL = prove (`!m (x:A) r y. y IN mcball m (x,r) <=> x IN mspace m /\ y IN mspace m /\ mdist m (x,y) <= r`, REWRITE_TAC[mcball; IN_ELIM_THM]);; let CENTRE_IN_MCBALL = prove (`!m x:A r. &0 <= r /\ x IN mspace m ==> x IN mcball m (x,r)`, SIMP_TAC[IN_MCBALL; MDIST_REFL]);; let CENTRE_IN_MCBALL_EQ = prove (`!m x:A r. x IN mcball m (x,r) <=> x IN mspace m /\ &0 <= r`, REPEAT GEN_TAC THEN REWRITE_TAC[IN_MCBALL] THEN ASM_CASES_TAC `x:A IN mspace m` THEN ASM_SIMP_TAC[MDIST_REFL]);; let MCBALL_EQ_EMPTY = prove (`!m x:A r. mcball m (x,r) = {} <=> ~(x IN mspace m) \/ r < &0`, REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_MCBALL; IN_ELIM_THM; NOT_IN_EMPTY] THEN ASM_MESON_TAC[REAL_NOT_LT; REAL_LE_TRANS; MDIST_POS_LE; MDIST_REFL]);; let MCBALL_EMPTY = prove (`!m (x:A) r. r < &0 ==> mcball m (x,r) = {}`, SIMP_TAC[MCBALL_EQ_EMPTY]);; let MCBALL_EMPTY_ALT = prove (`!m (x:A) r. ~(x IN mspace m) ==> mcball m (x,r) = {}`, SIMP_TAC[MCBALL_EQ_EMPTY]);; let MCBALL_SUBSET_MSPACE = prove (`!m (x:A) r. mcball m (x,r) SUBSET (mspace m)`, REWRITE_TAC[mcball; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);; let MBALL_SUBSET_MCBALL = prove (`!m x:A r. mball m (x,r) SUBSET mcball m (x,r)`, SIMP_TAC[SUBSET; IN_MBALL; IN_MCBALL; REAL_LT_IMP_LE]);; let MCBALL_SUBSET = prove (`!m x y:A a b. y IN mspace m /\ mdist m (x,y) + a <= b ==> mcball m (x,a) SUBSET mcball m (y,b)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `x:A IN mspace m` THENL [STRIP_TAC; ASM SET_TAC [MCBALL_EMPTY_ALT]] THEN ASM_REWRITE_TAC[SUBSET; IN_MCBALL] THEN FIX_TAC "[z]" THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CUT_TAC `mdist m (y,z) <= mdist m (x:A,y) + mdist m (x,z)` THENL [ASM_REAL_ARITH_TAC; ASM_MESON_TAC[MDIST_SYM; MDIST_TRIANGLE]]);; let MCBALL_SUBSET_CONCENTRIC = prove (`!m (x:A) a b. a <= b ==> mcball m (x,a) SUBSET mcball m (x,b)`, SIMP_TAC[SUBSET; IN_MCBALL] THEN MESON_TAC[REAL_LE_TRANS]);; let MCBALL_SUBSET_MBALL = prove (`!m x y:A a b. y IN mspace m /\ mdist m (x,y) + a < b ==> mcball m (x,a) SUBSET mball m (y,b)`, INTRO_TAC "!m x y a b; y lt" THEN ASM_CASES_TAC `x:A IN mspace m` THENL [POP_ASSUM (LABEL_TAC "x"); ASM_SIMP_TAC[MCBALL_EMPTY_ALT; EMPTY_SUBSET]] THEN ASM_REWRITE_TAC[SUBSET; IN_MCBALL; IN_MBALL] THEN INTRO_TAC "![z]; z le" THEN HYP REWRITE_TAC "z" [] THEN TRANS_TAC REAL_LET_TRANS `mdist m (y:A,x) + mdist m (x,z)` THEN ASM_SIMP_TAC[MDIST_TRIANGLE] THEN TRANS_TAC REAL_LET_TRANS `mdist m (x:A,y) + a` THEN HYP REWRITE_TAC "lt" [] THEN HYP SIMP_TAC "x y" [MDIST_SYM] THEN ASM_REAL_ARITH_TAC);; let MCBALL_SUBSET_MBALL_CONCENTRIC = prove (`!m x:A a b. a < b ==> mcball m (x,a) SUBSET mball m (x,b)`, INTRO_TAC "!m x a b; lt" THEN ASM_CASES_TAC `x:A IN mspace m` THENL [POP_ASSUM (LABEL_TAC "x"); ASM_SIMP_TAC[MCBALL_EMPTY_ALT; EMPTY_SUBSET]] THEN MATCH_MP_TAC MCBALL_SUBSET_MBALL THEN ASM_SIMP_TAC[MDIST_REFL] THEN ASM_REAL_ARITH_TAC);; let CLOSED_IN_MCBALL = prove (`!m:A metric x r. closed_in (mtopology m) (mcball m (x,r))`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_METRIC; MCBALL_SUBSET_MSPACE; DIFF; IN_ELIM_THM; IN_MCBALL; DE_MORGAN_THM; REAL_NOT_LE] THEN FIX_TAC "[y]" THEN MAP_EVERY ASM_CASES_TAC [`x:A IN mspace m`; `y:A IN mspace m`] THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_SIMP_TAC[MCBALL_EMPTY_ALT; DISJOINT_EMPTY] THEN MESON_TAC[REAL_LT_01]] THEN INTRO_TAC "lt" THEN EXISTS_TAC `mdist m (x:A,y) - r` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[]] THEN REWRITE_TAC[EXTENSION; DISJOINT; IN_INTER; NOT_IN_EMPTY; IN_MBALL; IN_MCBALL] THEN FIX_TAC "[z]" THEN ASM_CASES_TAC `z:A IN mspace m` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `mdist m (x,y) <= mdist m (x:A,z) + mdist m (z,y)` MP_TAC THENL [ASM_SIMP_TAC[MDIST_TRIANGLE]; ALL_TAC] THEN ASM_SIMP_TAC[MDIST_SYM] THEN ASM_REAL_ARITH_TAC);; let MCBALL_SUBMETRIC_EQ = prove (`!m s a:A r. mcball (submetric m s) (a,r) = if a IN s then s INTER mcball m (a,r) else {}`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_INTER; IN_MCBALL; SUBMETRIC] THEN SET_TAC[]);; let MCBALL_SUBMETRIC = prove (`!m s x:A r. x IN s ==> mcball (submetric m s) (x,r) = mcball m (x,r) INTER s`, SIMP_TAC[MCBALL_SUBMETRIC_EQ; INTER_COMM]);; let msphere = new_definition `msphere m (x:A,e) = {y | mdist m (x,y) = e}`;; let OPEN_IN_MTOPOLOGY_MCBALL = prove (`!m u. open_in (mtopology m) (u:A->bool) <=> u SUBSET mspace m /\ (!x. x IN u ==> (?r. &0 < r /\ mcball m (x,r) SUBSET u))`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN ASM_CASES_TAC `u:A->bool SUBSET mspace m` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [INTRO_TAC "hp; !x; x" THEN REMOVE_THEN "x" (HYP_TAC "hp: @r. rpos sub" o C MATCH_MP) THEN EXISTS_TAC `r / &2` THEN HYP REWRITE_TAC "rpos" [REAL_HALF] THEN TRANS_TAC SUBSET_TRANS `mball m (x:A,r)` THEN HYP REWRITE_TAC "sub" [] THEN MATCH_MP_TAC MCBALL_SUBSET_MBALL_CONCENTRIC THEN ASM_REAL_ARITH_TAC; INTRO_TAC "hp; !x; x" THEN REMOVE_THEN "x" (HYP_TAC "hp: @r. rpos sub" o C MATCH_MP) THEN EXISTS_TAC `r:real` THEN HYP REWRITE_TAC "rpos" [] THEN TRANS_TAC SUBSET_TRANS `mcball m (x:A,r)` THEN HYP REWRITE_TAC "sub" [MBALL_SUBSET_MCBALL]]);; let METRIC_DERIVED_SET_OF = prove (`!m s. mtopology m derived_set_of s = {x:A | x IN mspace m /\ (!r. &0 < r ==> (?y. ~(y = x) /\ y IN s /\ y IN mball m (x,r)))}`, REWRITE_TAC[derived_set_of; TOPSPACE_MTOPOLOGY; OPEN_IN_MTOPOLOGY; EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `x:A IN mspace m` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM (LABEL_TAC "x") THEN EQ_TAC THENL [INTRO_TAC "hp; !r; r" THEN HYP_TAC "hp: +" (SPEC `mball m (x:A,r)`) THEN ASM_REWRITE_TAC[CENTRE_IN_MBALL_EQ; MBALL_SUBSET_MSPACE] THEN DISCH_THEN MATCH_MP_TAC THEN HYP REWRITE_TAC "x" [IN_MBALL] THEN INTRO_TAC "![y]; y xy" THEN EXISTS_TAC `r - mdist m (x:A,y)` THEN CONJ_TAC THENL [REMOVE_THEN "xy" MP_TAC THEN REAL_ARITH_TAC; HYP REWRITE_TAC "x y" [SUBSET; IN_MBALL] THEN INTRO_TAC "![z]; z lt" THEN HYP REWRITE_TAC "z" [] THEN TRANS_TAC REAL_LET_TRANS `mdist m (x:A,y) + mdist m (y,z)` THEN ASM_SIMP_TAC[MDIST_TRIANGLE] THEN ASM_REAL_ARITH_TAC]; INTRO_TAC "hp; !t; t inc r" THEN HYP_TAC "r: @r. r ball" (C MATCH_MP (ASSUME `x:A IN t`)) THEN HYP_TAC "hp: @y. neq y dist" (C MATCH_MP (ASSUME `&0 < r`)) THEN EXISTS_TAC `y:A` THEN HYP REWRITE_TAC "neq y" [] THEN ASM SET_TAC[]]);; let METRIC_CLOSURE_OF = prove (`!m s. mtopology m closure_of s = {x:A | x IN mspace m /\ (!r. &0 < r ==> (?y. y IN s /\ y IN mball m (x,r)))}`, REWRITE_TAC[closure_of; TOPSPACE_MTOPOLOGY; OPEN_IN_MTOPOLOGY; EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `x:A IN mspace m` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM (LABEL_TAC "x") THEN EQ_TAC THENL [INTRO_TAC "hp; !r; r" THEN HYP_TAC "hp: +" (SPEC `mball m (x:A,r)`) THEN ASM_REWRITE_TAC[CENTRE_IN_MBALL_EQ; MBALL_SUBSET_MSPACE] THEN DISCH_THEN MATCH_MP_TAC THEN HYP REWRITE_TAC "x" [IN_MBALL] THEN INTRO_TAC "![y]; y xy" THEN EXISTS_TAC `r - mdist m (x:A,y)` THEN CONJ_TAC THENL [REMOVE_THEN "xy" MP_TAC THEN REAL_ARITH_TAC; HYP REWRITE_TAC "x y" [SUBSET; IN_MBALL] THEN INTRO_TAC "![z]; z lt" THEN HYP REWRITE_TAC "z" [] THEN TRANS_TAC REAL_LET_TRANS `mdist m (x:A,y) + mdist m (y,z)` THEN ASM_SIMP_TAC[MDIST_TRIANGLE] THEN ASM_REAL_ARITH_TAC]; INTRO_TAC "hp; !t; t inc r" THEN HYP_TAC "r: @r. r ball" (C MATCH_MP (ASSUME `x:A IN t`)) THEN HYP_TAC "hp: @y. y dist" (C MATCH_MP (ASSUME `&0 < r`)) THEN EXISTS_TAC `y:A` THEN HYP REWRITE_TAC "y" [] THEN ASM SET_TAC[]]);; let METRIC_CLOSURE_OF_ALT = prove (`!m s:A->bool. mtopology m closure_of s = {x | x IN mspace m /\ !r. &0 < r ==> ?y. y IN s /\ y IN mcball m (x,r)}`, REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; METRIC_CLOSURE_OF] THEN X_GEN_TAC `x:A` THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `r:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `r / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:A` THEN MATCH_MP_TAC MONO_AND THEN SIMP_TAC[IN_MBALL; IN_MCBALL] THEN ASM_REAL_ARITH_TAC);; let METRIC_INTERIOR_OF = prove (`!m s:A->bool. mtopology m interior_of s = {x | x IN mspace m /\ ?e. &0 < e /\ mball m (x,e) SUBSET s}`, REWRITE_TAC[INTERIOR_OF_CLOSURE_OF; METRIC_CLOSURE_OF; TOPSPACE_MTOPOLOGY; IN_DIFF; IN_MBALL; SUBSET] THEN SET_TAC[]);; let METRIC_INTERIOR_OF_ALT = prove (`!m s:A->bool. mtopology m interior_of s = {x | x IN mspace m /\ ?e. &0 < e /\ mcball m (x,e) SUBSET s}`, REWRITE_TAC[INTERIOR_OF_CLOSURE_OF; METRIC_CLOSURE_OF_ALT; IN_DIFF; IN_MCBALL; TOPSPACE_MTOPOLOGY; SUBSET] THEN SET_TAC[]);; let IN_INTERIOR_OF_MBALL = prove (`!m s x:A. x IN (mtopology m) interior_of s <=> x IN mspace m /\ ?e. &0 < e /\ mball m (x,e) SUBSET s`, REWRITE_TAC[METRIC_INTERIOR_OF; IN_ELIM_THM]);; let IN_INTERIOR_OF_MCBALL = prove (`!m s x:A. x IN (mtopology m) interior_of s <=> x IN mspace m /\ ?e. &0 < e /\ mcball m (x,e) SUBSET s`, REWRITE_TAC[METRIC_INTERIOR_OF_ALT; IN_ELIM_THM]);; (* ------------------------------------------------------------------------- *) (* Bounded sets. *) (* ------------------------------------------------------------------------- *) let mbounded = new_definition `mbounded m s <=> (?c:A b. s SUBSET mcball m (c,b))`;; let MBOUNDED_POS = prove (`!m s:A->bool. mbounded m s <=> ?c b. &0 < b /\ s SUBSET mcball m (c,b)`, REPEAT GEN_TAC THEN REWRITE_TAC[mbounded] THEN EQ_TAC THEN MATCH_MP_TAC MONO_EXISTS THENL [ALL_TAC; MESON_TAC[]] THEN X_GEN_TAC `a:A` THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN EXISTS_TAC `abs B + &1` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `mcball m (a:A,B)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MCBALL_SUBSET_CONCENTRIC THEN REAL_ARITH_TAC);; let MBOUNDED_ALT = prove (`!m s:A->bool. mbounded m s <=> s SUBSET mspace m /\ ?b. !x y. x IN s /\ y IN s ==> mdist m (x,y) <= b`, REPEAT GEN_TAC THEN REWRITE_TAC[mbounded] THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; IN_MCBALL] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:real`] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN EXISTS_TAC `&2 * b` THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `mdist m (x:A,a) + mdist m (a,y)` THEN CONJ_TAC THENL [ASM_MESON_TAC[MDIST_TRIANGLE; MDIST_SYM]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `x <= b /\ y <= b ==> x + y <= &2 * b`) THEN ASM_MESON_TAC[MDIST_SYM]; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `B:real`)) THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[EMPTY_SUBSET] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN EXISTS_TAC `B:real` THEN REWRITE_TAC[SUBSET; IN_MCBALL] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM SET_TAC[]]);; let MBOUNDED_ALT_POS = prove (`!m s:A->bool. mbounded m s <=> s SUBSET mspace m /\ ?B. &0 < B /\ !x y. x IN s /\ y IN s ==> mdist m (x,y) <= B`, REPEAT GEN_TAC THEN REWRITE_TAC[MBOUNDED_ALT] THEN AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `abs B + &1` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ASM_MESON_TAC[REAL_ARITH `x <= b ==> x <= abs b + &1`]]);; let MBOUNDED_SUBSET = prove (`!m s t:A->bool. mbounded m t /\ s SUBSET t ==> mbounded m s`, REWRITE_TAC[mbounded] THEN SET_TAC[]);; let MBOUNDED_SUBSET_MSPACE = prove (`!m s:A->bool. mbounded m s ==> s SUBSET mspace m`, REWRITE_TAC[mbounded] THEN REPEAT STRIP_TAC THEN TRANS_TAC SUBSET_TRANS `mcball m (c:A,b)` THEN ASM_REWRITE_TAC[MCBALL_SUBSET_MSPACE]);; let MBOUNDED = prove (`!m s. mbounded m s <=> s = {} \/ (!x:A. x IN s ==> x IN mspace m) /\ (?c b. c IN mspace m /\ (!x. x IN s ==> mdist m (c,x) <= b))`, REPEAT GEN_TAC THEN REWRITE_TAC[mbounded; SUBSET; IN_MCBALL] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM SET_TAC[]);; let MBOUNDED_EMPTY = prove (`!m:A metric. mbounded m {}`, REWRITE_TAC[mbounded; EMPTY_SUBSET]);; let MBOUNDED_MCBALL = prove (`!m:A metric c b. mbounded m (mcball m (c,b))`, REWRITE_TAC[mbounded] THEN MESON_TAC[SUBSET_REFL]);; let MBOUNDED_MBALL = prove (`!m:A metric c b. mbounded m (mball m (c,b))`, REPEAT GEN_TAC THEN MATCH_MP_TAC MBOUNDED_SUBSET THEN EXISTS_TAC `mcball m (c:A,b)` THEN REWRITE_TAC[MBALL_SUBSET_MCBALL; MBOUNDED_MCBALL]);; let MBOUNDED_INSERT = prove (`!m a:A s. mbounded m (a INSERT s) <=> a IN mspace m /\ mbounded m s`, REPEAT GEN_TAC THEN REWRITE_TAC[MBOUNDED; NOT_INSERT_EMPTY; IN_INSERT] THEN ASM_CASES_TAC `a:A IN mspace m` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_SIMP_TAC[NOT_IN_EMPTY] THENL [ASM_MESON_TAC[REAL_LE_REFL]; ALL_TAC] THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`c:A`; `max b (mdist m (c:A,a))`] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MAX_MAX] THEN TRANS_TAC REAL_LE_TRANS `b:real` THEN ASM_SIMP_TAC[REAL_MAX_MAX]);; let MBOUNDED_INTER = prove (`!m:A metric s t. mbounded m s /\ mbounded m t ==> mbounded m (s INTER t)`, REWRITE_TAC[mbounded] THEN SET_TAC[]);; let MBOUNDED_UNION = prove (`!m:A metric s t. mbounded m (s UNION t) <=> mbounded m s /\ mbounded m t`, REPEAT GEN_TAC THEN REWRITE_TAC[mbounded] THEN EQ_TAC THENL [SET_TAC[]; INTRO_TAC "(@c1 b1. s) (@c2 b2. t)"] THEN ASM_CASES_TAC `&0 <= b1 /\ &0 <= b2 /\ c1:A IN mspace m /\ c2 IN mspace m` THENL [POP_ASSUM STRIP_ASSUME_TAC; POP_ASSUM MP_TAC THEN REWRITE_TAC[DE_MORGAN_THM; REAL_NOT_LE] THEN ASM SET_TAC [MCBALL_EMPTY; MCBALL_EMPTY_ALT]] THEN MAP_EVERY EXISTS_TAC [`c1:A`; `b1 + b2 + mdist m (c1:A,c2)`] THEN REWRITE_TAC[UNION_SUBSET] THEN CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `mcball m (c1:A,b1)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MCBALL_SUBSET_CONCENTRIC THEN CUT_TAC `&0 <= mdist m (c1:A,c2)` THENL [ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[MDIST_POS_LE]]; TRANS_TAC SUBSET_TRANS `mcball m (c2:A,b2)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MCBALL_SUBSET THEN ASM_SIMP_TAC[MDIST_SYM] THEN ASM_REAL_ARITH_TAC]);; let MBOUNDED_UNIONS = prove (`!m f:(A->bool)->bool. FINITE f /\ (!s. s IN f ==> mbounded m s) ==> mbounded m (UNIONS f)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; UNIONS_INSERT; NOT_IN_EMPTY] THEN SIMP_TAC[UNIONS_0; MBOUNDED_EMPTY; MBOUNDED_UNION]);; let MBOUNDED_CLOSURE_OF = prove (`!m s:A->bool. mbounded m s ==> mbounded m (mtopology m closure_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[mbounded] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN DISCH_TAC THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ASM_REWRITE_TAC[CLOSED_IN_MCBALL]);; let MBOUNDED_CLOSURE_OF_EQ = prove (`!m s:A->bool. s SUBSET mspace m ==> (mbounded m (mtopology m closure_of s) <=> mbounded m s)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[MBOUNDED_CLOSURE_OF] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] MBOUNDED_SUBSET) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; TOPSPACE_MTOPOLOGY]);; let MBOUNDED_SUBMETRIC = prove (`!m:A metric s. mbounded (submetric m s) t <=> mbounded m (s INTER t) /\ t SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[MBOUNDED_ALT; SUBMETRIC] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* A decision procedure for metric spaces. *) (* ------------------------------------------------------------------------- *) let METRIC_ARITH : term -> thm = let SUP_CONV = let conv0 = REWR_CONV SUP_INSERT_INSERT and conv1 = REWR_CONV SUP_SING in conv1 ORELSEC (conv0 THENC REPEATC conv0 THENC TRY_CONV conv1) in let MAXDIST_THM = prove (`!m s x y:A. mbounded m s /\ x IN s /\ y IN s ==> mdist m (x,y) = sup (IMAGE (\a. abs(mdist m (x,a) - mdist m (a,y))) s)`, REPEAT GEN_TAC THEN INTRO_TAC "bnd x y" THEN MATCH_MP_TAC (GSYM SUP_UNIQUE) THEN CLAIM_TAC "inc" `!p:A. p IN s ==> p IN mspace m` THENL [HYP SET_TAC "bnd" [MBOUNDED_SUBSET_MSPACE]; ALL_TAC] THEN GEN_TAC THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN EQ_TAC THENL [INTRO_TAC "le; ![z]; z" THEN TRANS_TAC REAL_LE_TRANS `mdist m (x:A,y)` THEN ASM_SIMP_TAC[MDIST_REVERSE_TRIANGLE]; DISCH_THEN (MP_TAC o C MATCH_MP (ASSUME `y:A IN s`)) THEN ASM_SIMP_TAC[MDIST_REFL; REAL_SUB_RZERO; REAL_ABS_MDIST]]) and METRIC_EQ_THM = prove (`!m s x y:A. s SUBSET mspace m /\ x IN s /\ y IN s ==> (x = y <=> (!a. a IN s ==> mdist m (x,a) = mdist m (y,a)))`, INTRO_TAC "!m s x y; sub sx sy" THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_THEN (MP_TAC o SPEC `y:A`) THEN CLAIM_TAC "x y" `x:A IN mspace m /\ y IN mspace m` THENL [ASM SET_TAC []; ASM_SIMP_TAC[MDIST_REFL; MDIST_0]]) in let CONJ1_CONV : conv -> conv = let TRUE_CONJ_CONV = REWR_CONV (MESON [] `T /\ p <=> p`) in fun conv -> LAND_CONV conv THENC TRUE_CONJ_CONV in let IN_CONV : conv = let DISJ_TRUE_CONV = REWR_CONV (MESON [] `p \/ T <=> T`) and TRUE_DISJ_CONV = REWR_CONV (MESON [] `T \/ p <=> T`) in let REFL_CONV = REWR_CONV (MESON [] `x:A = x <=> T`) in let conv0 = REWR_CONV (EQF_INTRO (SPEC_ALL NOT_IN_EMPTY)) in let conv1 = REWR_CONV IN_INSERT in let conv2 = LAND_CONV REFL_CONV THENC TRUE_DISJ_CONV in let rec IN_CONV tm = (conv0 ORELSEC (conv1 THENC (conv2 ORELSEC (RAND_CONV IN_CONV THENC DISJ_TRUE_CONV)))) tm in IN_CONV and IMAGE_CONV : conv = let pth0,pth1 = CONJ_PAIR IMAGE_CLAUSES in let conv0 = REWR_CONV pth0 and conv1 = REWR_CONV pth1 THENC TRY_CONV (LAND_CONV BETA_CONV) in let rec IMAGE_CONV tm = (conv0 ORELSEC (conv1 THENC RAND_CONV IMAGE_CONV)) tm in IMAGE_CONV in let SUBSET_CONV : conv -> conv = let conv0 = REWR_CONV (EQT_INTRO (SPEC_ALL EMPTY_SUBSET)) in let conv1 = REWR_CONV INSERT_SUBSET in fun conv -> let conv2 = conv1 THENC CONJ1_CONV conv in REPEATC conv2 THENC conv0 in let rec prove_hyps th = match hyp th with | [] -> th | htm :: _ -> let emth = SPEC htm EXCLUDED_MIDDLE in let nhp = EQF_INTRO (ASSUME (mk_neg htm)) in let nth1 = (SUBS_CONV [nhp] THENC PRESIMP_CONV) (concl th) in let nth2 = MESON [nhp] (rand (concl nth1)) in let nth = EQ_MP (SYM nth1) nth2 in prove_hyps(DISJ_CASES emth th nth) in let rec guess_metric tm = match tm with | Comb(Const("mdist",_),m) -> m | Comb(Const("mspace",_),m) -> m | Comb(s,t) -> (try guess_metric s with Failure _ -> guess_metric t) | Abs(_, bd) -> guess_metric bd | _ -> failwith "metric not found" in let find_mdist mtm = let rec find tm = match tm with | Comb(Comb(Const("mdist",_),pmtm),p) when pmtm = mtm -> [tm] | Comb(s,t) -> union (find s) (find t) | Abs(v, bd) -> filter (fun x -> not(free_in v x)) (find bd) | _ -> [] in find and find_eq mty = let rec find tm = match tm with | Comb(Comb(Const("=",ty),_),_) when fst(dest_fun_ty ty) = mty -> [tm] | Comb(s,t) -> union (find s) (find t) | Abs(v, bd) -> filter (fun x -> not(free_in v x)) (find bd) | _ -> [] in find and find_points mtm = let rec find tm = match tm with | Comb(Comb(Const("mdist",_),pmtm),p) when pmtm = mtm -> let x,y = dest_pair p in if x = y then [x] else [x;y] | Comb(Comb(Const("IN",_),x),Comb(Const("mspace",_),pmtm)) when pmtm = mtm -> [x] | Comb(s,t) -> union (find s) (find t) | Abs(v, bd) -> filter (fun x -> not(free_in v x)) (find bd) | _ -> [] in find in let prenex_conv = TOP_DEPTH_CONV BETA_CONV THENC PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP] THENC NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC PRESIMP_CONV THENC GEN_REWRITE_CONV REDEPTH_CONV [AND_FORALL_THM; LEFT_AND_FORALL_THM; RIGHT_AND_FORALL_THM; LEFT_OR_FORALL_THM; RIGHT_OR_FORALL_THM] THENC PRENEX_CONV and real_poly_conv = let eths = REAL_ARITH `(x = y <=> x - y = &0) /\ (x < y <=> y - x > &0) /\ (x > y <=> x - y > &0) /\ (x <= y <=> y - x >= &0) /\ (x >= y <=> x - y >= &0)` in GEN_REWRITE_CONV I [eths] THENC LAND_CONV REAL_POLY_CONV and augment_mdist_pos_thm = MESON [] `p ==> (q <=> r) ==> (q <=> (p ==> r))` in fun tm -> let mtm = guess_metric tm in let mty = hd(snd(dest_type(type_of mtm))) in let mspace_tm = mk_icomb(mk_const("mspace",[]),mtm) in let metric_eq_thm = ISPEC mtm METRIC_EQ_THM and mk_in_mspace_th = let in_tm = mk_const("IN",[mty,aty]) in fun pt -> ASSUME (mk_comb(mk_comb(in_tm,pt),mspace_tm)) in let th0 = prenex_conv tm in let tm0 = rand (concl th0) in let avs,bod = strip_forall tm0 in let points = find_points mtm bod in let in_mspace_conv = GEN_REWRITE_CONV I (map mk_in_mspace_th points) in let in_mspace2_conv = CONJ1_CONV in_mspace_conv THENC in_mspace_conv in let MDIST_REFL_CONV = let pconv = IMP_REWR_CONV (ISPEC mtm MDIST_REFL) in fun tm -> MP_CONV in_mspace_conv (pconv tm) and MDIST_SYM_CONV = let pconv = IMP_REWR_CONV (ISPEC mtm MDIST_SYM) in fun tm -> let x,y = dest_pair (rand tm) in if x <= y then failwith "MDIST_SYM_CONV" else MP_CONV in_mspace2_conv (pconv tm) and MBOUNDED_CONV = let conv0 = REWR_CONV (EQT_INTRO (ISPEC mtm MBOUNDED_EMPTY)) in let conv1 = REWR_CONV (ISPEC mtm MBOUNDED_INSERT) in let rec mbounded_conv tm = try conv0 tm with Failure _ -> (conv1 THENC CONJ1_CONV in_mspace_conv THENC mbounded_conv) tm in mbounded_conv in let REFL_SYM_CONV = MDIST_REFL_CONV ORELSEC MDIST_SYM_CONV in let ABS_MDIST_CONV = let pconv = IMP_REWR_CONV (ISPEC mtm REAL_ABS_MDIST) in fun tm -> MP_CONV in_mspace2_conv (pconv tm) in let metric_eq_prerule = (CONV_RULE o BINDER_CONV o BINDER_CONV) (LAND_CONV (CONJ1_CONV (SUBSET_CONV in_mspace_conv)) THENC RAND_CONV (REWRITE_CONV[FORALL_IN_INSERT; NOT_IN_EMPTY])) in let MAXDIST_CONV = let maxdist_thm = ISPEC mtm MAXDIST_THM and ante_conv = CONJ1_CONV MBOUNDED_CONV THENC CONJ1_CONV IN_CONV THENC IN_CONV and image_conv = IMAGE_CONV THENC ONCE_DEPTH_CONV REFL_SYM_CONV THENC PURE_REWRITE_CONV [REAL_SUB_LZERO; REAL_SUB_RZERO; REAL_SUB_REFL; REAL_ABS_0; REAL_ABS_NEG; REAL_ABS_SUB; INSERT_AC] THENC ONCE_DEPTH_CONV ABS_MDIST_CONV THENC PURE_REWRITE_CONV[INSERT_AC] in let sup_conv = RAND_CONV image_conv THENC SUP_CONV in fun fset_tm -> let maxdist_th = SPEC fset_tm maxdist_thm in fun tm -> let th0 = MP_CONV ante_conv (IMP_REWR_CONV maxdist_th tm) in let tm0 = rand (concl th0) in let th1 = sup_conv tm0 in TRANS th0 th1 in let AUGMENT_MDISTS_POS_RULE = let mdist_pos_le = ISPEC mtm MDIST_POS_LE in let augment_rule : term -> thm -> thm = let mk_mdist_pos_thm tm = let xtm,ytm = dest_pair (rand tm) in let pth = SPECL[xtm;ytm] mdist_pos_le in MP_CONV (CONJ1_CONV in_mspace_conv THENC in_mspace_conv) pth in fun mdist_tm -> let ith = MATCH_MP augment_mdist_pos_thm (mk_mdist_pos_thm mdist_tm) in fun th -> MATCH_MP ith th in fun th -> let mdist_thl = find_mdist mtm (concl th) in itlist augment_rule mdist_thl th in let BASIC_METRIC_ARITH (tm : term) : thm = let mdist_tms = find_mdist mtm tm in let th0 = let eqs = mapfilter (MDIST_REFL_CONV ORELSEC MDIST_SYM_CONV) mdist_tms in (ONCE_DEPTH_CONV in_mspace_conv THENC PRESIMP_CONV THENC SUBS_CONV eqs THENC REAL_RAT_REDUCE_CONV THENC ONCE_DEPTH_CONV real_poly_conv) tm in let tm0 = rand (concl th0) in let points = find_points mtm tm0 in let fset_tm = mk_setenum(points,mty) in let METRIC_EQ_CONV = let th = metric_eq_prerule (SPEC fset_tm metric_eq_thm) in fun tm -> let xtm,ytm = dest_eq tm in let th0 = SPECL[xtm;ytm] th in let th1 = MP_CONV (CONJ1_CONV IN_CONV THENC IN_CONV) th0 in let tm1 = rand (concl th1) in let th2 = ONCE_DEPTH_CONV REFL_SYM_CONV tm1 in TRANS th1 th2 in let eq1 = map (MAXDIST_CONV fset_tm) (find_mdist mtm tm0) and eq2 = map METRIC_EQ_CONV (find_eq mty tm0) in let th1 = AUGMENT_MDISTS_POS_RULE (SUBS_CONV (eq1 @ eq2) tm0) in let tm1 = rand (concl th1) in prove_hyps (EQ_MP (SYM th0) (EQ_MP (SYM th1) (REAL_ARITH tm1))) in let SIMPLE_METRIC_ARITH tm = let th0 = (WEAK_CNF_CONV THENC CONJ_CANON_CONV) tm in let tml = try conjuncts (rand (concl th0)) with Failure s -> failwith("conjuncts "^s) in let th1 = try end_itlist CONJ (map BASIC_METRIC_ARITH tml) with Failure s -> failwith("end_itlist "^s) in EQ_MP (SYM th0) th1 in let elim_exists tm = let points = find_points mtm tm in let rec try_points v tm ptl = if ptl = [] then fail () else let xtm = hd ptl in try EXISTS (mk_exists(v,tm),xtm) (elim_exists (vsubst [xtm,v] tm)) with Failure _ -> try_points v tm (tl ptl) and elim_exists tm = try let v,bd = dest_exists tm in try_points v bd points with Failure _ -> SIMPLE_METRIC_ARITH tm in elim_exists tm in EQ_MP (SYM th0) (GENL avs (elim_exists bod));; let METRIC_ARITH_TAC = CONV_TAC METRIC_ARITH;; let ASM_METRIC_ARITH_TAC = REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN METRIC_ARITH_TAC;; let COMPACT_IN_IMP_MBOUNDED = prove (`!m s:A->bool. compact_in (mtopology m) s ==> mbounded m s`, REWRITE_TAC[compact_in; TOPSPACE_MTOPOLOGY; mbounded] THEN INTRO_TAC "!m s; s cpt" THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_REWRITE_TAC[EMPTY_SUBSET]; POP_ASSUM (DESTRUCT_TAC "@a. a" o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY])] THEN CLAIM_TAC "a'" `a:A IN mspace m` THENL [ASM SET_TAC[]; EXISTS_TAC `a:A`] THEN REMOVE_THEN "cpt" (MP_TAC o SPEC `{mball m (a:A,&n) | n IN (:num)}`) THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN; OPEN_IN_MBALL]; REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN INTRO_TAC "!x; x" THEN CLAIM_TAC "@n. n" `?n. mdist m (a:A,x) <= &n` THENL [MATCH_ACCEPT_TAC REAL_ARCH_SIMPLE; EXISTS_TAC `mball m (a:A,&n + &1)`] THEN CONJ_TAC THENL [REWRITE_TAC[REAL_OF_NUM_ADD; IN_UNIV] THEN MESON_TAC[]; ASM_SIMP_TAC[IN_MBALL; REAL_ARITH `!x. x <= &n ==> x < &n + &1`] THEN ASM SET_TAC []]]; ALL_TAC] THEN INTRO_TAC "@V. fin V cov" THEN CLAIM_TAC "@k. k" `?k. !v. v IN V ==> v = mball m (a:A,&(k v))` THENL [REWRITE_TAC[GSYM SKOLEM_THM; RIGHT_EXISTS_IMP_THM] THEN ASM SET_TAC []; ALL_TAC] THEN CLAIM_TAC "kfin" `FINITE (IMAGE (k:(A->bool)->num) V)` THENL [HYP SIMP_TAC "fin" [FINITE_IMAGE]; HYP_TAC "kfin: @n. n" (REWRITE_RULE[num_FINITE])] THEN EXISTS_TAC `&n` THEN TRANS_TAC SUBSET_TRANS `UNIONS (V:(A->bool)->bool)` THEN HYP SIMP_TAC "cov" [UNIONS_SUBSET] THEN INTRO_TAC "![v]; v" THEN USE_THEN "v" (HYP_TAC "k" o C MATCH_MP) THEN REMOVE_THEN "k" SUBST1_TAC THEN TRANS_TAC SUBSET_TRANS `mball m (a:A,&n)` THEN REWRITE_TAC[MBALL_SUBSET_MCBALL] THEN MATCH_MP_TAC MBALL_SUBSET THEN ASM_SIMP_TAC[MDIST_REFL; REAL_ADD_LID; REAL_OF_NUM_LE] THEN HYP SET_TAC "n v" []);; let HAUSDORFF_SPACE_MTOPOLOGY = prove (`!m:A metric. hausdorff_space(mtopology m)`, REWRITE_TAC[hausdorff_space; TOPSPACE_MTOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`m:A metric`; `x:A`; `y:A`] THEN STRIP_TAC THEN EXISTS_TAC `mball m (x:A,mdist m (x,y) / &2)` THEN EXISTS_TAC `mball m (y:A,mdist m (x,y) / &2)` THEN REWRITE_TAC[SET_RULE `DISJOINT s t <=> !x. x IN s /\ x IN t ==> F`] THEN REWRITE_TAC[OPEN_IN_MBALL; IN_MBALL] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN CONV_TAC METRIC_ARITH);; let T1_SPACE_MTOPOLOGY = prove (`!m:A metric. t1_space(mtopology m)`, SIMP_TAC[HAUSDORFF_IMP_T1_SPACE; HAUSDORFF_SPACE_MTOPOLOGY]);; (* ------------------------------------------------------------------------- *) (* The discrete metric. *) (* ------------------------------------------------------------------------- *) let discrete_metric = new_definition `discrete_metric s = metric(s,(\(x,y). if x = y then &0 else &1))`;; let DISCRETE_METRIC = prove (`(!s:A->bool. mspace(discrete_metric s) = s) /\ (!s x y:A. mdist (discrete_metric s) (x,y) = if x = y then &0 else &1)`, REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `s:A->bool` THEN MP_TAC(ISPECL [`s:A->bool`; `\(x:A,y). if x = y then &0 else &1`] METRIC) THEN REWRITE_TAC[GSYM discrete_metric] THEN REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[is_metric_space] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_MESON_TAC[]);; let MTOPOLOGY_DISCRETE_METRIC = prove (`!s:A->bool. mtopology(discrete_metric s) = discrete_topology s`, GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[DISCRETE_TOPOLOGY_UNIQUE] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; DISCRETE_METRIC; OPEN_IN_MTOPOLOGY] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_REWRITE_TAC[SING_SUBSET] THEN REWRITE_TAC[IN_SING; FORALL_UNWIND_THM2] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[SUBSET; REAL_LT_01; IN_MBALL; DISCRETE_METRIC] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING; REAL_LT_REFL]);; let DISCRETE_ULTRAMETRIC = prove (`!s x y z:A. mdist(discrete_metric s) (x,z) <= max (mdist(discrete_metric s) (x,y)) (mdist(discrete_metric s) (y,z))`, REPEAT GEN_TAC THEN REWRITE_TAC[DISCRETE_METRIC] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_MESON_TAC[]);; let MBOUNDED_DISCRETE_METRIC = prove (`!u s:A->bool. mbounded (discrete_metric u) s <=> s SUBSET u`, REPEAT GEN_TAC THEN REWRITE_TAC[MBOUNDED_ALT; DISCRETE_METRIC; mcball] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN EXISTS_TAC `&1:real` THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_POS; REAL_LE_REFL]);; (* ------------------------------------------------------------------------- *) (* Metrizable spaces. *) (* ------------------------------------------------------------------------- *) let metrizable_space = new_definition `metrizable_space top <=> ?m. top = mtopology m`;; let METRIZABLE_SPACE_MTOPOLOGY = prove (`!m. metrizable_space (mtopology m)`, REWRITE_TAC[metrizable_space] THEN MESON_TAC[]);; let FORALL_METRIC_TOPOLOGY = prove (`!P. (!m:A metric. P (mtopology m) (mspace m)) <=> !top. metrizable_space top ==> P top (topspace top)`, SIMP_TAC[metrizable_space; LEFT_IMP_EXISTS_THM; TOPSPACE_MTOPOLOGY] THEN MESON_TAC[]);; let FORALL_METRIZABLE_SPACE = prove (`!P. (!top. metrizable_space top ==> P top (topspace top)) <=> (!m:A metric. P (mtopology m) (mspace m))`, REWRITE_TAC[FORALL_METRIC_TOPOLOGY]);; let EXISTS_METRIZABLE_SPACE = prove (`!P. (?top. metrizable_space top /\ P top (topspace top)) <=> (?m:A metric. P (mtopology m) (mspace m))`, REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_METRIC_TOPOLOGY] THEN MESON_TAC[]);; let METRIZABLE_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. metrizable_space(discrete_topology u)`, REWRITE_TAC[metrizable_space] THEN MESON_TAC[MTOPOLOGY_DISCRETE_METRIC]);; let METRIZABLE_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. metrizable_space top ==> metrizable_space(subtopology top s)`, REWRITE_TAC[metrizable_space] THEN MESON_TAC[MTOPOLOGY_SUBMETRIC]);; let HOMEOMORPHIC_METRIZABLE_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (metrizable_space top <=> metrizable_space top')`, let lemma = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> metrizable_space top ==> metrizable_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[metrizable_space; homeomorphic_space; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN DISCH_TAC THEN X_GEN_TAC `m:A metric` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ABBREV_TAC `m' = metric(topspace top',\(x,y). mdist m ((g:B->A) x,g y))` THEN MP_TAC(ISPECL [`g:B->A`; `m:A metric`; `topspace top':B->bool`] METRIC_INJECTIVE_IMAGE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic_maps]) THEN EXPAND_TAC "top" THEN REWRITE_TAC[continuous_map; TOPSPACE_MTOPOLOGY] THEN SET_TAC[]; STRIP_TAC THEN EXISTS_TAC `m':B metric`] THEN REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_MTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_MAPS_SYM]) THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_MAPS_IMP_MAP) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP HOMEOMORPHIC_MAP_OPENNESS_EQ th]) THEN X_GEN_TAC `v:B->bool` THEN ASM_CASES_TAC `(v:B->bool) SUBSET topspace top'` THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "top" THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IN_MBALL] THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphic_maps; continuous_map]) THEN MATCH_MP_TAC(TAUT `p /\ (q <=> r) ==> (p /\ q <=> r)`) THEN CONJ_TAC THENL [ASM SET_TAC[]; EQ_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `b:B` THEN ASM_CASES_TAC `(b:B) IN v` THEN ASM_REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [X_GEN_TAC `y:B` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(g:B->A) y`) THEN ASM SET_TAC[]; ASM SET_TAC[]]) in REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC lemma THEN ASM_MESON_TAC[HOMEOMORPHIC_SPACE_SYM]);; let METRIZABLE_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ metrizable_space top ==> metrizable_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[METRIZABLE_SPACE_SUBTOPOLOGY; HOMEOMORPHIC_METRIZABLE_SPACE]);; let METRIZABLE_IMP_HAUSDORFF_SPACE = prove (`!top. metrizable_space top ==> hausdorff_space top`, MESON_TAC[metrizable_space; HAUSDORFF_SPACE_MTOPOLOGY]);; let METRIZABLE_IMP_KC_SPACE = prove (`!top:A topology. metrizable_space top ==> kc_space top`, MESON_TAC[METRIZABLE_IMP_HAUSDORFF_SPACE; HAUSDORFF_IMP_KC_SPACE]);; let KC_SPACE_MTOPOLOGY = prove (`!m:A metric. kc_space(mtopology m)`, REWRITE_TAC[GSYM FORALL_METRIZABLE_SPACE; METRIZABLE_IMP_KC_SPACE]);; let METRIZABLE_IMP_T1_SPACE = prove (`!top. metrizable_space top ==> t1_space top`, MESON_TAC[HAUSDORFF_IMP_T1_SPACE; METRIZABLE_IMP_HAUSDORFF_SPACE]);; let CLOSED_IMP_GDELTA_IN = prove (`!top s:A->bool. metrizable_space top /\ closed_in top s ==> gdelta_in top s`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_METRIZABLE_SPACE] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[GDELTA_IN_EMPTY] THEN SUBGOAL_THEN `s:A->bool = INTERS {{x | x IN mspace m /\ ?y. y IN s /\ mdist m (x,y) < inv(&n + &1)} | n IN (:num)}` SUBST1_TAC THENL [GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `n:num` THEN SUBGOAL_THEN `(x:A) IN mspace m` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET; TOPSPACE_MTOPOLOGY]; ASM_REWRITE_TAC[] THEN EXISTS_TAC `x:A` THEN ASM_SIMP_TAC[MDIST_REFL; REAL_LT_INV_EQ] THEN REAL_ARITH_TAC]; ASM_CASES_TAC `(x:A) IN mspace m` THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (rand o rand) FORALL_POS_MONO_1_EQ o lhand o snd) THEN ANTS_TAC THENL [MESON_TAC[REAL_LT_TRANS]; DISCH_THEN(SUBST1_TAC o SYM)] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [closed_in]) THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY; NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(MP_TAC o SPEC `x:A` o CONJUNCT2 o CONJUNCT2) THEN ASM_REWRITE_TAC[IN_DIFF; TOPSPACE_MTOPOLOGY; SUBSET; IN_MBALL] THEN ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET; TOPSPACE_MTOPOLOGY]]; MATCH_MP_TAC GDELTA_IN_INTERS THEN SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; NUM_COUNTABLE] THEN REWRITE_TAC[IMAGE_EQ_EMPTY; FORALL_IN_IMAGE; UNIV_NOT_EMPTY; IN_UNIV] THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC OPEN_IMP_GDELTA_IN THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY; SUBSET_RESTRICT; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN EXISTS_TAC `inv(&n + &1) - mdist m (x:A,y)` THEN ASM_REWRITE_TAC[SUBSET; IN_MBALL; IN_ELIM_THM; REAL_SUB_LT] THEN X_GEN_TAC `z:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (METRIC_ARITH `mdist m (x,z) < e - mdist m (x,y) ==> x IN mspace m /\ y IN mspace m /\ z IN mspace m ==> mdist m (z,y) < e`)) THEN ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET; TOPSPACE_MTOPOLOGY]]);; let OPEN_IMP_FSIGMA_IN = prove (`!top s:A->bool. metrizable_space top /\ open_in top s ==> fsigma_in top s`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FSIGMA_IN_GDELTA_IN; OPEN_IN_SUBSET] THEN MATCH_MP_TAC CLOSED_IMP_GDELTA_IN THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]);; let FIRST_COUNTABLE_MTOPOLOGY = prove (`!m:A metric. first_countable(mtopology m)`, GEN_TAC THEN REWRITE_TAC[first_countable; TOPSPACE_MTOPOLOGY] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `{ mball m (x:A,r) | rational r /\ &0 < r}` THEN REWRITE_TAC[FORALL_IN_GSPEC; OPEN_IN_MBALL; EXISTS_IN_GSPEC] THEN ONCE_REWRITE_TAC[SET_RULE `{f x | s x /\ Q x} = IMAGE f {x | x IN s /\ Q x}`] THEN SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_RATIONAL; COUNTABLE_RESTRICT] THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `r:real` o MATCH_MP RATIONAL_APPROXIMATION_BELOW) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:real` THEN REWRITE_TAC[REAL_SUB_REFL] THEN STRIP_TAC THEN ASM_SIMP_TAC[CENTRE_IN_MBALL] THEN TRANS_TAC SUBSET_TRANS `mball m (x:A,r)` THEN ASM_SIMP_TAC[MBALL_SUBSET_CONCENTRIC; REAL_LT_IMP_LE]);; let METRIZABLE_IMP_FIRST_COUNTABLE = prove (`!top:A topology. metrizable_space top ==> first_countable top`, REWRITE_TAC[FORALL_METRIZABLE_SPACE; FIRST_COUNTABLE_MTOPOLOGY]);; (* ------------------------------------------------------------------------- *) (* Connected topological spaces. *) (* ------------------------------------------------------------------------- *) let connected_space = new_definition `connected_space(top:A topology) <=> ~(?e1 e2. open_in top e1 /\ open_in top e2 /\ topspace top SUBSET e1 UNION e2 /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`;; let connected_in = new_definition `connected_in top s <=> s SUBSET topspace top /\ connected_space (subtopology top s)`;; let CONNECTED_IN_SUBSET_TOPSPACE = prove (`!top s:A->bool. connected_in top s ==> s SUBSET topspace top`, SIMP_TAC[connected_in]);; let CONNECTED_IN_TOPSPACE = prove (`!top:A topology. connected_in top (topspace top) <=> connected_space top`, REWRITE_TAC[connected_in; SUBSET_REFL; SUBTOPOLOGY_TOPSPACE]);; let CONNECTED_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. connected_in top s ==> connected_space (subtopology top s)`, SIMP_TAC[connected_in]);; let CONNECTED_IN_SUBTOPOLOGY = prove (`!top s t:A->bool. connected_in (subtopology top s) t <=> connected_in top t /\ t SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_in; SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM_CASES_TAC `(t:A->bool) SUBSET s` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`]);; let CONNECTED_SPACE_EQ = prove (`!top:A topology. connected_space(top:A topology) <=> ~(?e1 e2. open_in top e1 /\ open_in top e2 /\ e1 UNION e2 = topspace top /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`, REWRITE_TAC[SET_RULE `s UNION t = u <=> u SUBSET s UNION t /\ s SUBSET u /\ t SUBSET u`] THEN REWRITE_TAC[connected_space] THEN MESON_TAC[OPEN_IN_SUBSET]);; let CONNECTED_SPACE_CLOSED_IN = prove (`!top:A topology. connected_space(top:A topology) <=> ~(?e1 e2. closed_in top e1 /\ closed_in top e2 /\ topspace top SUBSET e1 UNION e2 /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`, GEN_TAC THEN REWRITE_TAC[connected_space] THEN AP_TERM_TAC THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`topspace top DIFF v:A->bool`; `topspace top DIFF u:A->bool`] THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let CONNECTED_SPACE_CLOSED_IN_EQ = prove (`!top:A topology. connected_space(top:A topology) <=> ~(?e1 e2. closed_in top e1 /\ closed_in top e2 /\ e1 UNION e2 = topspace top /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`, REWRITE_TAC[SET_RULE `s UNION t = u <=> u SUBSET s UNION t /\ s SUBSET u /\ t SUBSET u`] THEN REWRITE_TAC[CONNECTED_SPACE_CLOSED_IN] THEN MESON_TAC[CLOSED_IN_SUBSET]);; let CONNECTED_SPACE_CLOPEN_IN = prove (`!top:A topology. connected_space top <=> !t. open_in top t /\ closed_in top t ==> t = {} \/ t = topspace top`, GEN_TAC THEN REWRITE_TAC[CONNECTED_SPACE_EQ] THEN SIMP_TAC[OPEN_IN_SUBSET; SET_RULE `(open_in top e1 ==> e1 SUBSET topspace top) /\ (open_in top e2 ==> e2 SUBSET topspace top) ==> (open_in top e1 /\ open_in top e2 /\ e1 UNION e2 = topspace top /\ e1 INTER e2 = {} /\ P <=> e2 = topspace top DIFF e1 /\ open_in top e1 /\ open_in top e2 /\ P)`] THEN REWRITE_TAC[UNWIND_THM2; closed_in] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ] THEN SET_TAC[]);; let CONNECTED_SPACE_EQ_FRONTIER_EQ_EMPTY = prove (`!top:A topology. connected_space top <=> !s. s SUBSET topspace top /\ top frontier_of s = {} ==> s = {} \/ s = topspace top`, REWRITE_TAC[CONNECTED_SPACE_CLOPEN_IN] THEN MESON_TAC[CLOPEN_IN_EQ_FRONTIER_OF]);; let CONNECTED_SPACE_FRONTIER_EQ_EMPTY = prove (`!top s:A->bool. connected_space top /\ s SUBSET topspace top ==> (top frontier_of s = {} <=> s = {} \/ s = topspace top)`, MESON_TAC[CONNECTED_SPACE_EQ_FRONTIER_EQ_EMPTY; FRONTIER_OF_EMPTY; FRONTIER_OF_TOPSPACE]);; let CONNECTED_IN = prove (`!top s:A->bool. connected_in top s <=> s SUBSET topspace top /\ ~(?e1 e2. open_in top e1 /\ open_in top e2 /\ s SUBSET (e1 UNION e2) /\ (e1 INTER e2 INTER s = {}) /\ ~(e1 INTER s = {}) /\ ~(e2 INTER s = {}))`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_in] THEN MATCH_MP_TAC (TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN REWRITE_TAC[connected_space; OPEN_IN_SUBTOPOLOGY] THEN REWRITE_TAC[MESON[] `(?e1 e2. (?t1. P1 t1 /\ e1 = f1 t1) /\ (?t2. P2 t2 /\ e2 = f2 t2) /\ R e1 e2) <=> (?t1 t2. P1 t1 /\ P2 t2 /\ R(f1 t1) (f2 t2))`] THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let CONNECTED_IN_CLOSED_IN = prove (`!top s:A->bool. connected_in top s <=> s SUBSET topspace top /\ ~(?e1 e2. closed_in top e1 /\ closed_in top e2 /\ s SUBSET (e1 UNION e2) /\ (e1 INTER e2 INTER s = {}) /\ ~(e1 INTER s = {}) /\ ~(e2 INTER s = {}))`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_in] THEN MATCH_MP_TAC (TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN REWRITE_TAC[CONNECTED_SPACE_CLOSED_IN; CLOSED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[MESON[] `(?e1 e2. (?t1. P1 t1 /\ e1 = f1 t1) /\ (?t2. P2 t2 /\ e2 = f2 t2) /\ R e1 e2) <=> (?t1 t2. P1 t1 /\ P2 t2 /\ R(f1 t1) (f2 t2))`] THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]);; let CONNECTED_IN_EMPTY = prove (`!top:A topology. connected_in top {}`, REWRITE_TAC[CONNECTED_IN; EMPTY_SUBSET; INTER_EMPTY]);; let CONNECTED_SPACE_TOPSPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> connected_space top`, MESON_TAC[SUBTOPOLOGY_TOPSPACE; connected_in; CONNECTED_IN_EMPTY]);; let CONNECTED_IN_SING = prove (`!top a:A. connected_in top {a} <=> a IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[CONNECTED_IN_SUBSET_TOPSPACE; SING_SUBSET]; SIMP_TAC[CONNECTED_IN; SING_SUBSET] THEN SET_TAC[]]);; let CONNECTED_IN_ABSOLUTE = prove (`!top s:A->bool. connected_in (subtopology top s) s <=> connected_in top s`, REWRITE_TAC[connected_in; SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; SUBSET_REFL] THEN REWRITE_TAC[INTER_ACI]);; let CONNECTED_IN_UNIONS = prove (`!top u:(A->bool)->bool. (!s. s IN u ==> connected_in top s) /\ ~(INTERS u = {}) ==> connected_in top (UNIONS u)`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_IN; NOT_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[FORALL_AND_THM; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_SUBSET]; ALL_TAC] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`e1:A->bool`; `e2:A->bool`] THEN STRIP_TAC THEN UNDISCH_TAC `~(INTERS u :A->bool = {})` THEN PURE_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTERS] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(a:A) IN e1 \/ a IN e2` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; UNDISCH_TAC `~(e2 INTER UNIONS u:A->bool = {})`; UNDISCH_TAC `~(e1 INTER UNIONS u:A->bool = {})`] THEN PURE_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER; IN_UNIONS] THEN DISCH_THEN(X_CHOOSE_THEN `b:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `!t:A->bool. t IN u ==> a IN t` THEN DISCH_THEN(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`e1:A->bool`; `e2:A->bool`]) THEN ASM SET_TAC[]);; let CONNECTED_IN_UNION = prove (`!top s t:A->bool. connected_in top s /\ connected_in top t /\ ~(s INTER t = {}) ==> connected_in top (s UNION t)`, REWRITE_TAC[GSYM UNIONS_2; GSYM INTERS_2] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_IN_UNIONS THEN ASM SET_TAC[]);; let CONNECTED_SPACE_SUBCONNECTED = prove (`!top:A topology. connected_space top <=> !x y. x IN topspace top /\ y IN topspace top ==> ?s. connected_in top s /\ x IN s /\ y IN s`, GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[SUBTOPOLOGY_TOPSPACE; connected_in; SUBSET_REFL]; DISCH_TAC] THEN REWRITE_TAC[connected_space; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN REPLICATE_TAC 4 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:A`) (X_CHOOSE_TAC `b:A`)) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o GEN_REWRITE_RULE I [CONNECTED_IN]) THEN ASM_REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`u:A->bool`; `v:A->bool`] THEN ASM SET_TAC[]);; let CONNECTED_IN_INTERMEDIATE_CLOSURE_OF = prove (`!top s t:A->bool. connected_in top s /\ s SUBSET t /\ t SUBSET top closure_of s ==> connected_in top t`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_IN; CLOSURE_OF_SUBSET_TOPSPACE] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL [DISCH_THEN(K ALL_TAC) THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:A->bool` THEN MP_TAC(ISPECL [`top:A topology`; `u:A->bool`; `s:A->bool`] OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY) THEN MP_TAC(ISPECL [`top:A topology`; `v:A->bool`; `s:A->bool`] OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY) THEN ASM SET_TAC[]]);; let CONNECTED_IN_CLOSURE_OF = prove (`!top s:A->bool. connected_in top s ==> connected_in top (top closure_of s)`, REPEAT GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1(REWRITE_RULE[connected_in] th)) THEN MP_TAC th) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] CONNECTED_IN_INTERMEDIATE_CLOSURE_OF) THEN ASM_SIMP_TAC[SUBSET_REFL; CLOSURE_OF_SUBSET]);; let CONNECTED_IN_SEPARATION,CONNECTED_IN_SEPARATION_ALT = (CONJ_PAIR o prove) (`(!top s:A->bool. connected_in top s <=> s SUBSET topspace top /\ ~(?c1 c2. c1 UNION c2 = s /\ ~(c1 = {}) /\ ~(c2 = {}) /\ c1 INTER top closure_of c2 = {} /\ c2 INTER top closure_of c1 = {})) /\ (!top s:A->bool. connected_in top s <=> s SUBSET topspace top /\ ~(?c1 c2. s SUBSET c1 UNION c2 /\ ~(c1 INTER s = {}) /\ ~(c2 INTER s = {}) /\ c1 INTER top closure_of c2 = {} /\ c2 INTER top closure_of c1 = {}))`, REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`top: A topology`; `s:A->bool`] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[connected_in]] THEN MATCH_MP_TAC(TAUT `(q ==> r) /\ (~q ==> p) /\ (r ==> ~p) ==> (p <=> ~q) /\ (p <=> ~r)`) THEN REPEAT CONJ_TAC THENL [REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SET_TAC[]; ASM_REWRITE_TAC[connected_in; CONNECTED_SPACE_CLOSED_IN_EQ] THEN REWRITE_TAC[CLOSED_IN_INTER_CLOSURE_OF; CONTRAPOS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c1:A->bool` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c2:A->bool` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c1:A->bool`; `c2:A->bool`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[CONNECTED_IN_CLOSED_IN] THEN MAP_EVERY EXISTS_TAC [`top closure_of c1:A->bool`; `top closure_of c2:A->bool`] THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN MP_TAC(ISPEC `top:A topology` CLOSURE_OF_SUBSET_INTER) THEN DISCH_THEN (fun th -> MP_TAC(SPEC `c1:A->bool` th) THEN MP_TAC(SPEC `c2:A->bool` th)) THEN ASM SET_TAC[]]);; let CONNECTED_IN_EQ_NOT_SEPARATED = prove (`!top s:A->bool. connected_in top s <=> s SUBSET topspace top /\ ~(?c1 c2. c1 UNION c2 = s /\ ~(c1 = {}) /\ ~(c2 = {}) /\ separated_in top c1 c2)`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_in; CONNECTED_IN_SEPARATION] THEN REWRITE_TAC[NOT_EXISTS_THM; RIGHT_AND_FORALL_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN SET_TAC[]);; let CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET = prove (`!top s:A->bool. connected_in top s <=> s SUBSET topspace top /\ ~(?c1 c2. s SUBSET c1 UNION c2 /\ ~(s INTER c1 = {}) /\ ~(s INTER c2 = {}) /\ separated_in top c1 c2)`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN EQ_TAC THENL [REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c1:A->bool`; `c2:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`s INTER c1:A->bool`; `s INTER c2:A->bool`] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SEPARATED_IN_MONO; INTER_SUBSET]);; let CONNECTED_SPACE_EQ_NOT_SEPARATED = prove (`!top:A topology. connected_space top <=> ~(?c1 c2. c1 UNION c2 = topspace top /\ ~(c1 = {}) /\ ~(c2 = {}) /\ separated_in top c1 c2)`, REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE; CONNECTED_IN_EQ_NOT_SEPARATED] THEN REWRITE_TAC[SUBSET_REFL]);; let CONNECTED_SPACE_EQ_NOT_SEPARATED_SUBSET = prove (`!top:A topology. connected_space top <=> ~(?c1 c2. topspace top SUBSET c1 UNION c2 /\ ~(c1 = {}) /\ ~(c2 = {}) /\ separated_in top c1 c2)`, GEN_TAC THEN REWRITE_TAC[CONNECTED_SPACE_EQ_NOT_SEPARATED] THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REWRITE_TAC[separated_in] THEN SET_TAC[]);; let CONNECTED_IN_SUBSET_SEPARATED_UNION = prove (`!top s t c:A->bool. connected_in top c /\ separated_in top s t /\ c SUBSET s UNION t ==> c SUBSET s \/ c SUBSET t`, REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET; NOT_EXISTS_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`]) THEN ASM SET_TAC[]);; let CONNECTED_IN_NONSEPARATED_UNION = prove (`!top s t:A->bool. connected_in top s /\ connected_in top t /\ ~separated_in top s t ==> connected_in top (s UNION t)`, REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET; UNION_SUBSET] THEN REPEAT GEN_TAC THEN REWRITE_TAC[NOT_EXISTS_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`c1:A->bool`; `c2:A->bool`] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`c1:A->bool`; `c2:A->bool`])) THEN ASM_REWRITE_TAC[DE_MORGAN_THM] THEN REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC; ALL_TAC; ASM SET_TAC[]] THEN UNDISCH_TAC `~separated_in top (s:A->bool) t` THEN REWRITE_TAC[] THENL [ONCE_REWRITE_TAC[SEPARATED_IN_SYM]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] SEPARATED_IN_MONO)) THEN ASM SET_TAC[]);; let CONNECTED_IN_EQ_SUBSET_SEPARATED_UNION = prove (`!top c:A->bool. connected_in top c <=> c SUBSET topspace top /\ !s t. separated_in top s t /\ c SUBSET s UNION t ==> c SUBSET s \/ c SUBSET t`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN REWRITE_TAC[NOT_EXISTS_THM] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:A->bool` THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `t:A->bool`] SEPARATED_IN_IMP_DISJOINT) THEN ASM SET_TAC[]);; let CONNECTED_IN_CLOPEN_CASES = prove (`!top c t:A->bool. connected_in top c /\ closed_in top t /\ open_in top t ==> c SUBSET t \/ DISJOINT c t`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SEPARATED_IN_COMPLEMENT] THEN DISCH_TAC THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`; `topspace top DIFF t:A->bool`; `c:A->bool`] CONNECTED_IN_SUBSET_SEPARATED_UNION) THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[connected_in]) THEN ASM SET_TAC[]);; let CONNECTED_SPACE_CLOSURES = prove (`!top:A topology. connected_space top <=> ~(?e1 e2. e1 UNION e2 = topspace top /\ top closure_of e1 INTER top closure_of e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`, GEN_TAC THEN REWRITE_TAC[CONNECTED_SPACE_CLOSED_IN_EQ] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `v:A->bool` THEN REWRITE_TAC[] THEN MAP_EVERY (fun t -> ASM_CASES_TAC t THEN ASM_REWRITE_TAC[]) [`u:A->bool = {}`; `v:A->bool = {}`; `u UNION v:A->bool = topspace top`] THEN REWRITE_TAC[GSYM CLOSURE_OF_EQ] THEN MAP_EVERY (MP_TAC o ISPECL [`top:A topology`; `u:A->bool`]) [CLOSURE_OF_SUBSET; CLOSURE_OF_SUBSET_TOPSPACE] THEN MAP_EVERY (MP_TAC o ISPECL [`top:A topology`; `v:A->bool`]) [CLOSURE_OF_SUBSET; CLOSURE_OF_SUBSET_TOPSPACE] THEN ASM SET_TAC[]);; let CONNECTED_IN_INTER_FRONTIER_OF = prove (`!top s t:A->bool. connected_in top s /\ ~(s INTER t = {}) /\ ~(s DIFF t = {}) ==> ~(s INTER top frontier_of t = {})`, REPEAT GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[FRONTIER_OF_RESTRICT] THEN SUBGOAL_THEN `~(s DIFF (topspace top INTER t):A->bool = {})` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(s INTER topspace top INTER t:A->bool = {})` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[connected_in]) THEN ASM SET_TAC[]; UNDISCH_TAC `connected_in top (s:A->bool)`] THEN POP_ASSUM_LIST(K ALL_TAC) THEN MP_TAC(SET_RULE `(topspace top INTER t:A->bool) SUBSET topspace top`) THEN SPEC_TAC(`topspace top INTER t:A->bool`,`t:A->bool`) THEN REWRITE_TAC[frontier_of] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_IN]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`top interior_of t:A->bool`; `topspace top DIFF top closure_of t:A->bool`] THEN SIMP_TAC[OPEN_IN_INTERIOR_OF; OPEN_IN_DIFF; CLOSED_IN_CLOSURE_OF; OPEN_IN_TOPSPACE] THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] INTERIOR_OF_SUBSET) THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] CLOSURE_OF_SUBSET) THEN ASM SET_TAC[]);; let CONNECTED_IN_CONTINUOUS_MAP_IMAGE = prove (`!f:A->B top top' s. continuous_map (top,top') f /\ connected_in top s ==> connected_in top' (IMAGE f s)`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_IN] THEN REWRITE_TAC[connected_space; NOT_EXISTS_THM] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`u:B->bool`; `v:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x | x IN topspace top /\ (f:A->B) x IN u}`; `{x | x IN topspace top /\ (f:A->B) x IN v}`]) THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM SET_TAC[]; ASM SET_TAC[]]);; let HOMEOMORPHIC_CONNECTED_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (connected_space top <=> connected_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE] THEN EQ_TAC THEN DISCH_TAC THENL [SUBGOAL_THEN `topspace top' = IMAGE (f:A->B) (topspace top)` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[CONNECTED_IN_CONTINUOUS_MAP_IMAGE]]; SUBGOAL_THEN `topspace top = IMAGE (g:B->A) (topspace top')` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[CONNECTED_IN_CONTINUOUS_MAP_IMAGE]]] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_CONNECTEDNESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (connected_in top' (IMAGE f u) <=> connected_in top u)`, REPEAT STRIP_TAC THEN REWRITE_TAC[connected_in] THEN BINOP_TAC THENL [ALL_TAC; MATCH_MP_TAC HOMEOMORPHIC_CONNECTED_SPACE THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_SPACE] THEN EXISTS_TAC `f:A->B` THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[]] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_CONNECTEDNESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (connected_in top u <=> u SUBSET topspace top /\ connected_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_CONNECTEDNESS; CONNECTED_IN_SUBSET_TOPSPACE]);; let CONNECTED_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map(top,top') q /\ connected_space top ==> connected_space top'`, REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP QUOTIENT_IMP_SURJECTIVE_MAP) THEN MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN ASM_MESON_TAC[QUOTIENT_IMP_CONTINUOUS_MAP]);; let CONNECTED_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ connected_space top ==> connected_space top'`, MESON_TAC[CONNECTED_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let CONNECTED_IN_DISCRETE_TOPOLOGY = prove (`!u s:A->bool. connected_in (discrete_topology u) s <=> s SUBSET u /\ ?a. s SUBSET {a}`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET u` THENL [ALL_TAC; ASM_MESON_TAC[connected_in; TOPSPACE_DISCRETE_TOPOLOGY]] THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[CONNECTED_IN_EMPTY; EMPTY_SUBSET] THEN ASM_REWRITE_TAC[SET_RULE `(?a. s SUBSET {a}) <=> s = {} \/ ?a. s = {a}`] THEN ASM_CASES_TAC `?a:A. s = {a}` THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM(CHOOSE_THEN SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[CONNECTED_IN_SING; TOPSPACE_DISCRETE_TOPOLOGY] THEN ASM SET_TAC[]; REWRITE_TAC[CONNECTED_IN; OPEN_IN_DISCRETE_TOPOLOGY] THEN ASM_REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:A`) THEN MAP_EVERY EXISTS_TAC [`{z:A}`; `u DELETE (z:A)`] THEN ASM SET_TAC[]]);; let CONNECTED_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. connected_space (discrete_topology u) <=> ?a. u SUBSET {a}`, REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE; CONNECTED_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let CONNECTED_IN_IMP_PERFECT_GEN = prove (`!top s:A->bool. t1_space top /\ connected_in top s /\ ~(?a. s = {a}) ==> s SUBSET top derived_set_of s`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; derived_set_of; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONNECTED_IN_SUBSET_TOPSPACE) THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `u:A->bool` THEN STRIP_TAC] THEN FIRST_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o REWRITE_RULE[CONNECTED_IN; NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPECL [`u:A->bool`; `topspace top DELETE (a:A)`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `p /\ q /\ s /\ t /\ (~r ==> u) ==> ~(p /\ q /\ r /\ s /\ t) ==> u`) THEN CONJ_TAC THENL [ASM_MESON_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; OPEN_IN_TOPSPACE]; ASM SET_TAC[]]);; let CONNECTED_IN_IMP_PERFECT = prove (`!top s:A->bool. hausdorff_space top /\ connected_in top s /\ ~(?a. s = {a}) ==> s SUBSET top derived_set_of s`, MESON_TAC[CONNECTED_IN_IMP_PERFECT_GEN; HAUSDORFF_IMP_T1_SPACE]);; let CARD_LE_PAIRWISE_SEPARATED_CONNECTED_IN = prove (`!(top:A topology) u v. FINITE u /\ pairwise (separated_in top) u /\ (!c. c IN u ==> ~(c = {})) /\ (!c. c IN v ==> connected_in top c) /\ UNIONS u = UNIONS v ==> u <=_c v`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `\(s:A->bool) t. ~DISJOINT s t` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `c1:A->bool`; `c2:A->bool`] THEN STRIP_TAC THEN ASM_CASES_TAC `c1:A->bool = c2` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `connected_in top (t:A->bool)` MP_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`c1:A->bool`; `UNIONS(u DELETE (c1:A->bool))`] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[SEPARATED_IN_UNIONS; FINITE_DELETE] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[separated_in]);; let CONNECTED_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. connected_space(prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ connected_space top1 /\ connected_space top2`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THEN ASM_SIMP_TAC[CONNECTED_SPACE_TOPSPACE_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN EQ_TAC THENL [REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`FST:A#B->A`; `prod_topology top1 top2:(A#B)topology`; `top1:A topology`; `topspace(prod_topology top1 top2:(A#B)topology)`] CONNECTED_IN_CONTINUOUS_MAP_IMAGE); MP_TAC(ISPECL [`SND:A#B->B`; `prod_topology top1 top2:(A#B)topology`; `top2:B topology`; `topspace(prod_topology top1 top2:(A#B)topology)`] CONNECTED_IN_CONTINUOUS_MAP_IMAGE)] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THEN ASM_REWRITE_TAC[IMAGE_FST_CROSS; IMAGE_SND_CROSS]; REWRITE_TAC[connected_space; NOT_EXISTS_THM] THEN STRIP_TAC] THEN MAP_EVERY X_GEN_TAC [`u:A#B->bool`; `v:A#B->bool`] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THEN STRIP_TAC THEN SUBGOAL_THEN `(u:A#B->bool) SUBSET (topspace top1) CROSS (topspace top2) /\ v SUBSET (topspace top1) CROSS (topspace top2)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; TOPSPACE_PROD_TOPOLOGY]; ALL_TAC] THEN UNDISCH_TAC `~(u:A#B->bool = {})` THEN REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; NOT_IN_EMPTY] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:B`] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `s SUBSET u UNION v ==> u SUBSET s /\ v SUBSET s /\ u INTER v = {} /\ ~(v = {}) ==> ~(s SUBSET u)`)) THEN ASM_REWRITE_TAC[NOT_IMP] THEN SUBGOAL_THEN `(a:A,b:B) IN topspace top1 CROSS topspace top2` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_CROSS] THEN STRIP_TAC] THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN SUBGOAL_THEN `((a:A),(y:B)) IN u` ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`{y | y IN topspace top2 /\ (a:A,y:B) IN u}`; `{y | y IN topspace top2 /\ (a:A,y:B) IN v}`]); FIRST_X_ASSUM(MP_TAC o SPECL [`{x | x IN topspace top1 /\ (x:A,y:B) IN u}`; `{x | x IN topspace top1 /\ (x:A,y:B) IN v}`])] THEN (MATCH_MP_TAC(TAUT `(s /\ t) /\ (p /\ q) /\ r /\ (~u ==> v) ==> ~(p /\ q /\ r /\ s /\ t /\ u) ==> v`) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `prod_topology top1 top2 :(A#B)topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]; ALL_TAC] THEN CONJ_TAC THENL [SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET u UNION v ==> IMAGE f q SUBSET s ==> (!x. x IN q ==> f x IN u \/ f x IN v)`)) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CROSS]; REWRITE_TAC[]]) THENL [MATCH_MP_TAC(SET_RULE `P y /\ (a,y) IN u UNION v ==> {y | P y /\ (a,y) IN v} = {} ==> (a,y) IN u`); MATCH_MP_TAC(SET_RULE `P x /\ (x,y) IN u UNION v ==> {x | P x /\ (x,y) IN v} = {} ==> (x,y) IN u`)] THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[IN_CROSS]);; let CONNECTED_IN_CROSS = prove (`!top1 top2 s:A->bool t:B->bool. connected_in (prod_topology top1 top2) (s CROSS t) <=> s = {} \/ t = {} \/ connected_in top1 s /\ connected_in top2 t`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_in; SUBTOPOLOGY_CROSS] THEN REWRITE_TAC[CONNECTED_SPACE_PROD_TOPOLOGY; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[SUBSET_CROSS; CROSS_EQ_EMPTY; TOPSPACE_SUBTOPOLOGY] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(t:B->bool) SUBSET topspace top2` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);; let CONNECTED_SPACE_PRODUCT_TOPOLOGY = prove (`!tops:K->A topology k. connected_space(product_topology k tops) <=> topspace(product_topology k tops) = {} \/ !i. i IN k ==> connected_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THEN ASM_SIMP_TAC[CONNECTED_SPACE_TOPSPACE_EMPTY] THEN EQ_TAC THENL [REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE] THEN DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`\(f:K->A). f i`; `(tops:K->A topology) i`] o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY; o_THM]; DISCH_TAC] THEN REWRITE_TAC[connected_space; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:(K->A)->bool`; `v:(K->A)->bool`] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN STRIP_TAC THEN SUBGOAL_THEN `(u:(K->A)->bool) SUBSET topspace(product_topology k tops) /\ (v:(K->A)->bool) SUBSET topspace(product_topology k tops)` MP_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET]; ALL_TAC] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN STRIP_TAC THEN UNDISCH_TAC `~(u:(K->A)->bool = {})` THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN X_GEN_TAC `f:K->A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `s SUBSET u UNION v ==> u SUBSET s /\ v SUBSET s /\ u INTER v = {} /\ ~(v = {}) ==> ~(s SUBSET u)`)) THEN ASM_REWRITE_TAC[NOT_IMP] THEN SUBGOAL_THEN `f IN cartesian_product k (topspace o (tops:K->A topology))` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ASSUME `open_in (product_topology k (tops:K->A topology)) u`) THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; UNION_OF; ARBITRARY] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `(?u. (!c. c IN u ==> P c) /\ UNIONS u = s) ==> !x. x IN s ==> ?c. P c /\ c SUBSET s /\ x IN c`)) THEN DISCH_THEN(MP_TAC o SPEC `f:K->A`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_CONJ; FORALL_RELATIVE_TO] THEN REWRITE_TAC[FORALL_INTERSECTION_OF] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `t:((K->A)->bool)->bool` THEN STRIP_TAC THEN REWRITE_TAC[IN_INTER] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?l. FINITE l /\ !i u. i IN k /\ open_in (tops i) u /\ u PSUBSET topspace(tops i) /\ {x:K->A | x i IN u} IN t ==> i IN l` STRIP_ASSUME_TAC THENL [EXISTS_TAC `UNIONS(IMAGE (\c. {i | IMAGE (\x:K->A. x i) c PSUBSET topspace(tops i)}) t)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[FINITE_UNIONS; FINITE_IMAGE; FORALL_IN_IMAGE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> P x ==> R x) ==> (!x. P x ==> R x)`)) THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c:(K->A)->bool`; `i:K`; `v:A->bool`] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `s IN t ==> !x. x IN INTERS t ==> x IN s`)) THEN DISCH_THEN(MP_TAC o SPEC `f:K->A`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_SING] THEN X_GEN_TAC `j:K` THEN MATCH_MP_TAC(SET_RULE `(~P ==> s = UNIV) ==> (s PSUBSET t ==> P)`) THEN DISCH_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIV; IN_IMAGE; IN_ELIM_THM] THEN X_GEN_TAC `z:A` THEN EXISTS_TAC `\m. if m = j then z else (f:K->A) m` THEN ASM_REWRITE_TAC[]; REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`i:K`; `u:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `{x:K->A | x i IN u}` THEN ASM SET_TAC[]]; ALL_TAC] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `h:K->A` THEN DISCH_TAC THEN ABBREV_TAC `g = \i. if i IN l then (f:K->A) i else h i` THEN SUBGOAL_THEN `(g:K->A) IN u` ASSUME_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; IN_INTER; IN_INTERS] THEN CONJ_TAC THENL [MAP_EVERY UNDISCH_TAC [`(f:K->A) IN topspace (product_topology k tops)`; `(h:K->A) IN cartesian_product k (topspace o tops)`] THEN EXPAND_TAC "g" THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN REWRITE_TAC[IN_ELIM_THM; EXTENSIONAL] THEN MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. Q x ==> P x ==> R x) ==> (!x. P x ==> R x)`)) THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c:(K->A)->bool`; `i:K`; `v:A->bool`] THEN REPEAT STRIP_TAC THEN EXPAND_TAC "g" THEN REWRITE_TAC[IN_ELIM_THM] THEN COND_CASES_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERS]) THEN DISCH_THEN(MP_TAC o SPEC `{x:K->A | x i IN v}`) THEN ASM_REWRITE_TAC[IN_ELIM_THM]; UNDISCH_TAC `(h:K->A) IN cartesian_product k (topspace o tops)` THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_THM] THEN DISCH_THEN(MP_TAC o SPEC `i:K` o CONJUNCT2) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t /\ ~(s PSUBSET t) ==> x IN t ==> x IN s`) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET] THEN ASM_MESON_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `!m. FINITE m ==> !h. h IN cartesian_product k (topspace o tops) /\ {i | i IN k /\ ~((h:K->A) i = g i)} SUBSET m ==> h IN u` MP_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `l:K->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "g" THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]] THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o check (free_in `h:K->A` o concl))) THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o check (free_in `f:K->A` o concl))) THEN SUBGOAL_THEN `(g:K->A) IN cartesian_product k (topspace o tops)` ASSUME_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [X_GEN_TAC `h:K->A` THEN REWRITE_TAC[SET_RULE `{i | i IN k /\ ~(h i = g i)} SUBSET {} <=> !i. i IN k ==> h i = g i`] THEN ASM_CASES_TAC `h:K->A = g` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY UNDISCH_TAC [`(g:K->A) IN cartesian_product k (topspace o tops)`; `~(h:K->A = g)`] THEN REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`i:K`; `m:K->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "*") STRIP_ASSUME_TAC) THEN X_GEN_TAC `h:K->A` THEN STRIP_TAC THEN ABBREV_TAC `(f:K->A) = \j. if j = i then g i else h j` THEN SUBGOAL_THEN `(f:K->A) IN cartesian_product k (topspace o tops)` ASSUME_TAC THENL [MAP_EVERY UNDISCH_TAC [`(g:K->A) IN cartesian_product k (topspace o tops)`; `(h:K->A) IN cartesian_product k (topspace o tops)`] THEN EXPAND_TAC "f" THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `f:K->A`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [EXPAND_TAC "f" THEN REWRITE_TAC[] THEN ASM SET_TAC[]; DISCH_TAC] THEN ASM_CASES_TAC `(h:K->A) IN v` THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_CASES_TAC `(i:K) IN k` THENL [ALL_TAC; ASM_CASES_TAC `h:K->A = f` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY UNDISCH_TAC [`(f:K->A) IN cartesian_product k (topspace o tops)`; `(h:K->A) IN cartesian_product k (topspace o tops)`; `~(h:K->A = f)`] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [FUN_EQ_THM] THEN EXPAND_TAC "f" THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN ASM SET_TAC[]] THEN SUBGOAL_THEN `connected_space ((tops:K->A topology) i)` MP_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[connected_space; NOT_EXISTS_THM]] THEN DISCH_THEN(MP_TAC o SPECL [`{x | x IN topspace((tops:K->A topology) i) /\ (\j. if j = i then x else h j) IN u}`; `{x | x IN topspace((tops:K->A topology) i) /\ (\j. if j = i then x else h j) IN v}`]) THEN MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `product_topology k (tops:K->A topology)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN (CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE]; X_GEN_TAC `j:K` THEN DISCH_TAC THEN ASM_CASES_TAC `j:K = i` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]] THEN UNDISCH_TAC `(h:K->A) IN cartesian_product k (topspace o tops)` THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_DEF; EXTENSIONAL] THEN ASM SET_TAC[]); ALL_TAC] THEN CONJ_TAC THENL [SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET u UNION v ==> IMAGE f q SUBSET s ==> (!x. x IN q ==> f x IN u \/ f x IN v)`)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN UNDISCH_TAC `(h:K->A) IN cartesian_product k (topspace o tops)` THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_DEF; EXTENSIONAL] THEN ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN CONJ_TAC THENL [EXISTS_TAC `(g:K->A) i` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(g:K->A) IN cartesian_product k (topspace o tops)`; EXISTS_TAC `(h:K->A) i` THEN REWRITE_TAC[MESON[] `(if j = i then h i else h j) = h j`] THEN ASM_REWRITE_TAC[ETA_AX] THEN UNDISCH_TAC `(h:K->A) IN cartesian_product k (topspace o tops)`] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_DEF] THEN ASM SET_TAC[]);; let CONNECTED_IN_CARTESIAN_PRODUCT = prove (`!tops:K->A topology s k. connected_in (product_topology k tops) (cartesian_product k s) <=> cartesian_product k s = {} \/ !i. i IN k ==> connected_in (tops i) (s i)`, REWRITE_TAC[connected_in; SUBTOPOLOGY_CARTESIAN_PRODUCT] THEN REWRITE_TAC[CONNECTED_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; o_DEF; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* The notion of "separated between" (complement of "connected between") *) (* ------------------------------------------------------------------------- *) let separated_between = new_definition `separated_between top (s:A->bool) t <=> ?u v. open_in top u /\ open_in top v /\ u UNION v = topspace top /\ DISJOINT u v /\ s SUBSET u /\ t SUBSET v`;; let SEPARATED_BETWEEN_ALT = prove (`!top s (t:A->bool). separated_between top s t <=> ?u v. closed_in top u /\ closed_in top v /\ u UNION v = topspace top /\ DISJOINT u v /\ s SUBSET u /\ t SUBSET v`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_between] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_CLOSED_IN] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ] THEN SET_TAC[]);; let SEPARATED_BETWEEN = prove (`!top s (t:A->bool). separated_between top s t <=> ?u. closed_in top u /\ open_in top u /\ s SUBSET u /\ t SUBSET (topspace top DIFF u)`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_between] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s /\ t /\ u <=> (r /\ s) /\ p /\ q /\ t /\ u`] THEN REWRITE_TAC[SET_RULE `u UNION v = t /\ DISJOINT u v <=> v = t DIFF u /\ u SUBSET t`] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; closed_in] THEN AP_TERM_TAC THEN ABS_TAC THEN SET_TAC[]);; let SEPARATED_BETWEEN_MONO = prove (`!top s t s' t':A->bool. separated_between top s t /\ s' SUBSET s /\ t' SUBSET t ==> separated_between top s' t'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[separated_between] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]);; let SEPARATED_BETWEEN_REFL = prove (`!top s:A->bool. separated_between top s s <=> s = {}`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_between] THEN EQ_TAC THENL [SET_TAC[]; DISCH_TAC] THEN MAP_EVERY EXISTS_TAC [`topspace top:A->bool`; `{}:A->bool`] THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; OPEN_IN_EMPTY; EMPTY_SUBSET] THEN SET_TAC[]);; let SEPARATED_BETWEEN_SYM = prove (`!top s (t:A->bool). separated_between top s t <=> separated_between top t s`, REWRITE_TAC[separated_between] THEN MESON_TAC[UNION_COMM; DISJOINT_SYM]);; let SEPARATED_BETWEEN_IMP_SUBSET = prove (`!top s (t:A->bool). separated_between top s t ==> s SUBSET topspace top /\ t SUBSET topspace top`, REWRITE_TAC[separated_between] THEN MESON_TAC[OPEN_IN_SUBSET; SUBSET_TRANS]);; let SEPARATED_BETWEEN_EMPTY = prove (`(!top s:A->bool. separated_between top {} s <=> s SUBSET topspace top) /\ (!top s:A->bool. separated_between top s {} <=> s SUBSET topspace top)`, REPEAT STRIP_TAC THEN (EQ_TAC THENL [MESON_TAC[SEPARATED_BETWEEN_IMP_SUBSET]; DISCH_TAC]) THENL [ONCE_REWRITE_TAC[SEPARATED_BETWEEN_SYM]; ALL_TAC] THEN REWRITE_TAC[SEPARATED_BETWEEN] THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[CLOSED_IN_TOPSPACE; OPEN_IN_TOPSPACE; EMPTY_SUBSET]);; let SEPARATED_BETWEEN_UNION = prove (`(!top s t u:A->bool. separated_between top s (t UNION u) <=> separated_between top s t /\ separated_between top s u) /\ (!top s t u:A->bool. separated_between top (s UNION t) u <=> separated_between top s u /\ separated_between top t u)`, MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [MESON_TAC[SEPARATED_BETWEEN_SYM]; ALL_TAC] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[SEPARATED_BETWEEN_MONO; SUBSET_UNION; SUBSET_REFL]; REWRITE_TAC[SEPARATED_BETWEEN]] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `c:A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `d:A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `c INTER d:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER; CLOSED_IN_INTER] THEN ASM SET_TAC[]);; let SEPARATED_BETWEEN_IMP_DISJOINT = prove (`!top s (t:A->bool). separated_between top s t ==> DISJOINT s t`, REWRITE_TAC[separated_between] THEN SET_TAC[]);; let SEPARATED_BETWEEN_IMP_SEPARATED_IN = prove (`!top s (t:A->bool). separated_between top s t ==> separated_in top s t`, REPEAT GEN_TAC THEN REWRITE_TAC[separated_between; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MATCH_MP_TAC SEPARATED_IN_MONO THEN MAP_EVERY EXISTS_TAC [`u:A->bool`; `v:A->bool`] THEN ASM_SIMP_TAC[SEPARATED_IN_OPEN_SETS]);; let SEPARATED_BETWEEN_FULL = prove (`!top s t:A->bool. s UNION t = topspace top ==> (separated_between top s t <=> DISJOINT s t /\ closed_in top s /\ open_in top s /\ closed_in top t /\ open_in top t)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [MESON[SEPARATED_BETWEEN_SYM] `separated_between top s t <=> separated_between top s t /\ separated_between top t s`] THEN REWRITE_TAC[SEPARATED_BETWEEN; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `s:A->bool = u /\ t:A->bool = v` (CONJUNCTS_THEN SUBST_ALL_TAC) THENL [RULE_ASSUM_TAC(REWRITE_RULE[closed_in]) THEN ASM SET_TAC[]; ASM SET_TAC[]]; STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`s:A->bool`; `t:A->bool`] THEN ASM SET_TAC[]]);; let SEPARATED_BETWEEN_EQ_SEPARATED_IN = prove (`!top s t:A->bool. s UNION t = topspace top ==> (separated_between top s t <=> separated_in top s t)`, SIMP_TAC[SEPARATED_IN_FULL; SEPARATED_BETWEEN_FULL]);; let SEPARATED_BETWEEN_POINTWISE_LEFT = prove (`!top s t:A->bool. compact_in top s ==> (separated_between top s t <=> (s = {} ==> t SUBSET topspace top) /\ !x. x IN s ==> separated_between top {x} t)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MESON_TAC[SEPARATED_BETWEEN_MONO; SUBSET_REFL; SEPARATED_BETWEEN_IMP_SUBSET; SING_SUBSET]; ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[SEPARATED_BETWEEN_EMPTY; NOT_IN_EMPTY] THEN REWRITE_TAC[SEPARATED_BETWEEN]] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; SING_SUBSET] THEN X_GEN_TAC `u:A->A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [compact_in]) THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (u:A->A->bool) s`) THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_FINITE_SUBSET_IMAGE; UNIONS_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `k:A->bool` THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; SUBSET_EMPTY] THEN STRIP_TAC THEN EXISTS_TAC `UNIONS(IMAGE (u:A->A->bool) k)` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_UNIONS; MATCH_MP_TAC OPEN_IN_UNIONS; REWRITE_TAC[UNIONS_IMAGE]; REWRITE_TAC[UNIONS_IMAGE]] THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM SET_TAC[]);; let SEPARATED_BETWEEN_POINTWISE_RIGHT = prove (`!top s t:A->bool. compact_in top t ==> (separated_between top s t <=> (t = {} ==> s SUBSET topspace top) /\ !y. y IN t ==> separated_between top s {y})`, ONCE_REWRITE_TAC[SEPARATED_BETWEEN_SYM] THEN REWRITE_TAC[SEPARATED_BETWEEN_POINTWISE_LEFT]);; let SEPARATED_BETWEEN_CLOSURE_OF = prove (`(!top s t:A->bool. s SUBSET topspace top ==> (separated_between top (top closure_of s) t <=> separated_between top s t)) /\ (!top s t:A->bool. t SUBSET topspace top ==> (separated_between top s (top closure_of t) <=> separated_between top s t))`, MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [MESON_TAC[SEPARATED_BETWEEN_SYM]; ALL_TAC] THEN REWRITE_TAC[SEPARATED_BETWEEN] THEN MESON_TAC[CLOSURE_OF_MINIMAL_EQ]);; let SEPARATED_BETWEEN_CLOSURE_OF_EQ = prove (`(!top s t:A->bool. separated_between top s t <=> s SUBSET topspace top /\ separated_between top (top closure_of s) t) /\ (!top s t:A->bool. separated_between top s t <=> t SUBSET topspace top /\ separated_between top s (top closure_of t))`, MESON_TAC[SEPARATED_BETWEEN_CLOSURE_OF; SEPARATED_BETWEEN_IMP_SUBSET]);; let SEPARATED_BETWEEN_FRONTIER_OF_EQ = prove (`(!top s t:A->bool. separated_between top s t <=> s SUBSET topspace top /\ DISJOINT s t /\ separated_between top (top frontier_of s) t) /\ (!top s t:A->bool. separated_between top s t <=> t SUBSET topspace top /\ DISJOINT s t /\ separated_between top s (top frontier_of t))`, MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN CONJ_TAC THENL [MESON_TAC[SEPARATED_BETWEEN_SYM; DISJOINT_SYM]; ALL_TAC] THEN REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[SEPARATED_BETWEEN_IMP_SUBSET]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[SEPARATED_BETWEEN_IMP_DISJOINT]; ALL_TAC] THEN MATCH_MP_TAC SEPARATED_BETWEEN_MONO THEN MAP_EVERY EXISTS_TAC [`s:A->bool`; `top closure_of t:A->bool`] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONJUNCT2 SEPARATED_BETWEEN_CLOSURE_OF_EQ]) THEN SIMP_TAC[SUBSET_REFL] THEN REWRITE_TAC[frontier_of] THEN SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SEPARATED_BETWEEN]) THEN REWRITE_TAC[SEPARATED_BETWEEN; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `u DIFF t:A->bool` THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THENL [SUBGOAL_THEN `u DIFF t:A->bool = u DIFF top interior_of t` (fun th -> ASM_SIMP_TAC[th; CLOSED_IN_DIFF; OPEN_IN_INTERIOR_OF]); SUBGOAL_THEN `u DIFF t:A->bool = u DIFF top closure_of t` (fun th -> ASM_SIMP_TAC[th; OPEN_IN_DIFF; CLOSED_IN_CLOSURE_OF])] THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] INTERIOR_OF_SUBSET) THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] CLOSURE_OF_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[frontier_of]) THEN ASM SET_TAC[]]);; let SEPARATED_BETWEEN_FRONTIER_OF = prove (`(!top s t:A->bool. s SUBSET topspace top /\ DISJOINT s t ==> (separated_between top (top frontier_of s) t <=> separated_between top s t)) /\ (!top s t:A->bool. t SUBSET topspace top /\ DISJOINT s t ==> (separated_between top s (top frontier_of t) <=> separated_between top s t))`, MESON_TAC[SEPARATED_BETWEEN_FRONTIER_OF_EQ]);; let CONNECTED_SPACE_SEPARATED_BETWEEN = prove (`!top:A topology. connected_space top <=> !s t. separated_between top s t ==> s = {} \/ t = {}`, REWRITE_TAC[CONNECTED_SPACE_EQ; separated_between] THEN MESON_TAC[DISJOINT; SUBSET_REFL; SUBSET_EMPTY]);; let CONNECTED_SPACE_IMP_SEPARATED_BETWEEN_TRIVIAL = prove (`!top s t:A->bool. connected_space top ==> (separated_between top s t <=> s = {} /\ t SUBSET topspace top \/ s SUBSET topspace top /\ t = {})`, MESON_TAC[CONNECTED_SPACE_SEPARATED_BETWEEN; SEPARATED_BETWEEN_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Connected components. *) (* ------------------------------------------------------------------------- *) let connected_component_of = new_definition `connected_component_of top x y <=> ?t. connected_in top t /\ x IN t /\ y IN t`;; let connected_components_of = new_definition `connected_components_of top = {connected_component_of top x |x| x IN topspace top}`;; let CONNECTED_COMPONENT_IN_TOPSPACE = prove (`!top x y:A. connected_component_of top x y ==> x IN topspace top /\ y IN topspace top`, REWRITE_TAC[connected_component_of] THEN MESON_TAC[CONNECTED_IN_SUBSET_TOPSPACE; SUBSET]);; let CONNECTED_COMPONENT_OF_REFL = prove (`!top x:A. connected_component_of top x x <=> x IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[CONNECTED_COMPONENT_IN_TOPSPACE]; DISCH_TAC] THEN REWRITE_TAC[connected_component_of] THEN EXISTS_TAC `{x:A}` THEN ASM_REWRITE_TAC[CONNECTED_IN_SING; IN_SING]);; let CONNECTED_COMPONENT_OF_SYM = prove (`!top x y:A. connected_component_of top x y <=> connected_component_of top y x`, REWRITE_TAC[connected_component_of] THEN MESON_TAC[]);; let CONNECTED_COMPONENT_OF_TRANS = prove (`!top x y z:A. connected_component_of top x y /\ connected_component_of top y z ==> connected_component_of top x z`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_component_of] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `t1:A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t2:A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `t1 UNION t2:A->bool` THEN ASM_REWRITE_TAC[IN_UNION] THEN MATCH_MP_TAC CONNECTED_IN_UNION THEN ASM SET_TAC[]);; let CONNECTED_COMPONENT_OF_SUBTOPOLOGY = prove (`!top s x y:A. connected_component_of (subtopology top s) x y ==> connected_component_of top x y`, REWRITE_TAC[connected_component_of; CONNECTED_IN_SUBTOPOLOGY] THEN MESON_TAC[]);; let CONNECTED_COMPONENT_OF_MONO = prove (`!top s t x y:A. connected_component_of (subtopology top s) x y /\ s SUBSET t ==> connected_component_of (subtopology top t) x y`, REWRITE_TAC[connected_component_of; CONNECTED_IN_SUBTOPOLOGY] THEN MESON_TAC[SUBSET]);; let CONNECTED_COMPONENT_OF_SET = prove (`!top x:A. connected_component_of top x = {y | ?t. connected_in top t /\ x IN t /\ y IN t}`, REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[IN; connected_component_of]);; let CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE = prove (`!top x. (connected_component_of top x) SUBSET topspace top`, REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[CONNECTED_COMPONENT_IN_TOPSPACE; IN]);; let CONNECTED_COMPONENT_OF_SUBTOPOLOGY_EQ = prove (`!top u x:A. connected_component_of (subtopology top u) x = connected_component_of top x <=> connected_component_of top x SUBSET u`, REWRITE_TAC[CONNECTED_COMPONENT_OF_SET; CONNECTED_IN_SUBTOPOLOGY] THEN SET_TAC[]);; let CONNECTED_COMPONENTS_OF_SUBTOPOLOGY = prove (`!top u c:A->bool. c IN connected_components_of top /\ c SUBSET u ==> c IN connected_components_of (subtopology top u)`, GEN_TAC THEN GEN_TAC THEN SIMP_TAC[connected_components_of; IMP_CONJ; FORALL_IN_GSPEC] THEN X_GEN_TAC `x:A` THEN REPEAT DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:A` o GEN_REWRITE_RULE I [SUBSET]) THEN ANTS_TAC THENL [ASM_MESON_TAC[CONNECTED_COMPONENT_OF_REFL; IN]; DISCH_TAC] THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `x:A` THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN ASM_MESON_TAC[CONNECTED_COMPONENT_OF_SUBTOPOLOGY_EQ]);; let CONNECTED_COMPONENT_OF_EQ_EMPTY = prove (`!top x. connected_component_of top x = {} <=> ~(x IN topspace top)`, REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[IN; CONNECTED_COMPONENT_OF_REFL; CONNECTED_COMPONENT_IN_TOPSPACE]);; let CONNECTED_SPACE_IFF_CONNECTED_COMPONENT = prove (`!top:A topology. connected_space top <=> !x y. x IN topspace top /\ y IN topspace top ==> connected_component_of top x y`, REWRITE_TAC[CONNECTED_SPACE_SUBCONNECTED; connected_component_of] THEN MESON_TAC[]);; let CONNECTED_SPACE_IMP_CONNECTED_COMPONENT_OF = prove (`!top a b:A. connected_space top /\ a IN topspace top /\ b IN topspace top ==> connected_component_of top a b`, MESON_TAC[CONNECTED_SPACE_IFF_CONNECTED_COMPONENT]);; let CONNECTED_SPACE_CONNECTED_COMPONENT_SET = prove (`!top. connected_space top <=> !x:A. x IN topspace top ==> connected_component_of top x = topspace top`, REWRITE_TAC[CONNECTED_SPACE_IFF_CONNECTED_COMPONENT; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE] THEN SET_TAC[]);; let CONNECTED_COMPONENT_OF_MAXIMAL = prove (`!top s x:A. connected_in top s /\ x IN s ==> s SUBSET (connected_component_of top x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; CONNECTED_COMPONENT_OF_SET; IN_ELIM_THM] THEN ASM_MESON_TAC[]);; let CONNECTED_COMPONENT_OF_EQUIV = prove (`!top x y:A. connected_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ connected_component_of top x = connected_component_of top y`, REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[CONNECTED_COMPONENT_OF_REFL; CONNECTED_COMPONENT_OF_TRANS; CONNECTED_COMPONENT_OF_SYM]);; let CONNECTED_COMPONENT_OF_DISJOINT = prove (`!top x y:A. DISJOINT (connected_component_of top x) (connected_component_of top y) <=> ~(connected_component_of top x y)`, REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN REWRITE_TAC[IN] THEN MESON_TAC[CONNECTED_COMPONENT_OF_SYM; CONNECTED_COMPONENT_OF_TRANS]);; let CONNECTED_COMPONENT_OF_EQ = prove (`!top x y:A. connected_component_of top x = connected_component_of top y <=> ~(x IN topspace top) /\ ~(y IN topspace top) \/ x IN topspace top /\ y IN topspace top /\ connected_component_of top x y`, MESON_TAC[CONNECTED_COMPONENT_OF_REFL; CONNECTED_COMPONENT_OF_EQUIV; CONNECTED_COMPONENT_OF_EQ_EMPTY]);; let CONNECTED_IN_CONNECTED_COMPONENT_OF = prove (`!top x:A. connected_in top (connected_component_of top x)`, REPEAT GEN_TAC THEN SUBGOAL_THEN `connected_component_of top (x:A) = UNIONS {t | connected_in top t /\ x IN t}` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_GSPEC; CONNECTED_COMPONENT_OF_SET] THEN SET_TAC[]; MATCH_MP_TAC CONNECTED_IN_UNIONS THEN SET_TAC[]]);; let UNIONS_CONNECTED_COMPONENTS_OF = prove (`!top:A topology. UNIONS (connected_components_of top) = topspace top`, GEN_TAC THEN REWRITE_TAC[connected_components_of] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL]);; let CONNECTED_COMPONENTS_OF_MAXIMAL = prove (`!top s c:A->bool. c IN connected_components_of top /\ connected_in top s /\ ~DISJOINT c s ==> s SUBSET c`, REWRITE_TAC[connected_components_of; IMP_CONJ; FORALL_IN_GSPEC; LEFT_IMP_EXISTS_THM; SET_RULE `~DISJOINT P t <=> ?x. P x /\ x IN t`] THEN SIMP_TAC[CONNECTED_COMPONENT_OF_EQUIV] THEN MESON_TAC[CONNECTED_COMPONENT_OF_MAXIMAL]);; let PAIRWISE_DISJOINT_CONNECTED_COMPONENTS_OF = prove (`!top:A topology. pairwise DISJOINT (connected_components_of top)`, SIMP_TAC[pairwise; IMP_CONJ; connected_components_of; RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[CONNECTED_COMPONENT_OF_EQ; CONNECTED_COMPONENT_OF_DISJOINT]);; let COMPLEMENT_CONNECTED_COMPONENTS_OF_UNIONS = prove (`!top c:A->bool. c IN connected_components_of top ==> topspace top DIFF c = UNIONS (connected_components_of top DELETE c)`, REWRITE_TAC[SET_RULE `s DELETE a = s DIFF {a}`] THEN ASM_SIMP_TAC[GSYM DIFF_UNIONS_PAIRWISE_DISJOINT; PAIRWISE_DISJOINT_CONNECTED_COMPONENTS_OF; SING_SUBSET] THEN REWRITE_TAC[UNIONS_CONNECTED_COMPONENTS_OF; UNIONS_1]);; let NONEMPTY_CONNECTED_COMPONENTS_OF = prove (`!top c:A->bool. c IN connected_components_of top ==> ~(c = {})`, SIMP_TAC[connected_components_of; FORALL_IN_GSPEC; CONNECTED_COMPONENT_OF_EQ_EMPTY]);; let CONNECTED_COMPONENTS_OF_SUBSET = prove (`!top c:A->bool. c IN connected_components_of top ==> c SUBSET topspace top`, SIMP_TAC[connected_components_of; FORALL_IN_GSPEC; CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE]);; let CONNECTED_IN_CONNECTED_COMPONENTS_OF = prove (`!top c:A->bool. c IN connected_components_of top ==> connected_in top c`, REWRITE_TAC[connected_components_of; FORALL_IN_GSPEC] THEN REWRITE_TAC[CONNECTED_IN_CONNECTED_COMPONENT_OF]);; let CONNECTED_COMPONENT_IN_CONNECTED_COMPONENTS_OF = prove (`!top a:A. connected_component_of top a IN connected_components_of top <=> a IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN SIMP_TAC[GSYM CONNECTED_COMPONENT_OF_EQ_EMPTY] THEN MESON_TAC[NONEMPTY_CONNECTED_COMPONENTS_OF]; REWRITE_TAC[connected_components_of] THEN SET_TAC[]]);; let CONNECTED_SPACE_IFF_COMPONENTS_EQ = prove (`!top:A topology. connected_space top <=> !c c'. c IN connected_components_of top /\ c' IN connected_components_of top ==> c = c'`, REWRITE_TAC[connected_components_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; CONNECTED_SPACE_IFF_CONNECTED_COMPONENT] THEN SIMP_TAC[CONNECTED_COMPONENT_OF_EQ] THEN MESON_TAC[]);; let CONNECTED_COMPONENTS_OF_EQ_EMPTY = prove (`!top:A topology. connected_components_of top = {} <=> topspace top = {}`, REWRITE_TAC[connected_components_of] THEN SET_TAC[]);; let CONNECTED_COMPONENTS_OF_EMPTY_SPACE = prove (`!top:A topology. topspace top = {} ==> connected_components_of top = {}`, REWRITE_TAC[CONNECTED_COMPONENTS_OF_EQ_EMPTY]);; let CONNECTED_COMPONENTS_OF_SUBSET_SING = prove (`!top s:A->bool. connected_components_of top SUBSET {s} <=> connected_space top /\ (topspace top = {} \/ topspace top = s)`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_SPACE_IFF_COMPONENTS_EQ; SET_RULE `(!x y. x IN s /\ y IN s ==> x = y) <=> s = {} \/ ?a. s = {a}`] THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[CONNECTED_COMPONENTS_OF_EMPTY_SPACE; EMPTY_SUBSET] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENTS_OF_EQ_EMPTY; SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN MESON_TAC[UNIONS_CONNECTED_COMPONENTS_OF; UNIONS_1]);; let CONNECTED_SPACE_IFF_COMPONENTS_SUBSET_SING = prove (`!top:A topology. connected_space top <=> ?a. connected_components_of top SUBSET {a}`, MESON_TAC[CONNECTED_COMPONENTS_OF_SUBSET_SING]);; let CONNECTED_COMPONENTS_OF_EQ_SING = prove (`!top s:A->bool. connected_components_of top = {s} <=> connected_space top /\ ~(topspace top = {}) /\ s = topspace top`, REWRITE_TAC[CONNECTED_COMPONENTS_OF_SUBSET_SING; CONNECTED_COMPONENTS_OF_EQ_EMPTY; SET_RULE `s = {a} <=> s SUBSET {a} /\ ~(s = {})`] THEN MESON_TAC[]);; let CONNECTED_COMPONENTS_OF_CONNECTED_SPACE = prove (`!top:A topology. connected_space top ==> connected_components_of top = if topspace top = {} then {} else {topspace top}`, ASM_MESON_TAC[CONNECTED_COMPONENTS_OF_EMPTY_SPACE; CONNECTED_COMPONENTS_OF_EQ_SING]);; let EXISTS_CONNECTED_COMPONENT_OF_SUPERSET = prove (`!top s:A->bool. connected_in top s /\ ~(topspace top = {}) ==> ?c. c IN connected_components_of top /\ s SUBSET c`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_REWRITE_TAC[EMPTY_SUBSET; MEMBER_NOT_EMPTY] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENTS_OF_EQ_EMPTY]; UNDISCH_TAC `~(s:A->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN EXISTS_TAC `connected_component_of top (a:A)` THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[connected_in]) THEN REWRITE_TAC[CONNECTED_COMPONENT_IN_CONNECTED_COMPONENTS_OF] THEN ASM SET_TAC[]; MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[]]);; let CLOSED_IN_CONNECTED_COMPONENTS_OF = prove (`!top c:A->bool. c IN connected_components_of top ==> closed_in top c`, REWRITE_TAC[connected_components_of; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE] THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN SIMP_TAC[CONNECTED_IN_CLOSURE_OF; CONNECTED_IN_CONNECTED_COMPONENT_OF] THEN MATCH_MP_TAC(REWRITE_RULE[SUBSET] CLOSURE_OF_SUBSET_INTER) THEN ASM_REWRITE_TAC[IN_INTER] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL]);; let CLOSED_IN_CONNECTED_COMPONENT_OF = prove (`!top x:A. closed_in top (connected_component_of top x)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THENL [MATCH_MP_TAC CLOSED_IN_CONNECTED_COMPONENTS_OF THEN ASM_MESON_TAC[CONNECTED_COMPONENT_IN_CONNECTED_COMPONENTS_OF]; ASM_MESON_TAC[CLOSED_IN_EMPTY; CONNECTED_COMPONENT_OF_EQ_EMPTY]]);; let OPEN_IN_FINITE_CONNECTED_COMPONENTS = prove (`!top c:A->bool. FINITE(connected_components_of top) /\ c IN connected_components_of top ==> open_in top c`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[OPEN_IN_CLOSED_IN_EQ; CONNECTED_COMPONENTS_OF_SUBSET] THEN ASM_SIMP_TAC[COMPLEMENT_CONNECTED_COMPONENTS_OF_UNIONS] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[FINITE_DELETE; IN_DELETE; CLOSED_IN_CONNECTED_COMPONENTS_OF]);; let CONNECTED_COMPONENT_OF_EQ_OVERLAP = prove (`!top x y:A. connected_component_of top x = connected_component_of top y <=> ~(x IN topspace top) /\ ~(y IN topspace top) \/ ~(connected_component_of top x INTER connected_component_of top y = {})`, REWRITE_TAC[GSYM DISJOINT; CONNECTED_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_EQ] THEN MESON_TAC[CONNECTED_COMPONENT_IN_TOPSPACE]);; let CONNECTED_COMPONENT_OF_NONOVERLAP = prove (`!top x y:A. connected_component_of top x INTER connected_component_of top y = {} <=> ~(x IN topspace top) \/ ~(y IN topspace top) \/ ~(connected_component_of top x = connected_component_of top y)`, REWRITE_TAC[GSYM DISJOINT; CONNECTED_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_EQ] THEN MESON_TAC[CONNECTED_COMPONENT_IN_TOPSPACE]);; let CONNECTED_COMPONENT_OF_OVERLAP = prove (`!top x y:A. ~(connected_component_of top x INTER connected_component_of top y = {}) <=> x IN topspace top /\ y IN topspace top /\ connected_component_of top x = connected_component_of top y`, REWRITE_TAC[GSYM DISJOINT; CONNECTED_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_EQ] THEN MESON_TAC[CONNECTED_COMPONENT_IN_TOPSPACE]);; let CONNECTED_COMPONENTS_OF_DISJOINT = prove (`!top c c'. c IN connected_components_of top /\ c' IN connected_components_of top ==> (DISJOINT c c' <=> ~(c = c'))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; connected_components_of] THEN SIMP_TAC[FORALL_IN_GSPEC; DISJOINT; CONNECTED_COMPONENT_OF_NONOVERLAP]);; let CONNECTED_COMPONENTS_OF_OVERLAP = prove (`!top c c'. c IN connected_components_of top /\ c' IN connected_components_of top ==> (~(c INTER c' = {}) <=> c = c')`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; connected_components_of] THEN SIMP_TAC[FORALL_IN_GSPEC; DISJOINT; CONNECTED_COMPONENT_OF_NONOVERLAP]);; let PAIRWISE_SEPARATED_CONNECTED_COMPONENTS_OF = prove (`!top:A topology. pairwise (separated_in top) (connected_components_of top)`, REWRITE_TAC[pairwise] THEN SIMP_TAC[CLOSED_IN_CONNECTED_COMPONENTS_OF; SEPARATED_IN_CLOSED_SETS] THEN REWRITE_TAC[GSYM pairwise; PAIRWISE_DISJOINT_CONNECTED_COMPONENTS_OF]);; let CARD_LE_CONNECTED_COMPONENTS_OF_TOPSPACE = prove (`!top:A topology. connected_components_of top <=_c topspace top`, GEN_TAC THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `(IN):A->(A->bool)->bool` THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN FIRST_ASSUM(MP_TAC o MATCH_MP NONEMPTY_CONNECTED_COMPONENTS_OF) THEN SET_TAC[]; MESON_TAC[REWRITE_RULE[GSYM MEMBER_NOT_EMPTY; IN_INTER] CONNECTED_COMPONENTS_OF_OVERLAP]]);; let FINITE_CONNECTED_COMPONENTS_OF_FINITE = prove (`!top:A topology. FINITE(topspace top) ==> FINITE(connected_components_of top)`, GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN REWRITE_TAC[CARD_LE_CONNECTED_COMPONENTS_OF_TOPSPACE]);; let CONNECTED_COMPONENT_OF_UNIQUE = prove (`!top c x:A. x IN c /\ connected_in top c /\ (!c'. x IN c' /\ connected_in top c' ==> c' SUBSET c) ==> connected_component_of top x = c`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `R = s <=> !x. R x <=> x IN s`] THEN REWRITE_TAC[connected_component_of] THEN ASM SET_TAC[]);; let CLOSED_IN_CONNECTED_COMPONENT_OF_SUBTOPOLOGY = prove (`!top c:A->bool. c IN connected_components_of(subtopology top s) /\ top closure_of c SUBSET s ==> closed_in top c`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `top closure_of c:A->bool` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] CONNECTED_COMPONENTS_OF_MAXIMAL)) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN ASM_SIMP_TAC[CONNECTED_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; GSYM CLOSURE_OF_SUBSET_EQ] THEN STRIP_TAC THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[CONNECTED_IN_SUBTOPOLOGY; CONNECTED_IN_CLOSURE_OF; CONNECTED_IN_CONNECTED_COMPONENTS_OF]; MATCH_MP_TAC(SET_RULE `c SUBSET d /\ ~(c = {}) ==> ~DISJOINT c d`) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET] THEN ASM_MESON_TAC[NONEMPTY_CONNECTED_COMPONENTS_OF]]);; let CONNECTED_COMPONENT_OF_DISCRETE_TOPOLOGY = prove (`!u x:A. connected_component_of (discrete_topology u) x = if x IN u then {x} else {}`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_OF_EQ_EMPTY; TOPSPACE_DISCRETE_TOPOLOGY] THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_UNIQUE THEN ASM_REWRITE_TAC[CONNECTED_IN_DISCRETE_TOPOLOGY; IN_SING; SING_SUBSET] THEN SET_TAC[]);; let CONNECTED_COMPONENTS_OF_DISCRETE_TOPOLOGY = prove (`!u:A->bool. connected_components_of (discrete_topology u) = {{x} | x IN u}`, GEN_TAC THEN REWRITE_TAC[connected_components_of] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; CONNECTED_COMPONENT_OF_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let CARD_LE_CONNNECTED_COMPONENTS_CONNECTED_IN = prove (`!(top:A topology) u. (!c. c IN u ==> connected_in top c) /\ UNIONS u = topspace top ==> connected_components_of top <=_c u`, REPEAT STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `u DELETE ({}:A->bool)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC CARD_LE_SUBSET THEN SET_TAC[]] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `\(s:A->bool) t. s SUBSET t` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[connected_components_of; FORALL_IN_GSPEC] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(a:A) IN UNIONS u` MP_TAC THENL [ASM_REWRITE_TAC[]; REWRITE_TAC[IN_UNIONS]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_DELETE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN ASM_SIMP_TAC[]; REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_DELETE] THEN REWRITE_TAC[connected_components_of; FORALL_IN_GSPEC] THEN SIMP_TAC[CONNECTED_COMPONENT_OF_EQ_OVERLAP] THEN ASM SET_TAC[]]);; let CARD_LE_CONNECTED_COMPONENTS_ALT = prove (`!(top:A topology) n. ((1..n) <=_c connected_components_of top <=> n = 0 \/ ?u. u HAS_SIZE n /\ pairwise (separated_in top) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace top)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THENL [CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN REWRITE_TAC[CARD_EMPTY_LE]; ALL_TAC] THEN EQ_TAC THENL [POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP]; DISCH_THEN(X_CHOOSE_THEN `u:(A->bool)->bool` STRIP_ASSUME_TAC) THEN REWRITE_TAC[NUMSEG_CARD_LE] THEN DISCH_TAC THEN SUBGOAL_THEN `n = CARD(u:(A->bool)->bool)` SUBST1_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rand o rand) CARD_LE_CARD o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `\(u:A->bool) v. ~DISJOINT u v` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MP_TAC(ISPEC `top:A topology` UNIONS_CONNECTED_COMPONENTS_OF) THEN ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `c1:A->bool`; `c2:A->bool`] THEN STRIP_TAC THEN ASM_CASES_TAC `c1:A->bool = c2` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_CONNECTED_COMPONENTS_OF) THEN REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`c1:A->bool`; `UNIONS(u DELETE (c1:A->bool))`] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[SEPARATED_IN_UNIONS; FINITE_DELETE] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[separated_in]] THEN SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 1` THENL [EXISTS_TAC `{topspace top:A->bool}` THEN ASM_REWRITE_TAC[PAIRWISE_SING; UNIONS_1; FORALL_IN_INSERT] THEN REWRITE_TAC[HAS_SIZE; CARD_SING; FINITE_SING; NOT_IN_EMPTY] THEN DISCH_TAC THEN UNDISCH_TAC `1..n <=_c connected_components_of(top:A topology)` THEN ASM_SIMP_TAC[CONNECTED_COMPONENTS_OF_EMPTY_SPACE] THEN REWRITE_TAC[CARD_LE_EMPTY; NUMSEG_EMPTY; LT_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN TRANS_TAC CARD_LE_TRANS `1..n` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[FINITE_NUMSEG; CARD_LE_CARD; CARD_NUMSEG_1] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `u:(A->bool)->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `!c:A->bool. c IN u ==> connected_in top c` THENL [MP_TAC(ISPECL [`top:A topology`; `u:(A->bool)->bool`] CARD_LE_CONNNECTED_COMPONENTS_CONNECTED_IN) THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN ASM_REWRITE_TAC[CARD_NOT_LE] THEN TRANS_TAC CARD_LTE_TRANS `1..n` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[CARD_LT_CARD; FINITE_NUMSEG; CARD_NUMSEG_1] THEN ASM_ARITH_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM])] THEN REWRITE_TAC[NOT_IMP; CONNECTED_IN_EQ_NOT_SEPARATED] THEN ASM_SIMP_TAC[SET_RULE `UNIONS u = t ==> (c IN u /\ ~(c SUBSET t /\ ~P) <=> c IN u /\ P)`] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `a:A->bool`; `b:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(a:A->bool) INSERT b INSERT (u DELETE c)` THEN SUBGOAL_THEN `~(a:A->bool = b)` ASSUME_TAC THENL [ASM_MESON_TAC[SEPARATED_IN_REFL]; ALL_TAC] THEN SUBGOAL_THEN `~(a:A->bool = c) /\ ~(b = c)` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP SEPARATED_IN_IMP_DISJOINT) THEN ASM SET_TAC[]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_REWRITE_TAC[FORALL_IN_INSERT] THEN ASM_SIMP_TAC[CARD_CLAUSES; HAS_SIZE; FINITE_INSERT; FINITE_DELETE; IN_INSERT; IN_DELETE; CARD_DELETE] THEN SUBGOAL_THEN `!d:A->bool. d IN u DELETE c ==> separated_in top a d /\ separated_in top b d` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN REWRITE_TAC[IN_DELETE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SEPARATED_IN_MONO THEN MAP_EVERY EXISTS_TAC [`c:A->bool`; `d:A->bool`] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~((a:A->bool) IN u) /\ ~(b IN u)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[IN_DELETE; SEPARATED_IN_REFL]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN SIMP_TAC[PAIRWISE_INSERT_SYMMETRIC; SEPARATED_IN_SYM] THEN ASM_SIMP_TAC[IMP_CONJ; FORALL_IN_INSERT] THEN MATCH_MP_TAC PAIRWISE_MONO THEN EXISTS_TAC `u:(A->bool)->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let CONNECTED_COMPONENT_OF_CONTINUOUS_IMAGE = prove (`!top top' (f:A->B) x y. continuous_map(top,top') f /\ connected_component_of top x y ==> connected_component_of top' (f x) (f y)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[connected_component_of] THEN DISCH_THEN(X_CHOOSE_THEN `c:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (f:A->B) c` THEN ASM_SIMP_TAC[FUN_IN_IMAGE] THEN ASM_MESON_TAC[CONNECTED_IN_CONTINUOUS_MAP_IMAGE]);; let HOMEOMORPHIC_MAP_CONNECTED_COMPONENT_OF = prove (`!(f:A->B) top top' x. homeomorphic_map(top,top') f /\ x IN topspace top ==> connected_component_of top' (f x) = IMAGE f (connected_component_of top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS; homeomorphic_maps] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `g:B->A` STRIP_ASSUME_TAC) ASSUME_TAC) THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN REWRITE_TAC[IN] THEN MP_TAC(ISPEC `top':B topology` CONNECTED_COMPONENT_IN_TOPSPACE) THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `f:A->B`] CONNECTED_COMPONENT_OF_CONTINUOUS_IMAGE) THEN MP_TAC(ISPECL [`top':B topology`; `top:A topology`; `g:B->A`] CONNECTED_COMPONENT_OF_CONTINUOUS_IMAGE) THEN ASM_REWRITE_TAC[] THEN REPEAT (FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_CONNECTED_COMPONENTS_OF = prove (`!(f:A->B) top top'. homeomorphic_map(top,top') f ==> connected_components_of top' = IMAGE (IMAGE f) (connected_components_of top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[connected_components_of; SIMPLE_IMAGE] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP HOMEOMORPHIC_IMP_SURJECTIVE_MAP) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN REWRITE_TAC[] THEN ASM_MESON_TAC[HOMEOMORPHIC_MAP_CONNECTED_COMPONENT_OF]);; let CONNECTED_COMPONENT_OF_PAIR = prove (`!top1 top2 (x:A) (y:B). connected_component_of (prod_topology top1 top2) (x,y) = connected_component_of top1 x CROSS connected_component_of top2 y`, REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `(s = {} <=> t = {}) /\ (~(s = {}) ==> (s = t)) ==> s = t`) THEN REWRITE_TAC[CROSS_EQ_EMPTY; CONNECTED_COMPONENT_OF_EQ_EMPTY; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; DE_MORGAN_THM] THEN STRIP_TAC THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_UNIQUE THEN SIMP_TAC[CONNECTED_IN_CROSS; CONNECTED_IN_CONNECTED_COMPONENT_OF] THEN REWRITE_TAC[IN_CROSS] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL] THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `c:A#B->bool` THEN STRIP_TAC THEN TRANS_TAC SUBSET_TRANS `(IMAGE FST c CROSS IMAGE SND c):A#B->bool` THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN MESON_TAC[]; REWRITE_TAC[SUBSET_CROSS] THEN REPEAT DISJ2_TAC THEN CONJ_TAC THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN (CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN ASM_MESON_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]]);; let CONNECTED_COMPONENTS_OF_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). connected_components_of (prod_topology top1 top2) = {c1 CROSS c2 | c1 IN connected_components_of top1 /\ c2 IN connected_components_of top2}`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_components_of; TOPSPACE_PROD_TOPOLOGY; CROSS] THEN REWRITE_TAC[SET_RULE `{f z | z IN {x,y | P x y}} = {f(x,y) | P x y}`] THEN REWRITE_TAC[GSYM CROSS; CONNECTED_COMPONENT_OF_PAIR] THEN SET_TAC[]);; let CONNECTED_COMPONENT_OF_PRODUCT_TOPOLOGY = prove (`!k (tops:K->A topology) x. connected_component_of (product_topology k tops) x = if EXTENSIONAL k x then cartesian_product k (\i. connected_component_of (tops i) (x i)) else {}`, REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `(s = {} <=> t = {}) /\ (~(s = {}) ==> (s = t)) ==> s = t`) THEN REWRITE_TAC[MESON[] `(if p then x else y) = y <=> p ==> x = y`] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_EQ_EMPTY; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[o_THM; GSYM cartesian_product] THEN CONJ_TAC THENL [MESON_TAC[]; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_UNIQUE THEN SIMP_TAC[CONNECTED_IN_CARTESIAN_PRODUCT; CONNECTED_IN_CONNECTED_COMPONENT_OF] THEN ASM_REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONNECTED_COMPONENT_OF_REFL; IN]; ALL_TAC] THEN X_GEN_TAC `c:(K->A)->bool` THEN STRIP_TAC THEN TRANS_TAC SUBSET_TRANS `cartesian_product k (\i. IMAGE (\x. x i) c):(K->A)->bool` THEN REWRITE_TAC[GSYM cartesian_product; SUBSET_CARTESIAN_PRODUCT] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_SUBSET_TOPSPACE) THEN REWRITE_TAC[SUBSET; cartesian_product; IN_ELIM_THM; TOPSPACE_PRODUCT_TOPOLOGY; o_THM; IN_IMAGE] THEN ASM_MESON_TAC[]; DISJ2_TAC THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN REWRITE_TAC[IN_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN ASM_MESON_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION]]);; let CONNECTED_COMPONENTS_OF_PRODUCT_TOPOLOGY = prove (`!k (tops:K->A topology). connected_components_of (product_topology k tops) = { cartesian_product k c |c| !i. i IN k ==> c i IN connected_components_of(tops i)}`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_components_of; CONNECTED_COMPONENT_OF_PRODUCT_TOPOLOGY] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> p x) /\ {cartesian_product k y | y IN IMAGE f s} = t ==> {if p x then cartesian_product k (f x) else z | x IN s} = t`) THEN CONJ_TAC THENL [SIMP_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM]; ALL_TAC] THEN REWRITE_TAC[IN_ELIM_THM; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN REWRITE_TAC[IN_IMAGE; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[GSYM cartesian_product; o_THM] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `(!x. P x ==> Q x) ==> {f x | P x} SUBSET {f x | Q x}`) THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `c:K->A->bool` THEN DISCH_THEN(X_CHOOSE_TAC `x:K->A`) THEN REWRITE_TAC[IN_ELIM_THM; CARTESIAN_PRODUCT_EQ] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN EXISTS_TAC `RESTRICTION k (x:K->A)` THEN SIMP_TAC[RESTRICTION; EXTENSIONAL; IN_ELIM_THM] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Monotone (in the general topological sense) maps. *) (* ------------------------------------------------------------------------- *) let monotone_map = new_definition `monotone_map(top,top') (f:A->B) <=> IMAGE f (topspace top) SUBSET topspace top' /\ !y. y IN topspace top' ==> connected_in top {x | x IN topspace top /\ f x = y}`;; let MONOTONE_MAP = prove (`!top top' f:A->B. monotone_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !y. connected_in top {x | x IN topspace top /\ f x = y}`, REPEAT GEN_TAC THEN REWRITE_TAC[monotone_map] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:B` THEN ASM_CASES_TAC `(y:B) IN topspace top'` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(MESON[CONNECTED_IN_EMPTY] `s = {} ==> connected_in top s`) THEN ASM SET_TAC[]);; let MONOTONE_MAP_IN_SUBTOPOLOGY = prove (`!top top' s f:A->B. monotone_map(top,subtopology top' s) f <=> monotone_map(top,top') f /\ IMAGE f (topspace top) SUBSET s`, REWRITE_TAC[MONOTONE_MAP; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let MONOTONE_MAP_FROM_SUBTOPOLOGY = prove (`!top top' s f:A->B. monotone_map(top,top') f /\ (!x y. x IN topspace top /\ y IN topspace top /\ x IN s /\ f x = f y ==> y IN s) ==> monotone_map(subtopology top s,top') f`, REPEAT GEN_TAC THEN REWRITE_TAC[monotone_map; CONNECTED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_ELIM_THM; IN_INTER]] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN SUBGOAL_THEN `{x | (x IN topspace top /\ x IN s) /\ (f:A->B) x = y} = {x | x IN topspace top /\ f x = y} \/ {x | (x IN topspace top /\ x IN s) /\ (f:A->B) x = y} = {}` DISJ_CASES_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[]; ASM_REWRITE_TAC[CONNECTED_IN_EMPTY]]);; let MONOTONE_MAP_RESTRICTION = prove (`!top top' (f:A->B) u v. monotone_map(top,top') f /\ {x | x IN topspace top /\ f x IN v} = u ==> monotone_map (subtopology top u,subtopology top' v) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[MONOTONE_MAP_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [MATCH_MP_TAC MONOTONE_MAP_FROM_SUBTOPOLOGY THEN ASM SET_TAC[]; REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]]);; let INJECTIVE_IMP_MONOTONE_MAP = prove (`!top top' f:A->B. IMAGE f (topspace top) SUBSET topspace top' /\ (!x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y) ==> monotone_map (top,top') f`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[monotone_map] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x = y} = {} \/ ?a. a IN topspace top /\ {x | x IN topspace top /\ (f:A->B) x = y} = {a}` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[CONNECTED_IN_EMPTY]; ASM_REWRITE_TAC[CONNECTED_IN_SING]]);; let EMBEDDING_IMP_MONOTONE_MAP = prove (`!top top' f:A->B. embedding_map (top,top') f ==> monotone_map (top,top') f`, REWRITE_TAC[embedding_map; homeomorphic_map; quotient_map] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INJECTIVE_IMP_MONOTONE_MAP THEN ASM SET_TAC[]);; let SECTION_IMP_MONOTONE_MAP = prove (`!top top' f:A->B. section_map (top,top') f ==> monotone_map (top,top') f`, MESON_TAC[EMBEDDING_IMP_MONOTONE_MAP; SECTION_IMP_EMBEDDING_MAP]);; let HOMEOMORPHIC_IMP_MONOTONE_MAP = prove (`!top top' f:A->B. homeomorphic_map (top,top') f ==> monotone_map (top,top') f`, REWRITE_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP] THEN SIMP_TAC[SECTION_IMP_MONOTONE_MAP]);; let CONNECTED_SPACE_MONOTONE_QUOTIENT_MAP_PREIMAGE = prove (`!top top' f:A->B. monotone_map(top,top') f /\ quotient_map (top,top') f /\ connected_space top' ==> connected_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[monotone_map] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[connected_space; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`IMAGE (f:A->B) u`; `IMAGE (f:A->B) v`] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [QUOTIENT_MAP_SATURATED_OPEN]) THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN X_GEN_TAC `y:B` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:B`) THEN ANTS_TAC THENL [ALL_TAC; REWRITE_TAC[CONNECTED_IN; SUBSET_RESTRICT] THEN MAP_EVERY EXISTS_TAC [`u:A->bool`; `v:A->bool`] THEN ASM_REWRITE_TAC[]] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]]);; let CONNECTED_IN_MONOTONE_QUOTIENT_MAP_PREIMAGE = prove (`!top top' (f:A->B) c. monotone_map(top,top') f /\ quotient_map (top,top') f /\ connected_in top' c /\ (open_in top' c \/ closed_in top' c) ==> connected_in top {x | x IN topspace top /\ f x IN c}`, REPEAT GEN_TAC THEN REWRITE_TAC[connected_in; SUBSET_RESTRICT] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC CONNECTED_SPACE_MONOTONE_QUOTIENT_MAP_PREIMAGE THEN MAP_EVERY EXISTS_TAC [`subtopology top' (c:B->bool)`; `f:A->B`] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC MONOTONE_MAP_RESTRICTION THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC QUOTIENT_MAP_RESTRICTION THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]);; let MONOTONE_OPEN_MAP = prove (`!top top' f:A->B. continuous_map(top,top') f /\ open_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> (monotone_map(top,top') f <=> !c. connected_in top' c ==> connected_in top {x | x IN topspace top /\ f x IN c})`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[connected_in; SUBSET_RESTRICT] THEN MATCH_MP_TAC CONNECTED_SPACE_MONOTONE_QUOTIENT_MAP_PREIMAGE THEN MAP_EVERY EXISTS_TAC [`subtopology top' (c:B->bool)`; `f:A->B`] THEN ASM_SIMP_TAC[CONNECTED_SPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [MATCH_MP_TAC MONOTONE_MAP_RESTRICTION THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC CONTINUOUS_OPEN_IMP_QUOTIENT_MAP THEN ASM_SIMP_TAC[OPEN_MAP_RESTRICTION] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_SUBSET_TOPSPACE) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]]; DISCH_THEN(MP_TAC o GEN `y:B` o SPEC `{y:B}`) THEN ASM_REWRITE_TAC[CONNECTED_IN_SING; IN_SING; SUBSET_REFL; monotone_map]]);; let MONOTONE_CLOSED_MAP = prove (`!top top' f:A->B. continuous_map(top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> (monotone_map(top,top') f <=> !c. connected_in top' c ==> connected_in top {x | x IN topspace top /\ f x IN c})`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[connected_in; SUBSET_RESTRICT] THEN MATCH_MP_TAC CONNECTED_SPACE_MONOTONE_QUOTIENT_MAP_PREIMAGE THEN MAP_EVERY EXISTS_TAC [`subtopology top' (c:B->bool)`; `f:A->B`] THEN ASM_SIMP_TAC[CONNECTED_SPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [REWRITE_TAC[monotone_map; CONNECTED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[MONOTONE_MAP; continuous_map]) THEN ASM_SIMP_TAC[SET_RULE `y IN c ==> ((x IN s /\ x IN s /\ f x IN c) /\ f x = y <=> x IN s /\ f x = y)`] THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_CLOSED_IMP_QUOTIENT_MAP THEN ASM_SIMP_TAC[CLOSED_MAP_RESTRICTION] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_SUBSET_TOPSPACE) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]]; DISCH_THEN(MP_TAC o GEN `y:B` o SPEC `{y:B}`) THEN ASM_REWRITE_TAC[CONNECTED_IN_SING; IN_SING; SUBSET_REFL; monotone_map]]);; (* ------------------------------------------------------------------------- *) (* Neigbourhood bases (useful for "local" properties of various kind). *) (* ------------------------------------------------------------------------- *) let neighbourhood_base_at = new_definition `neighbourhood_base_at (x:A) P top <=> !w. open_in top w /\ x IN w ==> ?u v. open_in top u /\ P v /\ x IN u /\ u SUBSET v /\ v SUBSET w`;; let neighbourhood_base_of = new_definition `neighbourhood_base_of P top <=> !x. x IN topspace top ==> neighbourhood_base_at x P top`;; let NEIGHBOURHOOD_BASE_OF = prove (`!(top:A topology) P. neighbourhood_base_of P top <=> !w x. open_in top w /\ x IN w ==> ?u v. open_in top u /\ P v /\ x IN u /\ u SUBSET v /\ v SUBSET w`, REWRITE_TAC[neighbourhood_base_at; neighbourhood_base_of] THEN MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let NEIGHBOURHOOD_BASE_AT_MONO = prove (`!top P Q x:A. (!s. P s /\ x IN s ==> Q s) /\ neighbourhood_base_at x P top ==> neighbourhood_base_at x Q top`, REPEAT GEN_TAC THEN REWRITE_TAC[neighbourhood_base_at] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN ASM SET_TAC[]);; let NEIGHBOURHOOD_BASE_OF_MONO = prove (`!top P Q:(A->bool)->bool. (!s. P s ==> Q s) /\ neighbourhood_base_of P top ==> neighbourhood_base_of Q top`, REWRITE_TAC[neighbourhood_base_of] THEN MESON_TAC[NEIGHBOURHOOD_BASE_AT_MONO]);; let OPEN_NEIGHBOURHOOD_BASE_AT = prove (`!top P x:A. (!s. P s /\ x IN s ==> open_in top s) ==> (neighbourhood_base_at x P top <=> !w. open_in top w /\ x IN w ==> ?u. P u /\ x IN u /\ u SUBSET w)`, REPEAT STRIP_TAC THEN REWRITE_TAC[neighbourhood_base_at] THEN ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]);; let OPEN_NEIGHBOURHOOD_BASE_OF = prove (`!top P:(A->bool)->bool. (!s. P s ==> open_in top s) ==> (neighbourhood_base_of P top <=> !w x. open_in top w /\ x IN w ==> ?u. P u /\ x IN u /\ u SUBSET w)`, REWRITE_TAC[neighbourhood_base_of] THEN SIMP_TAC[OPEN_NEIGHBOURHOOD_BASE_AT] THEN MESON_TAC[SUBSET; OPEN_IN_SUBSET]);; let OPEN_IN_TOPOLOGY_NEIGHBOURHOOD_BASE_UNIQUE = prove (`!top b:(A->bool)->bool. open_in top = ARBITRARY UNION_OF b <=> (!u. u IN b ==> open_in top u) /\ neighbourhood_base_of b top`, REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_TOPOLOGY_BASE_UNIQUE] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN REWRITE_TAC[IN] THEN SIMP_TAC[OPEN_NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[IN]);; let NEIGHBOURHOOD_BASE_OF_OPEN_SUBSET = prove (`!top P s:A->bool. neighbourhood_base_of P top /\ open_in top s ==> neighbourhood_base_of P (subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; FORALL_IN_GSPEC; EXISTS_IN_GSPEC] THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN X_GEN_TAC `v:A->bool` THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s INTER v:A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[SUBSET_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);; let NEIGHBOURHOOD_BASE_AT_TOPOLOGY_BASE = prove (`!P top b x:A. open_in top = ARBITRARY UNION_OF b ==> (neighbourhood_base_at x P top <=> !w. w IN b /\ x IN w ==> ?u v. open_in top u /\ P v /\ x IN u /\ u SUBSET v /\ v SUBSET w)`, REWRITE_TAC[OPEN_IN_TOPOLOGY_BASE_UNIQUE; neighbourhood_base_at] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `w:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:A->bool`; `x:A`]) THEN ASM_MESON_TAC[SUBSET_TRANS]);; let NEIGHBOURHOOD_BASE_OF_TOPOLOGY_BASE = prove (`!P top b:(A->bool)->bool. open_in top = ARBITRARY UNION_OF b ==> (neighbourhood_base_of P top <=> !w x. w IN b /\ x IN w ==> ?u v. open_in top u /\ P v /\ x IN u /\ u SUBSET v /\ v SUBSET w)`, REWRITE_TAC[OPEN_IN_TOPOLOGY_BASE_UNIQUE; NEIGHBOURHOOD_BASE_OF] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:A->bool`; `x:A`]) THEN ASM_MESON_TAC[SUBSET_TRANS]);; let NEIGHBOURHOOD_BASE_AT_UNLOCALIZED = prove (`!top P x:A. (!s t. P s /\ open_in top t /\ x IN t /\ t SUBSET s ==> P t) ==> (neighbourhood_base_at x P top <=> x IN topspace top ==> ?u v. open_in top u /\ P v /\ x IN u /\ u SUBSET v /\ v SUBSET topspace top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[neighbourhood_base_at] THEN EQ_TAC THENL [MESON_TAC[OPEN_IN_TOPSPACE; SUBSET]; DISCH_TAC] THEN X_GEN_TAC `w:A->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top` (ANTE_RES_THEN MP_TAC) THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN REPEAT(EXISTS_TAC `u INTER w:A->bool`) THEN ASM_SIMP_TAC[IN_INTER; SUBSET_REFL; OPEN_IN_INTER; INTER_SUBSET] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `v:A->bool` THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_INTER] THEN ASM SET_TAC[]);; let NEIGHBOURHOOD_BASE_OF_UNLOCALIZED = prove (`!top P:(A->bool)->bool. (!s t. P s /\ open_in top t /\ ~(t = {}) /\ t SUBSET s ==> P t) ==> (neighbourhood_base_of P top <=> !x. x IN topspace top ==> ?u v. open_in top u /\ P v /\ x IN u /\ u SUBSET v /\ v SUBSET topspace top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[neighbourhood_base_of] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (lhand o rand) NEIGHBOURHOOD_BASE_AT_UNLOCALIZED o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[MEMBER_NOT_EMPTY]; DISCH_THEN SUBST1_TAC] THEN ASM_REWRITE_TAC[]);; let NEIGHBOURHOOD_BASE_AT_DISCRETE_TOPOLOGY = prove (`!P u x:A. neighbourhood_base_at x P (discrete_topology u) <=> x IN u ==> P {x}`, REPEAT GEN_TAC THEN REWRITE_TAC[neighbourhood_base_at] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY] THEN ASM_CASES_TAC `(x:A) IN u` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM SET_TAC[]] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `{x:A}`) THEN ASM_REWRITE_TAC[IN_SING; SING_SUBSET; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN ASM_CASES_TAC `t:A->bool = {x}` THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]; DISCH_TAC THEN X_GEN_TAC `w:A->bool` THEN STRIP_TAC THEN REPEAT(EXISTS_TAC `{x:A}`) THEN ASM SET_TAC[]]);; let NEIGHBOURHOOD_BASE_OF_DISCRETE_TOPOLOGY = prove (`!P u:A->bool. neighbourhood_base_of P (discrete_topology u) <=> !x. x IN u ==> P {x}`, REPEAT GEN_TAC THEN REWRITE_TAC[neighbourhood_base_of] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_AT_DISCRETE_TOPOLOGY] THEN SIMP_TAC[TOPSPACE_DISCRETE_TOPOLOGY]);; let NEIGHBOURHOOD_BASE_AT_WITH_SUBSET = prove (`!P top u x:A. open_in top u /\ x IN u ==> (neighbourhood_base_at x P top <=> neighbourhood_base_at x (\t. t SUBSET u /\ P t) top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[neighbourhood_base_at] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `w:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u INTER w:A->bool`) THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_INTER] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[SUBSET_INTER]);; let NEIGHBOURHOOD_BASE_OF_WITH_SUBSET = prove (`!P top:A topology. neighbourhood_base_of P top <=> neighbourhood_base_of (\t. t SUBSET topspace top /\ P t) top`, REPEAT GEN_TAC THEN REWRITE_TAC[neighbourhood_base_of] THEN MATCH_MP_TAC(MESON[] `(!x. P x ==> (Q x <=> R x)) ==> ((!x. P x ==> Q x) <=> (!x. P x ==> R x))`) THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC NEIGHBOURHOOD_BASE_AT_WITH_SUBSET THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE]);; let SECOND_COUNTABLE_NEIGHBOURHOOD_BASE_ALT = prove (`!top:A topology. second_countable top <=> ?b. COUNTABLE b /\ (!v. v IN b ==> open_in top v) /\ neighbourhood_base_of b top`, REWRITE_TAC[SECOND_COUNTABLE; OPEN_IN_TOPOLOGY_NEIGHBOURHOOD_BASE_UNIQUE]);; let FIRST_COUNTABLE_NEIGHBOURHOOD_BASE_ALT = prove (`!top:A topology. first_countable top <=> !x. x IN topspace top ==> ?b. COUNTABLE b /\ (!v. v IN b ==> open_in top v) /\ neighbourhood_base_at x b top`, GEN_TAC THEN REWRITE_TAC[first_countable] THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) OPEN_NEIGHBOURHOOD_BASE_AT o rand o rand o rand o snd) THEN REWRITE_TAC[IN] THEN MESON_TAC[]);; let SECOND_COUNTABLE_NEIGHBOURHOOD_BASE = prove (`!top:A topology. second_countable top <=> ?b. COUNTABLE b /\ neighbourhood_base_of b top`, GEN_TAC THEN REWRITE_TAC[SECOND_COUNTABLE_NEIGHBOURHOOD_BASE_ALT] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\u:A->bool. top interior_of u) b` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; OPEN_IN_INTERIOR_OF] THEN MAP_EVERY X_GEN_TAC [`w:A->bool`;` x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:A->bool`;` x:A`]) THEN ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN ASM_CASES_TAC `open_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o LAND_CONV) [GSYM IN] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ] THEN ASM_MESON_TAC[INTERIOR_OF_SUBSET; SUBSET; IN]);; let FIRST_COUNTABLE_NEIGHBOURHOOD_BASE = prove (`!top:A topology. first_countable top <=> !x. x IN topspace top ==> ?b. COUNTABLE b /\ neighbourhood_base_at x b top`, GEN_TAC THEN REWRITE_TAC[FIRST_COUNTABLE_NEIGHBOURHOOD_BASE_ALT] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[neighbourhood_base_at; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:(A->bool)->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\u:A->bool. top interior_of u) b` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; OPEN_IN_INTERIOR_OF] THEN X_GEN_TAC `w:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `w:A->bool`) THEN ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN ASM_CASES_TAC `open_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o LAND_CONV) [GSYM IN] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ] THEN ASM_MESON_TAC[INTERIOR_OF_SUBSET; SUBSET; IN]);; (* ------------------------------------------------------------------------- *) (* T_0 spaces and the Kolmogorov quotient. *) (* ------------------------------------------------------------------------- *) let t0_space = new_definition `t0_space (top:A topology) <=> !x y. x IN topspace top /\ y IN topspace top /\ ~(x = y) ==> ?u. open_in top u /\ ~(x IN u <=> y IN u)`;; let T0_SPACE_EXPANSIVE = prove (`!top top':A topology. topspace top' = topspace top /\ (!u. open_in top u ==> open_in top' u) ==> t0_space top ==> t0_space top'`, REWRITE_TAC[t0_space] THEN METIS_TAC[]);; let T1_IMP_T0_SPACE = prove (`!top:A topology. t1_space top ==> t0_space top`, REWRITE_TAC[t1_space; t0_space] THEN MESON_TAC[]);; let T1_EQ_SYMMETRIC_T0_SPACE_ALT = prove (`!top:A topology. t1_space top <=> t0_space top /\ !x y. x IN topspace top /\ y IN topspace top ==> (x IN top closure_of {y} <=> y IN top closure_of {x})`, REWRITE_TAC[t0_space; t1_space; closure_of; IN_ELIM_THM] THEN GEN_TAC THEN SIMP_TAC[IN_SING; UNWIND_THM2; AND_FORALL_THM] THEN EQ_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(y:A) IN topspace top` THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[]);; let T1_EQ_SYMMETRIC_T0_SPACE = prove (`!top:A topology. t1_space top <=> t0_space top /\ !x y. x IN top closure_of {y} <=> y IN top closure_of {x}`, GEN_TAC THEN REWRITE_TAC[T1_EQ_SYMMETRIC_T0_SPACE_ALT] THEN EQ_TAC THEN SIMP_TAC[] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN MAP_EVERY ASM_CASES_TAC [`(x:A) IN topspace top`; `(y:A) IN topspace top`] THEN ASM_SIMP_TAC[] THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `~(x IN s) ==> s INTER {x} = {}`] THEN REWRITE_TAC[CLOSURE_OF_EMPTY; NOT_IN_EMPTY] THEN ASM_MESON_TAC[SUBSET; CLOSURE_OF_SUBSET_TOPSPACE]);; let HAUSDORFF_IMP_T0_SPACE = prove (`!top:A topology. hausdorff_space top ==> t0_space top`, SIMP_TAC[HAUSDORFF_IMP_T1_SPACE; T1_IMP_T0_SPACE]);; let T0_SPACE = prove (`!top:A topology. t0_space top <=> !x y. x IN topspace top /\ y IN topspace top /\ ~(x = y) ==> ?c. closed_in top c /\ ~(x IN c <=> y IN c)`, SIMP_TAC[EXISTS_CLOSED_IN; IN_DIFF; t0_space] THEN MESON_TAC[]);; let HOMEOMORPHIC_T0_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (t0_space top <=> t0_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN DISCH_TAC THEN REWRITE_TAC[t0_space; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN SUBGOAL_THEN `topspace top' = IMAGE (f:A->B) (topspace top)` SUBST1_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]; REWRITE_TAC[FORALL_IN_IMAGE]] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP FORALL_OPEN_IN_HOMEOMORPHIC_IMAGE th]) THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN ONCE_REWRITE_TAC[IMP_IMP] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p ==> q <=> p ==> r)`) THEN STRIP_TAC THEN BINOP_TAC THENL [ALL_TAC; AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC] THEN REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]);; let T0_SPACE_CLOSURE_OF_SING = prove (`!top:A topology. t0_space top <=> !x y. x IN topspace top /\ y IN topspace top /\ top closure_of {x} = top closure_of {y} ==> x = y`, SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; CLOSURE_OF_MINIMAL_EQ; CLOSED_IN_CLOSURE_OF; SING_SUBSET; IMP_CONJ] THEN SIMP_TAC[t0_space; IN_ELIM_THM; closure_of; IN_SING; UNWIND_THM2] THEN MESON_TAC[]);; let T0_SPACE_DISCRETE_TOPOLOGY = prove (`!s:A->bool. t0_space(discrete_topology s)`, REWRITE_TAC[T0_SPACE_CLOSURE_OF_SING] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; DISCRETE_TOPOLOGY_CLOSURE_OF] THEN SET_TAC[]);; let T0_SPACE_SUBTOPOLOGY = prove (`!top u:A->bool. t0_space top ==> t0_space(subtopology top u)`, REPEAT GEN_TAC THEN REWRITE_TAC[t0_space; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC; IN_INTER] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MESON_TAC[]);; let T0_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ t0_space top ==> t0_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[T0_SPACE_SUBTOPOLOGY; HOMEOMORPHIC_T0_SPACE]);; let T0_SPACE_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). t0_space(prod_topology top1 top2) <=> topspace (prod_topology top1 top2) = {} \/ t0_space top1 /\ t0_space top2`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [EXTENSION] THEN REWRITE_TAC[T0_SPACE_CLOSURE_OF_SING] THEN REWRITE_TAC[FORALL_PAIR_THM; GSYM CROSS_SING] THEN REWRITE_TAC[CLOSURE_OF_CROSS; CROSS_EQ; PAIR_EQ] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IN_CROSS; NOT_IN_EMPTY] THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN SIMP_TAC[CLOSURE_OF_EQ_EMPTY; SING_SUBSET; NOT_INSERT_EMPTY] THEN MESON_TAC[]);; let T0_SPACE_PRODUCT_TOPOLOGY = prove (`!tops:K->A topology k. t0_space (product_topology k tops) <=> topspace(product_topology k tops) = {} \/ !i. i IN k ==> t0_space (tops i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PRODUCT_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_T0_SPACE] THEN SIMP_TAC[T0_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THENL [ASM_REWRITE_TAC[t0_space; NOT_IN_EMPTY]; ASM_REWRITE_TAC[]] THEN REWRITE_TAC[T0_SPACE] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:K->A`; `y:K->A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [FUN_EQ_THM]) THEN REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM; EXTENSIONAL; o_THM]) THEN SUBGOAL_THEN `(i:K) IN k` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`(x:K->A) i`; `(y:K->A) i`]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `cartesian_product k (\j. if j = i then c else topspace((tops:K->A topology) j))` THEN REWRITE_TAC[CLOSED_IN_CARTESIAN_PRODUCT] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_TOPSPACE]; ALL_TAC] THEN ASM_REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN ASM_MESON_TAC[]);; let kolmogorov_quotient = new_definition `kolmogorov_quotient top = \x:A. @y. !u. open_in top u ==> (y IN u <=> x IN u)`;; let KOLMOGOROV_QUOTIENT_IN_OPEN = prove (`!top u x:A. open_in top u ==> (kolmogorov_quotient top x IN u <=> x IN u)`, GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC THEN REWRITE_TAC[kolmogorov_quotient] THEN ASM_MESON_TAC[]);; let KOLMOGOROV_QUOTIENT_IN_TOPSPACE = prove (`!top x:A. kolmogorov_quotient top x IN topspace top <=> x IN topspace top`, MESON_TAC[KOLMOGOROV_QUOTIENT_IN_OPEN; OPEN_IN_TOPSPACE]);; let KOLMOGOROV_QUOTIENT_IN_CLOSED = prove (`!top c x:A. closed_in top c ==> (kolmogorov_quotient top x IN c <=> x IN c)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_CLOSED_IN; IN_DIFF] THEN SIMP_TAC[KOLMOGOROV_QUOTIENT_IN_OPEN; KOLMOGOROV_QUOTIENT_IN_TOPSPACE]);; let CONTINUOUS_MAP_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. continuous_map (top,top) (kolmogorov_quotient top)`, GEN_TAC THEN SIMP_TAC[continuous_map; KOLMOGOROV_QUOTIENT_IN_TOPSPACE] THEN X_GEN_TAC `u:A->bool` THEN MATCH_MP_TAC(MESON[] `(open_in top u ==> u' = u) ==> (open_in top u ==> open_in top u')`) THEN DISCH_TAC THEN ASM_SIMP_TAC[KOLMOGOROV_QUOTIENT_IN_OPEN] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]);; let OPEN_MAP_KOLMOGOROV_QUOTIENT_EXPLICIT = prove (`!top u:A->bool. open_in top u ==> IMAGE (kolmogorov_quotient top) u = IMAGE (kolmogorov_quotient top) (topspace top) INTER u`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP KOLMOGOROV_QUOTIENT_IN_OPEN) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]);; let OPEN_MAP_KOLMOGOROV_QUOTIENT_GEN = prove (`!top s:A->bool. open_map (subtopology top s, subtopology top (IMAGE (kolmogorov_quotient top) s)) (kolmogorov_quotient top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[open_map; OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `u:A->bool` THEN MP_TAC(GEN `x:A` (ISPECL [`top:A topology`; `u:A->bool`; `x:A`] KOLMOGOROV_QUOTIENT_IN_OPEN)) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let OPEN_MAP_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. open_map (top,subtopology top (IMAGE (kolmogorov_quotient top) (topspace top))) (kolmogorov_quotient top)`, GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `topspace top:A->bool`] OPEN_MAP_KOLMOGOROV_QUOTIENT_GEN) THEN REWRITE_TAC[SUBTOPOLOGY_TOPSPACE]);; let CLOSED_MAP_KOLMOGOROV_QUOTIENT_EXPLICIT = prove (`!top u:A->bool. closed_in top u ==> IMAGE (kolmogorov_quotient top) u = IMAGE (kolmogorov_quotient top) (topspace top) INTER u`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP KOLMOGOROV_QUOTIENT_IN_CLOSED) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SET_TAC[]);; let CLOSED_MAP_KOLMOGOROV_QUOTIENT_GEN = prove (`!top s:A->bool. closed_map (subtopology top s, subtopology top (IMAGE (kolmogorov_quotient top) s)) (kolmogorov_quotient top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[closed_map; CLOSED_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `u:A->bool` THEN MP_TAC(GEN `x:A` (ISPECL [`top:A topology`; `u:A->bool`; `x:A`] KOLMOGOROV_QUOTIENT_IN_CLOSED)) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let CLOSED_MAP_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. closed_map (top,subtopology top (IMAGE (kolmogorov_quotient top) (topspace top))) (kolmogorov_quotient top)`, GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `topspace top:A->bool`] CLOSED_MAP_KOLMOGOROV_QUOTIENT_GEN) THEN REWRITE_TAC[SUBTOPOLOGY_TOPSPACE]);; let QUOTIENT_MAP_KOLMOGOROV_QUOTIENT_GEN = prove (`!top s:A->bool. quotient_map (subtopology top s, subtopology top (IMAGE (kolmogorov_quotient top) s)) (kolmogorov_quotient top)`, REPEAT GEN_TAC THEN MATCH_MP_TAC CONTINUOUS_OPEN_IMP_QUOTIENT_MAP THEN REWRITE_TAC[OPEN_MAP_KOLMOGOROV_QUOTIENT_GEN] THEN SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_KOLMOGOROV_QUOTIENT] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN MP_TAC(ISPECL [`top:A topology`] KOLMOGOROV_QUOTIENT_IN_TOPSPACE) THEN SET_TAC[]);; let QUOTIENT_MAP_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. quotient_map (top,subtopology top (IMAGE (kolmogorov_quotient top) (topspace top))) (kolmogorov_quotient top)`, GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `topspace top:A->bool`] QUOTIENT_MAP_KOLMOGOROV_QUOTIENT_GEN) THEN REWRITE_TAC[SUBTOPOLOGY_TOPSPACE]);; let KOLMOGOROV_QUOTIENT_EQ = prove (`!top x y:A. kolmogorov_quotient top x = kolmogorov_quotient top y <=> !u. open_in top u ==> (x IN u <=> y IN u)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[KOLMOGOROV_QUOTIENT_IN_OPEN]; SIMP_TAC[kolmogorov_quotient]]);; let KOLMOGOROV_QUOTIENT_EQ_ALT = prove (`!top x y:A. kolmogorov_quotient top x = kolmogorov_quotient top y <=> !u. closed_in top u ==> (x IN u <=> y IN u)`, REPEAT GEN_TAC THEN REWRITE_TAC[KOLMOGOROV_QUOTIENT_EQ] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `topspace top:A->bool` th) THEN MP_TAC(SPEC `(topspace top DIFF u):A->bool` th)) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE] THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET); FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)] THEN SET_TAC[]);; let KOLMOGOROV_QUOTIENT_CONTINUOUS_MAP = prove (`!top top' (f:A->B) x. continuous_map (top,top') f /\ t0_space top' /\ x IN topspace top ==> f (kolmogorov_quotient top x) = f x`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~p ==> F`] THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o CONJUNCT1 o REWRITE_RULE[continuous_map]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [t0_space]) THEN DISCH_THEN(MP_TAC o SPECL [`(f:A->B) (kolmogorov_quotient top x)`; `(f:A->B) x`]) THEN ASM_SIMP_TAC[KOLMOGOROV_QUOTIENT_IN_TOPSPACE] THEN DISCH_THEN(X_CHOOSE_THEN `v:B->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`top:A topology`; `{y | y IN topspace top /\ (f:A->B) y IN v}`; `x:A`] KOLMOGOROV_QUOTIENT_IN_OPEN) THEN ASM_REWRITE_TAC[IN_ELIM_THM; KOLMOGOROV_QUOTIENT_IN_TOPSPACE] THEN ASM_MESON_TAC[OPEN_IN_CONTINUOUS_MAP_PREIMAGE]);; let T0_SPACE_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. t0_space (subtopology top (IMAGE (kolmogorov_quotient top) (topspace top)))`, REWRITE_TAC[t0_space; TOPSPACE_SUBTOPOLOGY; IMP_CONJ] THEN REWRITE_TAC[IN_INTER; IMP_CONJ_ALT; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN SIMP_TAC[KOLMOGOROV_QUOTIENT_IN_TOPSPACE] THEN DISCH_TAC THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN REWRITE_TAC[KOLMOGOROV_QUOTIENT_EQ; OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[EXISTS_IN_GSPEC; NOT_FORALL_THM; NOT_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN ASM_SIMP_TAC[IN_INTER; FUN_IN_IMAGE] THEN ASM_SIMP_TAC[KOLMOGOROV_QUOTIENT_IN_OPEN]);; let KOLMOGOROV_QUOTIENT_ID = prove (`!top x:A. t0_space top /\ x IN topspace top ==> kolmogorov_quotient top x = x`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `\x:A. x` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] KOLMOGOROV_QUOTIENT_CONTINUOUS_MAP)) THEN REWRITE_TAC[CONTINUOUS_MAP_ID]);; let KOLMOGOROV_QUOTIENT_IDEMP = prove (`!top x:A. kolmogorov_quotient top (kolmogorov_quotient top x) = kolmogorov_quotient top x`, REWRITE_TAC[KOLMOGOROV_QUOTIENT_EQ; KOLMOGOROV_QUOTIENT_IN_OPEN]);; let RETRACTION_MAPS_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. retraction_maps (top, subtopology top (IMAGE (kolmogorov_quotient top) (topspace top))) (kolmogorov_quotient top,I)`, GEN_TAC THEN REWRITE_TAC[retraction_maps; CONTINUOUS_MAP_KOLMOGOROV_QUOTIENT; CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN SIMP_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; I_DEF] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IMP_CONJ_ALT] THEN REWRITE_TAC[FORALL_IN_IMAGE; KOLMOGOROV_QUOTIENT_IDEMP]);; let RETRACTION_MAP_KOLMOGOROV_QUOTIENT = prove (`!top:A topology. retraction_map (top, subtopology top (IMAGE (kolmogorov_quotient top) (topspace top))) (kolmogorov_quotient top)`, REWRITE_TAC[retraction_map] THEN MESON_TAC[RETRACTION_MAPS_KOLMOGOROV_QUOTIENT]);; let RETRACT_OF_SPACE_KOLMOGOROV_QUOTIENT_IMAGE = prove (`!top:A topology. IMAGE (kolmogorov_quotient top) (topspace top) retract_of_space top`, GEN_TAC THEN REWRITE_TAC[RETRACT_OF_SPACE_RETRACTION_MAPS] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; KOLMOGOROV_QUOTIENT_IN_TOPSPACE] THEN MESON_TAC[RETRACTION_MAPS_KOLMOGOROV_QUOTIENT]);; let KOLMOGOROV_QUOTIENT_LIFT_EXISTS = prove (`!top top' (f:A->B) s. s SUBSET topspace top /\ t0_space top' /\ continuous_map (subtopology top s,top') f ==> ?g. continuous_map (subtopology top (IMAGE (kolmogorov_quotient top) s), top') g /\ !x. x IN s ==> g(kolmogorov_quotient top x) = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] QUOTIENT_MAP_KOLMOGOROV_QUOTIENT_GEN) THEN DISCH_THEN(MP_TAC o ISPECL [`top':B topology`; `f:A->B`] o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] QUOTIENT_MAP_LIFT_EXISTS)) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[KOLMOGOROV_QUOTIENT_EQ] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [t0_space]) THEN DISCH_THEN(MP_TAC o SPECL [`(f:A->B) x`; `(f:A->B) y`]) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [continuous_map]) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN STRIP_TAC THEN DISCH_THEN(X_CHOOSE_THEN `v:B->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:B->bool`) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Regular spaces. These are *not* a priori assumed to be Hausdorff/T_1. *) (* ------------------------------------------------------------------------- *) let regular_space = new_definition `regular_space top <=> !c a:A. closed_in top c /\ a IN topspace top DIFF c ==> ?u v. open_in top u /\ open_in top v /\ a IN u /\ c SUBSET v /\ DISJOINT u v`;; let HOMEOMORPHIC_REGULAR_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (regular_space top <=> regular_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN DISCH_TAC THEN REWRITE_TAC[regular_space; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP FORALL_OPEN_IN_HOMEOMORPHIC_IMAGE th] THEN REWRITE_TAC[MATCH_MP FORALL_CLOSED_IN_HOMEOMORPHIC_IMAGE th]) THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `c:A->bool` THEN ASM_CASES_TAC `closed_in top (c:A->bool)` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SUBGOAL_THEN `topspace top' DIFF IMAGE (f:A->B) c = IMAGE f (topspace top DIFF c)` SUBST1_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[FORALL_IN_IMAGE]] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN topspace top DIFF c` THEN ASM_REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; RIGHT_AND_EXISTS_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let REGULAR_SPACE = prove (`!top:A topology. regular_space top <=> !c a. closed_in top c /\ a IN topspace top DIFF c ==> ?u. open_in top u /\ a IN u /\ DISJOINT c (top closure_of u)`, GEN_TAC THEN REWRITE_TAC[regular_space] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:A` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p ==> q <=> p ==> r)`) THEN STRIP_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `t SUBSET v ==> v INTER c = {} ==> DISJOINT t c`)) THEN ASM_SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY] THEN ASM SET_TAC[]; STRIP_TAC THEN EXISTS_TAC `topspace top DIFF top closure_of u:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_CLOSURE_OF] THEN MP_TAC(ISPECL [`top:A topology`; `u:A->bool`] CLOSURE_OF_SUBSET) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let NEIGHBOURHOOD_BASE_OF_CLOSED_IN = prove (`!top:A topology. neighbourhood_base_of (closed_in top) top <=> regular_space top`, GEN_TAC THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF; regular_space] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ; FORALL_OPEN_IN] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REPEAT (MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> ((p ==> q) <=> (p ==> r))`) THEN DISCH_TAC) THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_CLOSED_IN] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_THEN(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let REGULAR_SPACE_DISCRETE_TOPOLOGY = prove (`!s:A->bool. regular_space(discrete_topology s)`, GEN_TAC THEN REWRITE_TAC[regular_space; CLOSED_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; TOPSPACE_DISCRETE_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `a:A`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{a:A}`; `c:A->bool`] THEN ASM SET_TAC[]);; let REGULAR_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. regular_space top ==> regular_space(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[regular_space] THEN DISCH_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; CLOSED_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_IN_GSPEC; TOPSPACE_SUBTOPOLOGY] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[IN_DIFF; IN_INTER] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`c:A->bool`; `a:A`]) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]);; let REGULAR_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ regular_space top ==> regular_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[REGULAR_SPACE_SUBTOPOLOGY; HOMEOMORPHIC_REGULAR_SPACE]);; let REGULAR_T0_IMP_HAUSDORFF_SPACE = prove (`!top:A topology. regular_space top /\ t0_space top ==> hausdorff_space top`, REWRITE_TAC[regular_space; T0_SPACE; hausdorff_space; IN_DIFF] THEN GEN_TAC THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:A->bool` THEN REWRITE_TAC[TAUT `~(p <=> q) <=> p /\ ~q \/ q /\ ~p`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:A->bool`) THENL [DISCH_THEN(MP_TAC o SPEC `y:A`); DISCH_THEN(MP_TAC o SPEC `x:A`)] THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let REGULAR_T0_EQ_HAUSDORFF_SPACE = prove (`!top:A topology. regular_space top ==> (t0_space top <=> hausdorff_space top)`, MESON_TAC[REGULAR_T0_IMP_HAUSDORFF_SPACE; HAUSDORFF_IMP_T0_SPACE]);; let REGULAR_T1_IMP_HAUSDORFF_SPACE = prove (`!top:A topology. regular_space top /\ t1_space top ==> hausdorff_space top`, MESON_TAC[REGULAR_T0_IMP_HAUSDORFF_SPACE; T1_IMP_T0_SPACE]);; let REGULAR_T1_EQ_HAUSDORFF_SPACE = prove (`!top:A topology. regular_space top ==> (t1_space top <=> hausdorff_space top)`, MESON_TAC[REGULAR_T1_IMP_HAUSDORFF_SPACE; HAUSDORFF_IMP_T1_SPACE]);; let COMPACT_HAUSDORFF_IMP_REGULAR_SPACE = prove (`!top:A topology. compact_space top /\ hausdorff_space top ==> regular_space top`, REPEAT STRIP_TAC THEN REWRITE_TAC[regular_space; IN_DIFF] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `a:A`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAUSDORFF_SPACE_COMPACT_SETS]) THEN DISCH_THEN(MP_TAC o SPECL [`{a:A}`; `s:A->bool`]) THEN ASM_SIMP_TAC[CLOSED_IN_COMPACT_SPACE; COMPACT_IN_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]);; let NEIGHBOURHOOD_BASE_OF_CLOSED_HAUSDORFF_SPACE = prove (`!top:A topology. regular_space top /\ hausdorff_space top <=> neighbourhood_base_of (\c. closed_in top c /\ hausdorff_space(subtopology top c)) top`, GEN_TAC THEN MATCH_MP_TAC(MESON[] `(h ==> (n <=> r)) /\ (n ==> h) ==> (r /\ h <=> n)`) THEN SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[ETA_AX; NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN GEN_REWRITE_TAC RAND_CONV [HAUSDORFF_SPACE_CLOSED_NEIGHBOURHOOD] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPEC `topspace top:A->bool`) THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN MESON_TAC[]);; let LOCALLY_COMPACT_IMP_KC_EQ_HAUSDORFF_SPACE = prove (`!top:A topology. neighbourhood_base_of (compact_in top) top ==> (kc_space top <=> hausdorff_space top)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[HAUSDORFF_IMP_KC_SPACE] THEN DISCH_TAC THEN MATCH_MP_TAC REGULAR_T1_IMP_HAUSDORFF_SPACE THEN ASM_SIMP_TAC[KC_IMP_T1_SPACE; GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] NEIGHBOURHOOD_BASE_OF_MONO)) THEN ASM_REWRITE_TAC[GSYM kc_space]);; let REGULAR_SPACE_MTOPOLOGY = prove (`!m:A metric. regular_space(mtopology m)`, GEN_TAC THEN REWRITE_TAC[regular_space] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `a:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `open_in (mtopology m) (topspace(mtopology m) DIFF c:A->bool)` MP_TAC THENL [ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [OPEN_IN_MTOPOLOGY] THEN DISCH_THEN(MP_TAC o SPEC `a:A` o CONJUNCT2) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; TOPSPACE_MTOPOLOGY] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN EXISTS_TAC `mball m (a:A,r / &2)` THEN EXISTS_TAC `topspace(mtopology m) DIFF mcball m (a:A,r / &2)` THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_DIFF; TOPSPACE_MTOPOLOGY]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_MCBALL; OPEN_IN_MBALL; OPEN_IN_TOPSPACE; CENTRE_IN_MBALL; REAL_HALF] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `b SUBSET m DIFF c ==> c SUBSET m /\ b' SUBSET b ==> c SUBSET m DIFF b'`)) THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; TOPSPACE_MTOPOLOGY]; ASM_SIMP_TAC[SUBSET; IN_MBALL; IN_MCBALL] THEN ASM_REAL_ARITH_TAC]; MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> x IN t) ==> DISJOINT s (u DIFF t)`) THEN ASM_SIMP_TAC[SUBSET; IN_MBALL; IN_MCBALL] THEN ASM_REAL_ARITH_TAC]);; let METRIZABLE_IMP_REGULAR_SPACE = prove (`!top:A topology. metrizable_space top ==> regular_space top`, MESON_TAC[metrizable_space; REGULAR_SPACE_MTOPOLOGY]);; let REGULAR_SPACE_COMPACT_CLOSED_SEPARATION = prove (`!top s t:A->bool. regular_space top /\ compact_in top s /\ closed_in top t /\ DISJOINT s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`{}:A->bool`; `topspace top:A->bool`] THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; OPEN_IN_EMPTY] THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x:A. ?u v. x IN s ==> open_in top u /\ open_in top v /\ x IN u /\ t SUBSET v /\ DISJOINT u v` MP_TAC THENL [X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN s` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`t:A->bool`; `x:A`] o REWRITE_RULE[regular_space]) THEN ASM_REWRITE_TAC[IN_DIFF] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->A->bool`; `v:A->A->bool`] THEN DISCH_TAC THEN UNDISCH_TAC `compact_in top (s:A->bool)` THEN REWRITE_TAC[compact_in] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `IMAGE (u:A->A->bool) s`)) THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN ANTS_TAC THENL [SIMP_TAC[UNIONS_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[UNIONS_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `UNIONS(IMAGE (u:A->A->bool) k)` THEN EXISTS_TAC `INTERS(IMAGE (v:A->A->bool) k)` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN ASM SET_TAC[]);; let REGULAR_SPACE_COMPACT_CLOSED_SETS = prove (`!top:A topology. regular_space top <=> !s t. compact_in top s /\ closed_in top t /\ DISJOINT s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[REGULAR_SPACE_COMPACT_CLOSED_SEPARATION] THEN DISCH_TAC THEN REWRITE_TAC[regular_space] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`;` x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `s:A->bool`]) THEN ASM_REWRITE_TAC[SING_SUBSET; COMPACT_IN_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; MESON_TAC[]]);; let REGULAR_SPACE_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). regular_space (prod_topology top1 top2) <=> topspace (prod_topology top1 top2) = {} \/ regular_space top1 /\ regular_space top2`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PROD_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_REGULAR_SPACE] THEN SIMP_TAC[REGULAR_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `(topspace top1 CROSS topspace top2):A#B->bool = {}` THEN ASM_REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THENL [ASM_REWRITE_TAC[regular_space; TOPSPACE_PROD_TOPOLOGY; IN_DIFF; NOT_IN_EMPTY]; FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[CROSS_EQ_EMPTY]) THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC] THEN REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF; FORALL_PAIR_THM] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`w:A#B->bool`; `x:A`; `y:B`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`v:B->bool`; `y:B`]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`d1:A->bool`; `c1:A->bool`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`d2:B->bool`; `c2:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(d1:A->bool) CROSS (d2:B->bool)` THEN EXISTS_TAC `(c1:A->bool) CROSS (c2:B->bool)` THEN ASM_SIMP_TAC[SUBSET_CROSS; OPEN_IN_CROSS; CLOSED_IN_CROSS; IN_CROSS] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS)) THEN ASM_REWRITE_TAC[SUBSET_CROSS]);; let REGULAR_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) k. regular_space (product_topology k tops) <=> topspace (product_topology k tops) = {} \/ !i. i IN k ==> regular_space (tops i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PRODUCT_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_REGULAR_SPACE] THEN SIMP_TAC[REGULAR_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `cartesian_product k (topspace o (tops:K->A topology)) = {}` THEN ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THENL [ASM_REWRITE_TAC[regular_space; TOPSPACE_PRODUCT_TOPOLOGY; IN_DIFF; NOT_IN_EMPTY]; ALL_TAC] THEN REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN DISCH_TAC THEN REWRITE_TAC[MATCH_MP NEIGHBOURHOOD_BASE_OF_TOPOLOGY_BASE (SPEC_ALL OPEN_IN_PRODUCT_TOPOLOGY)] THEN REWRITE_TAC[PRODUCT_TOPOLOGY_BASE_ALT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `w:K->A->bool` THEN STRIP_TAC THEN X_GEN_TAC `x:K->A` THEN DISCH_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE [NEIGHBOURHOOD_BASE_OF; RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN FIRST_X_ASSUM(MP_TAC o GEN `i:K` o SPECL [`i:K`; `(w:K->A->bool) i`; `(x:K->A) i`]) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [cartesian_product]) THEN ASM_SIMP_TAC[IN_ELIM_THM; IMP_CONJ] THEN DISCH_TAC THEN DISCH_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:K->A->bool`; `c:K->A->bool`] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`cartesian_product k (\i. if w i = topspace(tops i) then topspace(tops i) else (u:K->A->bool) i)`; `cartesian_product k (\i. if w i = topspace(tops i) then topspace(tops i) else (c:K->A->bool) i)`] THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN DISJ2_TAC THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[OPEN_IN_TOPSPACE]] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]; REWRITE_TAC[CLOSED_IN_CARTESIAN_PRODUCT] THEN DISJ2_TAC THEN ASM_MESON_TAC[CLOSED_IN_TOPSPACE]; ASM_REWRITE_TAC[IN_ELIM_THM; cartesian_product] THEN ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]; REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN ASM SET_TAC[]]);; let CLOSED_MAP_PAIRED_GEN = prove (`!top top1 top2 (f:A->B) (g:A->C). closed_map(top,top1) f /\ closed_map(top,top2) g /\ (regular_space top1 /\ continuous_map(top,top1) f /\ (!z. z IN topspace top2 ==> closed_in top {x | x IN topspace top /\ g x = z}) \/ regular_space top2 /\ continuous_map(top,top2) g /\ (!y. y IN topspace top1 ==> closed_in top {x | x IN topspace top /\ f x = y})) ==> closed_map (top,prod_topology top1 top2) (\x. f x,g x)`, let lemma = prove (`!top top1 top2 (f:A->B) (g:A->C). regular_space top2 /\ closed_map(top,top1) f /\ closed_map(top,top2) g /\ (!y. y IN topspace top1 ==> closed_in top {x | x IN topspace top /\ f x = y}) /\ continuous_map(top,top2) g ==> closed_map (top,prod_topology top1 top2) (\x. f x,g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:A->B) (topspace top) SUBSET topspace top1 /\ IMAGE (g:A->C) (topspace top) SUBSET topspace top2` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_MAP_IMP_SUBSET_TOPSPACE]; ALL_TAC] THEN REWRITE_TAC[closed_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[closed_in] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN ASM SET_TAC[]; GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN]] THEN REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_DIFF; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`y1:B`; `y2:C`] THEN STRIP_TAC THEN SUBGOAL_THEN `?v v'. open_in top2 v /\ closed_in top2 v' /\ v SUBSET v' /\ y2 IN v /\ {x | x IN topspace top /\ (g:A->C) x IN v'} SUBSET topspace top DIFF c INTER {x | x IN topspace top /\ (f:A->B) x = y1}` STRIP_ASSUME_TAC THENL [UNDISCH_TAC `closed_map (top,top2) (g:A->C)` THEN ASM_REWRITE_TAC[CLOSED_MAP_FIBRE_NEIGHBOURHOOD] THEN DISCH_THEN(MP_TAC o SPECL [`topspace top DIFF (c INTER {x | x IN topspace top /\ (f:A->B) x = y1})`; `y2:C`]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_INTER] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `v:C->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`v:C->bool`; `y2:C`]) THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `closed_map (top,top1) (f:A->B)` THEN ASM_REWRITE_TAC[CLOSED_MAP_FIBRE_NEIGHBOURHOOD] THEN DISCH_THEN(MP_TAC o SPECL [`topspace top DIFF c INTER {x | x IN topspace top /\ (g:A->C) x IN v'}`; `y1:B`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC CLOSED_IN_INTER THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; DISCH_THEN(X_CHOOSE_THEN `u:B->bool` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `(u:B->bool) CROSS (v:C->bool)` THEN ASM_REWRITE_TAC[IN_CROSS; OPEN_IN_CROSS; SET_RULE `s SUBSET t DIFF IMAGE f u <=> s SUBSET t /\ (!x. x IN u ==> ~(f x IN s))`] THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; SUBSET_CROSS] THEN ASM SET_TAC[]) in REPEAT STRIP_TAC THENL [ALL_TAC; MATCH_MP_TAC lemma THEN ASM SET_TAC[]] THEN SUBGOAL_THEN `(\x. (f:A->B) x,(g:A->C) x) = (\(x,y). y,x) o (\x. g x,f x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top2 top1:(C#B)topology` THEN SIMP_TAC[HOMEOMORPHIC_IMP_CLOSED_MAP; HOMEOMORPHIC_MAP_SWAP] THEN MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[]);; let CLOSED_MAP_PAIRED = prove (`!top top1 top2 (f:A->B) (g:A->C). closed_map(top,top1) f /\ continuous_map(top,top1) f /\ closed_map(top,top2) g /\ continuous_map(top,top2) g /\ (t1_space top1 /\ regular_space top2 \/ regular_space top1 /\ t1_space top2) ==> closed_map (top,prod_topology top1 top2) (\x. f x,g x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_MAP_PAIRED_GEN THEN ASM_REWRITE_TAC[] THENL [DISJ2_TAC; DISJ1_TAC] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM IN_SING] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING]);; let CLOSED_MAP_PAIRWISE = prove (`!top top1 top2 f:A->B#C. closed_map(top,top1) (FST o f) /\ continuous_map(top,top1) (FST o f) /\ closed_map(top,top2) (SND o f) /\ continuous_map(top,top2) (SND o f) /\ (t1_space top1 /\ regular_space top2 \/ regular_space top1 /\ t1_space top2) ==> closed_map (top,prod_topology top1 top2) f`, REWRITE_TAC[FORALL_PAIR_FUN_THM; o_DEF; ETA_AX] THEN REWRITE_TAC[CLOSED_MAP_PAIRED]);; let CLOSED_MAP_PAIRED_CLOSED_MAP_RIGHT = prove (`!top top' (f:A->B). closed_map(top,top') f /\ (!y. y IN topspace top' ==> closed_in top {x | x IN topspace top /\ f x = y}) /\ regular_space top ==> closed_map(top,prod_topology top top') (\x. x,f x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_MAP_PAIRED_GEN THEN ASM_REWRITE_TAC[CLOSED_MAP_ID; CONTINUOUS_MAP_ID]);; let CLOSED_MAP_PAIRED_CLOSED_MAP_LEFT = prove (`!top top' (f:A->B). closed_map(top,top') f /\ (!y. y IN topspace top' ==> closed_in top {x | x IN topspace top /\ f x = y}) /\ regular_space top ==> closed_map(top,prod_topology top' top) (\x. f x,x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. (f:A->B) x,x) = (\(a,b). b,a) o (\x. x,f x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top top':(A#B)topology` THEN ASM_SIMP_TAC[CLOSED_MAP_PAIRED_CLOSED_MAP_RIGHT] THEN MATCH_MP_TAC HOMEOMORPHIC_IMP_CLOSED_MAP THEN REWRITE_TAC[HOMEOMORPHIC_MAP_SWAP]);; let CLOSED_MAP_IMP_CLOSED_GRAPH = prove (`!top top' (f:A->B). closed_map(top,top') f /\ (!y. y IN topspace top' ==> closed_in top {x | x IN topspace top /\ f x = y}) /\ regular_space top ==> closed_in (prod_topology top top') {x,f x | x IN topspace top}`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `closed_map(top,prod_topology top top') (\x. x,(f:A->B) x)` MP_TAC THENL [MATCH_MP_TAC CLOSED_MAP_PAIRED_CLOSED_MAP_RIGHT THEN ASM_REWRITE_TAC[]; REWRITE_TAC[closed_map; SIMPLE_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[CLOSED_IN_TOPSPACE]]);; let PROPER_MAP_PAIRED_CLOSED_MAP_RIGHT = prove (`!top top' (f:A->B). closed_map(top,top') f /\ (!y. y IN topspace top' ==> closed_in top {x | x IN topspace top /\ f x = y}) /\ regular_space top ==> proper_map(top,prod_topology top top') (\x. x,f x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_INJECTIVE_IMP_PROPER_MAP THEN SIMP_TAC[PAIR_EQ] THEN ASM_SIMP_TAC[CLOSED_MAP_PAIRED_CLOSED_MAP_RIGHT]);; let PROPER_MAP_PAIRED_CLOSED_MAP_LEFT = prove (`!top top' (f:A->B). closed_map(top,top') f /\ (!y. y IN topspace top' ==> closed_in top {x | x IN topspace top /\ f x = y}) /\ regular_space top ==> proper_map(top,prod_topology top' top) (\x. f x,x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_INJECTIVE_IMP_PROPER_MAP THEN SIMP_TAC[PAIR_EQ] THEN ASM_SIMP_TAC[CLOSED_MAP_PAIRED_CLOSED_MAP_LEFT]);; let REGULAR_SPACE_CONTINUOUS_PROPER_MAP_IMAGE = prove (`!top top' (f:A->B). regular_space top /\ continuous_map(top,top') f /\ proper_map(top,top') f /\ IMAGE f (topspace top) = topspace top' ==> regular_space top'`, REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[regular_space; IN_DIFF] THEN MAP_EVERY X_GEN_TAC [`c:B->bool`; `x:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o GEN_REWRITE_RULE I [REGULAR_SPACE_COMPACT_CLOSED_SETS]) THEN DISCH_THEN(MP_TAC o SPECL [`{z | z IN topspace top /\ (f:A->B) z = x}`; `{z | z IN topspace top /\ (f:A->B) z IN c}`]) THEN ASM_SIMP_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o GEN_REWRITE_RULE I [CLOSED_MAP_PREIMAGE_NEIGHBOURHOOD]) THEN DISCH_THEN(fun th -> MP_TAC(SPECL [`u:A->bool`; `{x:B}`] th) THEN MP_TAC(SPECL [`v:A->bool`; `c:B->bool`] th)) THEN ASM_REWRITE_TAC[SING_SUBSET; IN_SING; IMP_IMP; RIGHT_AND_EXISTS_THM] THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let REGULAR_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). regular_space top /\ perfect_map(top,top') f ==> regular_space top'`, REWRITE_TAC[perfect_map] THEN MESON_TAC[REGULAR_SPACE_CONTINUOUS_PROPER_MAP_IMAGE]);; let REGULAR_SPACE_PERFECT_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). hausdorff_space top /\ perfect_map(top,top') f ==> (regular_space top <=> regular_space top')`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[REGULAR_SPACE_PERFECT_MAP_IMAGE]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [perfect_map]) THEN REWRITE_TAC[proper_map; closed_map] THEN REPEAT STRIP_TAC] THEN REWRITE_TAC[regular_space; IN_DIFF] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `x:A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `{x:A}`; `c INTER {z | z IN topspace top /\ (f:A->B) z = f x}`] HAUSDORFF_SPACE_COMPACT_SEPARATION) THEN ASM_REWRITE_TAC[COMPACT_IN_SING] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CLOSED_INTER_COMPACT_IN THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; REWRITE_TAC[SING_SUBSET; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`IMAGE (f:A->B) (c DIFF v)`; `(f:A->B) x`] o GEN_REWRITE_RULE I [regular_space]) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF] THEN ANTS_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]; REWRITE_TAC[SING_SUBSET; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u':B->bool`; `v':B->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`u INTER {x | x IN topspace top /\ (f:A->B) x IN u'}`; `v UNION {x | x IN topspace top /\ (f:A->B) x IN v'}`] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_INTER; MATCH_MP_TAC OPEN_IN_UNION] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Locally compact spaces. *) (* ------------------------------------------------------------------------- *) let locally_compact_space = new_definition `locally_compact_space top <=> !x. x IN topspace top ==> ?u k. open_in top u /\ compact_in top k /\ x IN u /\ u SUBSET k`;; let HOMEOMORPHIC_LOCALLY_COMPACT_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (locally_compact_space top <=> locally_compact_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN DISCH_TAC THEN REWRITE_TAC[locally_compact_space] THEN SUBGOAL_THEN `topspace top' = IMAGE (f:A->B) (topspace top)` SUBST1_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]; REWRITE_TAC[FORALL_IN_IMAGE; RIGHT_EXISTS_AND_THM]] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP FORALL_OPEN_IN_HOMEOMORPHIC_IMAGE th]) THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN ASM_CASES_TAC `open_in top (u:A->bool)` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[COMPACT_IN_SUBSPACE] THEN SUBGOAL_THEN `topspace top' = IMAGE (f:A->B) (topspace top)` SUBST1_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_EQ_EVERYTHING_MAP]; REWRITE_TAC[GSYM CONJ_ASSOC; EXISTS_SUBSET_IMAGE]] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `k:A->bool` THEN ASM_CASES_TAC `(k:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_COMPACT_SPACE THEN REWRITE_TAC[homeomorphic_space; GSYM HOMEOMORPHIC_MAP_MAPS] THEN EXISTS_TAC `f:A->B` THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]; FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let LOCALLY_COMPACT_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map (top,top') r /\ locally_compact_space top ==> locally_compact_space top'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[retraction_map; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `s:B->A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP RETRACTION_MAPS_SECTION_IMAGE) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP HOMEOMORPHIC_LOCALLY_COMPACT_SPACE) THEN UNDISCH_TAC `IMAGE (s:B->A) (topspace top') retract_of_space top` THEN FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [retraction_maps]) THEN SPEC_TAC(`IMAGE (s:B->A) (topspace top')`,`t:A->bool`) THEN X_GEN_TAC `t:A->bool` THEN REWRITE_TAC[retract_of_space; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN DISCH_TAC THEN X_GEN_TAC `r:A->A` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[locally_compact_space; OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_GSPEC] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally_compact_space]) THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN DISCH_THEN(X_CHOOSE_THEN `k:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `IMAGE (r:A->A) k` THEN CONJ_TAC THENL [ASM_MESON_TAC[IMAGE_COMPACT_IN]; ASM SET_TAC[]]);; let COMPACT_IMP_LOCALLY_COMPACT_SPACE = prove (`!top:A topology. compact_space top ==> locally_compact_space top`, REPEAT STRIP_TAC THEN REWRITE_TAC[locally_compact_space] THEN REPEAT STRIP_TAC THEN REPEAT(EXISTS_TAC `topspace top:A->bool`) THEN ASM_REWRITE_TAC[GSYM compact_space; OPEN_IN_TOPSPACE; SUBSET_REFL]);; let NEIGHBOURHOOD_BASE_IMP_LOCALLY_COMPACT_SPACE = prove (`!top:A topology. neighbourhood_base_of (compact_in top) top ==> locally_compact_space top`, REWRITE_TAC[locally_compact_space; NEIGHBOURHOOD_BASE_OF] THEN MESON_TAC[OPEN_IN_TOPSPACE]);; let (LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE, LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE) = (CONJ_PAIR o prove) (`(!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> neighbourhood_base_of (compact_in top) top)) /\ (!top:A topology. locally_compact_space top /\ hausdorff_space top ==> regular_space top)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(n ==> l) /\ (h /\ n ==> r) /\ (l /\ r ==> n) /\ (h /\ l ==> r) ==> (h \/ r ==> (l <=> n)) /\ (l /\ h ==> r)`) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_IMP_LOCALLY_COMPACT_SPACE] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IMP_CONJ; GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_OF_MONO) THEN ASM_SIMP_TAC[COMPACT_IN_IMP_CLOSED_IN]; REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REWRITE_TAC[locally_compact_space; NEIGHBOURHOOD_BASE_OF] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `x:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u INTER w:A->bool`; `x:A`]) THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER; SUBSET_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:A->bool` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT THEN EXISTS_TAC `k:A->bool` THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM SET_TAC[]; REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REWRITE_TAC[locally_compact_space; NEIGHBOURHOOD_BASE_OF] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `x:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `regular_space(subtopology top (k:A->bool))` MP_TAC THENL [MATCH_MP_TAC COMPACT_HAUSDORFF_IMP_REGULAR_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_SUBTOPOLOGY]; REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF]] THEN DISCH_THEN(MP_TAC o SPECL [`k INTER w:A->bool`; `x:A`]) THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; CLOSED_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_GSPEC] THEN DISCH_THEN(X_CHOOSE_THEN `v:A->bool` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[SUBSET_INTER; IN_INTER; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN EXISTS_TAC `k INTER c:A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_INTER; COMPACT_IN_IMP_CLOSED_IN] THEN ASM SET_TAC[]]);; let LOCALLY_COMPACT_HAUSDORFF_OR_REGULAR = prove (`!top:A topology. locally_compact_space top /\ (hausdorff_space top \/ regular_space top) <=> locally_compact_space top /\ regular_space top`, MESON_TAC[LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE]);; let LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_IN = prove (`!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> !x. x IN topspace top ==> ?u k. open_in top u /\ compact_in top k /\ closed_in top k /\ x IN u /\ u SUBSET k)`, GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> l) /\ (l /\ h ==> r) /\ (l /\ r ==> p) ==> h \/ r ==> (l <=> p)`) THEN REWRITE_TAC[LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE] THEN REWRITE_TAC[locally_compact_space] THEN CONJ_TAC THENL [MESON_TAC[]; STRIP_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:A->bool` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT THEN EXISTS_TAC `k:A->bool` THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM SET_TAC[]);; let LOCALLY_COMPACT_SPACE_COMPACT_CLOSURE_OF = prove (`!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> !x. x IN topspace top ==> ?u. open_in top u /\ compact_in top (top closure_of u) /\ x IN u)`, GEN_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_IN] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THENL [DISCH_THEN(X_CHOOSE_THEN `k:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT THEN EXISTS_TAC `k:A->bool` THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM_SIMP_TAC[CLOSURE_OF_MINIMAL; CLOSED_IN_CLOSURE_OF]; STRIP_TAC THEN EXISTS_TAC `top closure_of u:A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_CLOSURE_OF; CLOSURE_OF_SUBSET; OPEN_IN_SUBSET]]);; let LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSED_IN = prove (`!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> neighbourhood_base_of(\c. compact_in top c /\ closed_in top c) top)`, GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> l) /\ (l /\ h ==> r) /\ (l /\ r ==> p) ==> h \/ r ==> (l <=> p)`) THEN REWRITE_TAC[LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE] THEN CONJ_TAC THENL [DISCH_THEN(fun th -> MATCH_MP_TAC NEIGHBOURHOOD_BASE_IMP_LOCALLY_COMPACT_SPACE THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_OF_MONO) THEN SIMP_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ASM_SIMP_TAC[LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:A->bool` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT THEN EXISTS_TAC `k:A->bool` THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM SET_TAC[]]);; let LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSURE_OF = prove (`!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> neighbourhood_base_of (\t. compact_in top (top closure_of t)) top)`, GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL [ASM_SIMP_TAC[LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSED_IN] THEN POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[CLOSURE_OF_CLOSED_IN]; POP_ASSUM(K ALL_TAC) THEN ASM_REWRITE_TAC[locally_compact_space; NEIGHBOURHOOD_BASE_OF] THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`topspace top:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN DISCH_THEN(X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `top closure_of (v:A->bool)` THEN ASM_MESON_TAC[SUBSET_TRANS; CLOSURE_OF_SUBSET]]);; let LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_OPEN_CLOSURE_OF = prove (`!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> neighbourhood_base_of (\u. open_in top u /\ compact_in top (top closure_of u)) top)`, GEN_TAC THEN DISCH_THEN(SUBST1_TAC o MATCH_MP LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSURE_OF) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN EQ_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN DISCH_THEN(X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u:A->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT THEN EXISTS_TAC `top closure_of v:A->bool` THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM_SIMP_TAC[CLOSED_IN_CLOSURE_OF; CLOSURE_OF_MONO]);; let LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_COMPACT = prove (`!top:A topology. hausdorff_space top \/ regular_space top ==> (locally_compact_space top <=> !k. compact_in top k ==> ?u l. open_in top u /\ compact_in top l /\ closed_in top l /\ k SUBSET u /\ u SUBSET l)`, REPEAT GEN_TAC THEN DISCH_THEN (SUBST1_TAC o MATCH_MP LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_IN) THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[GSYM SING_SUBSET; COMPACT_IN_SING]] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)[RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->A->bool`; `l:A->A->bool`] THEN DISCH_TAC THEN X_GEN_TAC `k:A->bool` THEN GEN_REWRITE_TAC LAND_CONV [compact_in] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `IMAGE (u:A->A->bool) k`)) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `k':A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `UNIONS(IMAGE (u:A->A->bool) k')` THEN EXISTS_TAC `UNIONS(IMAGE (l:A->A->bool) k')` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]; MATCH_MP_TAC COMPACT_IN_UNIONS THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN ASM SET_TAC[]; ASM SET_TAC[]]);; let LOCALLY_COMPACT_REGULAR_SPACE_NEIGHBOURHOOD_BASE = prove (`!top:A topology. locally_compact_space top /\ regular_space top <=> neighbourhood_base_of (\c. compact_in top c /\ closed_in top c) top`, GEN_TAC THEN MATCH_MP_TAC(TAUT `(r ==> q) /\ (q ==> (p <=> r)) ==> (p /\ q <=> r)`) THEN SIMP_TAC[LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSED_IN] THEN REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_OF_MONO) THEN SIMP_TAC[]);; let LOCALLY_COMPACT_KC_SPACE = prove (`!top:A topology. neighbourhood_base_of (compact_in top) top /\ kc_space top <=> locally_compact_space top /\ hausdorff_space top`, MESON_TAC[NEIGHBOURHOOD_BASE_IMP_LOCALLY_COMPACT_SPACE; HAUSDORFF_IMP_KC_SPACE; LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE; LOCALLY_COMPACT_IMP_KC_EQ_HAUSDORFF_SPACE]);; let LOCALLY_COMPACT_KC_SPACE_ALT = prove (`!top:A topology. neighbourhood_base_of (compact_in top) top /\ kc_space top <=> locally_compact_space top /\ hausdorff_space top /\ regular_space top`, MESON_TAC[LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE; LOCALLY_COMPACT_KC_SPACE]);; let LOCALLY_COMPACT_KC_IMP_REGULAR_SPACE = prove (`!top:A topology. neighbourhood_base_of (compact_in top) top /\ kc_space top ==> regular_space top`, SIMP_TAC[LOCALLY_COMPACT_KC_SPACE_ALT]);; let KC_LOCALLY_COMPACT_SPACE = prove (`!top:A topology. kc_space top ==> (neighbourhood_base_of (compact_in top) top <=> locally_compact_space top /\ hausdorff_space top /\ regular_space top)`, MESON_TAC[LOCALLY_COMPACT_KC_SPACE_ALT; LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE]);; let LOCALLY_COMPACT_SPACE_CLOSED_SUBSET = prove (`!top s:A->bool. locally_compact_space top /\ closed_in top s ==> locally_compact_space (subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_compact_space; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; COMPACT_IN_SUBTOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`s INTER u:A->bool`; `s INTER k:A->bool`] THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN ASM_SIMP_TAC[CLOSED_INTER_COMPACT_IN] THEN ASM SET_TAC[]);; let LOCALLY_COMPACT_SPACE_OPEN_SUBSET = prove (`!top s:A->bool. (hausdorff_space top \/ regular_space top) /\ locally_compact_space top /\ open_in top s ==> locally_compact_space (subtopology top s)`, REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> r ==> q /\ p ==> s`] THEN REWRITE_TAC[LOCALLY_COMPACT_HAUSDORFF_OR_REGULAR] THEN REPEAT GEN_TAC THEN REWRITE_TAC[locally_compact_space] THEN DISCH_TAC THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`u INTER s:A->bool`; `x:A`]) THEN ASM_SIMP_TAC[IN_INTER; LEFT_IMP_EXISTS_THM; OPEN_IN_INTER; SUBSET_INTER] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `c:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`v:A->bool`; `c INTER k:A->bool`] THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; SUBSET_INTER; CLOSED_INTER_COMPACT_IN] THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_SUBSET_TOPSPACE; ASM SET_TAC[]] THEN ASM SET_TAC[]);; let LOCALLY_COMPACT_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. locally_compact_space (discrete_topology u)`, REWRITE_TAC[locally_compact_space; OPEN_IN_DISCRETE_TOPOLOGY; CLOSED_IN_DISCRETE_TOPOLOGY; COMPACT_IN_DISCRETE_TOPOLOGY; TOPSPACE_DISCRETE_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `x:A`] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`{x:A}`; `{x:A}`] THEN REWRITE_TAC[FINITE_SING] THEN ASM SET_TAC[]);; let LOCALLY_COMPACT_SPACE_CONTINUOUS_OPEN_MAP_IMAGE = prove (`!top top' f:A->B. continuous_map (top,top') f /\ open_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ locally_compact_space top ==> locally_compact_space top'`, REPEAT STRIP_TAC THEN REWRITE_TAC[locally_compact_space] THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A` o GEN_REWRITE_RULE I [locally_compact_space]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`IMAGE (f:A->B) u`; `IMAGE (f:A->B) k`] THEN RULE_ASSUM_TAC(REWRITE_RULE[open_map]) THEN ASM_SIMP_TAC[FUN_IN_IMAGE; IMAGE_SUBSET] THEN ASM_MESON_TAC[IMAGE_COMPACT_IN]);; let LOCALLY_COMPACT_SUBSPACE_OPEN_IN_CLOSURE_OF = prove (`!top s:A->bool. hausdorff_space top /\ s SUBSET topspace top /\ locally_compact_space(subtopology top s) ==> open_in (subtopology top (top closure_of s)) s`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(a:A) IN topspace top` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally_compact_space]) THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[IN_INTER; TOPSPACE_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[EXISTS_IN_GSPEC; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `k:A->bool` STRIP_ASSUME_TAC)) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSURE_OF_SUBSET; SUBSET]; ALL_TAC] THEN ONCE_REWRITE_TAC[INTER_COMM] THEN W(MP_TAC o PART_MATCH (lhand o rand) OPEN_IN_INTER_CLOSURE_OF_EQ o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> s INTER t SUBSET u`) THEN TRANS_TAC SUBSET_TRANS `k:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_SIMP_TAC[COMPACT_IN_IMP_CLOSED_IN]);; let LOCALLY_COMPACT_SUBSPACE_CLOSED_INTER_OPEN_IN = prove (`!top s:A->bool. hausdorff_space top /\ s SUBSET topspace top /\ locally_compact_space(subtopology top s) ==> ?c u. closed_in top c /\ open_in top u /\ c INTER u = s`, REPEAT GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `top closure_of s:A->bool` THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP LOCALLY_COMPACT_SUBSPACE_OPEN_IN_CLOSURE_OF) THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; CLOSED_IN_CLOSURE_OF] THEN MESON_TAC[INTER_COMM]);; let LOCALLY_COMPACT_SUBSPACE_OPEN_IN_CLOSURE_OF_EQ = prove (`!top s:A->bool. hausdorff_space top /\ locally_compact_space top ==> (open_in (subtopology top (top closure_of s)) s <=> s SUBSET topspace top /\ locally_compact_space(subtopology top s))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[LOCALLY_COMPACT_SUBSPACE_OPEN_IN_CLOSURE_OF]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `subtopology top (s:A->bool) = subtopology (subtopology top (top closure_of s)) s` SUBST1_TAC THENL [REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN ASM SET_TAC[]; MATCH_MP_TAC LOCALLY_COMPACT_SPACE_OPEN_SUBSET THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC LOCALLY_COMPACT_SPACE_CLOSED_SUBSET THEN ASM_REWRITE_TAC[CLOSED_IN_CLOSURE_OF]]);; let LOCALLY_COMPACT_SUBSPACE_CLOSED_INTER_OPEN_IN_EQ = prove (`!top s:A->bool. hausdorff_space top /\ locally_compact_space top ==> ((?c u. closed_in top c /\ open_in top u /\ c INTER u = s) <=> s SUBSET topspace top /\ locally_compact_space(subtopology top s))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM]; ASM_MESON_TAC[LOCALLY_COMPACT_SUBSPACE_CLOSED_INTER_OPEN_IN]] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `u:A->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXPAND_TAC "s" THEN REWRITE_TAC[GSYM SUBTOPOLOGY_SUBTOPOLOGY] THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN MATCH_MP_TAC LOCALLY_COMPACT_SPACE_OPEN_SUBSET THEN ASM_SIMP_TAC[LOCALLY_COMPACT_SPACE_CLOSED_SUBSET; HAUSDORFF_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET] THEN EXPAND_TAC "s" THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN]);; let DENSE_LOCALLY_COMPACT_OPEN_IN_HAUSDORFF_SPACE = prove (`!top s:A->bool. hausdorff_space top /\ s SUBSET topspace top /\ top closure_of s = topspace top /\ locally_compact_space(subtopology top s) ==> open_in top s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] LOCALLY_COMPACT_SUBSPACE_OPEN_IN_CLOSURE_OF) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_TOPSPACE]);; let LOCALLY_COMPACT_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. locally_compact_space (prod_topology top1 top2) <=> topspace (prod_topology top1 top2) = {} \/ locally_compact_space top1 /\ locally_compact_space top2`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY; locally_compact_space]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_COMPACT_SPACE_CONTINUOUS_OPEN_MAP_IMAGE)) THENL [EXISTS_TAC `FST:A#B->A`; EXISTS_TAC `SND:A#B->B`] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST; OPEN_MAP_FST; TOPSPACE_PROD_TOPOLOGY; CONTINUOUS_MAP_SND; OPEN_MAP_SND; IMAGE_FST_CROSS; IMAGE_SND_CROSS]; FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:B` THEN DISCH_TAC THEN X_GEN_TAC `w:A` THEN DISCH_TAC THEN REWRITE_TAC[locally_compact_space; FORALL_PAIR_THM; IN_CROSS; TOPSPACE_PROD_TOPOLOGY] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:B`) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u1:A->bool`; `k1:A->bool`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`u2:B->bool`; `k2:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(u1:A->bool) CROSS (u2:B->bool)` THEN EXISTS_TAC `(k1:A->bool) CROSS (k2:B->bool)` THEN ASM_SIMP_TAC[OPEN_IN_CROSS; COMPACT_IN_CROSS; IN_CROSS; SUBSET_CROSS]]);; let LOCALLY_COMPACT_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) k. locally_compact_space(product_topology k tops) <=> topspace(product_topology k tops) = {} \/ FINITE {i | i IN k /\ ~compact_space(tops i)} /\ !i. i IN k ==> locally_compact_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THEN ASM_REWRITE_TAC[locally_compact_space; NOT_IN_EMPTY] THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:K->A`) THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `z:K->A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:(K->A)->bool`; `c:(K->A)->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:K->A` o REWRITE_RULE[OPEN_IN_PRODUCT_TOPOLOGY_ALT]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:K->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`(tops:K->A topology) i`; `\x:K->A. x i`] o MATCH_MP (REWRITE_RULE[IMP_CONJ] IMAGE_COMPACT_IN)) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; compact_space] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `v = u ==> v SUBSET s /\ s SUBSET u ==> s = u`)) THEN CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) u` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) (cartesian_product k v)` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM SET_TAC[]; TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) (topspace(product_topology k tops))` THEN ASM_SIMP_TAC[IMAGE_SUBSET; COMPACT_IN_SUBSET_TOPSPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY]) THEN ASM_REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_THM; SUBSET_REFL]]; X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[GSYM locally_compact_space] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM locally_compact_space]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_COMPACT_SPACE_CONTINUOUS_OPEN_MAP_IMAGE))) THEN EXISTS_TAC `\x:K->A. x i` THEN ASM_SIMP_TAC[OPEN_MAP_PRODUCT_PROJECTION; TOPSPACE_PRODUCT_TOPOLOGY; CONTINUOUS_MAP_PRODUCT_PROJECTION; IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY; o_THM]]; STRIP_TAC THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN SUBGOAL_THEN `!i. i IN k ==> ?u c. open_in (tops i) u /\ compact_in (tops i) c /\ ((z:K->A) i) IN u /\ u SUBSET c /\ (compact_space(tops i) ==> u = topspace(tops i) /\ c = topspace(tops i))` MP_TAC THENL [X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `(z:K->A) i`) THEN ANTS_TAC THENL [ALL_TAC; ASM_CASES_TAC `compact_space((tops:K->A topology) i)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN REPEAT(EXISTS_TAC `topspace((tops:K->A topology) i)`) THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; GSYM compact_space; SUBSET_REFL]] THEN UNDISCH_TAC `(z:K->A) IN topspace (product_topology k tops)` THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN ASM_SIMP_TAC[IN_ELIM_THM; o_THM]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:K->A->bool`; `c:K->A->bool`] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`cartesian_product k (u:K->A->bool)`; `cartesian_product k (c:K->A->bool)`] THEN ASM_SIMP_TAC[COMPACT_IN_CARTESIAN_PRODUCT] THEN ASM_SIMP_TAC[SUBSET_CARTESIAN_PRODUCT] THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN CONJ_TAC THENL [DISJ2_TAC THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[]; UNDISCH_TAC `(z:K->A) IN topspace (product_topology k tops)` THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN ASM_SIMP_TAC[IN_ELIM_THM; o_THM]]]);; let LOCALLY_COMPACT_SPACE_SUM_TOPOLOGY = prove (`!k (top:K->A topology). locally_compact_space(sum_topology k top) <=> !i. i IN k ==> locally_compact_space(top i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_SUM_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_LOCALLY_COMPACT_SPACE] THEN SIMP_TAC[LOCALLY_COMPACT_SPACE_CLOSED_SUBSET]; REWRITE_TAC[locally_compact_space; FORALL_PAIR_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:K` THEN REWRITE_TAC[TOPSPACE_SUM_TOPOLOGY; disjoint_union; IN_ELIM_PAIR_THM] THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[o_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN topspace(top(i:K))` THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `l:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`IMAGE (\x:A. (i:K),x) u`; `IMAGE (\x:A. (i:K),x) l`] THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[open_map; RIGHT_IMP_FORALL_THM; IMP_IMP] OPEN_MAP_COMPONENT_INJECTION) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `(top:K->A topology) i` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_COMPONENT_INJECTION]; ASM SET_TAC[]]]);; let QUOTIENT_MAP_PROD_RIGHT = prove (`!(top:A topology) top1 top2 (f:B->C). locally_compact_space top /\ (hausdorff_space top \/ regular_space top) /\ quotient_map(top1,top2) f ==> quotient_map (prod_topology top top1,prod_topology top top2) (\(x,y). x,f y)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP QUOTIENT_IMP_SURJECTIVE_MAP) THEN REWRITE_TAC[quotient_map; TOPSPACE_PROD_TOPOLOGY] THEN ASM_REWRITE_TAC[IMAGE_PAIRED_CROSS; IMAGE_ID] THEN X_GEN_TAC `w:A#C->bool` THEN DISCH_TAC THEN EQ_TAC THENL [ALL_TAC; REWRITE_TAC[GSYM TOPSPACE_PROD_TOPOLOGY] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] OPEN_IN_CONTINUOUS_MAP_PREIMAGE) THEN REWRITE_TAC[LAMBDA_PAIR; CONTINUOUS_MAP_PAIRED] THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_OF_SND] THEN ASM_SIMP_TAC[QUOTIENT_IMP_CONTINUOUS_MAP]] THEN DISCH_TAC THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`x0:A`; `z0:C`]THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `(x0:A),(z0:C)` o REWRITE_RULE[SUBSET]) THEN ASM_REWRITE_TAC[IN_CROSS] THEN STRIP_TAC THEN SUBGOAL_THEN `?y0. y0 IN topspace top1 /\ (f:B->C) y0 = z0` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPEC `top:A topology` LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSED_IN) THEN ASM_REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`{x | x IN topspace top /\ (x,y0) IN {x | x IN topspace top CROSS topspace top1 /\ (\(x:A,y). x,(f:B->C) y) x IN w}}`; `x0:A`]) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `prod_topology top top1:(A#B)topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_ID] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_CONST]; ASM_REWRITE_TAC[IN_ELIM_THM; IN_CROSS]]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `u':A->bool`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `y0:B` o MATCH_MP(MESON[SUBSET_CROSS; SUBSET_REFL] `s SUBSET t ==> !a:B. s CROSS {a} SUBSET t CROSS {a}`)) THEN DISCH_THEN(MP_TAC o SPEC `{x | x IN topspace top CROSS topspace top1 /\ (\(x:A,y). x,(f:B->C) y) x IN w}` o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN ANTS_TAC THENL [REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_THM; IN_CROSS] THEN SET_TAC[]; DISCH_TAC] THEN ABBREV_TAC `v = {z | z IN topspace top2 /\ u' CROSS {y | y IN topspace top1 /\ (f:B->C) y = z} SUBSET {x | x IN topspace top CROSS topspace top1 /\ (\(x:A,y). x,f y) x IN w}}` THEN EXISTS_TAC `(u CROSS v):A#C->bool` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[OPEN_IN_CROSS] THEN REPEAT DISJ2_TAC; EXPAND_TAC "v" THEN REWRITE_TAC[SUBSET] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET])) THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN REWRITE_TAC[IN_CROSS; IN_ELIM_THM] THEN ASM SET_TAC[]] THEN FIRST_ASSUM(MP_TAC o SPEC `v:C->bool` o CONJUNCT2 o GEN_REWRITE_RULE I [quotient_map]) THEN ANTS_TAC THENL [EXPAND_TAC "v" THEN REWRITE_TAC[SUBSET_RESTRICT]; DISCH_THEN(SUBST1_TAC o SYM)] THEN SUBGOAL_THEN `{x | x IN topspace top1 /\ (f:B->C) x IN v} = topspace top1 DIFF (IMAGE SND ((u' CROSS topspace top1) DIFF {x | x IN topspace top CROSS topspace top1 /\ (\(x:A,y). x,f y) x IN w}))` SUBST1_TAC THENL [EXPAND_TAC "v" THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `y:B` THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_THM; IN_CROSS; IN_DIFF; SUBSET; FORALL_PAIR_THM; PAIR_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN MATCH_MP_TAC(REWRITE_RULE[closed_map; IMP_IMP; RIGHT_IMP_FORALL_THM] CLOSED_MAP_SND) THEN EXISTS_TAC `subtopology top (u':A->bool)` THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[PROD_TOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC CLOSED_IN_SUBTOPOLOGY_DIFF_OPEN THEN ASM_REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; SUBSET_CROSS; SUBSET_REFL] THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET]]);; let QUOTIENT_MAP_PROD_LEFT = prove (`!top1 top2 (top:C topology) (f:A->B). locally_compact_space top /\ (hausdorff_space top \/ regular_space top) /\ quotient_map(top1,top2) f ==> quotient_map (prod_topology top1 top,prod_topology top2 top) (\(x,y). f x,y)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `(\(x,y). (f:A->B) x,(y:C)) = (\(x,y). (y,x)) o (\(x,y). x,f y) o (\(x,y). (y,x))` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]; ALL_TAC] THEN MATCH_MP_TAC QUOTIENT_MAP_COMPOSE THEN EXISTS_TAC `(prod_topology top top2):(C#B)topology` THEN SIMP_TAC[HOMEOMORPHIC_MAP_SWAP; HOMEOMORPHIC_IMP_QUOTIENT_MAP] THEN MATCH_MP_TAC QUOTIENT_MAP_COMPOSE THEN EXISTS_TAC `(prod_topology top top1):(C#A)topology` THEN SIMP_TAC[HOMEOMORPHIC_MAP_SWAP; HOMEOMORPHIC_IMP_QUOTIENT_MAP] THEN ASM_SIMP_TAC[QUOTIENT_MAP_PROD_RIGHT]);; let QUOTIENT_MAP_PROD = prove (`!top1 top2 top1' top2' (f:A->B) (g:C->D). (locally_compact_space top1 /\ (hausdorff_space top1 \/ regular_space top1) /\ locally_compact_space top2' /\ (hausdorff_space top2' \/ regular_space top2') \/ locally_compact_space top1' /\ (hausdorff_space top1' \/ regular_space top1') /\ locally_compact_space top2 /\ (hausdorff_space top2 \/ regular_space top2)) /\ quotient_map(top1,top1') f /\ quotient_map(top2,top2') g ==> quotient_map (prod_topology top1 top2,prod_topology top1' top2') (\(x,y). f x,g y)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 DISJ_CASES_TAC STRIP_ASSUME_TAC) THENL [SUBGOAL_THEN `(\(x,y). (f:A->B) x,(g:C->D) y) = (\(x,y). f x,y) o (\(x,y). x,g y)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]; MATCH_MP_TAC QUOTIENT_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top1 top2':(A#D)topology` THEN ASM_SIMP_TAC[QUOTIENT_MAP_PROD_RIGHT; QUOTIENT_MAP_PROD_LEFT]]; SUBGOAL_THEN `(\(x,y). (f:A->B) x,(g:C->D) y) = (\(x,y). x,g y) o (\(x,y). f x,y)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]; MATCH_MP_TAC QUOTIENT_MAP_COMPOSE THEN EXISTS_TAC `prod_topology top1' top2:(B#C)topology` THEN ASM_SIMP_TAC[QUOTIENT_MAP_PROD_RIGHT; QUOTIENT_MAP_PROD_LEFT]]]);; let LOCALLY_COMPACT_SPACE_PERFECT_MAP_PREIMAGE = prove (`!top top' (f:A->B). locally_compact_space top' /\ perfect_map(top,top') f ==> locally_compact_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_compact_space; perfect_map] THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(f:A->B) x`) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:B->bool`; `k:B->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x | x IN topspace top /\ (f:A->B) x IN u}`; `{x | x IN topspace top /\ (f:A->B) x IN k}`] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; MATCH_MP_TAC COMPACT_IN_PROPER_MAP_PREIMAGE THEN ASM SET_TAC[]; ASM SET_TAC[]]);; let LOCALLY_COMPACT_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). (hausdorff_space top \/ regular_space top) /\ locally_compact_space top /\ perfect_map(top,top') f ==> locally_compact_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[perfect_map] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN REWRITE_TAC[locally_compact_space] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_COMPACT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x = y}`) THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [proper_map]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`u:A->bool`; `y:B`] o CONJUNCT2 o GEN_REWRITE_RULE I [CLOSED_MAP_FIBRE_NEIGHBOURHOOD]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:B->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (f:A->B) (top closure_of u)` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC COMPACT_IN_SUBTOPOLOGY_IMP_COMPACT THEN EXISTS_TAC `k:A->bool` THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY; CLOSED_IN_CLOSURE_OF; CLOSURE_OF_MINIMAL; COMPACT_SPACE_SUBTOPOLOGY]; FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool` o CONJUNCT2 o GEN_REWRITE_RULE I [CLOSED_MAP_CLOSURE_OF_IMAGE]) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN TRANS_TAC SUBSET_TRANS `IMAGE (f:A->B) u` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC CLOSURE_OF_SUBSET] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]]);; let LOCALLY_COMPACT_SPACE_PERFECT_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). (hausdorff_space top \/ regular_space top) /\ perfect_map(top,top') f ==> (locally_compact_space top <=> locally_compact_space top')`, MESON_TAC[LOCALLY_COMPACT_SPACE_PERFECT_MAP_PREIMAGE; LOCALLY_COMPACT_SPACE_PERFECT_MAP_IMAGE]);; (* ------------------------------------------------------------------------- *) (* The most basic facts about usual topology and metric on R. *) (* ------------------------------------------------------------------------- *) let real_open = new_definition `real_open s <=> !x. x IN s ==> ?e. &0 < e /\ !x'. abs(x' - x) < e ==> x' IN s`;; let real_closed = new_definition `real_closed s <=> real_open((:real) DIFF s)`;; let euclideanreal = new_definition `euclideanreal = topology real_open`;; let REAL_OPEN_EMPTY = prove (`real_open {}`, REWRITE_TAC[real_open; NOT_IN_EMPTY]);; let REAL_OPEN_UNIV = prove (`real_open(:real)`, REWRITE_TAC[real_open; IN_UNIV] THEN MESON_TAC[REAL_LT_01]);; let REAL_OPEN_INTER = prove (`!s t. real_open s /\ real_open t ==> real_open (s INTER t)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_open; AND_FORALL_THM; IN_INTER] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `d1:real`) (X_CHOOSE_TAC `d2:real`)) THEN MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN ASM_MESON_TAC[REAL_LT_TRANS]);; let REAL_OPEN_UNIONS = prove (`(!s. s IN f ==> real_open s) ==> real_open(UNIONS f)`, REWRITE_TAC[real_open; IN_UNIONS] THEN MESON_TAC[]);; let REAL_OPEN_IN = prove (`!s. real_open s <=> open_in euclideanreal s`, GEN_TAC THEN REWRITE_TAC[euclideanreal] THEN CONV_TAC SYM_CONV THEN AP_THM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 topology_tybij)] THEN REWRITE_TAC[REWRITE_RULE[IN] istopology] THEN REWRITE_TAC[REAL_OPEN_EMPTY; REAL_OPEN_INTER; SUBSET] THEN MESON_TAC[IN; REAL_OPEN_UNIONS]);; let TOPSPACE_EUCLIDEANREAL = prove (`topspace euclideanreal = (:real)`, REWRITE_TAC[topspace; EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[REAL_OPEN_UNIV; IN_UNIV; REAL_OPEN_IN]);; let TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY = prove (`!s. topspace (subtopology euclideanreal s) = s`, REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; TOPSPACE_SUBTOPOLOGY; INTER_UNIV]);; let REAL_CLOSED_IN = prove (`!s. real_closed s <=> closed_in euclideanreal s`, REWRITE_TAC[real_closed; closed_in; TOPSPACE_EUCLIDEANREAL; REAL_OPEN_IN; SUBSET_UNIV]);; let REAL_OPEN_UNION = prove (`!s t. real_open s /\ real_open t ==> real_open(s UNION t)`, REWRITE_TAC[REAL_OPEN_IN; OPEN_IN_UNION]);; let REAL_OPEN_SUBREAL_OPEN = prove (`!s. real_open s <=> !x. x IN s ==> ?t. real_open t /\ x IN t /\ t SUBSET s`, REWRITE_TAC[REAL_OPEN_IN; GSYM OPEN_IN_SUBOPEN]);; let REAL_CLOSED_EMPTY = prove (`real_closed {}`, REWRITE_TAC[REAL_CLOSED_IN; CLOSED_IN_EMPTY]);; let REAL_CLOSED_UNIV = prove (`real_closed(:real)`, REWRITE_TAC[REAL_CLOSED_IN; GSYM TOPSPACE_EUCLIDEANREAL; CLOSED_IN_TOPSPACE]);; let REAL_CLOSED_UNION = prove (`!s t. real_closed s /\ real_closed t ==> real_closed(s UNION t)`, REWRITE_TAC[REAL_CLOSED_IN; CLOSED_IN_UNION]);; let REAL_CLOSED_INTER = prove (`!s t. real_closed s /\ real_closed t ==> real_closed(s INTER t)`, REWRITE_TAC[REAL_CLOSED_IN; CLOSED_IN_INTER]);; let REAL_CLOSED_INTERS = prove (`!f. (!s. s IN f ==> real_closed s) ==> real_closed(INTERS f)`, REWRITE_TAC[REAL_CLOSED_IN] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `f:(real->bool)->bool = {}` THEN ASM_SIMP_TAC[CLOSED_IN_INTERS; INTERS_0] THEN REWRITE_TAC[GSYM TOPSPACE_EUCLIDEANREAL; CLOSED_IN_TOPSPACE]);; let REAL_OPEN_REAL_CLOSED = prove (`!s. real_open s <=> real_closed(UNIV DIFF s)`, SIMP_TAC[REAL_OPEN_IN; REAL_CLOSED_IN; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV; OPEN_IN_CLOSED_IN_EQ]);; let REAL_OPEN_DIFF = prove (`!s t. real_open s /\ real_closed t ==> real_open(s DIFF t)`, REWRITE_TAC[REAL_OPEN_IN; REAL_CLOSED_IN; OPEN_IN_DIFF]);; let REAL_CLOSED_DIFF = prove (`!s t. real_closed s /\ real_open t ==> real_closed(s DIFF t)`, REWRITE_TAC[REAL_OPEN_IN; REAL_CLOSED_IN; CLOSED_IN_DIFF]);; let REAL_OPEN_INTERS = prove (`!s. FINITE s /\ (!t. t IN s ==> real_open t) ==> real_open(INTERS s)`, REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[INTERS_INSERT; INTERS_0; REAL_OPEN_UNIV; IN_INSERT] THEN MESON_TAC[REAL_OPEN_INTER]);; let REAL_CLOSED_UNIONS = prove (`!s. FINITE s /\ (!t. t IN s ==> real_closed t) ==> real_closed(UNIONS s)`, REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_INSERT; UNIONS_0; REAL_CLOSED_EMPTY; IN_INSERT] THEN MESON_TAC[REAL_CLOSED_UNION]);; let REAL_OPEN_HALFSPACE_GT = prove (`!a. real_open {x | x > a}`, GEN_TAC THEN REWRITE_TAC[real_open; IN_ELIM_THM] THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN EXISTS_TAC `abs(a - b):real` THEN ASM_REAL_ARITH_TAC);; let REAL_OPEN_HALFSPACE_LT = prove (`!a. real_open {x | x < a}`, GEN_TAC THEN REWRITE_TAC[real_open; IN_ELIM_THM] THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN EXISTS_TAC `abs(a - b):real` THEN ASM_REAL_ARITH_TAC);; let REAL_OPEN_REAL_INTERVAL = prove (`!a b. real_open(real_interval(a,b))`, REWRITE_TAC[real_interval; SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN SIMP_TAC[REAL_OPEN_INTER; REAL_OPEN_HALFSPACE_LT; REWRITE_RULE[real_gt] REAL_OPEN_HALFSPACE_GT]);; let REAL_CLOSED_HALFSPACE_LE = prove (`!a. real_closed {x | x <= a}`, GEN_TAC THEN REWRITE_TAC[real_closed; real_open; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN EXISTS_TAC `abs(a - b):real` THEN ASM_REAL_ARITH_TAC);; let REAL_CLOSED_HALFSPACE_GE = prove (`!a. real_closed {x | x >= a}`, GEN_TAC THEN REWRITE_TAC[real_closed; real_open; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN EXISTS_TAC `abs(a - b):real` THEN ASM_REAL_ARITH_TAC);; let REAL_CLOSED_REAL_INTERVAL = prove (`!a b. real_closed(real_interval[a,b])`, REWRITE_TAC[real_interval; SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN SIMP_TAC[REAL_CLOSED_INTER; REAL_CLOSED_HALFSPACE_LE; REWRITE_RULE[real_ge] REAL_CLOSED_HALFSPACE_GE]);; let REAL_CLOSED_SING = prove (`!a. real_closed {a}`, MESON_TAC[REAL_INTERVAL_SING; REAL_CLOSED_REAL_INTERVAL]);; let real_euclidean_metric = new_definition `real_euclidean_metric = metric ((:real),\(x,y). abs(y-x))`;; let REAL_EUCLIDEAN_METRIC = prove (`mspace real_euclidean_metric = (:real) /\ (!x y. mdist real_euclidean_metric (x,y) = abs(y-x))`, SUBGOAL_THEN `is_metric_space((:real),\ (x,y). abs(y-x))` MP_TAC THENL [REWRITE_TAC[is_metric_space; IN_UNIV] THEN REAL_ARITH_TAC; SIMP_TAC[real_euclidean_metric; metric_tybij; mspace; mdist]]);; let MTOPOLOGY_REAL_EUCLIDEAN_METRIC = prove (`mtopology real_euclidean_metric = euclideanreal`, REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_MTOPOLOGY; REAL_EUCLIDEAN_METRIC; GSYM REAL_OPEN_IN; real_open; IN_MBALL; REAL_EUCLIDEAN_METRIC; SUBSET; IN_UNIV]);; let MBALL_REAL_INTERVAL = prove (`!x r. mball real_euclidean_metric (x,r) = real_interval(x - r,x + r)`, REWRITE_TAC[EXTENSION; IN_MBALL; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let MCBALL_REAL_INTERVAL = prove (`!x r. mcball real_euclidean_metric (x,r) = real_interval[x - r,x + r]`, REWRITE_TAC[EXTENSION; IN_MCBALL; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let METRIZABLE_SPACE_EUCLIDEANREAL = prove (`metrizable_space euclideanreal`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIZABLE_SPACE_MTOPOLOGY]);; let HAUSDORFF_SPACE_EUCLIDEANREAL = prove (`hausdorff_space euclideanreal`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; HAUSDORFF_SPACE_MTOPOLOGY]);; let KC_SPACE_EUCLIDEANREAL = prove (`kc_space euclideanreal`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; KC_SPACE_MTOPOLOGY]);; let T1_SPACE_EUCLIDEANREAL = prove (`t1_space euclideanreal`, SIMP_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL; HAUSDORFF_IMP_T1_SPACE]);; let REGULAR_SPACE_EUCLIDEANREAL = prove (`regular_space euclideanreal`, MESON_TAC[METRIZABLE_IMP_REGULAR_SPACE; METRIZABLE_SPACE_EUCLIDEANREAL]);; let SUBBASE_SUBTOPOLOGY_EUCLIDEANREAL = prove (`!u. topology (ARBITRARY UNION_OF (FINITE INTERSECTION_OF ({{x | x > a} | a IN (:real)} UNION {{x | x < a} | a IN (:real)}) relative_to u)) = subtopology euclideanreal u`, GEN_TAC THEN REWRITE_TAC[subtopology; GSYM ARBITRARY_UNION_OF_RELATIVE_TO] THEN AP_TERM_TAC THEN REWRITE_TAC[RELATIVE_TO] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [INTER_COMM] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `s:real->bool` THEN AP_THM_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[OPEN_IN_TOPOLOGY_BASE_UNIQUE] THEN CONJ_TAC THENL [GEN_REWRITE_TAC ONCE_DEPTH_CONV [IN] THEN REWRITE_TAC[FORALL_INTERSECTION_OF] THEN X_GEN_TAC `t:(real->bool)->bool` THEN ASM_CASES_TAC `t:(real->bool)->bool = {}` THENL [ASM_MESON_TAC[TOPSPACE_EUCLIDEANREAL; INTERS_0; OPEN_IN_TOPSPACE]; ALL_TAC] THEN DISCH_THEN(fun th -> MATCH_MP_TAC OPEN_IN_INTERS THEN CONJUNCTS_THEN2 ASSUME_TAC MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `d:real->bool` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN SPEC_TAC(`d:real->bool`,`d:real->bool`) THEN GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM IN] THEN REWRITE_TAC[FORALL_IN_UNION; FORALL_IN_GSPEC; IN_UNIV] THEN REWRITE_TAC[GSYM REAL_OPEN_IN; REAL_OPEN_HALFSPACE_LT] THEN REWRITE_TAC[REAL_OPEN_HALFSPACE_GT]; MAP_EVERY X_GEN_TAC [`u:real->bool`; `x:real`] THEN REWRITE_TAC[real_open; GSYM REAL_OPEN_IN] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `x:real`) ASSUME_TAC) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN EXISTS_TAC `{y:real | y > x - d} INTER {y | y < x + d}` THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [IN] THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INTER THEN CONJ_TAC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN GEN_REWRITE_TAC I [GSYM IN] THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THENL [DISJ1_TAC THEN EXISTS_TAC `x - d:real`; DISJ2_TAC THEN EXISTS_TAC `x + d:real`] THEN REWRITE_TAC[IN_UNIV]; REWRITE_TAC[SUBSET; IN_INTER; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]]);; let EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GE = prove (`!a. euclideanreal closure_of {x | x >= a} = {x | x >= a}`, SIMP_TAC[CLOSURE_OF_EQ; GSYM REAL_CLOSED_IN; REAL_CLOSED_HALFSPACE_GE]);; let EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LE = prove (`!a. euclideanreal closure_of {x | x <= a} = {x | x <= a}`, SIMP_TAC[CLOSURE_OF_EQ; GSYM REAL_CLOSED_IN; REAL_CLOSED_HALFSPACE_LE]);; let EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GT = prove (`!a. euclideanreal closure_of {x | x > a} = {x | x >= a}`, GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [GSYM EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GE] THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC; REWRITE_TAC[SUBSET; IN_ELIM_THM; real_gt; real_ge] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_CLOSURE_OF] THEN X_GEN_TAC `b:real` THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; mball] THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `b + e / &2` THEN ASM_REAL_ARITH_TAC]);; let EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LT = prove (`!a. euclideanreal closure_of {x | x < a} = {x | x <= a}`, GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [GSYM EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LE] THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC; REWRITE_TAC[SUBSET; IN_ELIM_THM; real_gt; real_ge] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_CLOSURE_OF] THEN X_GEN_TAC `b:real` THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; mball] THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `b - e / &2` THEN ASM_REAL_ARITH_TAC]);; let EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_GE = prove (`!a. euclideanreal interior_of {x | x >= a} = {x | x > a}`, GEN_TAC THEN REWRITE_TAC[INTERIOR_OF_CLOSURE_OF; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[SET_RULE `UNIV DIFF {x | P x} = {x | ~P x}`] THEN REWRITE_TAC[REAL_ARITH `~(x >= a) <=> x < a`] THEN REWRITE_TAC[EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LT; EXTENSION] THEN REWRITE_TAC[IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN REAL_ARITH_TAC);; let EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_LE = prove (`!a. euclideanreal interior_of {x | x <= a} = {x | x < a}`, GEN_TAC THEN REWRITE_TAC[INTERIOR_OF_CLOSURE_OF; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[SET_RULE `UNIV DIFF {x | P x} = {x | ~P x}`] THEN REWRITE_TAC[REAL_ARITH `~(x <= a) <=> x > a`] THEN REWRITE_TAC[EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GT; EXTENSION] THEN REWRITE_TAC[IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN REAL_ARITH_TAC);; let EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_GT = prove (`!a. euclideanreal interior_of {x | x > a} = {x | x > a}`, SIMP_TAC[INTERIOR_OF_EQ; GSYM REAL_OPEN_IN; REAL_OPEN_HALFSPACE_GT]);; let EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_LT = prove (`!a. euclideanreal interior_of {x | x < a} = {x | x < a}`, SIMP_TAC[INTERIOR_OF_EQ; GSYM REAL_OPEN_IN; REAL_OPEN_HALFSPACE_LT]);; let EUCLIDEANREAL_FRONTIER_OF_HALFSPACE_GE = prove (`!a. euclideanreal frontier_of {x | x >= a} = {x | x = a}`, GEN_TAC THEN REWRITE_TAC[frontier_of] THEN REWRITE_TAC[EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_GE; EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GE] THEN REWRITE_TAC[IN_ELIM_THM; IN_DIFF; EXTENSION] THEN REAL_ARITH_TAC);; let EUCLIDEANREAL_FRONTIER_OF_HALFSPACE_LE = prove (`!a. euclideanreal frontier_of {x | x <= a} = {x | x = a}`, GEN_TAC THEN REWRITE_TAC[frontier_of] THEN REWRITE_TAC[EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_LE; EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LE] THEN REWRITE_TAC[IN_ELIM_THM; IN_DIFF; EXTENSION] THEN REAL_ARITH_TAC);; let EUCLIDEANREAL_FRONTIER_OF_HALFSPACE_GT = prove (`!a. euclideanreal frontier_of {x | x > a} = {x | x = a}`, GEN_TAC THEN REWRITE_TAC[frontier_of] THEN REWRITE_TAC[EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_GT; EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GT] THEN REWRITE_TAC[IN_ELIM_THM; IN_DIFF; EXTENSION] THEN REAL_ARITH_TAC);; let EUCLIDEANREAL_FRONTIER_OF_HALFSPACE_LT = prove (`!a. euclideanreal frontier_of {x | x < a} = {x | x = a}`, GEN_TAC THEN REWRITE_TAC[frontier_of] THEN REWRITE_TAC[EUCLIDEANREAL_INTERIOR_OF_HALFSPACE_LT; EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LT] THEN REWRITE_TAC[IN_ELIM_THM; IN_DIFF; EXTENSION] THEN REAL_ARITH_TAC);; let EUCLIDEANREAL_CLOSURE_OF_RATIONAL = prove (`euclideanreal closure_of rational = (:real)`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[METRIC_CLOSURE_OF; IN_MBALL; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN; RATIONAL_APPROXIMATION]);; let EUCLIDEANREAL_CLOSURE_OF_IRRATIONAL = prove (`euclideanreal closure_of {z | ~rational z} = (:real)`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[METRIC_CLOSURE_OF; IN_MBALL; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN; IRRATIONAL_APPROXIMATION]);; let NOT_LOCALLY_COMPACT_SPACE_RATIONAL_GEN = prove (`!s. ~(euclideanreal interior_of s = {}) ==> ~locally_compact_space (subtopology euclideanreal {q | q IN s /\ rational q})`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subtopology euclideanreal (euclideanreal interior_of s)`; `{q | q IN euclideanreal interior_of s /\ rational q}`] DENSE_LOCALLY_COMPACT_OPEN_IN_HAUSDORFF_SPACE) THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; SUBSET_RESTRICT] THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL]; ONCE_REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [GSYM TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT] THEN SIMP_TAC[CLOSURE_OF_SUBTOPOLOGY_OPEN; OPEN_IN_INTERIOR_OF] THEN REWRITE_TAC[EUCLIDEANREAL_CLOSURE_OF_RATIONAL; INTER_UNIV; SET_RULE `{x | P x} = P`]; MP_TAC(ISPECL [`subtopology euclideanreal {q | q IN s /\ rational q}`; `{q | q IN s /\ rational q} INTER euclideanreal interior_of s`] LOCALLY_COMPACT_SPACE_OPEN_SUBSET) THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL; OPEN_IN_SUBTOPOLOGY_INTER_OPEN; OPEN_IN_INTERIOR_OF] THEN MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MP_TAC(ISPECL [`euclideanreal`; `s:real->bool`] INTERIOR_OF_SUBSET) THEN SET_TAC[]; SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; OPEN_IN_INTERIOR_OF] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN SUBGOAL_THEN `?q. q IN euclideanreal interior_of s /\ rational q` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN MP_TAC(ISPECL [`euclideanreal`; `s:real->bool`] OPEN_IN_INTERIOR_OF) THEN REWRITE_TAC[GSYM REAL_OPEN_IN; real_open; IN_ELIM_THM] THEN ASM_MESON_TAC[RATIONAL_APPROXIMATION]; REWRITE_TAC[GSYM REAL_OPEN_IN; real_open; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `q:real`) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[IRRATIONAL_APPROXIMATION]]]);; let NOT_LOCALLY_COMPACT_SPACE_IRRATIONAL_GEN = prove (`!s. ~(euclideanreal interior_of s = {}) ==> ~locally_compact_space (subtopology euclideanreal {q | q IN s /\ ~rational q})`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subtopology euclideanreal (euclideanreal interior_of s)`; `{q | q IN euclideanreal interior_of s /\ ~rational q}`] DENSE_LOCALLY_COMPACT_OPEN_IN_HAUSDORFF_SPACE) THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; SUBSET_RESTRICT] THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL]; ONCE_REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [GSYM TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT] THEN SIMP_TAC[CLOSURE_OF_SUBTOPOLOGY_OPEN; OPEN_IN_INTERIOR_OF] THEN REWRITE_TAC[EUCLIDEANREAL_CLOSURE_OF_IRRATIONAL; INTER_UNIV]; MP_TAC(ISPECL [`subtopology euclideanreal {q | q IN s /\ ~rational q}`; `{q | q IN s /\ ~rational q} INTER euclideanreal interior_of s`] LOCALLY_COMPACT_SPACE_OPEN_SUBSET) THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL; OPEN_IN_SUBTOPOLOGY_INTER_OPEN; OPEN_IN_INTERIOR_OF] THEN MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MP_TAC(ISPECL [`euclideanreal`; `s:real->bool`] INTERIOR_OF_SUBSET) THEN SET_TAC[]; SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; OPEN_IN_INTERIOR_OF] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN SUBGOAL_THEN `?q. q IN euclideanreal interior_of s /\ ~rational q` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN MP_TAC(ISPECL [`euclideanreal`; `s:real->bool`] OPEN_IN_INTERIOR_OF) THEN REWRITE_TAC[GSYM REAL_OPEN_IN; real_open; IN_ELIM_THM] THEN ASM_MESON_TAC[IRRATIONAL_APPROXIMATION]; REWRITE_TAC[GSYM REAL_OPEN_IN; real_open; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `q:real`) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[RATIONAL_APPROXIMATION]]]);; let NOT_LOCALLY_COMPACT_SPACE_RATIONAL = prove (`~locally_compact_space (subtopology euclideanreal rational)`, MP_TAC(SPEC `topspace euclideanreal` NOT_LOCALLY_COMPACT_SPACE_RATIONAL_GEN) THEN REWRITE_TAC[INTERIOR_OF_TOPSPACE] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; IN_UNIV; UNIV_NOT_EMPTY] THEN REWRITE_TAC[SET_RULE `{x | P x} = P`]);; let NOT_LOCALLY_COMPACT_SPACE_IRRATIONAL = prove (`~locally_compact_space (subtopology euclideanreal {z | ~rational z})`, MP_TAC(SPEC `topspace euclideanreal` NOT_LOCALLY_COMPACT_SPACE_IRRATIONAL_GEN) THEN REWRITE_TAC[INTERIOR_OF_TOPSPACE] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; IN_UNIV; UNIV_NOT_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Boundedness in R. *) (* ------------------------------------------------------------------------- *) let real_bounded = new_definition `real_bounded s <=> ?B. !x. x IN s ==> abs(x) <= B`;; let REAL_BOUNDED_POS = prove (`!s. real_bounded s <=> ?B. &0 < B /\ !x. x IN s ==> abs(x) <= B`, REWRITE_TAC[real_bounded] THEN MESON_TAC[REAL_ARITH `&0 < &1 + abs B /\ (x <= B ==> x <= &1 + abs B)`]);; let MBOUNDED_REAL_EUCLIDEAN_METRIC = prove (`mbounded real_euclidean_metric = real_bounded`, REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `s:real->bool` THEN REWRITE_TAC[mbounded; real_bounded] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; SUBSET; IN_MCBALL; IN_UNIV] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [MAP_EVERY X_GEN_TAC [`c:real`; `b:real`] THEN STRIP_TAC THEN EXISTS_TAC `abs c + b`; X_GEN_TAC `b:real` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`&0`; `b:real`]] THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let REAL_BOUNDED_REAL_INTERVAL = prove (`(!a b. real_bounded(real_interval[a,b])) /\ (!a b. real_bounded(real_interval(a,b)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_bounded; IN_REAL_INTERVAL] THEN EXISTS_TAC `max (abs a) (abs b)` THEN REAL_ARITH_TAC);; let REAL_BOUNDED_SHRINK = prove (`!s. real_bounded (IMAGE (\x. x / (&1 + abs x)) s)`, GEN_TAC THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE] THEN MESON_TAC[REAL_SHRINK_RANGE; REAL_LT_IMP_LE]);; let NOT_REAL_BOUNDED_UNIV = prove (`~real_bounded (:real)`, REWRITE_TAC[real_bounded; NOT_EXISTS_THM; IN_UNIV] THEN X_GEN_TAC `B:real` THEN DISCH_THEN(MP_TAC o SPEC `abs B + &1`) THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Connectedness and compactness characterizations for R. *) (* ------------------------------------------------------------------------- *) let CONNECTED_IN_EUCLIDEANREAL = prove (`!s. connected_in euclideanreal s <=> is_realinterval s`, let tac = ASM_MESON_TAC[REAL_LT_IMP_LE; REAL_LE_TOTAL; REAL_LE_ANTISYM] in GEN_TAC THEN REWRITE_TAC[CONNECTED_IN; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV] THEN REWRITE_TAC[GSYM REAL_OPEN_IN; is_realinterval; NOT_EXISTS_THM] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; INTER_UNIV] THEN EQ_TAC THEN DISCH_TAC THENL [MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN STRIP_TAC THEN ASM_CASES_TAC `(c:real) IN s` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x:real | x < c}`; `{x:real | x > c}`]) THEN REWRITE_TAC[REAL_OPEN_HALFSPACE_LT; REAL_OPEN_HALFSPACE_GT] THEN REWRITE_TAC[SUBSET; EXTENSION; IN_INTER; IN_UNION; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; REAL_ARITH `x < a \/ x > a <=> ~(x = a)`] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `a:real`); DISCH_THEN(MP_TAC o SPEC `b:real`)] THEN ASM_REWRITE_TAC[REAL_LT_LE; real_gt] THEN ASM SET_TAC[]; REWRITE_TAC[TAUT `~(p /\ q /\ r /\ s /\ t /\ u) <=> t /\ u ==> ~(p /\ q /\ r /\ s)`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[IN_INTER; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[MESON[] `(!s t x y. P x y s t) <=> (!x y s t. P x y s t)`] THEN MATCH_MP_TAC REAL_WLOG_LT THEN CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[GSYM INTER_ASSOC]] THEN CONJ_TAC THENL [MESON_TAC[INTER_COMM; UNION_COMM]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`e1:real->bool`; `e2:real->bool`] THEN STRIP_TAC THEN REWRITE_TAC[real_open] THEN STRIP_TAC THEN SUBGOAL_THEN `~(?x:real. a <= x /\ x <= b /\ x IN e1 /\ x IN e2)` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?x:real. a <= x /\ x <= b /\ ~(x IN e1) /\ ~(x IN e2)` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MP_TAC(SPEC `\c:real. !x. a <= x /\ x <= c ==> x IN e1` REAL_COMPLETE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [tac; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN SUBGOAL_THEN `a <= x /\ x <= b` STRIP_ASSUME_TAC THENL [tac; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!z. a <= z /\ z < x ==> (z:real) IN e1` ASSUME_TAC THENL [ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_IMP_LE]; ALL_TAC] THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `?d. &0 < d /\ !y. abs(y - x) < d ==> (y:real) IN e1` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[REAL_DOWN; REAL_ARITH `&0 < e ==> ~(x + e <= x)`; REAL_ARITH `z <= x + e /\ e < d ==> z < x \/ abs(z - x) < d`]; SUBGOAL_THEN `?d. &0 < d /\ !y:real. abs(y - x) < d ==> y IN e2` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(SPECL [`x - a:real`; `d:real`] REAL_DOWN2) THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_LT_LE; REAL_SUB_LT]; ALL_TAC] THEN ASM_MESON_TAC[REAL_ARITH `e < x - a ==> a <= x - e`; REAL_ARITH `&0 < e /\ e < d ==> x - e < x /\ abs((x - e) - x) < d`; REAL_ARITH `&0 < e /\ x <= b ==> x - e <= b`]]]);; let CONNECTED_IN_EUCLIDEANREAL_INTERVAL = prove (`(!a b. connected_in euclideanreal (real_interval[a,b])) /\ (!a b. connected_in euclideanreal (real_interval(a,b)))`, REWRITE_TAC[CONNECTED_IN_EUCLIDEANREAL; IS_REALINTERVAL_INTERVAL]);; let COMPACT_IN_EUCLIDEANREAL_INTERVAL = prove (`!a b. compact_in euclideanreal (real_interval[a,b])`, REPEAT GEN_TAC THEN ASM_CASES_TAC `real_interval[a,b] = {}` THEN ASM_REWRITE_TAC[COMPACT_IN_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_INTERVAL_NE_EMPTY]) THEN REWRITE_TAC[COMPACT_IN_SUBSPACE; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV] THEN MATCH_MP_TAC ALEXANDER_SUBBASE_THEOREM_ALT THEN EXISTS_TAC `{{x | x > a} | a IN (:real)} UNION {{x | x < a} | a IN (:real)}` THEN EXISTS_TAC `real_interval[a,b]` THEN REWRITE_TAC[SUBBASE_SUBTOPOLOGY_EUCLIDEANREAL] THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_UNION] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s) ==> t SUBSET s UNION v`) THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[REAL_ARITH `a > a - &1:real`]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ; FORALL_SUBSET_UNION; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SIMPLE_IMAGE; FORALL_SUBSET_IMAGE; SUBSET_UNIV] THEN MAP_EVERY X_GEN_TAC [`l:real->bool`; `r:real->bool`] THEN REWRITE_TAC[UNIONS_UNION] THEN DISCH_TAC THEN MP_TAC (CONJUNCT2(ISPECL [`a:real`; `b:real`] IS_REALINTERVAL_INTERVAL)) THEN REWRITE_TAC[GSYM CONNECTED_IN_EUCLIDEANREAL] THEN REWRITE_TAC[CONNECTED_IN; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`UNIONS (IMAGE (\a:real. {x | x > a}) l)`; `UNIONS (IMAGE (\a:real. {x | x < a}) r)`]) THEN ASM_REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; INTER_UNIV] THEN MATCH_MP_TAC(TAUT `(p /\ q) /\ ((s ==> u) /\ (t ==> u)) /\ (~r ==> u) ==> ~(p /\ q /\ r /\ ~s /\ ~t) ==> u`) THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_IMAGE; GSYM REAL_OPEN_IN] THEN REWRITE_TAC[REAL_OPEN_HALFSPACE_GT; REAL_OPEN_HALFSPACE_LT]; ALL_TAC] THEN CONJ_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET u UNION v ==> ((!x. x IN s ==> x IN v) ==> P) ==> u INTER s = {} ==> P`)) THEN DISCH_THEN(MP_TAC o SPEC `b:real`); FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET u UNION v ==> ((!x. x IN s ==> x IN u) ==> P) ==> v INTER s = {} ==> P`)) THEN DISCH_THEN(MP_TAC o SPEC `a:real`)] THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_LE_REFL] THEN REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:real` THEN STRIP_TAC THENL [EXISTS_TAC `{{x:real | x < c}}`; EXISTS_TAC `{{x:real | x > c}}`] THEN REWRITE_TAC[FINITE_SING; SING_SUBSET; UNIONS_1] THEN REWRITE_TAC[IN_UNION; IN_IMAGE; OR_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL; IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[EXTENSION; UNIONS_IMAGE; NOT_IN_EMPTY; IN_INTER] THEN REWRITE_TAC[IN_ELIM_THM; NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:real` THEN REWRITE_TAC[CONJ_ASSOC] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `v:real` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `{{x:real | x > u},{x | x < v}}` THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY; UNIONS_2] THEN REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM; IN_REAL_INTERVAL] THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; IN_IMAGE] THEN CONJ_TAC THENL [DISJ1_TAC THEN EXISTS_TAC `u:real` THEN ASM_REWRITE_TAC[]; DISJ2_TAC THEN EXISTS_TAC `v:real` THEN ASM_REWRITE_TAC[]]]);; let COMPACT_IN_EUCLIDEANREAL = prove (`!s. compact_in euclideanreal s <=> mbounded real_euclidean_metric s /\ closed_in euclideanreal s`, GEN_TAC THEN EQ_TAC THENL [MESON_TAC[COMPACT_IN_IMP_CLOSED_IN; HAUSDORFF_SPACE_EUCLIDEANREAL; COMPACT_IN_IMP_MBOUNDED; MTOPOLOGY_REAL_EUCLIDEAN_METRIC]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [mbounded]) THEN REWRITE_TAC[mcball; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[SUBSET; LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`a:real`; `d:real`] THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_COMPACT_IN THEN EXISTS_TAC `real_interval[a - d,a + d]` THEN ASM_REWRITE_TAC[COMPACT_IN_EUCLIDEANREAL_INTERVAL] THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]);; let real_compact_def = new_definition `real_compact s <=> compact_in euclideanreal s`;; let REAL_COMPACT_EQ_BOUNDED_CLOSED = prove (`!s. real_compact s <=> real_bounded s /\ real_closed s`, REWRITE_TAC[real_compact_def; GSYM MBOUNDED_REAL_EUCLIDEAN_METRIC; REAL_CLOSED_IN; COMPACT_IN_EUCLIDEANREAL]);; let REAL_COMPACT_IMP_BOUNDED = prove (`!s. real_compact s ==> real_bounded s`, SIMP_TAC[REAL_COMPACT_EQ_BOUNDED_CLOSED]);; let REAL_COMPACT_IMP_CLOSED = prove (`!s. real_compact s ==> real_closed s`, SIMP_TAC[REAL_COMPACT_EQ_BOUNDED_CLOSED]);; let NOT_REAL_COMPACT_UNIV = prove (`~real_compact (:real)`, REWRITE_TAC[REAL_COMPACT_EQ_BOUNDED_CLOSED; NOT_REAL_BOUNDED_UNIV]);; let NOT_COMPACT_SPACE_EUCLIDEANREAL = prove (`~compact_space euclideanreal`, REWRITE_TAC[compact_space; GSYM real_compact_def] THEN REWRITE_TAC[NOT_REAL_COMPACT_UNIV; TOPSPACE_EUCLIDEANREAL]);; let REAL_COMPACT_INTERVAL = prove (`!a b. real_compact(real_interval[a,b])`, REWRITE_TAC[real_compact_def; COMPACT_IN_EUCLIDEANREAL_INTERVAL]);; let REAL_COMPACT_UNION = prove (`!s t. real_compact s /\ real_compact t ==> real_compact(s UNION t)`, REWRITE_TAC[real_compact_def; COMPACT_IN_UNION]);; let REAL_CLOSED_CONTAINS_SUP = prove (`!s b. real_closed s /\ ~(s = {}) /\ (!x. x IN s ==> x <= b) ==> sup s IN s`, REWRITE_TAC[REAL_CLOSED_IN; GSYM CLOSURE_OF_SUBSET_EQ] THEN REWRITE_TAC[SUBSET; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_CLOSURE_OF] THEN REWRITE_TAC[mball; REAL_EUCLIDEAN_METRIC; IN_UNIV; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(SPEC `s:real->bool` SUP) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `sup s - e`)) THEN ASM_REWRITE_TAC[REAL_ARITH `s <= s - e <=> ~(&0 < e)`; NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real` THEN REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:real`)) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let REAL_COMPACT_CONTAINS_SUP = prove (`!s. real_compact s /\ ~(s = {}) ==> sup s IN s`, REWRITE_TAC[REAL_COMPACT_EQ_BOUNDED_CLOSED; real_bounded] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CLOSED_CONTAINS_SUP THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_ARITH `abs x <= b ==> x <= b`]);; let REAL_COMPACT_ATTAINS_SUP = prove (`!s. real_compact s /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> y <= x`, REPEAT STRIP_TAC THEN EXISTS_TAC `sup s` THEN ASM_SIMP_TAC[REAL_COMPACT_CONTAINS_SUP] THEN W(MP_TAC o PART_MATCH (lhand o rand) SUP o snd) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; SIMP_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP REAL_COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[real_bounded] THEN MESON_TAC[REAL_ARITH `abs x <= b ==> x <= b`]);; let REAL_CLOSED_CONTAINS_INF = prove (`!s b. real_closed s /\ ~(s = {}) /\ (!x. x IN s ==> b <= x) ==> inf s IN s`, REWRITE_TAC[REAL_CLOSED_IN; GSYM CLOSURE_OF_SUBSET_EQ] THEN REWRITE_TAC[SUBSET; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_CLOSURE_OF] THEN REWRITE_TAC[mball; REAL_EUCLIDEAN_METRIC; IN_UNIV; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(SPEC `s:real->bool` INF) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `inf s + e`)) THEN ASM_REWRITE_TAC[REAL_ARITH `s + e <= s <=> ~(&0 < e)`; NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real` THEN REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:real`)) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let REAL_COMPACT_CONTAINS_INF = prove (`!s. real_compact s /\ ~(s = {}) ==> inf s IN s`, REWRITE_TAC[REAL_COMPACT_EQ_BOUNDED_CLOSED; real_bounded] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CLOSED_CONTAINS_INF THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_ARITH `abs x <= b ==> --b <= x`]);; let REAL_COMPACT_ATTAINS_INF = prove (`!s. real_compact s /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> x <= y`, REPEAT STRIP_TAC THEN EXISTS_TAC `inf s` THEN ASM_SIMP_TAC[REAL_COMPACT_CONTAINS_INF] THEN W(MP_TAC o PART_MATCH (lhand o rand) INF o snd) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; SIMP_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP REAL_COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[real_bounded] THEN MESON_TAC[REAL_ARITH `abs x <= b ==> --b <= x`]);; let REAL_COMPACT_IS_REALINTERVAL = prove (`!s. real_compact s /\ is_realinterval s <=> ?a b. s = real_interval[a,b]`, GEN_TAC THEN EQ_TAC THENL [ASM_CASES_TAC `s:real->bool = {}` THENL [STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`&1`; `&0`] THEN ASM_REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`inf s`; `sup s`] THEN REWRITE_TAC[EXTENSION; IN_REAL_INTERVAL] THEN X_GEN_TAC `x:real` THEN EQ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_COMPACT_EQ_BOUNDED_CLOSED]) THEN REWRITE_TAC[real_bounded; GSYM REAL_BOUNDS_LE] THEN ASM_MESON_TAC[SUP; INF]; STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[is_realinterval]) THEN ASM_MESON_TAC[REAL_COMPACT_CONTAINS_SUP; REAL_COMPACT_CONTAINS_INF]]]; STRIP_TAC THEN ASM_REWRITE_TAC[REAL_COMPACT_INTERVAL; IS_REALINTERVAL_INTERVAL]]);; let IS_REALINTERVAL_CLOSURE_OF = prove (`!s. is_realinterval s ==> is_realinterval(euclideanreal closure_of s)`, REWRITE_TAC[GSYM CONNECTED_IN_EUCLIDEANREAL; CONNECTED_IN_CLOSURE_OF]);; let IS_REALINTERVAL_INTERIOR_OF = prove (`!s. is_realinterval s ==> is_realinterval(euclideanreal interior_of s)`, GEN_TAC THEN REWRITE_TAC[is_realinterval] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `x:real`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real = a` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `x:real = b` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `x IN real_interval(a,b)` MP_TAC THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC INTERIOR_OF_MAXIMAL THEN REWRITE_TAC[GSYM REAL_OPEN_IN; REAL_OPEN_REAL_INTERVAL] THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MP_TAC(ISPECL [`euclideanreal`; `s:real->bool`] INTERIOR_OF_SUBSET) THEN ASM SET_TAC[]);; let IS_REALINTERVAL_INTERIOR_SEGMENT = prove (`!s a b. is_realinterval s /\ a IN euclideanreal closure_of s /\ b IN euclideanreal closure_of s ==> real_interval(a,b) SUBSET euclideanreal interior_of s`, REPEAT GEN_TAC THEN ASM_CASES_TAC `real_interval(a,b) = {}` THEN ASM_REWRITE_TAC[EMPTY_SUBSET] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_INTERVAL_NE_EMPTY]) THEN DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_CLOSURE_OF] THEN REWRITE_TAC[METRIC_INTERIOR_OF; mball; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN DISCH_THEN(MP_TAC o SPEC `(b - x) / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; REAL_SUB_LT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b':real` THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o SPEC `(x - a) / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; REAL_SUB_LT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a':real` THEN STRIP_TAC THEN EXISTS_TAC `min (x - a') (b' - x)` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[SUBSET; IN_ELIM_THM]] THEN X_GEN_TAC `y:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[is_realinterval]) THEN MAP_EVERY EXISTS_TAC [`a':real`; `b':real`] THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let REAL_OPEN_SUBSET_CLOSURE_OF_REALINTERVAL = prove (`!u s. real_open u /\ is_realinterval s ==> (u SUBSET euclideanreal closure_of s <=> u SUBSET euclideanreal interior_of s)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[SUBSET_TRANS; INTERIOR_OF_SUBSET_CLOSURE_OF]] THEN REWRITE_TAC[SUBSET] THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_OPEN_IN]) THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; OPEN_IN_MTOPOLOGY] THEN DISCH_THEN(MP_TAC o SPEC `x:real` o CONJUNCT2) THEN ASM_REWRITE_TAC[MBALL_REAL_INTERVAL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN REWRITE_TAC[SUBSET] THEN STRIP_TAC THEN MP_TAC(ISPECL [`s:real->bool`; `x - e / &2`; `x + e / &2`] IS_REALINTERVAL_INTERIOR_SEGMENT) THEN ASM_REWRITE_TAC[SUBSET] THEN ANTS_TAC THENL [CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC; REWRITE_TAC[MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN DISCH_THEN MATCH_MP_TAC] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC);; let REAL_OPEN_SUBSET_CLOSURE_OF_REALINTERVAL_ALT = prove (`!u s. real_open u /\ is_realinterval s ==> (u SUBSET euclideanreal closure_of s <=> u SUBSET s)`, SIMP_TAC[REAL_OPEN_SUBSET_CLOSURE_OF_REALINTERVAL; REAL_OPEN_IN; INTERIOR_OF_MAXIMAL_EQ]);; let INTERIOR_OF_CLOSURE_OF_REALINTERVAL = prove (`!s. is_realinterval s ==> euclideanreal interior_of (euclideanreal closure_of s) = euclideanreal interior_of s`, GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[interior_of] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; GSYM REAL_OPEN_IN] THEN ASM_MESON_TAC[REAL_OPEN_SUBSET_CLOSURE_OF_REALINTERVAL_ALT]);; let CLOSURE_OF_REAL_INTERVAL = prove (`!a b. euclideanreal closure_of real_interval(a,b) = if real_interval(a,b) = {} then {} else real_interval[a,b]`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CLOSURE_OF_EMPTY] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[CLOSURE_OF_MINIMAL_EQ; GSYM REAL_CLOSED_IN; TOPSPACE_EUCLIDEANREAL; REAL_INTERVAL_OPEN_SUBSET_CLOSED; REAL_CLOSED_REAL_INTERVAL; SUBSET_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_INTERVAL_NE_EMPTY]) THEN ASM_SIMP_TAC[REAL_CLOSED_OPEN_INTERVAL; REAL_LT_IMP_LE] THEN SIMP_TAC[UNION_SUBSET; CLOSURE_OF_SUBSET; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV; INSERT_SUBSET; EMPTY_SUBSET] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[METRIC_CLOSURE_OF; mball; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN CONJ_TAC THEN X_GEN_TAC `r:real` THEN DISCH_TAC THENL [EXISTS_TAC `min ((a + b) / &2) (a + r / &2)`; EXISTS_TAC `max ((a + b) / &2) (b - r / &2)`] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC);; let INTERIOR_OF_REAL_INTERVAL = prove (`!a b. euclideanreal interior_of real_interval[a,b] = real_interval(a,b)`, REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ; GSYM REAL_OPEN_IN; REAL_OPEN_REAL_INTERVAL; REAL_INTERVAL_OPEN_SUBSET_CLOSED] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; METRIC_INTERIOR_OF; MBALL_REAL_INTERVAL; REAL_EUCLIDEAN_METRIC; IN_UNIV; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let CLOSURE_OF_INTERIOR_OF_REALINTERVAL = prove (`!s. is_realinterval s /\ ~(euclideanreal interior_of s = {}) ==> euclideanreal closure_of (euclideanreal interior_of s) = euclideanreal closure_of s`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[CLOSURE_OF_MONO; INTERIOR_OF_SUBSET] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `b = a \/ a:real < b \/ b < a`) THENL [MP_TAC(ISPECL [`euclideanreal`; `euclideanreal interior_of s`] CLOSURE_OF_SUBSET) THEN ASM_REWRITE_TAC[TOPSPACE_EUCLIDEANREAL] THEN ASM SET_TAC[]; MP_TAC(ISPECL [`s:real->bool`; `a:real`; `b:real`] IS_REALINTERVAL_INTERIOR_SEGMENT); MP_TAC(ISPECL [`s:real->bool`; `b:real`; `a:real`] IS_REALINTERVAL_INTERIOR_SEGMENT)] THEN (ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[INTERIOR_OF_SUBSET_CLOSURE_OF; SUBSET]; DISCH_THEN(MP_TAC o MATCH_MP CLOSURE_OF_MONO) THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[CLOSURE_OF_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT; IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC]));; let CARD_FRONTIER_OF_REALINTERVAL = prove (`!s. is_realinterval s ==> FINITE(euclideanreal frontier_of s) /\ CARD(euclideanreal frontier_of s) <= 2`, GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN REWRITE_TAC[ARITH_RULE `~(n <= 2) <=> 3 <= n`] THEN DISCH_THEN(MP_TAC o MATCH_MP CHOOSE_SUBSET_STRONG) THEN DISCH_THEN(X_CHOOSE_THEN `t:real->bool` (CONJUNCTS_THEN MP_TAC)) THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; INSERT_SUBSET; EMPTY_SUBSET] THEN MATCH_MP_TAC REAL_WLOG_LE_3 THEN CONJ_TAC THENL [MESON_TAC[INSERT_AC]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN REWRITE_TAC[frontier_of; IN_DIFF] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real->bool`; `a:real`; `c:real`] IS_REALINTERVAL_INTERIOR_SEGMENT) THEN ASM_REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN DISCH_THEN(MP_TAC o SPEC `b:real`) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let LOCALLY_COMPACT_SPACE_EUCLIDEANREAL = prove (`locally_compact_space euclideanreal`, REWRITE_TAC[locally_compact_space; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN X_GEN_TAC `x:real` THEN MAP_EVERY EXISTS_TAC [`real_interval(x - &1,x + &1)`; `real_interval[x - &1,x + &1]`] THEN REWRITE_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED] THEN REWRITE_TAC[GSYM real_compact_def; GSYM REAL_OPEN_IN] THEN REWRITE_TAC[REAL_COMPACT_INTERVAL; REAL_OPEN_REAL_INTERVAL] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Limits at a point in a topological space. *) (* ------------------------------------------------------------------------- *) let atpointof = new_definition `atpointof top a = mk_net({u | open_in top u /\ a IN u},{a})`;; let ATPOINTOF,NETLIMITS_ATPOINTOF = (CONJ_PAIR o prove) (`(!top a:A. netfilter(atpointof top a) = {u | open_in top u /\ a IN u}) /\ (!top a:A. netlimits(atpointof top a) = {a})`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[netfilter; netlimits; atpointof; GSYM PAIR_EQ] THEN REWRITE_TAC[GSYM(CONJUNCT2 net_tybij)] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN X_GEN_TAC `u:A->bool` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `v:A->bool` THEN REPEAT DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER]);; let NETLIMIT_ATPOINTOF = prove (`!top a:A. netlimit(atpointof top a) = a`, REWRITE_TAC[netlimit; NETLIMITS_ATPOINTOF; IN_SING; SELECT_REFL]);; let EVENTUALLY_ATPOINTOF = prove (`!P top a:A. eventually P (atpointof top a) <=> ~(a IN topspace top) \/ ?u. open_in top u /\ a IN u /\ !x. x IN u DELETE a ==> P x`, REWRITE_TAC[eventually; ATPOINTOF; NETLIMITS_ATPOINTOF; EXISTS_IN_GSPEC] THEN REWRITE_TAC[SET_RULE `{f x | P x} = {} <=> ~(?x. P x)`] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:A) IN topspace top` THENL [ALL_TAC; ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]] THEN ASM_SIMP_TAC[IN_DELETE; IN_DIFF; IN_SING] THEN ASM_MESON_TAC[OPEN_IN_TOPSPACE]);; let ATPOINTOF_WITHIN_TRIVIAL = prove (`!top u a:A. topspace top SUBSET u ==> (atpointof top a) within u = atpointof top a`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[net_tybij] `dest_net x = dest_net y ==> x = y`) THEN GEN_REWRITE_TAC BINOP_CONV [GSYM PAIR] THEN PURE_REWRITE_TAC[GSYM netfilter; GSYM netlimits] THEN REWRITE_TAC[ATPOINTOF; WITHIN; NETLIMITS_ATPOINTOF; NETLIMITS_WITHIN] THEN REWRITE_TAC[PAIR_EQ; RELATIVE_TO] THEN REWRITE_TAC[SET_RULE `{f x | {g y | P y} x} = {f(g y) | P y}`] THEN MATCH_MP_TAC(SET_RULE `(!x. P x ==> f x = g x) ==> {f x | P x} = {g x | P x}`) THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]);; let ATPOINTOF_WITHIN_TOPSPACE = prove (`!top a:A. (atpointof top a) within (topspace top) = atpointof top a`, SIMP_TAC[ATPOINTOF_WITHIN_TRIVIAL; SUBSET_REFL]);; let TRIVIAL_LIMIT_ATPOINTOF_WITHIN = prove (`!top s a:A. trivial_limit(atpointof top a within s) <=> ~(a IN top derived_set_of s)`, REPEAT GEN_TAC THEN REWRITE_TAC[trivial_limit; EVENTUALLY_WITHIN_IMP] THEN ASM_SIMP_TAC[EVENTUALLY_ATPOINTOF] THEN REWRITE_TAC[derived_set_of; IN_ELIM_THM] THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let DERIVED_SET_OF_TRIVIAL_LIMIT = prove (`!top s a:A. a IN top derived_set_of s <=> ~trivial_limit(atpointof top a within s)`, REWRITE_TAC[TRIVIAL_LIMIT_ATPOINTOF_WITHIN]);; let TRIVIAL_LIMIT_ATPOINTOF = prove (`!top a:A. trivial_limit(atpointof top a) <=> ~(a IN top derived_set_of topspace top)`, ONCE_REWRITE_TAC[GSYM ATPOINTOF_WITHIN_TOPSPACE] THEN REWRITE_TAC[TRIVIAL_LIMIT_ATPOINTOF_WITHIN]);; let ATPOINTOF_SUBTOPOLOGY = prove (`!top s a:A. a IN s ==> (atpointof (subtopology top s) a = atpointof top a within s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[net_tybij] `dest_net x = dest_net y ==> x = y`) THEN GEN_REWRITE_TAC BINOP_CONV [GSYM PAIR] THEN PURE_REWRITE_TAC[GSYM netfilter; GSYM netlimits] THEN REWRITE_TAC[WITHIN; NETLIMITS_WITHIN] THEN REWRITE_TAC[ATPOINTOF; NETLIMITS_ATPOINTOF] THEN REWRITE_TAC[PAIR_EQ; RELATIVE_TO; OPEN_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM SET_TAC[]);; let EVENTUALLY_ATPOINTOF_METRIC = prove (`!P m a:A. eventually P (atpointof (mtopology m) a) <=> a IN mspace m ==> ?d. &0 < d /\ !x. x IN mspace m /\ &0 < mdist m (x,a) /\ mdist m (x,a) < d ==> P x`, REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF; TOPSPACE_MTOPOLOGY] THEN ASM_CASES_TAC `(a:A) IN mspace m` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_MTOPOLOGY]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `a:A`)) THEN ASM_SIMP_TAC[IMP_CONJ; MDIST_POS_EQ; IN_MBALL; SUBSET; MDIST_SYM] THEN ASM SET_TAC[]; ASM_SIMP_TAC[IMP_CONJ; MDIST_POS_EQ] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `mball m (a:A,d)` THEN ASM_SIMP_TAC[OPEN_IN_MBALL; CENTRE_IN_MBALL; IN_DELETE] THEN REWRITE_TAC[IN_MBALL] THEN ASM_MESON_TAC[MDIST_SYM]]);; (* ------------------------------------------------------------------------- *) (* Limits in a topological space. *) (* ------------------------------------------------------------------------- *) let limit = new_definition `limit top (f:A->B) l net <=> l IN topspace top /\ (!u. open_in top u /\ l IN u ==> eventually (\x. f x IN u) net)`;; let LIMIT_IMP_WITHIN = prove (`!net top (f:A->B) l s. limit top f l net ==> limit top f l (net within s)`, REWRITE_TAC[limit] THEN MESON_TAC[EVENTUALLY_IMP_WITHIN]);; let LIMIT_IN_TOPSPACE = prove (`!net top f:A->B l. limit top f l net ==> l IN topspace top`, SIMP_TAC[limit]);; let LIMIT_CONST = prove (`!net:A net l:B. limit top (\a. l) l net <=> l IN topspace top`, SIMP_TAC[limit; EVENTUALLY_TRUE]);; let LIMIT_REAL_CONST = prove (`!net:A net l. limit euclideanreal (\a. l) l net`, REWRITE_TAC[LIMIT_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV]);; let LIMIT_CONST_EQ = prove (`!(net:K net) top (a:A) l. t1_space top /\ ~trivial_limit net ==> (limit top (\k. a) l net <=> l IN topspace top /\ a = l)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[LIMIT_CONST] THEN REWRITE_TAC[limit] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o SPEC `topspace top:A->bool`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[OPEN_IN_TOPSPACE]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~p ==> F`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`l:A`; `a:A`] o GEN_REWRITE_RULE I [t1_space]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[EVENTUALLY_FALSE]);; let LIMIT_EVENTUALLY = prove (`!top net f:K->A l. l IN topspace top /\ eventually (\x. f x = l) net ==> limit top f l net`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[limit] THEN GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] EVENTUALLY_MONO)) THEN ASM_SIMP_TAC[]);; let LIMIT_WITHIN_SUBSET = prove (`!net top f:A->B l s t. limit top f l (net within s) /\ t SUBSET s ==> limit top f l (net within t)`, REWRITE_TAC[limit] THEN ASM_MESON_TAC[EVENTUALLY_WITHIN_SUBSET]);; let LIMIT_SUBSEQUENCE = prove (`!top f:num->A l r. (!m n. m < n ==> r m < r n) /\ limit top f l sequentially ==> limit top (f o r) l sequentially`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[limit] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN UNDISCH_TAC `!m n. m < n ==> (r:num->num) m < r n` THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_SUBSEQUENCE) THEN REWRITE_TAC[o_DEF]);; let LIMIT_SUBTOPOLOGY = prove (`!net top s l f:A->B. limit (subtopology top s) f l net <=> l IN s /\ eventually (\a. f a IN s) net /\ limit top f l net`, REPEAT GEN_TAC THEN REWRITE_TAC[limit; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; IMP_CONJ; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_INTER; IMP_IMP] THEN ASM_CASES_TAC `(l:B) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(l:B) IN topspace top` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `(?x. P x) /\ (!x. P x ==> (Q x <=> A /\ R x)) ==> ((!x. P x ==> Q x) <=> A /\ (!x. P x ==> R x))`) THEN REWRITE_TAC[EVENTUALLY_AND] THEN ASM_MESON_TAC[OPEN_IN_TOPSPACE]);; let LIMIT_SEQUENTIALLY = prove (`!top s l:A. limit top s l sequentially <=> l IN topspace top /\ (!u. open_in top u /\ l IN u ==> (?N. !n. N <= n ==> s n IN u))`, REWRITE_TAC[limit; EVENTUALLY_SEQUENTIALLY]);; let LIMIT_SEQUENTIALLY_OFFSET = prove (`!top f l:A k. limit top f l sequentially ==> limit top (\i. f (i + k)) l sequentially`, SIMP_TAC[LIMIT_SEQUENTIALLY] THEN INTRO_TAC "! *; l lim; !u; hp" THEN USE_THEN "hp" (HYP_TAC "lim: @N. N" o C MATCH_MP) THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN USE_THEN "N" MATCH_MP_TAC THEN ASM_ARITH_TAC);; let LIMIT_SEQUENTIALLY_OFFSET_REV = prove (`!top f l:A k. limit top (\i. f (i + k)) l sequentially ==> limit top f l sequentially`, SIMP_TAC[LIMIT_SEQUENTIALLY] THEN INTRO_TAC "! *; l lim; !u; hp" THEN USE_THEN "hp" (HYP_TAC "lim: @N. N" o C MATCH_MP) THEN EXISTS_TAC `N+k:num` THEN INTRO_TAC "!n; n" THEN REMOVE_THEN "N" (MP_TAC o SPEC `n-k:num`) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `n - k + k = n:num` (fun th -> REWRITE_TAC[th]) THEN ASM_ARITH_TAC);; let LIMIT_ATPOINTOF = prove (`!top top' f:A->B x y. limit top' f y (atpointof top x) <=> y IN topspace top' /\ (x IN topspace top ==> !v. open_in top' v /\ y IN v ==> ?u. open_in top u /\ x IN u /\ IMAGE f (u DELETE x) SUBSET v)`, REPEAT GEN_TAC THEN ASM_SIMP_TAC[limit; EVENTUALLY_ATPOINTOF] THEN ASM_CASES_TAC `(y:B) IN topspace top'` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN SET_TAC[]);; let LIMIT_ATPOINTOF_SELF = prove (`!top1 top2 f:A->B a. limit top2 f (f a) (atpointof top1 a) <=> f a IN topspace top2 /\ (a IN topspace top1 ==> (!v. open_in top2 v /\ f a IN v ==> (?u. open_in top1 u /\ a IN u /\ IMAGE f u SUBSET v)))`, REWRITE_TAC[LIMIT_ATPOINTOF] THEN SET_TAC[]);; let LIMIT_TRIVIAL = prove (`!net f:A->B top y. trivial_limit net /\ y IN topspace top ==> limit top f y net`, SIMP_TAC[limit; EVENTUALLY_TRIVIAL]);; let LIMIT_TRANSFORM_EVENTUALLY = prove (`!net top f:A->B g l. eventually (\x. f x = g x) net /\ limit top f l net ==> limit top g l net`, REPEAT GEN_TAC THEN REWRITE_TAC[limit] THEN ASM_CASES_TAC `(l:B) IN topspace top` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `(?x. Q x) /\ (!x. P /\ R x ==> R' x) ==> P /\ (!x. Q x ==> R x) ==> (!x. Q x ==> R' x)`) THEN CONJ_TAC THENL [ASM_MESON_TAC[OPEN_IN_TOPSPACE]; ALL_TAC] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN MESON_TAC[]);; let CONTINUOUS_MAP_LIMIT = prove (`!net top top' f:A->B g:B->C l. continuous_map (top,top') g /\ limit top f l net ==> limit top' (g o f) (g l) net`, REWRITE_TAC[limit; o_THM] THEN INTRO_TAC "! *; cont l lim" THEN USE_THEN "cont" MP_TAC THEN REWRITE_TAC[continuous_map] THEN INTRO_TAC "g cont" THEN ASM_SIMP_TAC[] THEN INTRO_TAC "!u; u gl" THEN ASM_CASES_TAC `trivial_limit (net:A net)` THENL [ASM_REWRITE_TAC[eventually]; POP_ASSUM (LABEL_TAC "nontriv")] THEN REMOVE_THEN "lim" (MP_TAC o SPEC `{x:B | x IN topspace top /\ g x:C IN u}`) THEN ASM_SIMP_TAC[IN_ELIM_THM; eventually] THEN MESON_TAC[]);; let LIMIT_PAIRWISE = prove (`!(net:C net) top1:A topology top2:B topology f l. limit (prod_topology top1 top2) f l net <=> limit top1 (FST o f) (FST l) net /\ limit top2 (SND o f) (SND l) net`, REPLICATE_TAC 4 GEN_TAC THEN REWRITE_TAC[FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`l1:A`; `l2:B`] THEN REWRITE_TAC[limit; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN ASM_CASES_TAC `(l1:A) IN topspace top1` THEN ASM_CASES_TAC `(l2:B) IN topspace top2` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(u:A->bool) CROSS (topspace top2:B->bool)`); X_GEN_TAC `v:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(topspace top1:A->bool) CROSS (v:B->bool)`)] THEN ASM_REWRITE_TAC[IN_CROSS; OPEN_IN_CROSS; OPEN_IN_TOPSPACE]; X_GEN_TAC `w:A#B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN DISCH_THEN(MP_TAC o SPECL [`l1:A`; `l2:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 (MP_TAC o SPEC `u:A->bool`) (MP_TAC o SPEC `v:B->bool`)) THEN ASM_REWRITE_TAC[GSYM EVENTUALLY_AND; IMP_IMP]] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN X_GEN_TAC `a:C` THEN REWRITE_TAC[o_THM] THEN SPEC_TAC(`(f:C->A#B) a`,`y:A#B`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_PAIR_THM; IN_CROSS]) THEN ASM_SIMP_TAC[FORALL_PAIR_THM; IN_CROSS]);; let LIMIT_COMPONENTWISE = prove (`!(net:C net) (tops:K->A topology) t f l. limit (product_topology t tops) f l net <=> EXTENSIONAL t l /\ eventually (\a. f a IN topspace(product_topology t tops)) net /\ !k. k IN t ==> limit (tops k) (\c. f c k) (l k) net`, REPEAT GEN_TAC THEN REWRITE_TAC[limit; TOPSPACE_PRODUCT_TOPOLOGY_ALT; IN_ELIM_THM] THEN ASM_CASES_TAC `EXTENSIONAL t (l:K->A)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; FORALL_AND_THM] THEN ASM_CASES_TAC `!k. k IN t ==> (l:K->A) k IN topspace (tops k)` THEN ASM_REWRITE_TAC[IMP_IMP] THEN EQ_TAC THENL [DISCH_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `topspace(product_topology t tops):(K->A)->bool`) THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT; IN_ELIM_THM]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`k:K`; `u:A->bool`] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{y:K->A | y k IN u} INTER topspace(product_topology t tops)`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[IN_INTER; IN_ELIM_THM; TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[GSYM ARBITRARY_UNION_OF_RELATIVE_TO] THEN REWRITE_TAC[relative_to; TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN EXISTS_TAC `{y:K->A | y k IN u}` THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`k:K`; `u:A->bool`] THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN SIMP_TAC[IN_INTER; IN_ELIM_THM]]; STRIP_TAC THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY; FORALL_UNION_OF; ARBITRARY; IMP_CONJ] THEN X_GEN_TAC `v:((K->A)->bool)->bool` THEN REWRITE_TAC[IN_UNIONS] THEN MATCH_MP_TAC(MESON[] `(!x. P x ==> x IN v /\ Q x ==> R) ==> (!x. x IN v ==> P x) ==> (?x. x IN v /\ Q x) ==> R`) THEN REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN X_GEN_TAC `w:((K->A)->bool)->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `\x. (f:C->K->A) x IN topspace(product_topology t tops) INTER INTERS w` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `a IN v ==> P a ==> ?x. x IN v /\ P x`)) THEN ASM SET_TAC[]; ASM_REWRITE_TAC[EVENTUALLY_AND; IN_INTER]] THEN ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY_ALT; IN_ELIM_THM] THEN REWRITE_TAC[IN_INTERS] THEN W(MP_TAC o PART_MATCH (lhand o rand) EVENTUALLY_FORALL o snd) THEN ASM_CASES_TAC `w:((K->A)->bool)->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; EVENTUALLY_TRUE] THEN DISCH_THEN SUBST1_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. P x ==> Q x) ==> (!x. x IN Q ==> P x ==> R x) ==> (!x. P x ==> R x)`)) THEN REWRITE_TAC[FORALL_IN_GSPEC; ETA_AX] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2 o REWRITE_RULE[IN_INTER]) THEN DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [IN_INTERS]) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `a IN s ==> (P a ==> Q) ==> (!x. x IN s ==> P x) ==> Q`)) THEN REWRITE_TAC[IN_ELIM_THM]]);; let COMPACT_IN_SEQUENCE_WITH_LIMIT = prove (`!top s a l:A. limit top a l sequentially /\ s SUBSET IMAGE a (:num) /\ s SUBSET topspace top ==> compact_in top (l INSERT s)`, REPEAT GEN_TAC THEN REWRITE_TAC[LIMIT_SEQUENTIALLY] THEN STRIP_TAC THEN ASM_REWRITE_TAC[compact_in; INSERT_SUBSET] THEN X_GEN_TAC `u:(A->bool)->bool` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC LAND_CONV [SUBSET] THEN REWRITE_TAC[IN_UNIONS] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_UNIONS]) THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN X_GEN_TAC `v:A->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:A->bool` o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `(t:A->bool) INSERT IMAGE v (s INTER IMAGE (a:num->A) (0..N))` THEN ASM_REWRITE_TAC[INSERT_SUBSET; EXISTS_IN_INSERT; UNIONS_INSERT] THEN SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_INSERT; FINITE_NUMSEG] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `IMAGE a (:num) INTER (s:A->bool)` THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SUBSET]] THEN REWRITE_TAC[IN_INTER; FORALL_IN_IMAGE; IMP_CONJ; IN_UNIV] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN ASM_CASES_TAC `N:num <= n` THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(N <= n) ==> n:num <= N`)) THEN REWRITE_TAC[UNIONS_IMAGE; IN_INTER; IN_IMAGE; IN_NUMSEG; LE_0] THEN ASM SET_TAC[]);; let LIMIT_HAUSDORFF_UNIQUE = prove (`!net top f:A->B l1 l2. ~trivial_limit net /\ hausdorff_space top /\ limit top f l1 net /\ limit top f l2 net ==> l1 = l2`, REWRITE_TAC[limit; hausdorff_space] THEN INTRO_TAC "! *; nontriv hp (l1 hp1) (l2 hp2)" THEN REFUTE_THEN (LABEL_TAC "contra") THEN REMOVE_THEN "hp" (MP_TAC o SPECL [`l1:B`; `l2:B`]) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN CUT_TAC `open_in top u /\ open_in top v /\ l1:B IN u /\ l2:B IN v ==> ?x:A. f x IN u /\ f x IN v` THENL [SET_TAC[]; STRIP_TAC] THEN CLAIM_TAC "rmk" `eventually (\x:A. f x:B IN u /\ f x IN v) net` THENL [ASM_SIMP_TAC[EVENTUALLY_AND]; HYP_TAC "rmk" (MATCH_MP EVENTUALLY_HAPPENS) THEN ASM_MESON_TAC[]]);; let LIMIT_KC_UNIQUE = prove (`!top (f:num->A) l1 l2. kc_space top /\ limit top f l1 sequentially /\ limit top f l2 sequentially ==> l1 = l2`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~p ==> F`] THEN DISCH_TAC THEN UNDISCH_TAC `limit top f (l2:A) sequentially` THEN REWRITE_TAC[limit] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `topspace top DIFF (l1 INSERT (IMAGE f (:num) DELETE (l2:A)))`) THEN ASM_REWRITE_TAC[NOT_IMP; IN_DELETE; IN_DIFF; IN_INSERT] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[SET_RULE `u DIFF (a INSERT s) = u DIFF (a INSERT (u INTER s))`] THEN MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [kc_space]) THEN MATCH_MP_TAC COMPACT_IN_SEQUENCE_WITH_LIMIT THEN EXISTS_TAC `f:num->A` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]; FIRST_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `topspace top:A->bool`) o GEN_REWRITE_RULE I [limit]) THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; TAUT `p ==> ~q <=> ~(p /\ q)`] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN REWRITE_TAC[SET_RULE `f x IN u /\ f x IN u /\ ~(f x = l1 \/ f x IN IMAGE f UNIV /\ ~(f x = l2)) <=> f x IN u /\ ~(f x = l1) /\ f x = l2`] THEN REWRITE_TAC[EVENTUALLY_AND] THEN DISCH_THEN(MP_TAC o ISPECL [`top:A topology`; `l1:A`] o MATCH_MP (REWRITE_RULE[IMP_CONJ] LIMIT_TRANSFORM_EVENTUALLY) o last o CONJUNCTS) THEN ASM_SIMP_TAC[LIMIT_CONST_EQ; TRIVIAL_LIMIT_SEQUENTIALLY; KC_IMP_T1_SPACE]]);; (* ------------------------------------------------------------------------- *) (* Topological limit in metric spaces. *) (* ------------------------------------------------------------------------- *) let LIMIT_IN_MSPACE = prove (`!net m f:A->B l. limit (mtopology m) f l net ==> l IN mspace m`, MESON_TAC[LIMIT_IN_TOPSPACE; TOPSPACE_MTOPOLOGY]);; let LIMIT_METRIC_UNIQUE = prove (`!net m f:A->B l1 l2. ~trivial_limit net /\ limit (mtopology m) f l1 net /\ limit (mtopology m) f l2 net ==> l1 = l2`, MESON_TAC[LIMIT_HAUSDORFF_UNIQUE; HAUSDORFF_SPACE_MTOPOLOGY]);; let LIMIT_METRIC = prove (`!m f:A->B l net. limit (mtopology m) f l net <=> l IN mspace m /\ (!e. &0 < e ==> eventually (\x. f x IN mspace m /\ mdist m (f x, l) < e) net)`, REPEAT GEN_TAC THEN REWRITE_TAC[limit; OPEN_IN_MTOPOLOGY; TOPSPACE_MTOPOLOGY] THEN EQ_TAC THENL [INTRO_TAC "l hp" THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!e; e" THEN REMOVE_THEN "hp" (MP_TAC o SPEC `mball m (l:B,e)`) THEN ASM_REWRITE_TAC[MBALL_SUBSET_MSPACE] THEN ASM_SIMP_TAC[CENTRE_IN_MBALL] THEN REWRITE_TAC[IN_MBALL] THEN ANTS_TAC THENL [INTRO_TAC "!x; x lt" THEN EXISTS_TAC `e - mdist m (l:B,x)` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[SUBSET; IN_MBALL] THEN INTRO_TAC "![y]; y lt'" THEN ASM_REWRITE_TAC[] THEN TRANS_TAC REAL_LET_TRANS `mdist m (l:B,x) + mdist m (x,y)` THEN ASM_SIMP_TAC[MDIST_TRIANGLE] THEN ASM_REAL_ARITH_TAC]; MATCH_MP_TAC (REWRITE_RULE [IMP_CONJ] EVENTUALLY_MONO) THEN GEN_TAC THEN REWRITE_TAC[] THEN ASM_CASES_TAC `f (x:A):B IN mspace m` THEN ASM_SIMP_TAC[MDIST_SYM]]; INTRO_TAC "l hp" THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!u; (u hp) l" THEN REMOVE_THEN "hp" (DESTRUCT_TAC "@r. r sub" o C MATCH_MP (ASSUME `l:B IN u`)) THEN REMOVE_THEN "hp" (MP_TAC o C MATCH_MP (ASSUME `&0 < r`)) THEN MATCH_MP_TAC (REWRITE_RULE [IMP_CONJ] EVENTUALLY_MONO) THEN GEN_TAC THEN REWRITE_TAC[] THEN INTRO_TAC "f lt" THEN CLAIM_TAC "rmk" `f (x:A):B IN mball m (l,r)` THENL [ASM_SIMP_TAC[IN_MBALL; MDIST_SYM]; HYP SET_TAC "rmk sub" []]]);; let LIMIT_METRIC_SEQUENTIALLY = prove (`!m f:num->A l. limit (mtopology m) f l sequentially <=> l IN mspace m /\ (!e. &0 < e ==> (?N. !n. N <= n ==> f n IN mspace m /\ mdist m (f n,l) < e))`, REPEAT GEN_TAC THEN REWRITE_TAC[LIMIT_METRIC; EVENTUALLY_SEQUENTIALLY] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; let LIMIT_IN_CLOSED_IN = prove (`!net top s f:A->B l. ~trivial_limit net /\ limit top f l net /\ closed_in top s /\ eventually (\x. f x IN s) net ==> l IN s`, INTRO_TAC "! *; ntriv lim cl ev" THEN REFUTE_THEN (LABEL_TAC "contra") THEN HYP_TAC "lim: l lim" (REWRITE_RULE[limit]) THEN REMOVE_THEN "lim" (MP_TAC o SPEC `topspace top DIFF s:B->bool`) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; IN_DIFF; EVENTUALLY_AND] THEN REWRITE_TAC[DE_MORGAN_THM] THEN DISJ2_TAC THEN INTRO_TAC "nev" THEN HYP (MP_TAC o CONJ_LIST) "ev nev" [] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC NOT_EVENTUALLY THEN ASM_REWRITE_TAC[] THEN MESON_TAC[]);; let LIMIT_SUBMETRIC_IFF = prove (`!net m s f:A->B l. limit (mtopology (submetric m s)) f l net <=> l IN s /\ eventually (\x. f x IN s) net /\ limit (mtopology m) f l net`, REPEAT GEN_TAC THEN REWRITE_TAC[LIMIT_METRIC; SUBMETRIC; IN_INTER; EVENTUALLY_AND] THEN EQ_TAC THEN SIMP_TAC[] THENL [INTRO_TAC "l hp"; MESON_TAC[]] THEN HYP_TAC "hp" (C MATCH_MP REAL_LT_01) THEN ASM_REWRITE_TAC[]);; let METRIC_CLOSED_IN_IFF_SEQUENTIALLY_CLOSED = prove (`!m s:A->bool. closed_in (mtopology m) s <=> s SUBSET mspace m /\ (!a l. (!n. a n IN s) /\ limit (mtopology m) a l sequentially ==> l IN s)`, REPEAT GEN_TAC THEN EQ_TAC THENL [INTRO_TAC "cl" THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_METRIC]; INTRO_TAC "!a l; a lim"] THEN MATCH_MP_TAC (ISPECL[`sequentially`; `mtopology (m:A metric)`] LIMIT_IN_CLOSED_IN) THEN EXISTS_TAC `a:num->A` THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_TRUE]; ALL_TAC] THEN SIMP_TAC[CLOSED_IN_METRIC; IN_DIFF] THEN INTRO_TAC "sub seq; !x; x diff" THEN REFUTE_THEN (LABEL_TAC "contra" o REWRITE_RULE[NOT_EXISTS_THM; MESON[] `~(a /\ b) <=> a ==> ~b`]) THEN CLAIM_TAC "@a. a lt" `?a. (!n. a n:A IN s) /\ (!n. mdist m (x, a n) < inv(&n + &1))` THENL [REWRITE_TAC[GSYM FORALL_AND_THM; GSYM SKOLEM_THM] THEN GEN_TAC THEN REMOVE_THEN "contra" (MP_TAC o SPEC `inv (&n + &1)`) THEN ANTS_TAC THENL [MATCH_MP_TAC REAL_LT_INV THEN REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[SET_RULE `~DISJOINT s t <=> ?x:A. x IN s /\ x IN t`] THEN ASM_REWRITE_TAC[IN_MBALL] THEN MESON_TAC[]; ALL_TAC] THEN CLAIM_TAC "a'" `!n:num. a n:A IN mspace m` THENL [HYP SET_TAC "sub a" []; ALL_TAC] THEN REMOVE_THEN "seq" (MP_TAC o SPECL[`a:num->A`;`x:A`]) THEN ASM_REWRITE_TAC[LIMIT_METRIC_SEQUENTIALLY] THEN INTRO_TAC "!e; e" THEN HYP_TAC "e -> @N. NZ Ngt Nlt" (ONCE_REWRITE_RULE[REAL_ARCH_INV]) THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN TRANS_TAC REAL_LT_TRANS `inv (&n + &1)` THEN CONJ_TAC THENL [HYP MESON_TAC "lt a' x" [MDIST_SYM]; ALL_TAC] THEN TRANS_TAC REAL_LET_TRANS `inv (&N)` THEN HYP REWRITE_TAC "Nlt" [] THEN MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC);; let LIMIT_ATPOINTOF_METRIC = prove (`!m top f:A->B x y. limit top f y (atpointof (mtopology m) x) <=> y IN topspace top /\ (x IN mspace m ==> !v. open_in top v /\ y IN v ==> ?d. &0 < d /\ !x'. x' IN mspace m /\ &0 < mdist m (x',x) /\ mdist m (x',x) < d ==> f x' IN v)`, REPEAT GEN_TAC THEN REWRITE_TAC[limit; EVENTUALLY_ATPOINTOF_METRIC] THEN MESON_TAC[]);; let LIMIT_METRIC_DIST_NULL = prove (`!net m (f:K->A) l. limit (mtopology m) f l net <=> l IN mspace m /\ eventually (\x. f x IN mspace m) net /\ limit euclideanreal (\x. mdist m (f x,l)) (&0) net`, REPEAT GEN_TAC THEN REWRITE_TAC[LIMIT_METRIC; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV; EVENTUALLY_AND] THEN ASM_CASES_TAC `(l:A) IN mspace m` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM EVENTUALLY_AND; MESON[REAL_LT_01] `P /\ (!e. &0 < e ==> Q e) <=> (!e. &0 < e ==> P /\ Q e)`] THEN REWRITE_TAC[REAL_ARITH `abs(&0 - x) = abs x`] THEN ASM_SIMP_TAC[TAUT `(p /\ q) <=> ~(p ==> ~q)`; MDIST_POS_LE; real_abs]);; let LIMIT_NULL_REAL = prove (`!net f:A->real. limit euclideanreal f (&0) net <=> !e. &0 < e ==> eventually (\a. abs(f a) < e) net`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; LIMIT_METRIC] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[REAL_ARITH `abs(&0 - x) = abs x`]);; let LIMIT_NULL_REAL_ABS = prove (`!net (f:A->real). limit euclideanreal (\a. abs(f a)) (&0) net <=> limit euclideanreal f (&0) net`, REWRITE_TAC[LIMIT_NULL_REAL; REAL_ABS_ABS]);; let LIMIT_NULL_REAL_COMPARISON = prove (`!net f g:A->real. limit euclideanreal f (&0) net /\ eventually (\a. abs(g a) <= abs(f a)) net ==> limit euclideanreal g (&0) net`, REPEAT GEN_TAC THEN REWRITE_TAC[LIMIT_NULL_REAL] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN UNDISCH_TAC `&0 < e` THEN SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN REAL_ARITH_TAC);; let LIMIT_NULL_REAL_HARMONIC_OFFSET = prove (`!a. limit euclideanreal (\n. inv(&n + a)) (&0) sequentially`, REWRITE_TAC[LIMIT_NULL_REAL; ARCH_EVENTUALLY_ABS_INV_OFFSET]);; (* ------------------------------------------------------------------------- *) (* More sequential characterizations in a metric space. *) (* ------------------------------------------------------------------------- *) let [EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY; EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_INJ; EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_DECREASING] = (CONJUNCTS o prove) (`(!met P s a:A. eventually P (atpointof (mtopology met) a within s) <=> !x. (!n. x(n) IN (s INTER mspace met) DELETE a) /\ limit (mtopology met) x a sequentially ==> eventually (\n. P(x n)) sequentially) /\ (!met P s a:A. eventually P (atpointof (mtopology met) a within s) <=> !x. (!n. x(n) IN (s INTER mspace met) DELETE a) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology met) x a sequentially ==> eventually (\n. P(x n)) sequentially) /\ (!met P s a:A. eventually P (atpointof (mtopology met) a within s) <=> !x. (!n. x(n) IN (s INTER mspace met) DELETE a) /\ (!m n. m < n ==> mdist met (x n,a) < mdist met (x m,a)) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology met) x a sequentially ==> eventually (\n. P(x n)) sequentially)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(r ==> s) /\ (q ==> r) /\ (p ==> q) /\ (s ==> p) ==> (p <=> q) /\ (p <=> r) /\ (p <=> s)`) THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:num->A` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LT_REFL]; MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[]; REWRITE_TAC[EVENTUALLY_WITHIN_IMP; EVENTUALLY_ATPOINTOF] THEN REWRITE_TAC[limit; TOPSPACE_MTOPOLOGY] THEN ASM_CASES_TAC `(a:A) IN mspace met` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_IMP; IN_DELETE; IN_INTER] THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN X_GEN_TAC `x:num->A` THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM SET_TAC[]; STRIP_TAC THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF_METRIC; EVENTUALLY_WITHIN_IMP] THEN DISCH_TAC THEN ASM_SIMP_TAC[IMP_CONJ; MDIST_POS_EQ] THEN GEN_REWRITE_TAC I [MESON[] `(?d. P d /\ Q d) <=> ~(!d. P d ==> ~Q d)`] THEN GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) [NOT_FORALL_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN DISCH_TAC THEN SUBGOAL_THEN `?x. (!n. (x n) IN mspace met /\ ~(x n = a) /\ mdist met (x n,a) < inv(&n + &1) /\ x n IN s /\ ~P(x n:A)) /\ (!n. mdist met (x(SUC n),a) < mdist met (x n,a))` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC DEPENDENT_CHOICE THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_01]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`n:num`; `x:A`] THEN STRIP_TAC THEN SIMP_TAC[TAUT `(p /\ q /\ r /\ s /\ t) /\ u <=> p /\ q /\ (r /\ u) /\ s /\ t`] THEN REWRITE_TAC[GSYM REAL_LT_MIN] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_LT_MIN; MDIST_POS_EQ; REAL_LT_INV_EQ] THEN REAL_ARITH_TAC; FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[NOT_IMP; IN_DELETE; IN_INTER; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; DISCH_TAC] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC WLOG_LT THEN ASM_MESON_TAC[REAL_LT_REFL]; ASM_REWRITE_TAC[LIMIT_METRIC; EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC FORALL_POS_MONO_1 THEN CONJ_TAC THENL [MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN X_GEN_TAC `N:num` THEN EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN TRANS_TAC REAL_LTE_TRANS `inv(&n + &1)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC; REWRITE_TAC[EVENTUALLY_FALSE; TRIVIAL_LIMIT_SEQUENTIALLY]]]]);; let EVENTUALLY_ATPOINTOF_SEQUENTIALLY = prove (`!met P a:A. eventually P (atpointof (mtopology met) a) <=> !x. (!n. x(n) IN mspace met DELETE a) /\ limit (mtopology met) x a sequentially ==> eventually (\n. P(x n)) sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM NET_WITHIN_UNIV] THEN SIMP_TAC[EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY; INTER_UNIV]);; let EVENTUALLY_ATPOINTOF_SEQUENTIALLY_INJ = prove (`!met P a:A. eventually P (atpointof (mtopology met) a) <=> !x. (!n. x(n) IN mspace met DELETE a) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology met) x a sequentially ==> eventually (\n. P(x n)) sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM NET_WITHIN_UNIV] THEN SIMP_TAC[EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_INJ; INTER_UNIV]);; let EVENTUALLY_ATPOINTOF_SEQUENTIALLY_DECREASING = prove (`!met P a:A. eventually P (atpointof (mtopology met) a) <=> !x. (!n. x(n) IN mspace met DELETE a) /\ (!m n. m < n ==> mdist met (x n,a) < mdist met (x m,a)) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology met) x a sequentially ==> eventually (\n. P(x n)) sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM NET_WITHIN_UNIV] THEN SIMP_TAC[EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_DECREASING; INTER_UNIV]);; let LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN = prove (`!m1 m2 s f:A->B a l. limit (mtopology m2) f l (atpointof (mtopology m1) a within s) <=> l IN mspace m2 /\ !x. (!n. x(n) IN (s INTER mspace m1) DELETE a) /\ limit (mtopology m1) x a sequentially ==> limit (mtopology m2) (f o x) l sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [limit] THEN ASM_CASES_TAC `(l:B) IN mspace m2` THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o RAND_CONV) [limit] THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY; o_DEF; RIGHT_IMP_FORALL_THM] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; CONJ_ACI]);; let LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN_INJ = prove (`!m1 m2 s f:A->B a l. limit (mtopology m2) f l (atpointof (mtopology m1) a within s) <=> l IN mspace m2 /\ !x. (!n. x(n) IN (s INTER mspace m1) DELETE a) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology m1) x a sequentially ==> limit (mtopology m2) (f o x) l sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [limit] THEN ASM_CASES_TAC `(l:B) IN mspace m2` THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o RAND_CONV) [limit] THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_INJ] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY; o_DEF; RIGHT_IMP_FORALL_THM] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; CONJ_ACI]);; let LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN_DECREASING = prove (`!m1 m2 s f:A->B a l. limit (mtopology m2) f l (atpointof (mtopology m1) a within s) <=> l IN mspace m2 /\ !x. (!n. x(n) IN (s INTER mspace m1) DELETE a) /\ (!m n. m < n ==> mdist m1 (x n,a) < mdist m1 (x m,a)) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology m1) x a sequentially ==> limit (mtopology m2) (f o x) l sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [limit] THEN ASM_CASES_TAC `(l:B) IN mspace m2` THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o RAND_CONV) [limit] THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_DECREASING] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY; o_DEF; RIGHT_IMP_FORALL_THM] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; CONJ_ACI]);; let LIMIT_ATPOINTOF_SEQUENTIALLY = prove (`!m1 m2 f:A->B a l. limit (mtopology m2) f l (atpointof (mtopology m1) a) <=> l IN mspace m2 /\ !x. (!n. x(n) IN mspace m1 DELETE a) /\ limit (mtopology m1) x a sequentially ==> limit (mtopology m2) (f o x) l sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM NET_WITHIN_UNIV] THEN REWRITE_TAC[LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN] THEN REWRITE_TAC[INTER_UNIV]);; let LIMIT_ATPOINTOF_SEQUENTIALLY_INJ = prove (`!m1 m2 f:A->B a l. limit (mtopology m2) f l (atpointof (mtopology m1) a) <=> l IN mspace m2 /\ !x. (!n. x(n) IN mspace m1 DELETE a) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology m1) x a sequentially ==> limit (mtopology m2) (f o x) l sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM NET_WITHIN_UNIV] THEN REWRITE_TAC[LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN_INJ] THEN REWRITE_TAC[INTER_UNIV]);; let LIMIT_ATPOINTOF_SEQUENTIALLY_DECREASING = prove (`!m1 m2 f:A->B a l. limit (mtopology m2) f l (atpointof (mtopology m1) a) <=> l IN mspace m2 /\ !x. (!n. x(n) IN mspace m1 DELETE a) /\ (!m n. m < n ==> mdist m1 (x n,a) < mdist m1 (x m,a)) /\ (!m n. x m = x n <=> m = n) /\ limit (mtopology m1) x a sequentially ==> limit (mtopology m2) (f o x) l sequentially`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM NET_WITHIN_UNIV] THEN REWRITE_TAC[LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN_DECREASING] THEN REWRITE_TAC[INTER_UNIV]);; let DERIVED_SET_OF_SEQUENTIALLY = prove (`!met s:A->bool. (mtopology met) derived_set_of s = {x | x IN mspace met /\ ?f. (!n. f(n) IN ((s INTER mspace met) DELETE x)) /\ limit (mtopology met) f x sequentially}`, REWRITE_TAC[DERIVED_SET_OF_TRIVIAL_LIMIT; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[trivial_limit; EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY] THEN REWRITE_TAC[EVENTUALLY_FALSE; TRIVIAL_LIMIT_SEQUENTIALLY] THEN REWRITE_TAC[limit; TOPSPACE_MTOPOLOGY] THEN MESON_TAC[]);; let DERIVED_SET_OF_SEQUENTIALLY_ALT = prove (`!met s:A->bool. (mtopology met) derived_set_of s = {x | ?f. (!n. f(n) IN (s DELETE x)) /\ limit (mtopology met) f x sequentially}`, REPEAT GEN_TAC THEN REWRITE_TAC[DERIVED_SET_OF_TRIVIAL_LIMIT; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[trivial_limit; EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY] THEN REWRITE_TAC[EVENTUALLY_FALSE; TRIVIAL_LIMIT_SEQUENTIALLY] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[NOT_FORALL_THM; IN_DELETE; IN_INTER] THEN EQ_TAC THENL [MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `a:num->A` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [limit]) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `topspace(mtopology met):A->bool`)) THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `\n. (a:num->A) (N + n)` THEN ASM_SIMP_TAC[LE_ADD] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_MP_TAC LIMIT_SEQUENTIALLY_OFFSET THEN ASM_REWRITE_TAC[]);; let DERIVED_SET_OF_SEQUENTIALLY_INJ = prove (`!met s:A->bool. (mtopology met) derived_set_of s = {x | x IN mspace met /\ ?f. (!n. f(n) IN ((s INTER mspace met) DELETE x)) /\ (!m n. f m = f n <=> m = n) /\ limit (mtopology met) f x sequentially}`, REWRITE_TAC[DERIVED_SET_OF_TRIVIAL_LIMIT; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[trivial_limit; EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_INJ] THEN REWRITE_TAC[EVENTUALLY_FALSE; TRIVIAL_LIMIT_SEQUENTIALLY] THEN REPEAT GEN_TAC THEN REWRITE_TAC[limit; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[NOT_FORALL_THM; RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[CONJ_ACI]);; let DERIVED_SET_OF_SEQUENTIALLY_INJ_ALT = prove (`!met s:A->bool. (mtopology met) derived_set_of s = {x | ?f. (!n. f(n) IN (s DELETE x)) /\ (!m n. f m = f n <=> m = n) /\ limit (mtopology met) f x sequentially}`, REPEAT GEN_TAC THEN REWRITE_TAC[DERIVED_SET_OF_SEQUENTIALLY_INJ] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_DELETE] THEN X_GEN_TAC `x:A` THEN EQ_TAC THENL [MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `a:num->A` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [limit]) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `topspace(mtopology met):A->bool`)) THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `\n. (a:num->A) (N + n)` THEN ASM_SIMP_TAC[LE_ADD; EQ_ADD_LCANCEL] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_MP_TAC LIMIT_SEQUENTIALLY_OFFSET THEN ASM_REWRITE_TAC[]);; let DERIVED_SET_OF_SEQUENTIALLY_DECREASING = prove (`!met s:A->bool. (mtopology met) derived_set_of s = {x | x IN mspace met /\ ?f. (!n. f(n) IN ((s INTER mspace met) DELETE x)) /\ (!m n. m < n ==> mdist met (f n,x) < mdist met (f m,x)) /\ (!m n. f m = f n <=> m = n) /\ limit (mtopology met) f x sequentially}`, REWRITE_TAC[DERIVED_SET_OF_TRIVIAL_LIMIT; EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[trivial_limit; EVENTUALLY_ATPOINTOF_WITHIN_SEQUENTIALLY_DECREASING] THEN REWRITE_TAC[EVENTUALLY_FALSE; TRIVIAL_LIMIT_SEQUENTIALLY] THEN REPEAT GEN_TAC THEN REWRITE_TAC[limit; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[NOT_FORALL_THM; RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[CONJ_ACI]);; let DERIVED_SET_OF_SEQUENTIALLY_DECREASING_ALT = prove (`!met s:A->bool. (mtopology met) derived_set_of s = {x | ?f. (!n. f(n) IN (s DELETE x)) /\ (!m n. m < n ==> mdist met (f n,x) < mdist met (f m,x)) /\ (!m n. f m = f n <=> m = n) /\ limit (mtopology met) f x sequentially}`, REPEAT GEN_TAC THEN REWRITE_TAC[DERIVED_SET_OF_SEQUENTIALLY_DECREASING] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_DELETE] THEN X_GEN_TAC `x:A` THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `a:num->A` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [limit]) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `topspace(mtopology met):A->bool`)) THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `\n. (a:num->A) (N + n)` THEN ASM_SIMP_TAC[LE_ADD; EQ_ADD_LCANCEL; LT_ADD_LCANCEL] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_MP_TAC LIMIT_SEQUENTIALLY_OFFSET THEN ASM_REWRITE_TAC[]);; let CLOSURE_OF_SEQUENTIALLY = prove (`!met s:A->bool. (mtopology met) closure_of s = {x | x IN mspace met /\ ?f. (!n. f(n) IN (s INTER mspace met)) /\ limit (mtopology met) f x sequentially}`, REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN EQ_TAC THENL [REWRITE_TAC[CLOSURE_OF; IN_INTER; IN_UNION; TOPSPACE_MTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[DERIVED_SET_OF_SEQUENTIALLY; IN_ELIM_THM] THEN REWRITE_TAC[IN_INTER; IN_DELETE] THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN EXISTS_TAC `(\n. x):num->A` THEN ASM_REWRITE_TAC[LIMIT_CONST; TOPSPACE_MTOPOLOGY]; REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIMIT_IN_CLOSED_IN) THEN MAP_EVERY EXISTS_TAC [`mtopology met:A topology`; `f:num->A`] THEN ASM_REWRITE_TAC[CLOSED_IN_CLOSURE_OF; TRIVIAL_LIMIT_SEQUENTIALLY] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN GEN_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[SUBSET] CLOSURE_OF_SUBSET_INTER) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Combining theorems for real limits. *) (* ------------------------------------------------------------------------- *) let LIMIT_REAL_MUL = prove (`!(net:A net) f g l m. limit euclideanreal f l net /\ limit euclideanreal g m net ==> limit euclideanreal (\x. f x * g x) (l * m) net`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN(MP_TAC o SPEC `min (&1) (e / &2 / (abs l + abs m + &1))`)) THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; REAL_LT_MIN; REAL_LT_01; IMP_IMP; GSYM EVENTUALLY_AND; REAL_ARITH `&0 < abs x + abs y + &1`] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN SIMP_TAC[REAL_LT_RDIV_EQ; REAL_ARITH `&0 < abs x + abs y + &1`] THEN X_GEN_TAC `y:A` THEN SIMP_TAC[REAL_LT_RDIV_EQ; REAL_ARITH `&0 < abs x + abs y + &1`] THEN DISCH_THEN(CONJUNCTS_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(REAL_ARITH `abs((f' - f) * g') <= x /\ abs((g' - g) * f) <= y ==> x < e / &2 ==> y < e / &2 ==> abs(f' * g' - f * g) < e`) THEN REWRITE_TAC[REAL_ABS_MUL] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REAL_ARITH_TAC);; let LIMIT_REAL_LMUL = prove (`!(net:A net) c f l. limit euclideanreal f l net ==> limit euclideanreal (\x. c * f x) (c * l) net`, SIMP_TAC[LIMIT_REAL_MUL; LIMIT_REAL_CONST]);; let LIMIT_REAL_LMUL_EQ = prove (`!(net:A net) c f l. limit euclideanreal (\x. c * f x) (c * l) net <=> c = &0 \/ limit euclideanreal f l net`, REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; LIMIT_REAL_CONST] THEN EQ_TAC THEN REWRITE_TAC[LIMIT_REAL_LMUL] THEN DISCH_THEN(MP_TAC o SPEC `inv(c):real` o MATCH_MP LIMIT_REAL_LMUL) THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_LID; ETA_AX]);; let LIMIT_REAL_RMUL = prove (`!(net:A net) f c l. limit euclideanreal f l net ==> limit euclideanreal (\x. f x * c) (l * c) net`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[LIMIT_REAL_LMUL]);; let LIMIT_REAL_RMUL_EQ = prove (`!(net:A net) f c l. limit euclideanreal (\x. f x * c) (l * c) net <=> c = &0 \/ limit euclideanreal f l net`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[LIMIT_REAL_LMUL_EQ]);; let LIMIT_REAL_NEG = prove (`!(net:A net) f l. limit euclideanreal f l net ==> limit euclideanreal (\x. --(f x)) (--l) net`, ONCE_REWRITE_TAC[REAL_ARITH `--x:real = --(&1) * x`] THEN REWRITE_TAC[LIMIT_REAL_LMUL]);; let LIMIT_REAL_NEG_EQ = prove (`!(net:A net) f l. limit euclideanreal (\x. --(f x)) l net <=> limit euclideanreal f (--l) net`, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LIMIT_REAL_NEG) THEN REWRITE_TAC[REAL_NEG_NEG; ETA_AX]);; let LIMIT_REAL_ADD = prove (`!(net:A net) f g l m. limit euclideanreal f l net /\ limit euclideanreal g m net ==> limit euclideanreal (\x. f x + g x) (l + m) net`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2`)) THEN ASM_REWRITE_TAC[REAL_HALF; IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN REAL_ARITH_TAC);; let LIMIT_REAL_SUB = prove (`!(net:A net) f g l m. limit euclideanreal f l net /\ limit euclideanreal g m net ==> limit euclideanreal (\x. f x - g x) (l - m) net`, SIMP_TAC[real_sub; LIMIT_REAL_ADD; LIMIT_REAL_NEG]);; let LIMIT_REAL_ABS = prove (`!(net:A net) f l. limit euclideanreal f l net ==> limit euclideanreal (\x. abs(f x)) (abs l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN REAL_ARITH_TAC);; let LIMIT_REAL_MAX = prove (`!(net:A net) f g l m. limit euclideanreal f l net /\ limit euclideanreal g m net ==> limit euclideanreal (\x. max (f x) (g x)) (max l m) net`, REWRITE_TAC[REAL_ARITH `max a b = inv(&2) * (abs(a - b) + a + b)`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIMIT_REAL_LMUL THEN REPEAT(MATCH_MP_TAC LIMIT_REAL_ADD THEN CONJ_TAC) THEN ASM_SIMP_TAC[LIMIT_REAL_SUB; LIMIT_REAL_ABS]);; let LIMIT_REAL_MIN = prove (`!(net:A net) f g l m. limit euclideanreal f l net /\ limit euclideanreal g m net ==> limit euclideanreal (\x. min (f x) (g x)) (min l m) net`, REWRITE_TAC[REAL_ARITH `min a b = inv(&2) * ((a + b) - abs(a - b))`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIMIT_REAL_LMUL THEN ASM_SIMP_TAC[LIMIT_REAL_ADD; LIMIT_REAL_SUB; LIMIT_REAL_ABS]);; let LIMIT_SUM = prove (`!net f:A->K->real l k. FINITE k /\ (!i. i IN k ==> limit euclideanreal (\x. f x i) (l i) net) ==> limit euclideanreal (\x. sum k (f x)) (sum k l) net`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; LIMIT_REAL_CONST; FORALL_IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIMIT_REAL_ADD THEN ASM_SIMP_TAC[ETA_AX]);; let LIMIT_PRODUCT = prove (`!net f:A->K->real l k. FINITE k /\ (!i. i IN k ==> limit euclideanreal (\x. f x i) (l i) net) ==> limit euclideanreal (\x. product k (f x)) (product k l) net`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[PRODUCT_CLAUSES; LIMIT_REAL_CONST; FORALL_IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIMIT_REAL_MUL THEN ASM_SIMP_TAC[ETA_AX]);; let LIMIT_REAL_INV = prove (`!(net:A net) f l. limit euclideanreal f l net /\ ~(l = &0) ==> limit euclideanreal (\x. inv(f x)) (inv l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `min (abs l / &2) ((l pow 2 * e) / &2)`) THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_HALF; GSYM REAL_ABS_NZ; REAL_LT_MUL; REAL_LT_POW_2] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN GEN_TAC THEN SIMP_TAC[REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REAL_ARITH `abs(l - x) * &2 < abs l ==> ~(x = &0)`)) THEN ASM_SIMP_TAC[REAL_SUB_INV; REAL_ABS_DIV; REAL_LT_LDIV_EQ; GSYM REAL_ABS_NZ; REAL_ENTIRE] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `abs(x - y) * &2 < b * c ==> c * b <= d * &2 ==> abs(y - x) < d`)) THEN ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_LE_LMUL_EQ] THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_POW_2; REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REAL_ARITH_TAC);; let LIMIT_REAL_DIV = prove (`!(net:A net) f g l m. limit euclideanreal f l net /\ limit euclideanreal g m net /\ ~(m = &0) ==> limit euclideanreal (\x. f x / g x) (l / m) net`, SIMP_TAC[real_div; LIMIT_REAL_INV; LIMIT_REAL_MUL]);; let LIMIT_INF = prove (`!net f:A->K->real l k. FINITE k /\ (!i. i IN k ==> limit euclideanreal (\x. f x i) (l i) net) ==> limit euclideanreal (\x. inf {f x i | i IN k}) (inf {l i | i IN k}) net`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[SIMPLE_IMAGE; IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMAGE_CLAUSES; LIMIT_REAL_CONST] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[INF_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LIMIT_REAL_MIN THEN ASM_REWRITE_TAC[]);; let LIMIT_SUP = prove (`!net f:A->K->real l k. FINITE k /\ (!i. i IN k ==> limit euclideanreal (\x. f x i) (l i) net) ==> limit euclideanreal (\x. sup {f x i | i IN k}) (sup {l i | i IN k}) net`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[SIMPLE_IMAGE; IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMAGE_CLAUSES; LIMIT_REAL_CONST] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[SUP_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LIMIT_REAL_MAX THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Cauchy sequences and complete metric spaces. *) (* ------------------------------------------------------------------------- *) let cauchy_in = new_definition `!m:A metric s:num->A. cauchy_in m s <=> (!n. s n IN mspace m) /\ (!e. &0 < e ==> (?N. !n n'. N <= n /\ N <= n' ==> mdist m (s n,s n') < e))`;; let mcomplete = new_definition `!m:A metric. mcomplete m <=> (!s. cauchy_in m s ==> ?x. limit (mtopology m) s x sequentially)`;; let MCOMPLETE = prove (`!m:A metric. mcomplete m <=> !s. eventually (\n. s n IN mspace m) sequentially /\ (!e. &0 < e ==> ?N. !n n'. N <= n /\ N <= n' ==> mdist m (s n,s n') < e) ==> ?x. limit (mtopology m) s x sequentially`, GEN_TAC THEN REWRITE_TAC[mcomplete; cauchy_in] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `s:num->A` THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVENTUALLY_SEQUENTIALLY]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(s:num->A) o (\n. N + n)`) THEN ASM_SIMP_TAC[o_DEF; LE_ADD] THEN ANTS_TAC THENL [ASM_MESON_TAC[ARITH_RULE `M:num <= n ==> M <= N + n`]; MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[LIMIT_SEQUENTIALLY_OFFSET_REV]]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[EVENTUALLY_TRUE]]);; let MCOMPLETE_EMPTY_MSPACE = prove (`!m:A metric. mspace m = {} ==> mcomplete m`, SIMP_TAC[mcomplete; cauchy_in; NOT_IN_EMPTY]);; let MCOMPLETE_SUBMETRIC_EMPTY = prove (`!m:A metric. mcomplete(submetric m {})`, SIMP_TAC[MCOMPLETE_EMPTY_MSPACE; SUBMETRIC; INTER_EMPTY]);; let CAUCHY_IN_SUBMETRIC = prove (`!m s x:num->A. cauchy_in (submetric m s) x <=> (!n. x n IN s) /\ cauchy_in m x`, REWRITE_TAC[cauchy_in; SUBMETRIC; IN_INTER] THEN MESON_TAC[]);; let CAUCHY_IN_CONST = prove (`!m a:A. cauchy_in m (\n. a) <=> a IN mspace m`, REPEAT GEN_TAC THEN REWRITE_TAC[cauchy_in] THEN ASM_CASES_TAC `(a:A) IN mspace m` THEN ASM_SIMP_TAC[MDIST_REFL]);; let CONVERGENT_IMP_CAUCHY_IN = prove (`!m x l:A. (!n. x n IN mspace m) /\ limit (mtopology m) x l sequentially ==> cauchy_in m x`, REPEAT GEN_TAC THEN SIMP_TAC[LIMIT_METRIC; cauchy_in] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`n:num`; `p:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `n:num` th) THEN MP_TAC(SPEC `p:num` th)) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(l:A) IN mspace m` THEN SUBGOAL_THEN `(x:num->A) n IN mspace m /\ x p IN mspace m` MP_TAC THENL [ASM_REWRITE_TAC[]; CONV_TAC METRIC_ARITH]);; let MCOMPLETE_ALT = prove (`!m:A metric. mcomplete m <=> !s. cauchy_in m s <=> (!n. s n IN mspace m) /\ ?x. limit (mtopology m) s x sequentially`, MESON_TAC[CONVERGENT_IMP_CAUCHY_IN; mcomplete; cauchy_in]);; let CAUCHY_IN_SUBSEQUENCE = prove (`!m (x:num->A) r. (!m n. m < n ==> r m < r n) /\ cauchy_in m x ==> cauchy_in m (x o r)`, REPEAT GEN_TAC THEN REWRITE_TAC[cauchy_in; o_DEF] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[MONOTONE_BIGGER; LE_TRANS]);; let CAUCHY_IN_OFFSET = prove (`!m a x:num->A. (!n. n < a ==> x n IN mspace m) /\ cauchy_in m (\n. x(a + n)) ==> cauchy_in m x`, REPEAT GEN_TAC THEN REWRITE_TAC[cauchy_in] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[ARITH_RULE `n:num < a \/ n = a + (n - a)`]; ALL_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `a + N:num` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m - a:num`; `n - a:num`]) THEN ANTS_TAC THENL [ASM_ARITH_TAC; MATCH_MP_TAC EQ_IMP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN BINOP_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC);; let CAUCHY_IN_CONVERGENT_SUBSEQUENCE = prove (`!m r a x:num->A. cauchy_in m x /\ (!m n. m < n ==> r m < r n) /\ limit (mtopology m) (x o r) a sequentially ==> limit (mtopology m) x a sequentially`, REPEAT STRIP_TAC THEN REWRITE_TAC[LIMIT_METRIC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMIT_METRIC]) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cauchy_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e / &2`)) THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM; EVENTUALLY_SEQUENTIALLY] THEN X_GEN_TAC `M:num` THEN ASM_REWRITE_TAC[o_THM] THEN DISCH_TAC THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `MAX ((r:num->num) M) N` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `(r:num->num) n`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[LE_TRANS; MONOTONE_BIGGER; LE_REFL]; ALL_TAC] THEN MATCH_MP_TAC(METRIC_ARITH `x IN mspace m /\ y IN mspace m /\ z IN mspace m /\ mdist m (y:A,z) < e / &2 ==> mdist m (x,y) < e / &2 ==> mdist m (x,z) < e`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_TRANS; MONOTONE_BIGGER]);; let CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE = prove (`!m s:A->bool. closed_in (mtopology m) s /\ mcomplete m ==> mcomplete (submetric m s)`, INTRO_TAC "!m s; cl cp" THEN REWRITE_TAC[mcomplete] THEN INTRO_TAC "![a]; a" THEN CLAIM_TAC "cy'" `cauchy_in m (a:num->A)` THENL [REMOVE_THEN "a" MP_TAC THEN SIMP_TAC[cauchy_in; SUBMETRIC; IN_INTER]; HYP_TAC "cp" (GSYM o REWRITE_RULE[mcomplete]) THEN HYP REWRITE_TAC "cp" [LIMIT_SUBMETRIC_IFF] THEN REMOVE_THEN "cp" (HYP_TAC "cy': @l.l" o MATCH_MP) THEN EXISTS_TAC `l:A` THEN HYP_TAC "a: A cy" (REWRITE_RULE[cauchy_in; SUBMETRIC; IN_INTER]) THEN ASM_REWRITE_TAC[EVENTUALLY_TRUE] THEN MATCH_MP_TAC (ISPECL [`sequentially`; `mtopology(m:A metric)`] LIMIT_IN_CLOSED_IN) THEN EXISTS_TAC `a:num->A` THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_TRUE]]);; let SEQUENTIALLY_CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE = prove (`!m s:A->bool. mcomplete m /\ (!x l. (!n. x n IN s) /\ limit (mtopology m) x l sequentially ==> l IN s) ==> mcomplete (submetric m s)`, INTRO_TAC "!m s; cpl seq" THEN SUBGOAL_THEN `submetric m (s:A->bool) = submetric m (mspace m INTER s)` SUBST1_TAC THENL [REWRITE_TAC[submetric; INTER_ACI]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE THEN ASM_REWRITE_TAC[METRIC_CLOSED_IN_IFF_SEQUENTIALLY_CLOSED; INTER_SUBSET] THEN INTRO_TAC "!a l; a lim" THEN REWRITE_TAC[IN_INTER] THEN CONJ_TAC THENL [MATCH_MP_TAC (ISPEC `sequentially` LIMIT_IN_MSPACE) THEN HYP MESON_TAC "lim" []; REMOVE_THEN "seq" MATCH_MP_TAC THEN HYP SET_TAC "a lim" []]);; let CAUCHY_IN_INTERLEAVING_GEN = prove (`!m x y:num->A. cauchy_in m (\n. if EVEN n then x(n DIV 2) else y(n DIV 2)) <=> cauchy_in m x /\ cauchy_in m y /\ limit euclideanreal (\n. mdist m (x n,y n)) (&0) sequentially`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN REPEAT CONJ_TAC THENL [FIRST_ASSUM(MP_TAC o SPEC `\n. 2 * n` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CAUCHY_IN_SUBSEQUENCE)) THEN REWRITE_TAC[o_DEF; ARITH_RULE `(2 * m) DIV 2 = m`] THEN REWRITE_TAC[EVEN_MULT; ARITH; ETA_AX] THEN DISCH_THEN MATCH_MP_TAC THEN ARITH_TAC; FIRST_ASSUM(MP_TAC o SPEC `\n. 2 * n + 1` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CAUCHY_IN_SUBSEQUENCE)) THEN REWRITE_TAC[o_DEF; ARITH_RULE `(2 * m + 1) DIV 2 = m`] THEN REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH; ETA_AX] THEN DISCH_THEN MATCH_MP_TAC THEN ARITH_TAC; REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cauchy_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e:real`)) THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`2 * n`; `2 * n + 1`]) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP(MESON[] `(!n. P n) ==> (!n. P(2 * n)) /\ (!n. P(2 * n + 1))`)) THEN REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN REWRITE_TAC[ARITH_RULE `(2 * m) DIV 2 = m /\ (2 * m + 1) DIV 2 = m`] THEN SIMP_TAC[REAL_ARITH `&0 <= x ==> abs(&0 - x) = x`; MDIST_POS_LE]]; REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[cauchy_in] THEN ASM_CASES_TAC `!n. (x:num->A) n IN mspace m` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `!n. (y:num->A) n IN mspace m` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= x ==> abs(&0 - x) = x`; MDIST_POS_LE] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `N1:num`) (CONJUNCTS_THEN2 (X_CHOOSE_TAC `N2:num`) (X_CHOOSE_TAC `N3:num`))) THEN EXISTS_TAC `2 * MAX N1 (MAX N2 N3)` THEN REWRITE_TAC[ARITH_RULE `2 * MAX M N <= n <=> 2 * M <= n /\ 2 * N <= n`] THEN MATCH_MP_TAC(MESON[EVEN_OR_ODD] `(!m n. P m n ==> P n m) /\ (!m n. EVEN m /\ EVEN n ==> P m n) /\ (!m n. ODD m /\ ODD n ==> P m n) /\ (!m n. EVEN m /\ ODD n ==> P m n) ==> (!m n. P m n)`) THEN CONJ_TAC THENL [ASM_MESON_TAC[MDIST_SYM]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[MESON[EVEN_EXISTS; ODD_EXISTS; ADD1] `((!n. EVEN n ==> P n) <=> (!n. P(2 * n))) /\ ((!n. ODD n ==> P n) <=> (!n. P(2 * n + 1)))`] THEN REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH] THEN REWRITE_TAC[ARITH_RULE `(2 * m) DIV 2 = m /\ (2 * m + 1) DIV 2 = m`] THEN REPEAT CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN REPEAT DISCH_TAC THENL [MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x < e / &2 ==> x < e`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x < e / &2 ==> x < e`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; MATCH_MP_TAC(METRIC_ARITH `!b. a IN mspace m /\ b IN mspace m /\ c IN mspace m /\ mdist m (a,b) < e / &2 /\ mdist m (b,c) < e / &2 ==> mdist m (a:A,c) < e`) THEN EXISTS_TAC `(x:num->A) n` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC]]);; let CAUCHY_IN_INTERLEAVING = prove (`!m x a:A. cauchy_in m (\n. if EVEN n then x(n DIV 2) else a) <=> (!n. x n IN mspace m) /\ limit (mtopology m) x a sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[CAUCHY_IN_INTERLEAVING_GEN] THEN REWRITE_TAC[CAUCHY_IN_CONST] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [LIMIT_METRIC_DIST_NULL] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [RULE_ASSUM_TAC(REWRITE_RULE[cauchy_in]) THEN ASM_REWRITE_TAC[EVENTUALLY_TRUE]; MATCH_MP_TAC CONVERGENT_IMP_CAUCHY_IN THEN ONCE_REWRITE_TAC[LIMIT_METRIC_DIST_NULL] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]]);; let MCOMPLETE_NEST = prove (`!m:A metric. mcomplete m <=> !c. (!n. closed_in (mtopology m) (c n)) /\ (!n. ~(c n = {})) /\ (!m n. m <= n ==> c n SUBSET c m) /\ (!e. &0 < e ==> ?n a. c n SUBSET mcball m (a,e)) ==> ~(INTERS {c n | n IN (:num)} = {})`, GEN_TAC THEN REWRITE_TAC[mcomplete] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `c:num->A->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `!n. ?x. x IN (c:num->A->bool) n` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ANTS_TAC THENL [REWRITE_TAC[cauchy_in] THEN CONJ_TAC THENL [ASM_MESON_TAC[closed_in; SUBSET; TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &3`) THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[SUBSET; IN_MCBALL] THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `(x:num->A) m` th) THEN MP_TAC(SPEC `(x:num->A) n` th)) THEN REPEAT(ANTS_TAC THENL [ASM SET_TAC[]; DISCH_TAC]) THEN MATCH_MP_TAC(METRIC_ARITH `!a x y:A. a IN mspace m /\ x IN mspace m /\ y IN mspace m /\ &0 < e /\ mdist m (a,x) <= e / &3 /\ mdist m (a,y) <= e / &3 ==> mdist m (x,y) < e`) THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_GSPEC; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIMIT_IN_CLOSED_IN) THEN MAP_EVERY EXISTS_TAC [`mtopology m:A topology`; `x:num->A`] THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `n:num` THEN ASM SET_TAC[]]; X_GEN_TAC `x:num->A` THEN REWRITE_TAC[cauchy_in] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\n. mtopology m closure_of (IMAGE (x:num->A) (from n))`) THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN SIMP_TAC[CLOSURE_OF_MONO; FROM_MONO; IMAGE_SUBSET] THEN REWRITE_TAC[CLOSURE_OF_EQ_EMPTY_GEN; TOPSPACE_MTOPOLOGY] THEN ASM_SIMP_TAC[FROM_NONEMPTY; SET_RULE `(!n. x n IN s) /\ ~(k = {}) ==> ~DISJOINT s (IMAGE x k)`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_GSPEC; IN_ELIM_THM] THEN ANTS_TAC THENL [X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `(x:num->A) N` THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN REWRITE_TAC[CLOSED_IN_MCBALL; SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[IN_FROM; LE_REFL; IN_MCBALL; REAL_LT_IMP_LE]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN REWRITE_TAC[IN_UNIV; METRIC_CLOSURE_OF; IN_ELIM_THM; FORALL_AND_THM] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IN_FROM; IN_MBALL] THEN STRIP_TAC THEN ASM_REWRITE_TAC[LIMIT_METRIC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`N:num`; `e / &2`]) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `p:num`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(METRIC_ARITH `x IN mspace m /\ y IN mspace m /\ l IN mspace m /\ mdist m(l,y) < e / &2 ==> mdist m (x,y) < e / &2 ==> mdist m (x,l) < e`) THEN ASM_REWRITE_TAC[]]]);; let MCOMPLETE_NEST_SING = prove (`!m:A metric. mcomplete m <=> !c. (!n. closed_in (mtopology m) (c n)) /\ (!n. ~(c n = {})) /\ (!m n. m <= n ==> c n SUBSET c m) /\ (!e. &0 < e ==> ?n a. c n SUBSET mcball m (a,e)) ==> ?l. l IN mspace m /\ INTERS {c n | n IN (:num)} = {l}`, GEN_TAC THEN REWRITE_TAC[MCOMPLETE_NEST] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `c:num->A->bool` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_SING] THEN SUBGOAL_THEN `!a:A. a IN INTERS {c n | n IN (:num)} ==> a IN mspace m` ASSUME_TAC THENL [REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE[closed_in; TOPSPACE_MTOPOLOGY]) THEN ASM SET_TAC[]; ASM_SIMP_TAC[]] THEN MATCH_MP_TAC(SET_RULE `l IN s /\ (!l'. ~(l' = l) ==> ~(l' IN s)) ==> s = {l}`) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `l':A` THEN REPEAT DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `mdist m (l:A,l') / &3`) THEN ANTS_TAC THENL [ASM_MESON_TAC[MDIST_POS_EQ; REAL_ARITH `&0 < e / &3 <=> &0 < e`]; REWRITE_TAC[NOT_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`n:num`; `a:A`] THEN REWRITE_TAC[SUBSET; IN_MCBALL] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `l':A` th) THEN MP_TAC(SPEC `l:A` th)) THEN MATCH_MP_TAC(TAUT `(p /\ p') /\ ~(q /\ q') ==> (p ==> q) ==> (p' ==> q') ==> F`) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `~(l':A = l)` THEN CONV_TAC METRIC_ARITH);; let MCOMPLETE_FIP = prove (`!m:A metric. mcomplete m <=> !f. (!c. c IN f ==> closed_in (mtopology m) c) /\ (!e. &0 < e ==> ?c a. c IN f /\ c SUBSET mcball m (a,e)) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(INTERS f' = {})) ==> ~(INTERS f = {})`, GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[MCOMPLETE_NEST_SING]; REWRITE_TAC[MCOMPLETE_NEST] THEN DISCH_TAC THEN X_GEN_TAC `c:num->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (c:num->A->bool) (:num)`) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; RIGHT_EXISTS_AND_THM] THEN ASM_REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_FINITE_SUBSET_IMAGE; IN_UNIV] THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; IN_UNIV; SUBSET_UNIV] THEN DISCH_THEN MATCH_MP_TAC THEN X_GEN_TAC `k:num->bool` THEN DISCH_THEN(MP_TAC o ISPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `!t. ~(t = {}) /\ t SUBSET s ==> ~(s = {})`) THEN EXISTS_TAC `(c:num->A->bool) n` THEN ASM_SIMP_TAC[SUBSET_INTERS; FORALL_IN_GSPEC]] THEN DISCH_TAC THEN X_GEN_TAC `f:(A->bool)->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN `n:num` o SPEC `inv(&n + &1)`) THEN REWRITE_TAC[REAL_LT_INV_EQ; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[REAL_ARITH `&0 < &n + &1`; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:num->A->bool` THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\n. INTERS {(c:num->A->bool) m | m <= n}`) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [GEN_TAC THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `(c:num->A->bool) n` THEN MATCH_MP_TAC(SET_RULE `P n n ==> c n IN {c m | P m n}`) THEN REWRITE_TAC[LE_REFL]; GEN_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LE; SUBSET] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE]; REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERS_ANTIMONO THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC IMAGE_SUBSET THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_ARITH_TAC; MATCH_MP_TAC FORALL_POS_MONO_1 THEN CONJ_TAC THENL [MESON_TAC[MCBALL_SUBSET_CONCENTRIC; SUBSET_TRANS; REAL_LT_IMP_LE]; X_GEN_TAC `n:num` THEN EXISTS_TAC `n:num` THEN FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o SPEC `n:num`) THEN EXISTS_TAC `a:A` THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS)) THEN MATCH_MP_TAC(SET_RULE `P n n ==> INTERS {c m | P m n} SUBSET c n`) THEN REWRITE_TAC[LE_REFL]]]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[MESON[LE_REFL] `(!n m:num. m <= n ==> P m) <=> (!n. P n)`] THEN REWRITE_TAC[SET_RULE `{x | P x} = {a} <=> P a /\ (!b. P b ==> a = b)`] THEN STRIP_TAC THEN REWRITE_TAC[IN_INTERS] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `\n. t INTER INTERS {(c:num->A->bool) m | m <= n}`) THEN REWRITE_TAC[GSYM INTERS_INSERT] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [GEN_TAC THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; GSYM MEMBER_NOT_EMPTY]; GEN_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LE; SUBSET] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE]; REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERS_ANTIMONO THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x INSERT s SUBSET x INSERT t`) THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC IMAGE_SUBSET THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_ARITH_TAC; MATCH_MP_TAC FORALL_POS_MONO_1 THEN CONJ_TAC THENL [MESON_TAC[MCBALL_SUBSET_CONCENTRIC; SUBSET_TRANS; REAL_LT_IMP_LE]; X_GEN_TAC `n:num` THEN EXISTS_TAC `n:num` THEN FIRST_X_ASSUM(X_CHOOSE_TAC `x:A` o SPEC `n:num`) THEN EXISTS_TAC `x:A` THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS)) THEN MATCH_MP_TAC(SET_RULE `P n n ==> INTERS(t INSERT {c m | P m n}) SUBSET c n`) THEN REWRITE_TAC[LE_REFL]]]; REWRITE_TAC[INTERS_INSERT] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[IN_UNIV; IN_INTER; FORALL_AND_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[MESON[LE_REFL] `(!n m:num. m <= n ==> P m) <=> (!n. P n)`] THEN ASM SET_TAC[]]);; let MCOMPLETE_FIP_SING = prove (`!m:A metric. mcomplete m <=> !f. (!c. c IN f ==> closed_in (mtopology m) c) /\ (!e. &0 < e ==> ?c a. c IN f /\ c SUBSET mcball m (a,e)) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(INTERS f' = {})) ==> ?l. l IN mspace m /\ INTERS f = {l}`, GEN_TAC THEN REWRITE_TAC[MCOMPLETE_FIP] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `f:(A->bool)->bool` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_SING] THEN ASM_CASES_TAC `f:(A->bool)->bool = {}` THENL [ASM_MESON_TAC[MEMBER_NOT_EMPTY; REAL_LT_01]; ALL_TAC] THEN SUBGOAL_THEN `!a:A. a IN INTERS f ==> a IN mspace m` ASSUME_TAC THENL [REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE[closed_in; TOPSPACE_MTOPOLOGY]) THEN ASM SET_TAC[]; ASM_SIMP_TAC[]] THEN MATCH_MP_TAC(SET_RULE `l IN s /\ (!l'. ~(l' = l) ==> ~(l' IN s)) ==> s = {l}`) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `l':A` THEN REPEAT DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `mdist m (l:A,l') / &3`) THEN ANTS_TAC THENL [ASM_MESON_TAC[MDIST_POS_EQ; REAL_ARITH `&0 < e / &3 <=> &0 < e`]; REWRITE_TAC[NOT_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `a:A`] THEN REWRITE_TAC[SUBSET; IN_MCBALL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `l':A` th) THEN MP_TAC(SPEC `l:A` th)) THEN MATCH_MP_TAC(TAUT `(p /\ p') /\ ~(q /\ q') ==> (p ==> q) ==> (p' ==> q') ==> F`) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN UNDISCH_TAC `~(l':A = l)` THEN CONV_TAC METRIC_ARITH);; let MCOMPLETE_UNION = prove (`!m s t:A->bool. mcomplete(submetric m s) /\ mcomplete(submetric m t) ==> mcomplete(submetric m (s UNION t))`, REPEAT GEN_TAC THEN REWRITE_TAC[mcomplete; CAUCHY_IN_SUBMETRIC] THEN DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN STRIP_TAC THEN SUBGOAL_THEN `(:num) = {n | (x:num->A) n IN s} UNION {n | (x:num->A) n IN t}` (MP_TAC o AP_TERM `FINITE:(num->bool)->bool`) THENL [ASM SET_TAC[]; REWRITE_TAC[FINITE_UNION]] THEN REWRITE_TAC[REWRITE_RULE[INFINITE] num_INFINITE] THEN REWRITE_TAC[DE_MORGAN_THM; GSYM INFINITE] THEN DISCH_THEN(DISJ_CASES_THEN (MP_TAC o MATCH_MP INFINITE_ENUMERATE)) THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THENL [FIRST_X_ASSUM(MP_TAC o CONJUNCT1); FIRST_X_ASSUM(MP_TAC o CONJUNCT2)] THEN DISCH_THEN(MP_TAC o SPEC `(x:num->A) o (r:num->num)`) THEN ASM_SIMP_TAC[CAUCHY_IN_SUBSEQUENCE; o_THM] THEN (ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS]) THEN X_GEN_TAC `l:A` THEN ASM_REWRITE_TAC[MTOPOLOGY_SUBMETRIC; LIMIT_SUBTOPOLOGY] THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_UNION; EVENTUALLY_TRUE] THEN MATCH_MP_TAC CAUCHY_IN_CONVERGENT_SUBSEQUENCE THEN ASM_MESON_TAC[]);; let MCOMPLETE_UNIONS = prove (`!m s. FINITE s /\ (!t. t IN s ==> mcomplete(submetric m t)) ==> mcomplete(submetric m (UNIONS s))`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_INSERT; UNIONS_0; MCOMPLETE_SUBMETRIC_EMPTY; IN_INSERT] THEN MESON_TAC[MCOMPLETE_UNION]);; let MCOMPLETE_INTERS = prove (`!m s:(A->bool)->bool. FINITE s /\ ~(s = {}) /\ (!t. t IN s ==> mcomplete(submetric m t)) ==> mcomplete(submetric m (INTERS s))`, REPEAT GEN_TAC THEN REWRITE_TAC[mcomplete; CAUCHY_IN_SUBMETRIC; IN_INTERS] THEN REWRITE_TAC[MTOPOLOGY_SUBMETRIC; LIMIT_SUBTOPOLOGY; IN_INTERS] THEN STRIP_TAC THEN X_GEN_TAC `x:num->A` THEN STRIP_TAC THEN ASM_SIMP_TAC[EVENTUALLY_TRUE] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `t:A->bool`) THEN FIRST_ASSUM(MP_TAC o SPEC `t:A->bool`) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(MP_TAC o SPEC `x:num->A`)] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `l:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:num->A`) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `l':A` THEN ASM_MESON_TAC[LIMIT_METRIC_UNIQUE; TRIVIAL_LIMIT_SEQUENTIALLY]);; let MCOMPLETE_INTER = prove (`!m s t:A->bool. mcomplete(submetric m s) /\ mcomplete(submetric m t) ==> mcomplete(submetric m (s INTER t))`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_2] THEN MATCH_MP_TAC MCOMPLETE_INTERS THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; FINITE_INSERT; NOT_INSERT_EMPTY] THEN REWRITE_TAC[FINITE_EMPTY; NOT_IN_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Totally bounded subsets of metric spaces. *) (* ------------------------------------------------------------------------- *) let totally_bounded_in = new_definition `totally_bounded_in m (s:A->bool) <=> !e. &0 < e ==> ?k. FINITE k /\ k SUBSET s /\ s SUBSET UNIONS { mball m (x,e) | x IN k}`;; let TOTALLY_BOUNDED_IN_EMPTY = prove (`!m:A metric. totally_bounded_in m {}`, REWRITE_TAC[totally_bounded_in; EMPTY_SUBSET; SUBSET_EMPTY] THEN MESON_TAC[FINITE_EMPTY]);; let FINITE_IMP_TOTALLY_BOUNDED_IN = prove (`!m s:A->bool. FINITE s /\ s SUBSET mspace m ==> totally_bounded_in m s`, REPEAT STRIP_TAC THEN REWRITE_TAC[totally_bounded_in] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> x IN f x) ==> s SUBSET UNIONS {f x | x IN s}`) THEN ASM_REWRITE_TAC[CENTRE_IN_MBALL_EQ; GSYM SUBSET]);; let TOTALLY_BOUNDED_IN_IMP_SUBSET = prove (`!m s:A->bool. totally_bounded_in m s ==> s SUBSET mspace m`, REPEAT GEN_TAC THEN REWRITE_TAC[totally_bounded_in] THEN DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01] THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; MBALL_SUBSET_MSPACE]);; let TOTALLY_BOUNDED_IN_SING = prove (`!m x:A. totally_bounded_in m {x} <=> x IN mspace m`, REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FINITE_IMP_TOTALLY_BOUNDED_IN; FINITE_SING; SING_SUBSET] THEN REWRITE_TAC[GSYM SING_SUBSET; TOTALLY_BOUNDED_IN_IMP_SUBSET]);; let TOTALLY_BOUNDED_IN_SEQUENTIALLY = prove (`!m s:A->bool. totally_bounded_in m s <=> s SUBSET mspace m /\ !x:num->A. (!n. x n IN s) ==> ?r. (!m n. m < n ==> r m < r n) /\ cauchy_in m (x o r)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET mspace m` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[TOTALLY_BOUNDED_IN_IMP_SUBSET]] THEN REWRITE_TAC[totally_bounded_in] THEN REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL [ALL_TAC; ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x /\ R x) <=> ~(!x. P x /\ Q x ==> ~R x)`] THEN DISCH_TAC THEN SUBGOAL_THEN `?x. (!n. (x:num->A) n IN s) /\ (!n p. p < n ==> e <= mdist m (x p,x n))` STRIP_ASSUME_TAC THENL [REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC (MATCH_MP WF_REC_EXISTS WF_num) THEN SIMP_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:num->A`; `n:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->A) {i | i < n}`) THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LT] THEN ASM_SIMP_TAC[UNIONS_GSPEC; SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; EXISTS_IN_IMAGE] THEN REWRITE_TAC[IN_ELIM_THM; IN_MBALL; GSYM REAL_NOT_LT] THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real` o CONJUNCT2 o GEN_REWRITE_RULE I [cauchy_in]) THEN ASM_REWRITE_TAC[o_DEF] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPECL [`N:num`; `(r:num->num) N + 1`])) THEN REWRITE_TAC[LE_REFL; NOT_IMP; REAL_NOT_LT] THEN CONJ_TAC THENL [MATCH_MP_TAC(ARITH_RULE `n <= m ==> n <= m + 1`) THEN ASM_MESON_TAC[MONOTONE_BIGGER]; FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC(ARITH_RULE `n + 1 <= m ==> n < m`) THEN ASM_MESON_TAC[MONOTONE_BIGGER]]]] THEN MP_TAC(ISPEC `\(i:num) (r:num->num). ?N. !n n'. N <= n /\ N <= n' ==> mdist m (x(r n):A,x(r n')) < inv(&i + &1)` SUBSEQUENCE_DIAGONALIZATION_LEMMA) THEN REWRITE_TAC[o_DEF] THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `\n:num. n`) THEN ASM_REWRITE_TAC[cauchy_in] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC FORALL_POS_MONO_1 THEN ASM_REWRITE_TAC[] THEN MESON_TAC[REAL_LT_TRANS]] THEN CONJ_TAC THENL [ALL_TAC; MAP_EVERY X_GEN_TAC [`i:num`; `r:num->num`; `k1:num->num`; `k2:num->num`; `M:num`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `N:num`) ASSUME_TAC) THEN EXISTS_TAC `MAX M N` THEN ASM_REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN ASM_METIS_TAC [LE_TRANS]] THEN MAP_EVERY X_GEN_TAC [`d:num`; `r:num->num`] THEN ABBREV_TAC `y:num->A = (x:num->A) o (r:num->num)` THEN FIRST_X_ASSUM(MP_TAC o ISPEC `r:num->num` o MATCH_MP (MESON[] `(!n. x n IN s) ==> !r. (!n. x(r n) IN s)`)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN SIMP_TAC[o_THM] THEN DISCH_THEN(K ALL_TAC) THEN SPEC_TAC(`y:num->A`,`x:num->A`) THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `inv(&d + &1) / &2`) THEN REWRITE_TAC[REAL_HALF; REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN REWRITE_TAC[UNIONS_GSPEC; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `(:num) SUBSET UNIONS {{i | x i IN mball m (z,inv(&d + &1) / &2)} | (z:A) IN k}` MP_TAC THENL [REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET)) THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_UNIONS; FINITE_IMAGE] THEN REWRITE_TAC[REWRITE_RULE[INFINITE] num_INFINITE; FORALL_IN_IMAGE] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:A` THEN REWRITE_TAC[GSYM INFINITE] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP INFINITE_ENUMERATE) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `0` THEN MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `IMAGE f UNIV = {x | P x} ==> !a. P(f a)`)) THEN DISCH_THEN(fun t ->MP_TAC(SPEC `q:num` t) THEN MP_TAC(SPEC `p:num` t)) THEN REWRITE_TAC[IN_MBALL] THEN SUBGOAL_THEN `(z:A) IN mspace m /\ x((r:num->num) p) IN mspace m /\ x(r q) IN mspace m` MP_TAC THENL [ASM SET_TAC[]; CONV_TAC METRIC_ARITH]);; let TOTALLY_BOUNDED_IN_SUBSET = prove (`!m s t:A->bool. totally_bounded_in m s /\ t SUBSET s ==> totally_bounded_in m t`, REWRITE_TAC[TOTALLY_BOUNDED_IN_SEQUENTIALLY] THEN SET_TAC[]);; let TOTALLY_BOUNDED_IN_UNION = prove (`!m s t:A->bool. totally_bounded_in m s /\ totally_bounded_in m t ==> totally_bounded_in m (s UNION t)`, REPEAT GEN_TAC THEN REWRITE_TAC[totally_bounded_in] THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNIONS_GSPEC] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `u UNION v:A->bool` THEN ASM_REWRITE_TAC[FINITE_UNION] THEN ASM SET_TAC[]);; let TOTALLY_BOUNDED_IN_UNIONS = prove (`!m f:(A->bool)->bool. FINITE f /\ (!s. s IN f ==> totally_bounded_in m s) ==> totally_bounded_in m (UNIONS f)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[UNIONS_0; TOTALLY_BOUNDED_IN_EMPTY; IN_INSERT; UNIONS_INSERT] THEN MESON_TAC[TOTALLY_BOUNDED_IN_UNION]);; let TOTALLY_BOUNDED_IN_IMP_MBOUNDED = prove (`!m s:A->bool. totally_bounded_in m s ==> mbounded m s`, REPEAT GEN_TAC THEN REWRITE_TAC[totally_bounded_in] THEN DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] MBOUNDED_SUBSET) THEN MATCH_MP_TAC MBOUNDED_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[MBOUNDED_MBALL]);; let TOTALLY_BOUNDED_IN_SUBMETRIC = prove (`!m s t:A->bool. totally_bounded_in m s /\ s SUBSET t ==> totally_bounded_in (submetric m t) s`, REPEAT GEN_TAC THEN REWRITE_TAC[totally_bounded_in] THEN SIMP_TAC[UNIONS_GSPEC; SUBSET; IN_ELIM_THM] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:A->bool` THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN ASM_SIMP_TAC[MBALL_SUBMETRIC] THEN ASM SET_TAC[]);; let TOTALLY_BOUNDED_IN_ABSOLUTE = prove (`!m s:A->bool. totally_bounded_in (submetric m s) s <=> totally_bounded_in m s`, REPEAT GEN_TAC THEN REWRITE_TAC[totally_bounded_in] THEN SIMP_TAC[UNIONS_GSPEC; SUBSET; IN_ELIM_THM] THEN EQ_TAC THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:A->bool` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN ASM_SIMP_TAC[MBALL_SUBMETRIC] THEN ASM SET_TAC[]);; let TOTALLY_BOUNDED_IN_CLOSURE_OF = prove (`!m s:A->bool. totally_bounded_in m s ==> totally_bounded_in m (mtopology m closure_of s)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN DISCH_THEN(MP_TAC o SPEC `mspace m INTER s:A->bool` o MATCH_MP(REWRITE_RULE[IMP_CONJ] TOTALLY_BOUNDED_IN_SUBSET)) THEN REWRITE_TAC[INTER_SUBSET; TOPSPACE_MTOPOLOGY] THEN MP_TAC(SET_RULE `mspace m INTER (s:A->bool) SUBSET mspace m`) THEN SPEC_TAC(`mspace m INTER (s:A->bool)`,`s:A->bool`) THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[totally_bounded_in] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:A->bool` THEN REWRITE_TAC[UNIONS_GSPEC] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_TRANS; CLOSURE_OF_SUBSET; TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN REWRITE_TAC[SUBSET; METRIC_CLOSURE_OF; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN REWRITE_TAC[IN_MBALL] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:A` o MATCH_MP (SET_RULE `s SUBSET {x | P x} ==> !a. a IN s ==> P a`)) THEN ASM_REWRITE_TAC[IN_MBALL] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:A` THEN ASM_CASES_TAC `(z:A) IN k` THEN ASM_SIMP_TAC[] THEN MAP_EVERY UNDISCH_TAC [`(x:A) IN mspace m`; `(y:A) IN mspace m`; `mdist m (x:A,y) < e / &2`] THEN CONV_TAC METRIC_ARITH);; let TOTALLY_BOUNDED_IN_CLOSURE_OF_EQ = prove (`!m s:A->bool. s SUBSET mspace m ==> (totally_bounded_in m (mtopology m closure_of s) <=> totally_bounded_in m s)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[TOTALLY_BOUNDED_IN_CLOSURE_OF] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] TOTALLY_BOUNDED_IN_SUBSET) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; TOPSPACE_MTOPOLOGY]);; let TOTALLY_BOUNDED_IN_CAUCHY_SEQUENCE = prove (`!m x:num->A. cauchy_in m x ==> totally_bounded_in m (IMAGE x (:num))`, REPEAT GEN_TAC THEN REWRITE_TAC[cauchy_in; totally_bounded_in] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPEC `N:num`)) THEN REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (x:num->A) (0..N)` THEN SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG; IMAGE_SUBSET; SUBSET_UNIV] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_UNIV; FORALL_IN_IMAGE] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IN_ELIM_THM; IN_NUMSEG; LE_0] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n:num <= N` THENL [EXISTS_TAC `n:num` THEN ASM_SIMP_TAC[CENTRE_IN_MBALL]; EXISTS_TAC `N:num` THEN ASM_REWRITE_TAC[IN_MBALL; LE_REFL] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC]);; let CAUCHY_IN_IMP_MBOUNDED = prove (`!m:A metric x. cauchy_in m x ==> mbounded m {x i | i IN (:num)}`, REPEAT STRIP_TAC THEN REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_SIMP_TAC[TOTALLY_BOUNDED_IN_IMP_MBOUNDED; TOTALLY_BOUNDED_IN_CAUCHY_SEQUENCE]);; (* ------------------------------------------------------------------------- *) (* Compactness in metric spaces. *) (* ------------------------------------------------------------------------- *) let BOLZANO_WEIERSTRASS_PROPERTY = prove (`!m u s:A->bool. s SUBSET u /\ s SUBSET mspace m ==> ((!x. (!n:num. x n IN s) ==> ?l r. l IN u /\ (!m n. m < n ==> r m < r n) /\ limit (mtopology m) (x o r) l sequentially) <=> (!t. t SUBSET s /\ INFINITE t ==> ~(u INTER (mtopology m) derived_set_of t = {})))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INFINITE_CARD_LE]) THEN REWRITE_TAC[le_c; INJECTIVE_ON_ALT; LEFT_IMP_EXISTS_THM; IN_UNIV] THEN X_GEN_TAC `f:num->A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `f:num->A`) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[IN_INTER] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMIT_METRIC]) THEN REWRITE_TAC[METRIC_DERIVED_SET_OF; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `r:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `r:real`) THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (fun th -> MP_TAC(SPEC `N + 1` th) THEN MP_TAC(SPEC `N:num` th))) THEN REWRITE_TAC[ARITH_RULE `N <= N + 1`; LE_REFL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[] `(?x y. P x /\ P y /\ ~(x = y)) ==> (?z. ~(z = l) /\ P z)`) THEN MAP_EVERY EXISTS_TAC [`(f:num->A)(r(N + 1))`; `(f:num->A)(r(N:num))`] THEN ASM_SIMP_TAC[IN_MBALL; ARITH_RULE `N < N + 1`; MESON[LT_REFL] `x:num < y ==> ~(y = x)`] THEN ASM_MESON_TAC[MDIST_SYM; SUBSET]; ALL_TAC] THEN REWRITE_TAC[METRIC_DERIVED_SET_OF; GSYM MEMBER_NOT_EMPTY] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN ASM_CASES_TAC `FINITE(IMAGE (x:num->A) (:num))` THENL [FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] FINITE_IMAGE_INFINITE)) THEN REWRITE_TAC[num_INFINITE; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m:num` THEN DISCH_THEN(MP_TAC o MATCH_MP INFINITE_ENUMERATE) THEN GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN EXISTS_TAC `(x:num->A) m` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `IMAGE f UNIV = {x | P x} ==> !n. P(f n)`)) THEN ASM_REWRITE_TAC[o_DEF; LIMIT_CONST; TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->A) (:num)`) THEN ASM_REWRITE_TAC[INFINITE; SUBSET; FORALL_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!n. (x:num->A) n IN mspace m` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?r:num->num. (!n. (!p. p < n ==> r p < r n) /\ ~(x(r n) = l) /\ mdist m (x(r n):A,l) < inv(&n + &1))` MP_TAC THENL [MATCH_MP_TAC (MATCH_MP WF_REC_EXISTS WF_num) THEN SIMP_TAC[] THEN X_GEN_TAC `r:num->num` THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `inf((inv(&n + &1)) INSERT (IMAGE (\k. mdist m (l,(x:num->A) k)) (UNIONS (IMAGE (\p. 0..r p) {p | p < n})) DELETE (&0)))`) THEN SIMP_TAC[REAL_LT_INF_FINITE; FINITE_INSERT; NOT_INSERT_EMPTY; IN_MBALL; FINITE_DELETE; FINITE_IMAGE; FINITE_UNIONS; FORALL_IN_IMAGE; FINITE_NUMSEG; FINITE_NUMSEG_LT] THEN REWRITE_TAC[FORALL_IN_INSERT; REAL_LT_INV_EQ; IN_DELETE; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_UNIONS; IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_NUMSEG; IN_ELIM_THM] THEN ASM_SIMP_TAC[MDIST_POS_LT; MDIST_0; REAL_ARITH `&0 < &n + &1`] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IN_UNIV; FORALL_AND_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[GSYM NOT_LT; CONJUNCT1 LT] THEN ASM_MESON_TAC[MDIST_SYM; REAL_LT_REFL]; MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[FORALL_AND_THM] THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[LIMIT_METRIC; o_DEF] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `\n. inv(&n + &1) < e` THEN ASM_REWRITE_TAC[ARCH_EVENTUALLY_INV1] THEN X_GEN_TAC `k:num` THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LT_TRANS) THEN ASM_REWRITE_TAC[]]]);; let [COMPACT_IN_EQ_BOLZANO_WEIERSTRASS; COMPACT_IN_SEQUENTIALLY; COMPACT_IN_IMP_TOTALLY_BOUNDED_IN_EXPLICIT; LEBESGUE_NUMBER] = (CONJUNCTS o prove) (`(!m s:A->bool. compact_in (mtopology m) s <=> s SUBSET mspace m /\ !t. t SUBSET s /\ INFINITE t ==> ~(s INTER (mtopology m) derived_set_of t = {})) /\ (!m s:A->bool. compact_in (mtopology m) s <=> s SUBSET mspace m /\ !x. (!n:num. x n IN s) ==> ?l r. l IN s /\ (!m n. m < n ==> r m < r n) /\ limit (mtopology m) (x o r) l sequentially) /\ (!m (s:A->bool) e. compact_in (mtopology m) s /\ &0 < e ==> ?k. FINITE k /\ k SUBSET s /\ s SUBSET UNIONS { mball m (x,e) | x IN k}) /\ (!m (s:A->bool) U. compact_in (mtopology m) s /\ (!u. u IN U ==> open_in (mtopology m) u) /\ s SUBSET UNIONS U ==> ?e. &0 < e /\ !x. x IN s ==> ?u. u IN U /\ mball m (x,e) SUBSET u)`, REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`m:A metric`; `s:A->bool`] THEN ASM_CASES_TAC `(s:A->bool) SUBSET mspace m` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[COMPACT_IN_SUBSET_TOPSPACE; TOPSPACE_MTOPOLOGY]] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> r) /\ (r ==> s) /\ (r ==> t) /\ (s /\ t ==> p) ==> (p <=> q) /\ (p <=> r) /\ (p ==> s) /\ (p ==> t)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[COMPACT_IN_IMP_BOLZANO_WEIERSTRASS]; MATCH_MP_TAC EQ_IMP THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC BOLZANO_WEIERSTRASS_PROPERTY THEN ASM_REWRITE_TAC[SUBSET_REFL]; DISCH_TAC THEN ASM_REWRITE_TAC[GSYM totally_bounded_in] THEN ASM_SIMP_TAC[TOTALLY_BOUNDED_IN_SEQUENTIALLY] THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONVERGENT_IMP_CAUCHY_IN THEN REWRITE_TAC[o_THM] THEN ASM SET_TAC[]; DISCH_TAC THEN X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) [NOT_FORALL_THM; RIGHT_IMP_EXISTS_THM; NOT_IMP] THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `inv(&n + &1)`) THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN REWRITE_TAC[SKOLEM_THM; NOT_EXISTS_THM; FORALL_AND_THM] THEN X_GEN_TAC `x:num->A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`l:A`; `r:num->num`] THEN STRIP_TAC THEN SUBGOAL_THEN `?b:A->bool. l IN b /\ b IN U` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; IN_UNIONS]; ALL_TAC] THEN SUBGOAL_THEN `?e. &0 < e /\ !z:A. z IN mspace m /\ mdist m (z,l) < e ==> z IN b` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `b:A->bool`) THEN ASM_REWRITE_TAC[OPEN_IN_MTOPOLOGY; SUBSET; IN_MBALL] THEN DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `l:A`)) THEN ASM_MESON_TAC[MDIST_SYM]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMIT_METRIC]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e / &2`)) THEN MP_TAC(ISPEC `e / &2` ARCH_EVENTUALLY_INV1) THEN ASM_REWRITE_TAC[REAL_HALF; TAUT `p ==> ~q <=> ~(p /\ q)`] THEN REWRITE_TAC[GSYM EVENTUALLY_AND; o_THM] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; NOT_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(r:num->num) n`; `b:A->bool`]) THEN ASM_REWRITE_TAC[SUBSET; IN_MBALL] THEN X_GEN_TAC `z:A` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (METRIC_ARITH `mdist m (x,l) < e / &2 ==> x IN mspace m /\ z IN mspace m /\ l IN mspace m /\ mdist m (x,z) < e / &2 ==> mdist m (z,l) < e`)) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REAL_LT_TRANS)) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_LTE_TRANS)) THEN MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_OF_NUM_LE; REAL_LE_RADD; REAL_ARITH `&0 < &n + &1`] THEN ASM_MESON_TAC[MONOTONE_BIGGER]; DISCH_TAC THEN ASM_REWRITE_TAC[compact_in; TOPSPACE_MTOPOLOGY] THEN X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM (CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `U:(A->bool)->bool`)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o REWRITE_RULE[RIGHT_IMP_EXISTS_THM])) THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `r:real`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; UNIONS_GSPEC] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (f:A->A->bool) k` THEN ASM_SIMP_TAC[FINITE_IMAGE; SUBSET; UNIONS_IMAGE; FORALL_IN_IMAGE] THEN ASM SET_TAC[]]);; let COMPACT_SPACE_SEQUENTIALLY = prove (`!m:A metric. compact_space(mtopology m) <=> !x. (!n:num. x n IN mspace m) ==> ?l r. l IN mspace m /\ (!m n. m < n ==> r m < r n) /\ limit (mtopology m) (x o r) l sequentially`, REWRITE_TAC[compact_space; COMPACT_IN_SEQUENTIALLY; SUBSET_REFL; TOPSPACE_MTOPOLOGY]);; let COMPACT_SPACE_EQ_BOLZANO_WEIERSTRASS = prove (`!m:A metric. compact_space(mtopology m) <=> !s. s SUBSET mspace m /\ INFINITE s ==> ~(mtopology m derived_set_of s = {})`, REWRITE_TAC[compact_space; COMPACT_IN_EQ_BOLZANO_WEIERSTRASS] THEN GEN_TAC THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[derived_set_of; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER; IN_ELIM_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN SET_TAC[]);; let COMPACT_SPACE_NEST = prove (`!m:A metric. compact_space(mtopology m) <=> !c. (!n. closed_in (mtopology m) (c n)) /\ (!n. ~(c n = {})) /\ (!m n. m <= n ==> c n SUBSET c m) ==> ~(INTERS {c n | n IN (:num)} = {})`, GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[COMPACT_SPACE_FIP] THEN DISCH_TAC THEN X_GEN_TAC `c:num->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (c:num->A->bool) (:num)`) THEN ASM_REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE; SUBSET_UNIV] THEN X_GEN_TAC `k:num->bool` THEN DISCH_THEN(MP_TAC o ISPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `!t. ~(t = {}) /\ t SUBSET s ==> ~(s = {})`) THEN EXISTS_TAC `(c:num->A->bool) n` THEN ASM_SIMP_TAC[SUBSET_INTERS; FORALL_IN_IMAGE]; DISCH_TAC THEN REWRITE_TAC[COMPACT_SPACE_SEQUENTIALLY] THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\n. mtopology m closure_of (IMAGE (x:num->A) (from n))`) THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN SIMP_TAC[CLOSURE_OF_MONO; FROM_MONO; IMAGE_SUBSET] THEN REWRITE_TAC[CLOSURE_OF_EQ_EMPTY_GEN; TOPSPACE_MTOPOLOGY] THEN ASM_SIMP_TAC[FROM_NONEMPTY; SET_RULE `(!n. x n IN s) /\ ~(k = {}) ==> ~DISJOINT s (IMAGE x k)`] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_GSPEC; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN REWRITE_TAC[IN_UNIV; METRIC_CLOSURE_OF; IN_ELIM_THM; FORALL_AND_THM] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IN_FROM; IN_MBALL] THEN STRIP_TAC THEN SUBGOAL_THEN `?r. (!n. mdist m (l:A,x(r n)) < inv(&n + &1)) /\ (!n. (r:num->num) n < r(SUC n))` MP_TAC THENL [MATCH_MP_TAC DEPENDENT_CHOICE THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`0`; `&1`]); MAP_EVERY X_GEN_TAC [`n:num`; `m:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m + 1`; `inv(&(SUC n) + &1)`])] THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[ARITH_RULE `m + 1 <= n <=> m < n`] THEN MESON_TAC[]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSEQUENCE_STEPWISE] THEN ASM_REWRITE_TAC[LIMIT_METRIC; o_THM] THEN X_GEN_TAC `e:real` THEN GEN_REWRITE_TAC LAND_CONV [GSYM ARCH_EVENTUALLY_INV1] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM_MESON_TAC[REAL_LT_TRANS; MDIST_SYM]]]);; let COMPACT_IN_IMP_TOTALLY_BOUNDED_IN = prove (`!m (s:A->bool). compact_in (mtopology m) s ==> totally_bounded_in m s`, REWRITE_TAC[totally_bounded_in] THEN MESON_TAC[COMPACT_IN_IMP_TOTALLY_BOUNDED_IN_EXPLICIT]);; let MCOMPLETE_DISCRETE_METRIC = prove (`!s:A->bool. mcomplete (discrete_metric s)`, GEN_TAC THEN REWRITE_TAC[mcomplete; DISCRETE_METRIC; cauchy_in] THEN X_GEN_TAC `x:num->A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `&1`)) THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPEC `N:num`)) THEN REWRITE_TAC[LE_REFL; TAUT `(if p then T else F) = p`] THEN DISCH_TAC THEN EXISTS_TAC `(x:num->A) N` THEN MATCH_MP_TAC LIMIT_EVENTUALLY THEN ASM_REWRITE_TAC[DISCRETE_METRIC; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN ASM_MESON_TAC[]);; let COMPACT_SPACE_IMP_MCOMPLETE = prove (`!m:A metric. compact_space(mtopology m) ==> mcomplete m`, SIMP_TAC[COMPACT_SPACE_NEST; MCOMPLETE_NEST]);; let COMPACT_IN_IMP_MCOMPLETE = prove (`!m s:A->bool. compact_in (mtopology m) s ==> mcomplete (submetric m s)`, REWRITE_TAC[COMPACT_IN_SUBSPACE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_SPACE_IMP_MCOMPLETE THEN ASM_REWRITE_TAC[MTOPOLOGY_SUBMETRIC]);; let MCOMPLETE_IMP_CLOSED_IN = prove (`!m s:A->bool. mcomplete(submetric m s) /\ s SUBSET mspace m ==> closed_in (mtopology m) s`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[METRIC_CLOSED_IN_IFF_SEQUENTIALLY_CLOSED] THEN MAP_EVERY X_GEN_TAC [`x:num->A`; `l:A`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONVERGENT_IMP_CAUCHY_IN)) THEN ANTS_TAC THENL [ASM SET_TAC[]; STRIP_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A` o REWRITE_RULE[mcomplete]) THEN ASM_REWRITE_TAC[CAUCHY_IN_SUBMETRIC; LIMIT_SUBTOPOLOGY; MTOPOLOGY_SUBMETRIC] THEN DISCH_THEN(X_CHOOSE_THEN `l':A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `l:A = l'` (fun th -> ASM_REWRITE_TAC[th]) THEN MATCH_MP_TAC(ISPEC `sequentially` LIMIT_METRIC_UNIQUE) THEN ASM_MESON_TAC[TRIVIAL_LIMIT_SEQUENTIALLY]);; let CLOSED_IN_EQ_MCOMPLETE = prove (`!m s:A->bool. mcomplete m ==> (closed_in (mtopology m) s <=> s SUBSET mspace m /\ mcomplete(submetric m s))`, MESON_TAC[MCOMPLETE_IMP_CLOSED_IN; CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE; CLOSED_IN_SUBSET; TOPSPACE_MTOPOLOGY]);; let COMPACT_SPACE_EQ_MCOMPLETE_TOTALLY_BOUNDED_IN = prove (`!m:A metric. compact_space(mtopology m) <=> mcomplete m /\ totally_bounded_in m (mspace m)`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[COMPACT_SPACE_IMP_MCOMPLETE; COMPACT_IN_IMP_TOTALLY_BOUNDED_IN; GSYM compact_space; GSYM TOPSPACE_MTOPOLOGY] THEN SIMP_TAC[TOTALLY_BOUNDED_IN_SEQUENTIALLY; SUBSET_REFL] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN STRIP_TAC THEN REWRITE_TAC[compact_space; COMPACT_IN_SEQUENTIALLY] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; SUBSET_REFL] THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o SPEC `(x:num->A) o (r:num->num)` o REWRITE_RULE[mcomplete]) THEN ASM_REWRITE_TAC[limit; TOPSPACE_MTOPOLOGY] THEN MESON_TAC[]);; let COMPACT_CLOSURE_OF_IMP_TOTALLY_BOUNDED_IN = prove (`!m s:A->bool. s SUBSET mspace m /\ compact_in (mtopology m) (mtopology m closure_of s) ==> totally_bounded_in m s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC TOTALLY_BOUNDED_IN_SUBSET THEN EXISTS_TAC `mtopology m closure_of s:A->bool` THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; TOPSPACE_MTOPOLOGY] THEN MATCH_MP_TAC COMPACT_IN_IMP_TOTALLY_BOUNDED_IN THEN ASM_REWRITE_TAC[]);; let TOTALLY_BOUNDED_IN_EQ_COMPACT_CLOSURE_OF = prove (`!m s:A->bool. mcomplete m ==> (totally_bounded_in m s <=> s SUBSET mspace m /\ compact_in (mtopology m) (mtopology m closure_of s))`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[COMPACT_CLOSURE_OF_IMP_TOTALLY_BOUNDED_IN] THEN SIMP_TAC[TOTALLY_BOUNDED_IN_IMP_SUBSET] THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP TOTALLY_BOUNDED_IN_IMP_SUBSET) THEN REWRITE_TAC[COMPACT_IN_SUBSPACE; CLOSURE_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[GSYM MTOPOLOGY_SUBMETRIC] THEN REWRITE_TAC[COMPACT_SPACE_EQ_MCOMPLETE_TOTALLY_BOUNDED_IN] THEN ASM_SIMP_TAC[CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE; CLOSED_IN_CLOSURE_OF] THEN MATCH_MP_TAC TOTALLY_BOUNDED_IN_SUBMETRIC THEN REWRITE_TAC[SUBMETRIC; INTER_SUBSET] THEN SIMP_TAC[SET_RULE `s SUBSET u ==> s INTER u = s`; CLOSURE_OF_SUBSET_TOPSPACE; GSYM TOPSPACE_MTOPOLOGY] THEN ASM_SIMP_TAC[TOTALLY_BOUNDED_IN_CLOSURE_OF]);; let COMPACT_CLOSURE_OF_EQ_BOLZANO_WEIERSTRASS = prove (`!m s:A->bool. compact_in (mtopology m) (mtopology m closure_of s) <=> !t. INFINITE t /\ t SUBSET s /\ t SUBSET mspace m ==> ~(mtopology m derived_set_of t = {})`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC COMPACT_CLOSURE_OF_IMP_BOLZANO_WEIERSTRASS THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY]; REWRITE_TAC[GSYM SUBSET_INTER] THEN ONCE_REWRITE_TAC[INTER_COMM] THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN MP_TAC(SET_RULE `mspace m INTER (s:A->bool) SUBSET mspace m`) THEN SPEC_TAC(`mspace m INTER (s:A->bool)`,`s:A->bool`)] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[COMPACT_IN_SEQUENTIALLY] THEN REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; CLOSURE_OF_SUBSET_TOPSPACE] THEN MP_TAC(ISPECL [`m:A metric`; `mtopology m closure_of s:A->bool`; `s:A->bool`] BOLZANO_WEIERSTRASS_PROPERTY) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; TOPSPACE_MTOPOLOGY] THEN MATCH_MP_TAC(TAUT `q /\ (p ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL [X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:A->bool`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[CLOSURE_OF; IN_INTER; IN_UNION] THEN ASM_MESON_TAC[SUBSET; DERIVED_SET_OF_MONO; DERIVED_SET_OF_SUBSET_TOPSPACE]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN SUBGOAL_THEN `!n. ?y. y IN s /\ mdist m ((x:num->A) n,y) < inv(&n + &1)` MP_TAC THENL [X_GEN_TAC `n:num` THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [METRIC_CLOSURE_OF] o SPEC `n:num`) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_MBALL] THEN DISCH_THEN(MP_TAC o SPEC `inv(&n + &1)` o CONJUNCT2) THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN MESON_TAC[]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `y:num->A` THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:num->A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[LIMIT_METRIC] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN MP_TAC(SPEC `e / &2` ARCH_EVENTUALLY_INV1) THEN ASM_REWRITE_TAC[REAL_HALF; IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[o_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `mdist m ((x:num->A)(r(n:num)),y(r n)) < e / &2` MP_TAC THENL [TRANS_TAC REAL_LT_TRANS `inv(&(r(n:num)) + &1)` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC REAL_LET_TRANS `inv(&n + &1)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN CONJ_TAC THENL [REAL_ARITH_TAC; REWRITE_TAC[REAL_LE_RADD]] THEN ASM_MESON_TAC[REAL_OF_NUM_LE; MONOTONE_BIGGER]; UNDISCH_TAC `(l:A) IN mspace m`] THEN SUBGOAL_THEN `(x:num->A)(r(n:num)) IN mspace m` MP_TAC THENL [ASM_MESON_TAC[SUBSET; CLOSURE_OF_SUBSET_TOPSPACE; TOPSPACE_MTOPOLOGY]; SIMP_TAC[] THEN CONV_TAC METRIC_ARITH]);; let MCOMPLETE_REAL_EUCLIDEAN_METRIC = prove (`mcomplete real_euclidean_metric`, REWRITE_TAC[mcomplete] THEN X_GEN_TAC `x:num->real` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_IN_IMP_MBOUNDED) THEN SIMP_TAC[mbounded; mcball; SUBSET; LEFT_IMP_EXISTS_THM; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_UNIV; IN_ELIM_THM; REAL_EUCLIDEAN_METRIC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN DISCH_TAC THEN MP_TAC(ISPECL [`a - b:real`; `a + b:real`] COMPACT_IN_EUCLIDEANREAL_INTERVAL) THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IN_IMP_MCOMPLETE) THEN ASM_REWRITE_TAC[mcomplete; CAUCHY_IN_SUBMETRIC] THEN DISCH_THEN(MP_TAC o SPEC `x:num->real`) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_ARITH `a - b <= x /\ x <= a + b <=> abs(x - a) <= b`] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[LIMIT_SUBTOPOLOGY; MTOPOLOGY_SUBMETRIC]);; let MCOMPLETE_SUBMETRIC_REAL_EUCLIDEAN_METRIC = prove (`!s. mcomplete(submetric real_euclidean_metric s) <=> closed_in euclideanreal s`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN SIMP_TAC[CLOSED_IN_EQ_MCOMPLETE; MCOMPLETE_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; SUBSET_UNIV]);; let TOTALLY_BOUNDED_IN_DISCRETE_METRIC = prove (`!u s:A->bool. totally_bounded_in (discrete_metric u) s <=> FINITE s /\ s SUBSET u`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[FINITE_IMP_TOTALLY_BOUNDED_IN; DISCRETE_METRIC]] THEN SIMP_TAC[TOTALLY_BOUNDED_IN_EQ_COMPACT_CLOSURE_OF; MCOMPLETE_DISCRETE_METRIC] THEN REWRITE_TAC[MTOPOLOGY_DISCRETE_METRIC; DISCRETE_METRIC] THEN SIMP_TAC[DISCRETE_TOPOLOGY_CLOSURE_OF; COMPACT_IN_DISCRETE_TOPOLOGY; IMP_CONJ; SET_RULE `s SUBSET u ==> u INTER s = s`]);; let DERIVED_SET_OF_INFINITE_OPEN_IN_METRIC = prove (`!m s:A->bool. mtopology m derived_set_of s = {x | x IN mspace m /\ !u. x IN u /\ open_in (mtopology m) u ==> INFINITE(s INTER u)}`, SIMP_TAC[DERIVED_SET_OF_INFINITE_OPEN_IN; HAUSDORFF_SPACE_MTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY]);; let DERIVED_SET_OF_INFINITE_MBALL,DERIVED_SET_OF_INFINITE_MCBALL = (CONJ_PAIR o prove) (`(!m s:A->bool. mtopology m derived_set_of s = {x | x IN mspace m /\ !e. &0 < e ==> INFINITE(s INTER mball m (x,e))}) /\ (!m s:A->bool. mtopology m derived_set_of s = {x | x IN mspace m /\ !e. &0 < e ==> INFINITE(s INTER mcball m (x,e))})`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; DERIVED_SET_OF_INFINITE_OPEN_IN_METRIC] THEN REWRITE_TAC[IN_ELIM_THM; AND_FORALL_THM] THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN mspace m` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(q ==> r) /\ (r ==> p) /\ (p ==> q) ==> (p <=> q) /\ (p <=> r)`) THEN ASM_SIMP_TAC[OPEN_IN_MBALL; CENTRE_IN_MBALL] THEN CONJ_TAC THENL [MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[]; REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_MTOPOLOGY_MCBALL]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`)] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] INFINITE_SUPERSET) THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> s INTER t SUBSET s INTER u`) THEN ASM_REWRITE_TAC[MBALL_SUBSET_MCBALL]);; (* ------------------------------------------------------------------------- *) (* Pointwise continuity in topological spaces. *) (* ------------------------------------------------------------------------- *) let topcontinuous_at = new_definition `!top top' f:A->B x. topcontinuous_at top top' f x <=> x IN topspace top /\ (!x. x IN topspace top ==> f x IN topspace top') /\ (!v. open_in top' v /\ f x IN v ==> (?u. open_in top u /\ x IN u /\ (!y. y IN u ==> f y IN v)))`;; let TOPCONTINUOUS_AT_ATPOINTOF = prove (`!top top' f:A->B x. topcontinuous_at top top' f x <=> x IN topspace top /\ (!x. x IN topspace top ==> f x IN topspace top') /\ limit top' f (f x) (atpointof top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[topcontinuous_at] THEN MATCH_MP_TAC(TAUT `(p /\ q ==> (r <=> s)) ==> (p /\ q /\ r <=> p /\ q /\ s)`) THEN STRIP_TAC THEN ASM_SIMP_TAC[LIMIT_ATPOINTOF] THEN AP_TERM_TAC THEN ABS_TAC THEN SET_TAC[]);; let CONTINUOUS_MAP_EQ_TOPCONTINUOUS_AT = prove (`!top top' f:A->B. continuous_map (top,top') f <=> (!x. x IN topspace top ==> topcontinuous_at top top' f x)`, REPEAT GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[continuous_map; topcontinuous_at] THEN INTRO_TAC "f v; !x; x; !v; v1 v2" THEN REMOVE_THEN "v" (MP_TAC o C MATCH_MP (ASSUME `open_in top' (v:B->bool)`)) THEN INTRO_TAC "pre" THEN EXISTS_TAC `{x:A | x IN topspace top /\ f x:B IN v}` THEN ASM_SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN SIMP_TAC[continuous_map; topcontinuous_at; SUBSET] THEN INTRO_TAC "hp1" THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN INTRO_TAC "![v]; v" THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN REWRITE_TAC[IN_ELIM_THM] THEN INTRO_TAC "!x; x1 x2" THEN REMOVE_THEN "hp1" (MP_TAC o SPEC `x:A`) THEN ASM_SIMP_TAC[] THEN INTRO_TAC "x3 v1" THEN REMOVE_THEN "v1" (MP_TAC o SPEC `v:B->bool`) THEN USE_THEN "x1" (LABEL_TAC "x4" o REWRITE_RULE[IN_ELIM_THM]) THEN ASM_SIMP_TAC[] THEN INTRO_TAC "@u. u1 u2 u3" THEN EXISTS_TAC `u:A->bool` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]);; let CONTINUOUS_MAP_ATPOINTOF = prove (`!top top' f:A->B. continuous_map (top,top') f <=> !x. x IN topspace top ==> limit top' f (f x) (atpointof top x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_EQ_TOPCONTINUOUS_AT] THEN ASM_SIMP_TAC[TOPCONTINUOUS_AT_ATPOINTOF] THEN REWRITE_TAC[limit] THEN SET_TAC[]);; let LIMIT_CONTINUOUS_MAP = prove (`!top top' (f:A->B) a b. continuous_map(top,top') f /\ a IN topspace top /\ f a = b ==> limit top' f b (atpointof top a)`, REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF] THEN MESON_TAC[]);; let LIMIT_CONTINUOUS_MAP_WITHIN = prove (`!top top' (f:A->B) a b. continuous_map(subtopology top s,top') f /\ a IN s /\ a IN topspace top /\ f a = b ==> limit top' f b (atpointof top a within s)`, SIMP_TAC[GSYM ATPOINTOF_SUBTOPOLOGY] THEN SIMP_TAC[LIMIT_CONTINUOUS_MAP; TOPSPACE_SUBTOPOLOGY; IN_INTER]);; (* ------------------------------------------------------------------------- *) (* Continuity via bases/subbases, hence upper and lower semicontinuity. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_MAP_INTO_TOPOLOGY_BASE = prove (`!top top' b f:A->B. open_in top' = ARBITRARY UNION_OF b /\ (!x. x IN topspace top ==> f x IN topspace top') /\ (!u. u IN b ==> open_in top {x | x IN topspace top /\ f x IN u}) ==> continuous_map(top,top') f`, let lemma = prove (`{x | P x /\ f x IN UNIONS u} = UNIONS {{x | P x /\ f x IN b} | b IN u}`, REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]) in REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_map] THEN ASM_REWRITE_TAC[FORALL_UNION_OF; ARBITRARY] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_INTO_TOPOLOGY_BASE_EQ = prove (`!top top' b f:A->B. open_in top' = ARBITRARY UNION_OF b ==> (continuous_map(top,top') f <=> (!x. x IN topspace top ==> f x IN topspace top') /\ (!u. u IN b ==> open_in top {x | x IN topspace top /\ f x IN u}))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[continuous_map] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN ASM SET_TAC[]; POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM IMP_CONJ] THEN REWRITE_TAC[CONTINUOUS_MAP_INTO_TOPOLOGY_BASE]]);; let CONTINUOUS_MAP_INTO_TOPOLOGY_SUBBASE = prove (`!top top' b u f:A->B. topology(ARBITRARY UNION_OF (FINITE INTERSECTION_OF b relative_to u)) = top' /\ (!x. x IN topspace top ==> f x IN topspace top') /\ (!u. u IN b ==> open_in top {x | x IN topspace top /\ f x IN u}) ==> continuous_map(top,top') f`, let lemma = prove (`{x | P x /\ f x IN INTERS(a INSERT u)} = INTERS {{x | P x /\ f x IN b} | b IN (a INSERT u)}`, REWRITE_TAC[INTERS_GSPEC; INTERS_INSERT] THEN SET_TAC[]) in REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_INTO_TOPOLOGY_BASE THEN EXISTS_TAC `(FINITE INTERSECTION_OF b relative_to u):(B->bool)->bool` THEN EXPAND_TAC "top'" THEN REWRITE_TAC[OPEN_IN_SUBBASE; FUN_EQ_THM] THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN REWRITE_TAC[GSYM INTERS_INSERT; lemma] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_INTERS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FINITE_INSERT] THEN REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_INSERT_EMPTY; FORALL_IN_IMAGE] THEN REWRITE_TAC[FORALL_IN_INSERT] THEN FIRST_ASSUM(MP_TAC o AP_TERM `topspace:(B)topology->B->bool`) THEN REWRITE_TAC[TOPSPACE_SUBBASE] THEN DISCH_THEN SUBST1_TAC THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; SET_RULE `(!x. x IN s ==> Q x) ==> {x | x IN s /\ Q x} = s`] THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_INTO_TOPOLOGY_SUBBASE_EQ = prove (`!top top' b u f:A->B. topology(ARBITRARY UNION_OF (FINITE INTERSECTION_OF b relative_to u)) = top' ==> (continuous_map(top,top') f <=> (!x. x IN topspace top ==> f x IN topspace top') /\ (!u. u IN b ==> open_in top {x | x IN topspace top /\ f x IN u}))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[continuous_map] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:B->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN topspace top /\ (f:A->B) x IN v} = {x | x IN topspace top /\ f x IN (u INTER v)}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o AP_TERM `topspace:(B)topology->B->bool`) THEN REWRITE_TAC[TOPSPACE_SUBBASE] THEN ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "top'" THEN REWRITE_TAC[OPEN_IN_SUBBASE] THEN MATCH_MP_TAC ARBITRARY_UNION_OF_INC THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INC THEN ASM SET_TAC[]]; POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM IMP_CONJ] THEN REWRITE_TAC[CONTINUOUS_MAP_INTO_TOPOLOGY_SUBBASE]]);; let CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LT_GEN = prove (`!top u f:A->real. continuous_map (top,subtopology euclideanreal u) f <=> (!x. x IN topspace top ==> f x IN u) /\ (!a. open_in top {x | x IN topspace top /\ f x > a}) /\ (!a. open_in top {x | x IN topspace top /\ f x < a})`, REPEAT GEN_TAC THEN REWRITE_TAC[MATCH_MP CONTINUOUS_MAP_INTO_TOPOLOGY_SUBBASE_EQ (SPEC `u:real->bool` SUBBASE_SUBTOPOLOGY_EUCLIDEANREAL)] THEN REWRITE_TAC[FORALL_IN_UNION; FORALL_IN_GSPEC; IN_UNIV] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; IN_ELIM_THM]);; let CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LT = prove (`!top f:A->real. continuous_map (top,euclideanreal) f <=> (!a. open_in top {x | x IN topspace top /\ f x > a}) /\ (!a. open_in top {x | x IN topspace top /\ f x < a})`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [GSYM SUBTOPOLOGY_TOPSPACE] THEN REWRITE_TAC[CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LT_GEN] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; IN_UNIV]);; let CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LE_GEN = prove (`!top u f:A->real. continuous_map (top,subtopology euclideanreal u) f <=> (!x. x IN topspace top ==> f x IN u) /\ (!a. closed_in top {x | x IN topspace top /\ f x >= a}) /\ (!a. closed_in top {x | x IN topspace top /\ f x <= a})`, REWRITE_TAC[REAL_ARITH `a >= b <=> ~(b > a)`; GSYM REAL_NOT_LT] THEN REWRITE_TAC[closed_in; SUBSET_RESTRICT] THEN REWRITE_TAC[SET_RULE `u DIFF {x | x IN u /\ ~P x} = {x | x IN u /\ P x}`; CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LT_GEN] THEN REWRITE_TAC[real_gt; CONJ_ACI]);; let CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LE = prove (`!top f:A->real. continuous_map (top,euclideanreal) f <=> (!a. closed_in top {x | x IN topspace top /\ f x >= a}) /\ (!a. closed_in top {x | x IN topspace top /\ f x <= a})`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [GSYM SUBTOPOLOGY_TOPSPACE] THEN REWRITE_TAC[CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LE_GEN] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; IN_UNIV]);; let CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LTE_GEN = prove (`!top u f:A->real. continuous_map (top,subtopology euclideanreal u) f <=> (!x. x IN topspace top ==> f x IN u) /\ (!a. open_in top {x | x IN topspace top /\ f x < a}) /\ (!a. closed_in top {x | x IN topspace top /\ f x <= a})`, REWRITE_TAC[GSYM REAL_NOT_LT] THEN REWRITE_TAC[closed_in; SUBSET_RESTRICT] THEN REWRITE_TAC[SET_RULE `u DIFF {x | x IN u /\ ~P x} = {x | x IN u /\ P x}`; CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LT_GEN] THEN REWRITE_TAC[real_gt; CONJ_ACI]);; let CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LTE = prove (`!top f:A->real. continuous_map (top,euclideanreal) f <=> (!a. open_in top {x | x IN topspace top /\ f x < a}) /\ (!a. closed_in top {x | x IN topspace top /\ f x <= a})`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [GSYM SUBTOPOLOGY_TOPSPACE] THEN REWRITE_TAC[CONTINUOUS_MAP_UPPER_LOWER_SEMICONTINUOUS_LTE_GEN] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; IN_UNIV]);; (* ------------------------------------------------------------------------- *) (* Continuous functions on metric spaces. *) (* ------------------------------------------------------------------------- *) let METRIC_CONTINUOUS_MAP = prove (`!m m' f:A->B. continuous_map (mtopology m,mtopology m') f <=> (!x. x IN mspace m ==> f x IN mspace m') /\ (!a e. &0 < e /\ a IN mspace m ==> (?d. &0 < d /\ (!x. x IN mspace m /\ mdist m (a,x) < d ==> mdist m' (f a, f x) < e)))`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_map; TOPSPACE_MTOPOLOGY] THEN EQ_TAC THEN SIMP_TAC[] THENL [INTRO_TAC "f cont; !a e; e a" THEN REMOVE_THEN "cont" (MP_TAC o SPEC `mball m' (f (a:A):B,e)`) THEN REWRITE_TAC[OPEN_IN_MBALL] THEN ASM_SIMP_TAC[OPEN_IN_MTOPOLOGY; SUBSET; IN_MBALL; IN_ELIM_THM] THEN DISCH_THEN (MP_TAC o SPEC `a:A`) THEN ASM_SIMP_TAC[MDIST_REFL]; SIMP_TAC[OPEN_IN_MTOPOLOGY; SUBSET; IN_MBALL; IN_ELIM_THM] THEN ASM_MESON_TAC[]]);; let CONTINUOUS_MAP_TO_METRIC = prove (`!t m f:A->B. continuous_map (t,mtopology m) f <=> (!x. x IN topspace t ==> (!r. &0 < r ==> (?u. open_in t u /\ x IN u /\ (!y. y IN u ==> f y IN mball m (f x,r)))))`, INTRO_TAC "!t m f" THEN REWRITE_TAC[CONTINUOUS_MAP_EQ_TOPCONTINUOUS_AT; topcontinuous_at; TOPSPACE_MTOPOLOGY] THEN EQ_TAC THENL [INTRO_TAC "A; !x; x" THEN REMOVE_THEN "A" (MP_TAC o SPEC `x:A`) THEN ASM_SIMP_TAC[OPEN_IN_MBALL; CENTRE_IN_MBALL]; INTRO_TAC "A; !x; x" THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_01; IN_MBALL]; ASM_MESON_TAC[OPEN_IN_MTOPOLOGY; SUBSET]]]);; let CONTINUOUS_MAP_FROM_METRIC = prove (`!m top f:A->B. continuous_map (mtopology m,top) f <=> IMAGE f (mspace m) SUBSET topspace top /\ !a. a IN mspace m ==> !u. open_in top u /\ f(a) IN u ==> ?d. &0 < d /\ !x. x IN mspace m /\ mdist m (a,x) < d ==> f x IN u`, REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_MAP; TOPSPACE_MTOPOLOGY] THEN ASM_CASES_TAC `IMAGE (f:A->B) (mspace m) SUBSET topspace top` THEN ASM_REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `u:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:B->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `a:A` o CONJUNCT2) THEN ASM_REWRITE_TAC[IN_ELIM_THM; SUBSET; IN_MBALL] THEN MESON_TAC[]; X_GEN_TAC `u:B->bool` THEN DISCH_TAC THEN REWRITE_TAC[SUBSET_RESTRICT; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `u:B->bool`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_MBALL; IN_ELIM_THM] THEN MESON_TAC[]]);; let CONTINUOUS_MAP_UNIFORM_LIMIT = prove (`!net top m f:K->A->B g. ~trivial_limit net /\ eventually (\n. continuous_map (top,mtopology m) (f n)) net /\ (!e. &0 < e ==> eventually (\n. !x. x IN topspace top ==> g x IN mspace m /\ mdist m (f n x,g x) < e) net) ==> continuous_map (top,mtopology m) g`, REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_TO_METRIC] THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 MP_TAC (MP_TAC o SPEC `e / &3`)) THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`; IMP_IMP] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:K` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:A` THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `y:A` th) THEN MP_TAC(SPEC `x:A` th)) THEN SUBGOAL_THEN `(y:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; ASM_REWRITE_TAC[]] THEN ASM_SIMP_TAC[IN_MBALL] THEN CONV_TAC METRIC_ARITH);; let CONTINUOUS_MAP_UNIFORM_LIMIT_ALT = prove (`!net top m f:K->A->B g. ~trivial_limit net /\ IMAGE g (topspace top) SUBSET mspace m /\ eventually (\n. continuous_map (top,mtopology m) (f n)) net /\ (!e. &0 < e ==> eventually (\n. !x. x IN topspace top ==> mdist m (f n x,g x) < e) net) ==> continuous_map (top,mtopology m) g`, REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `net:K net` CONTINUOUS_MAP_UNIFORM_LIMIT) THEN EXISTS_TAC `f:K->A->B` THEN ASM_SIMP_TAC[]);; let CONTINUOUS_MAP_UNIFORMLY_CAUCHY_LIMIT = prove (`!top ms f:num->A->B. ~trivial_limit sequentially /\ mcomplete ms /\ eventually (\n. continuous_map (top,mtopology ms) (f n)) sequentially /\ (!e. &0 < e ==> ?N. !m n x. N <= m /\ N <= n /\ x IN topspace top ==> mdist ms (f m x,f n x) < e) ==> ?g. continuous_map (top,mtopology ms) g /\ !e. &0 < e ==> eventually (\n. !x. x IN topspace top ==> mdist ms (f n x,g x) < e) sequentially`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x. x IN topspace top ==> ?l. limit (mtopology ms) (\n. (f:num->A->B) n x) l sequentially` MP_TAC THENL [X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [MCOMPLETE]) THEN REWRITE_TAC[cauchy_in] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] EVENTUALLY_MONO)) THEN ASM_SIMP_TAC[continuous_map; TOPSPACE_MTOPOLOGY]; ASM_MESON_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:A->B` THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVENTUALLY_SEQUENTIALLY]) THEN REWRITE_TAC[continuous_map; LEFT_IMP_EXISTS_THM; TOPSPACE_MTOPOLOGY] THEN X_GEN_TAC `P:num` THEN DISCH_TAC THEN EXISTS_TAC `MAX N P` THEN ASM_REWRITE_TAC[ARITH_RULE `MAX N P <= n <=> N <= n /\ P <= n`] THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LIMIT_METRIC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e / &2`)) THEN ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN DISCH_THEN(X_CHOOSE_THEN `M:num` (MP_TAC o SPEC `MAX M (MAX N P)`)) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `MAX M (MAX N P)`; `x:A`]) THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN ASM_SIMP_TAC[ARITH_RULE `n <= MAX M N <=> n <= M \/ n <= N`; LE_REFL] THEN DISCH_THEN(MP_TAC o SPEC `x:A` o CONJUNCT1) THEN UNDISCH_TAC `(g:A->B) x IN mspace ms` THEN ASM_REWRITE_TAC[] THEN CONV_TAC METRIC_ARITH; DISCH_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` CONTINUOUS_MAP_UNIFORM_LIMIT_ALT) THEN EXISTS_TAC `f:num->A->B` THEN RULE_ASSUM_TAC(REWRITE_RULE[limit; TOPSPACE_MTOPOLOGY]) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE]]);; (* ------------------------------------------------------------------------- *) (* Combining theorems for continuous functions into the reals. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_MAP_REAL_CONST = prove (`!top. continuous_map (top,euclideanreal) (\x:A. c)`, REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV]);; let CONTINUOUS_MAP_REAL_MUL = prove (`!top f g:A->real. continuous_map (top,euclideanreal) f /\ continuous_map (top,euclideanreal) g ==> continuous_map (top,euclideanreal) (\x. f x * g x)`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_MUL]);; let CONTINUOUS_MAP_REAL_POW = prove (`!top (f:A->real) n. continuous_map (top,euclideanreal) f ==> continuous_map (top,euclideanreal) (\x. f x pow n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_pow; CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_REAL_MUL]);; let CONTINUOUS_MAP_REAL_LMUL = prove (`!top c f:A->real. continuous_map (top,euclideanreal) f ==> continuous_map (top,euclideanreal) (\x. c * f x)`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_LMUL]);; let CONTINUOUS_MAP_REAL_LMUL_EQ = prove (`!top c f:A->real. continuous_map (top,euclideanreal) (\x. c * f x) <=> c = &0 \/ continuous_map (top,euclideanreal) f`, REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; CONTINUOUS_MAP_REAL_CONST] THEN EQ_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_LMUL] THEN DISCH_THEN(MP_TAC o SPEC `inv(c):real` o MATCH_MP CONTINUOUS_MAP_REAL_LMUL) THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_LID; ETA_AX]);; let CONTINUOUS_MAP_REAL_RMUL = prove (`!top c f:A->real. continuous_map (top,euclideanreal) f ==> continuous_map (top,euclideanreal) (\x. f x * c)`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_RMUL]);; let CONTINUOUS_MAP_REAL_RMUL_EQ = prove (`!top c f:A->real. continuous_map (top,euclideanreal) (\x. f x * c) <=> c = &0 \/ continuous_map (top,euclideanreal) f`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_LMUL_EQ]);; let CONTINUOUS_MAP_REAL_NEG = prove (`!top f:A->real. continuous_map (top,euclideanreal) f ==> continuous_map (top,euclideanreal) (\x. --(f x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_NEG]);; let CONTINUOUS_MAP_REAL_NEG_EQ = prove (`!top f:A->real. continuous_map (top,euclideanreal) (\x. --(f x)) <=> continuous_map (top,euclideanreal) f`, ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_LMUL_EQ] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let CONTINUOUS_MAP_REAL_ADD = prove (`!top f g:A->real. continuous_map (top,euclideanreal) f /\ continuous_map (top,euclideanreal) g ==> continuous_map (top,euclideanreal) (\x. f x + g x)`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_ADD]);; let CONTINUOUS_MAP_REAL_SUB = prove (`!top f g:A->real. continuous_map (top,euclideanreal) f /\ continuous_map (top,euclideanreal) g ==> continuous_map (top,euclideanreal) (\x. f x - g x)`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_SUB]);; let CONTINUOUS_MAP_REAL_ABS = prove (`!top f:A->real. continuous_map (top,euclideanreal) f ==> continuous_map (top,euclideanreal) (\x. abs(f x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_ABS]);; let CONTINUOUS_MAP_REAL_MAX = prove (`!top f g:A->real. continuous_map (top,euclideanreal) f /\ continuous_map (top,euclideanreal) g ==> continuous_map (top,euclideanreal) (\x. max (f x) (g x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_MAX]);; let CONTINUOUS_MAP_REAL_MIN = prove (`!top f g:A->real. continuous_map (top,euclideanreal) f /\ continuous_map (top,euclideanreal) g ==> continuous_map (top,euclideanreal) (\x. min (f x) (g x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_MIN]);; let CONTINUOUS_MAP_SUM = prove (`!top f:A->K->real k. FINITE k /\ (!i. i IN k ==> continuous_map (top,euclideanreal) (\x. f x i)) ==> continuous_map (top,euclideanreal) (\x. sum k (f x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_SUM]);; let CONTINUOUS_MAP_REAL_PRODUCT = prove (`!top f:A->K->real k. FINITE k /\ (!i. i IN k ==> continuous_map (top,euclideanreal) (\x. f x i)) ==> continuous_map (top,euclideanreal) (\x. product k (f x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_PRODUCT]);; let CONTINUOUS_MAP_REAL_INV = prove (`!top f:A->real. continuous_map (top,euclideanreal) f /\ (!x. x IN topspace top ==> ~(f x = &0)) ==> continuous_map (top,euclideanreal) (\x. inv(f x))`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_INV]);; let CONTINUOUS_MAP_REAL_DIV = prove (`!top f g:A->real. continuous_map (top,euclideanreal) f /\ continuous_map (top,euclideanreal) g /\ (!x. x IN topspace top ==> ~(g x = &0)) ==> continuous_map (top,euclideanreal) (\x. f x / g x)`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_REAL_DIV]);; let CONTINUOUS_MAP_INF = prove (`!top f:A->K->real k. FINITE k /\ (!i. i IN k ==> continuous_map (top,euclideanreal) (\x. f x i)) ==> continuous_map (top,euclideanreal) (\x. inf {f x i | i IN k})`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_INF]);; let CONTINUOUS_MAP_SUP = prove (`!top f:A->K->real k. FINITE k /\ (!i. i IN k ==> continuous_map (top,euclideanreal) (\x. f x i)) ==> continuous_map (top,euclideanreal) (\x. sup {f x i | i IN k})`, SIMP_TAC[CONTINUOUS_MAP_ATPOINTOF; LIMIT_SUP]);; let CONTINUOUS_MAP_REAL_SHRINK = prove (`continuous_map (euclideanreal, subtopology euclideanreal (real_interval(--(&1),&1))) (\x. x / (&1 + abs x))`, REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LT; REAL_SHRINK_RANGE] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_DIV THEN REWRITE_TAC[CONTINUOUS_MAP_ID; REAL_ARITH `~(&1 + abs x = &0)`] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_ADD THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_ABS THEN REWRITE_TAC[CONTINUOUS_MAP_ID]);; let CONTINUOUS_MAP_REAL_GROW = prove (`continuous_map (subtopology euclideanreal (real_interval(--(&1),&1)), euclideanreal) (\x. x / (&1 - abs x))`, MATCH_MP_TAC CONTINUOUS_MAP_REAL_DIV THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID] THEN SIMP_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; IN_REAL_INTERVAL] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB; REAL_ARITH_TAC] THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_ABS THEN REWRITE_TAC[CONTINUOUS_MAP_ID]);; let HOMEOMORPHIC_MAPS_REAL_SHRINK = prove (`homeomorphic_maps (euclideanreal,subtopology euclideanreal (real_interval(--(&1),&1))) ((\x. x / (&1 + abs x)),(\y. y / (&1 - abs y)))`, REWRITE_TAC[homeomorphic_maps] THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_SHRINK; CONTINUOUS_MAP_REAL_GROW] THEN REWRITE_TAC[REAL_GROW_SHRINK; REAL_SHRINK_GROW_EQ] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let CONTINUOUS_MAP_CASES_LE = prove (`!top top' p q f (g:A->B). continuous_map (top,euclideanreal) p /\ continuous_map (top,euclideanreal) q /\ continuous_map (subtopology top {x | x IN topspace top /\ p x <= q x},top') f /\ continuous_map (subtopology top {x | x IN topspace top /\ q x <= p x},top') g /\ (!x. x IN topspace top /\ p x = q x ==> f x = g x) ==> continuous_map (top,top') (\x. if p x <= q x then f x else g x)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `x <= y <=> y - x >= &0`] THEN ONCE_REWRITE_TAC[SET_RULE `x >= &0 <=> x IN {t | t >= &0}`] THEN MATCH_MP_TAC CONTINUOUS_MAP_CASES_FUNCTION THEN EXISTS_TAC `euclideanreal` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_SUB] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; REAL_ARITH `~(x >= y) <=> x:real < y`; SET_RULE `UNIV DIFF {x | P x} = {x | ~P x}`] THEN REWRITE_TAC[EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GE; EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LT; EUCLIDEANREAL_FRONTIER_OF_HALFSPACE_GE] THEN ASM_REWRITE_TAC[IN_ELIM_THM; REAL_SUB_0; real_ge; REAL_SUB_LE] THEN ASM_REWRITE_TAC[REAL_ARITH `p - q <= &0 <=> p <= q`] THEN ASM_MESON_TAC[]);; let CONTINUOUS_MAP_CASES_LT = prove (`!top top' p q f (g:A->B). continuous_map (top,euclideanreal) p /\ continuous_map (top,euclideanreal) q /\ continuous_map (subtopology top {x | x IN topspace top /\ p x <= q x},top') f /\ continuous_map (subtopology top {x | x IN topspace top /\ q x <= p x},top') g /\ (!x. x IN topspace top /\ p x = q x ==> f x = g x) ==> continuous_map (top,top') (\x. if p x < q x then f x else g x)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `x < y <=> y - x > &0`] THEN ONCE_REWRITE_TAC[SET_RULE `x > &0 <=> x IN {t | t > &0}`] THEN MATCH_MP_TAC CONTINUOUS_MAP_CASES_FUNCTION THEN EXISTS_TAC `euclideanreal` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_SUB] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; REAL_ARITH `~(x > y) <=> x:real <= y`; SET_RULE `UNIV DIFF {x | P x} = {x | ~P x}`] THEN REWRITE_TAC[EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_GT; EUCLIDEANREAL_CLOSURE_OF_HALFSPACE_LE; EUCLIDEANREAL_FRONTIER_OF_HALFSPACE_GT] THEN ASM_REWRITE_TAC[IN_ELIM_THM; REAL_SUB_0; real_ge; REAL_SUB_LE] THEN ASM_REWRITE_TAC[REAL_ARITH `p - q <= &0 <=> p <= q`] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Paths and path-connectedness. *) (* ------------------------------------------------------------------------- *) let path_in = new_definition `path_in top (g:real->A) <=> continuous_map (subtopology euclideanreal (real_interval[&0,&1]),top) g`;; let PATH_IN_COMPOSE = prove (`!top top' f:A->B g:real->A. path_in top g /\ continuous_map(top,top') f ==> path_in top' (f o g)`, REWRITE_TAC[path_in; CONTINUOUS_MAP_COMPOSE]);; let PATH_IN_SUBTOPOLOGY = prove (`!top s g:real->A. path_in (subtopology top s) g <=> path_in top g /\ (!x. x IN real_interval[&0,&1] ==> g x IN s)`, REWRITE_TAC[path_in; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[continuous_map; TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL] THEN SET_TAC[]);; let PATH_IN_CONST = prove (`!top a:A. path_in top (\x. a) <=> a IN topspace top`, REWRITE_TAC[path_in; CONTINUOUS_MAP_CONST] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; REAL_INTERVAL_EQ_EMPTY] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let path_connected_space = new_definition `path_connected_space top <=> !x y:A. x IN topspace top /\ y IN topspace top ==> ?g. path_in top g /\ g(&0) = x /\ g(&1) = y`;; let path_connected_in = new_definition `path_connected_in top (s:A->bool) <=> s SUBSET topspace top /\ path_connected_space(subtopology top s)`;; let PATH_CONNECTED_IN_ABSOLUTE = prove (`!top s:A->bool. path_connected_in (subtopology top s) s <=> path_connected_in top s`, REWRITE_TAC[path_connected_in; SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; SUBSET_REFL] THEN REWRITE_TAC[INTER_ACI]);; let PATH_CONNECTED_IN_SUBSET_TOPSPACE = prove (`!top s:A->bool. path_connected_in top s ==> s SUBSET topspace top`, SIMP_TAC[path_connected_in]);; let PATH_CONNECTED_IN_SUBTOPOLOGY = prove (`!top s t:A->bool. path_connected_in (subtopology top s) t <=> path_connected_in top t /\ t SUBSET s`, REPEAT GEN_TAC THEN REWRITE_TAC[path_connected_in; SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM_CASES_TAC `(t:A->bool) SUBSET s` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`]);; let PATH_CONNECTED_IN = prove (`!top s:A->bool. path_connected_in top s <=> s SUBSET topspace top /\ !x y. x IN s /\ y IN s ==> ?g. path_in top g /\ IMAGE g (real_interval[&0,&1]) SUBSET s /\ g(&0) = x /\ g(&1) = y`, REPEAT GEN_TAC THEN REWRITE_TAC[path_connected_in; path_connected_space] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; path_in; CONTINUOUS_MAP_IN_SUBTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; INTER_UNIV; GSYM CONJ_ASSOC]);; let PATH_CONNECTED_IN_TOPSPACE = prove (`!top:A topology. path_connected_in top (topspace top) <=> path_connected_space top`, REWRITE_TAC[path_connected_in; SUBSET_REFL; SUBTOPOLOGY_TOPSPACE]);; let PATH_CONNECTED_IMP_CONNECTED_SPACE = prove (`!top:A topology. path_connected_space top ==> connected_space top`, REWRITE_TAC[path_connected_space; CONNECTED_SPACE_SUBCONNECTED] THEN GEN_TAC THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[path_in; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:real->A` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (g:real->A) (real_interval [&0,&1])` THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN REWRITE_TAC[CONNECTED_IN_ABSOLUTE] THEN REWRITE_TAC[CONNECTED_IN_EUCLIDEANREAL_INTERVAL]; REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_POS]; REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_POS; REAL_LE_REFL]]);; let PATH_CONNECTED_IN_IMP_CONNECTED_IN = prove (`!top s:A->bool. path_connected_in top s ==> connected_in top s`, SIMP_TAC[path_connected_in; connected_in] THEN SIMP_TAC[PATH_CONNECTED_IMP_CONNECTED_SPACE]);; let PATH_CONNECTED_SPACE_TOPSPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> path_connected_space top`, SIMP_TAC[path_connected_space; NOT_IN_EMPTY]);; let PATH_CONNECTED_IN_EMPTY = prove (`!top:A topology. path_connected_in top {}`, SIMP_TAC[path_connected_in; PATH_CONNECTED_SPACE_TOPSPACE_EMPTY; EMPTY_SUBSET; TOPSPACE_SUBTOPOLOGY; INTER_EMPTY]);; let PATH_CONNECTED_IN_SING = prove (`!top a:A. path_connected_in top {a} <=> a IN topspace top`, REPEAT GEN_TAC THEN REWRITE_TAC[PATH_CONNECTED_IN; SING_SUBSET] THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[IN_SING] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `(\x. a):real->A` THEN ASM_REWRITE_TAC[path_in; CONTINUOUS_MAP_CONST] THEN SET_TAC[]);; let PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE = prove (`!f:A->B top top' s. continuous_map (top,top') f /\ path_connected_in top s ==> path_connected_in top' (IMAGE f s)`, REPEAT GEN_TAC THEN REWRITE_TAC[PATH_CONNECTED_IN] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[FORALL_IN_IMAGE_2]] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:real->A` THEN STRIP_TAC THEN EXISTS_TAC `(f:A->B) o (g:real->A)` THEN ASM_SIMP_TAC[o_THM; IMAGE_o; IMAGE_SUBSET] THEN ASM_MESON_TAC[PATH_IN_COMPOSE]);; let HOMEOMORPHIC_PATH_CONNECTED_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (path_connected_space top <=> path_connected_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN REWRITE_TAC[GSYM PATH_CONNECTED_IN_TOPSPACE] THEN EQ_TAC THEN DISCH_TAC THENL [SUBGOAL_THEN `topspace top' = IMAGE (f:A->B) (topspace top)` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE]]; SUBGOAL_THEN `topspace top = IMAGE (g:B->A) (topspace top')` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE]]] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_PATH_CONNECTEDNESS = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f /\ u SUBSET topspace top ==> (path_connected_in top' (IMAGE f u) <=> path_connected_in top u)`, REPEAT STRIP_TAC THEN REWRITE_TAC[path_connected_in] THEN BINOP_TAC THENL [ALL_TAC; MATCH_MP_TAC HOMEOMORPHIC_PATH_CONNECTED_SPACE THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_SPACE] THEN EXISTS_TAC `f:A->B` THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[]] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_PATH_CONNECTEDNESS_EQ = prove (`!(f:A->B) top top' u. homeomorphic_map(top,top') f ==> (path_connected_in top u <=> u SUBSET topspace top /\ path_connected_in top' (IMAGE f u))`, MESON_TAC[HOMEOMORPHIC_MAP_PATH_CONNECTEDNESS; PATH_CONNECTED_IN_SUBSET_TOPSPACE]);; let PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map(top,top') q /\ path_connected_space top ==> path_connected_space top'`, REWRITE_TAC[GSYM PATH_CONNECTED_IN_TOPSPACE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP QUOTIENT_IMP_SURJECTIVE_MAP) THEN MATCH_MP_TAC PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN ASM_MESON_TAC[QUOTIENT_IMP_CONTINUOUS_MAP]);; let PATH_CONNECTED_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ path_connected_space top ==> path_connected_space top'`, MESON_TAC[PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let PATH_CONNECTED_IN_EUCLIDEANREAL_INTERVAL = prove (`(!a b. path_connected_in euclideanreal (real_interval[a,b])) /\ (!a b. path_connected_in euclideanreal (real_interval(a,b)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IN; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN STRIP_TAC THEN EXISTS_TAC `\u. (&1 - u) * x + u * y` THEN REWRITE_TAC[REAL_SUB_REFL; REAL_SUB_RZERO; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_MUL_LID; REAL_ADD_LID; REAL_ADD_RID] THEN (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [path_in; CONTINUOUS_MAP_REAL_ADD; CONTINUOUS_MAP_REAL_RMUL; CONTINUOUS_MAP_ID; CONTINUOUS_MAP_REAL_SUB; CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN X_GEN_TAC `t:real` THEN STRIP_TAC THENL [MATCH_MP_TAC(REAL_ARITH `!x y:real. (a <= x /\ y <= b) /\ (x <= r /\ r <= y) ==> a <= r /\ r <= b`); MATCH_MP_TAC(REAL_ARITH `!x y:real. (a < x /\ y < b) /\ (x <= r /\ r <= y) ==> a < r /\ r < b`)] THEN MAP_EVERY EXISTS_TAC [`min x y:real`; `max x y:real`] THEN (CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `(&0 <= t * (y - x) \/ &0 <= (&1 - t) * (x - y)) /\ (&0 <= t * (x - y) \/ &0 <= (&1 - t) * (y - x)) ==> min x y <= (&1 - t) * x + t * y /\ (&1 - t) * x + t * y <= max x y`) THEN ASM_MESON_TAC[REAL_SUB_LE; REAL_LE_MUL; REAL_ARITH `&0 <= x - y \/ &0 <= y - x`]);; let PATH_CONNECTED_IN_PATH_IMAGE = prove (`!top g:real->A. path_in top g ==> path_connected_in top (IMAGE g (real_interval[&0,&1]))`, REPEAT GEN_TAC THEN REWRITE_TAC[path_in] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `subtopology euclideanreal (real_interval [&0,&1])` THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[PATH_CONNECTED_IN_EUCLIDEANREAL_INTERVAL]);; let CONNECTED_IN_PATH_IMAGE = prove (`!top g:real->A. path_in top g ==> connected_in top (IMAGE g (real_interval[&0,&1]))`, SIMP_TAC[PATH_CONNECTED_IN_IMP_CONNECTED_IN; PATH_CONNECTED_IN_PATH_IMAGE]);; let COMPACT_IN_PATH_IMAGE = prove (`!top g:real->A. path_in top g ==> compact_in top (IMAGE g (real_interval[&0,&1]))`, REPEAT GEN_TAC THEN REWRITE_TAC[path_in] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] IMAGE_COMPACT_IN) THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[COMPACT_IN_EUCLIDEANREAL_INTERVAL]);; let PATH_START_IN_TOPSPACE = prove (`!top g:real->A. path_in top g ==> g(&0) IN topspace top`, REWRITE_TAC[path_in; continuous_map] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[INTER_UNIV; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let PATH_FINISH_IN_TOPSPACE = prove (`!top g:real->A. path_in top g ==> g(&1) IN topspace top`, REWRITE_TAC[path_in; continuous_map] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[INTER_UNIV; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let PATH_IMAGE_SUBSET_TOPSPACE = prove (`!top g:real->A. path_in top g ==> IMAGE g (real_interval[&0,&1]) SUBSET topspace top`, REPEAT GEN_TAC THEN REWRITE_TAC[path_in] THEN DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; INTER_UNIV; TOPSPACE_EUCLIDEANREAL]);; let PATH_CONNECTED_SPACE_SUBCONNECTED = prove (`!top. path_connected_space top <=> !x y:A. x IN topspace top /\ y IN topspace top ==> ?s. path_connected_in top s /\ x IN s /\ y IN s`, GEN_TAC THEN REWRITE_TAC[path_connected_space] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:A` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THENL [DISCH_THEN(X_CHOOSE_THEN `g:real->A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (g:real->A) (real_interval[&0,&1])` THEN ASM_SIMP_TAC[PATH_CONNECTED_IN_PATH_IMAGE; PATH_IMAGE_SUBSET_TOPSPACE] THEN REWRITE_TAC[IN_IMAGE; IN_REAL_INTERVAL] THEN CONJ_TAC THENL [EXISTS_TAC `&0`; EXISTS_TAC `&1`] THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV; DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [PATH_CONNECTED_IN]) THEN ASM_MESON_TAC[]]);; let PATH_CONNECTED_IN_EUCLIDEANREAL = prove (`!s. path_connected_in euclideanreal s <=> is_realinterval s`, GEN_TAC THEN EQ_TAC THENL [MESON_TAC[CONNECTED_IN_EUCLIDEANREAL; PATH_CONNECTED_IN_IMP_CONNECTED_IN]; REWRITE_TAC[is_realinterval] THEN DISCH_TAC] THEN REWRITE_TAC[path_connected_in; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV] THEN REWRITE_TAC[PATH_CONNECTED_SPACE_SUBCONNECTED] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL; INTER_UNIV] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN EXISTS_TAC `real_interval[min x y,max x y]` THEN REWRITE_TAC[PATH_CONNECTED_IN_EUCLIDEANREAL_INTERVAL; IN_REAL_INTERVAL; PATH_CONNECTED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[REAL_LE_MAX; REAL_MIN_LE; REAL_LE_REFL] THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`min x y:real`; `max x y:real`] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_min; real_max] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; let PATH_CONNECTED_IN_DISCRETE_TOPOLOGY = prove (`!u s:A->bool. path_connected_in (discrete_topology u) s <=> s SUBSET u /\ ?a. s SUBSET {a}`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[PATH_CONNECTED_IN_IMP_CONNECTED_IN; CONNECTED_IN_DISCRETE_TOPOLOGY]; REWRITE_TAC[SET_RULE `s SUBSET u /\ (?a. s SUBSET {a}) <=> s = {} \/ ?a. a IN u /\ s = {a}`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_EMPTY] THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_SING; TOPSPACE_DISCRETE_TOPOLOGY]]);; let PATH_CONNECTED_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. path_connected_space (discrete_topology u) <=> ?a. u SUBSET {a}`, REWRITE_TAC[GSYM PATH_CONNECTED_IN_TOPSPACE; PATH_CONNECTED_IN_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let PATH_CONNECTED_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. path_connected_space(prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ path_connected_space top1 /\ path_connected_space top2`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THEN ASM_SIMP_TAC[PATH_CONNECTED_SPACE_TOPSPACE_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN EQ_TAC THENL [REWRITE_TAC[GSYM PATH_CONNECTED_IN_TOPSPACE] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`FST:A#B->A`; `prod_topology top1 top2:(A#B)topology`; `top1:A topology`; `topspace(prod_topology top1 top2:(A#B)topology)`] PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE); MP_TAC(ISPECL [`SND:A#B->B`; `prod_topology top1 top2:(A#B)topology`; `top2:B topology`; `topspace(prod_topology top1 top2:(A#B)topology)`] PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE)] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY] THEN ASM_REWRITE_TAC[IMAGE_FST_CROSS; IMAGE_SND_CROSS]; REWRITE_TAC[path_connected_space; NOT_EXISTS_THM] THEN STRIP_TAC] THEN REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `x2:B`; `y1:A`; `y2:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x2:B`; `y2:B`]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x1:A`; `y1:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g1:real->A` THEN STRIP_TAC THEN X_GEN_TAC `g2:real->B` THEN STRIP_TAC THEN EXISTS_TAC `(\t. g1 t,g2 t):real->A#B` THEN ASM_REWRITE_TAC[path_in; CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX] THEN ASM_REWRITE_TAC[GSYM path_in]);; let PATH_CONNECTED_IN_CROSS = prove (`!top1 top2 s:A->bool t:B->bool. path_connected_in (prod_topology top1 top2) (s CROSS t) <=> s = {} \/ t = {} \/ path_connected_in top1 s /\ path_connected_in top2 t`, REPEAT GEN_TAC THEN REWRITE_TAC[path_connected_in; SUBTOPOLOGY_CROSS] THEN REWRITE_TAC[PATH_CONNECTED_SPACE_PROD_TOPOLOGY; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[SUBSET_CROSS; CROSS_EQ_EMPTY; TOPSPACE_SUBTOPOLOGY] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(t:B->bool) SUBSET topspace top2` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);; let PATH_CONNECTED_SPACE_PRODUCT_TOPOLOGY = prove (`!tops:K->A topology k. path_connected_space(product_topology k tops) <=> topspace(product_topology k tops) = {} \/ !i. i IN k ==> path_connected_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THEN ASM_SIMP_TAC[PATH_CONNECTED_SPACE_TOPSPACE_EMPTY] THEN EQ_TAC THENL [REWRITE_TAC[GSYM PATH_CONNECTED_IN_TOPSPACE] THEN DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`\(f:K->A). f i`; `(tops:K->A topology) i`] o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY; o_THM]; DISCH_TAC] THEN REWRITE_TAC[path_connected_space; TOPSPACE_PRODUCT_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`x:K->A`; `y:K->A`] THEN STRIP_TAC THEN SUBGOAL_THEN `!i. ?g. i IN k ==> path_in ((tops:K->A topology) i) g /\ g(&0) = x i /\ g(&1) = y i` MP_TAC THENL [X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[path_connected_space] THEN DISCH_THEN MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; o_DEF; IN_ELIM_THM]) THEN ASM_SIMP_TAC[]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `g:K->real->A` THEN STRIP_TAC THEN EXISTS_TAC `\a i. if i IN k then (g:K->real->A) i a else ARB` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [SIMP_TAC[path_in; CONTINUOUS_MAP_COMPONENTWISE] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; EXTENSIONAL; IN_ELIM_THM] THEN ASM_SIMP_TAC[GSYM path_in; ETA_AX]; CONJ_TAC THENL [UNDISCH_TAC `(x:K->A) IN cartesian_product k (topspace o tops)`; UNDISCH_TAC `(y:K->A) IN cartesian_product k (topspace o tops)`] THEN SIMP_TAC[cartesian_product; EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN ASM_MESON_TAC[]]);; let PATH_CONNECTED_IN_CARTESIAN_PRODUCT = prove (`!tops:K->A topology s k. path_connected_in (product_topology k tops) (cartesian_product k s) <=> cartesian_product k s = {} \/ !i. i IN k ==> path_connected_in (tops i) (s i)`, REWRITE_TAC[path_connected_in; SUBTOPOLOGY_CARTESIAN_PRODUCT] THEN REWRITE_TAC[PATH_CONNECTED_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; o_DEF; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Path components. *) (* ------------------------------------------------------------------------- *) let path_component_of = new_definition `path_component_of top x y <=> ?g. path_in top g /\ g(&0) = x /\ g(&1) = y`;; let path_components_of = new_definition `path_components_of top = {path_component_of top x |x| x IN topspace top}`;; let PATH_COMPONENT_IN_TOPSPACE = prove (`!top x y:A. path_component_of top x y ==> x IN topspace top /\ y IN topspace top`, REWRITE_TAC[path_component_of; path_in; continuous_map] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let PATH_COMPONENT_OF_REFL = prove (`!top x:A. path_component_of top x x <=> x IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[PATH_COMPONENT_IN_TOPSPACE]; DISCH_TAC] THEN REWRITE_TAC[path_component_of] THEN EXISTS_TAC `(\t. x):real->A` THEN ASM_REWRITE_TAC[PATH_IN_CONST]);; let PATH_COMPONENT_OF_SYM = prove (`!top x y:A. path_component_of top x y <=> path_component_of top y x`, REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[path_component_of; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:real->A` THEN REWRITE_TAC[path_in] THEN STRIP_TAC THEN EXISTS_TAC `(g:real->A) o (\t. &1 - t)` THEN REWRITE_TAC[o_THM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology euclideanreal (real_interval [&0,&1])` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN (CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC]) THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_ID]);; let PATH_COMPONENT_OF_TRANS = prove (`!top x y z:A. path_component_of top x y /\ path_component_of top y z ==> path_component_of top x z`, REPEAT GEN_TAC THEN REWRITE_TAC[path_component_of; path_in] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `g1:real->A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `g2:real->A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `\x. if x <= &1 / &2 then ((g1:real->A) o (\t. &2 * t)) x else (g2 o (\t. &2 * t - &1)) x` THEN REWRITE_TAC[o_THM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_MAP_CASES_LE THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology euclideanreal (real_interval [&0,&1])` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE; IN_INTER; IN_REAL_INTERVAL; IN_ELIM_THM] THEN (CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC]) THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN REPEAT(MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB) THEN REPEAT CONJ_TAC THEN REPEAT(MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL) THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_ID]);; let PATH_COMPONENT_OF_SUBTOPOLOGY = prove (`!top s x y:A. path_component_of (subtopology top s) x y ==> path_component_of top x y`, REWRITE_TAC[path_component_of; PATH_IN_SUBTOPOLOGY] THEN MESON_TAC[]);; let PATH_COMPONENT_OF_MONO = prove (`!top s t x y:A. path_component_of (subtopology top s) x y /\ s SUBSET t ==> path_component_of (subtopology top t) x y`, REWRITE_TAC[path_component_of; PATH_IN_SUBTOPOLOGY] THEN MESON_TAC[SUBSET]);; let PATH_COMPONENT_OF = prove (`!top x y:A. path_component_of top x y <=> ?t. path_connected_in top t /\ x IN t /\ y IN t`, REPEAT GEN_TAC THEN REWRITE_TAC[path_component_of] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[PATH_CONNECTED_IN]] THEN DISCH_THEN(X_CHOOSE_THEN `g:real->A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (g:real->A) (real_interval[&0,&1])` THEN ASM_SIMP_TAC[PATH_CONNECTED_IN_PATH_IMAGE] THEN REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN CONJ_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let PATH_COMPONENT_OF_SET = prove (`!top x:A. path_component_of top x = {y | ?g. path_in top g /\ g(&0) = x /\ g(&1) = y}`, REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[IN; path_component_of]);; let PATH_COMPONENT_OF_SET_ALT = prove (`!top x:A. path_component_of top x = {y | ?t. path_connected_in top t /\ x IN t /\ y IN t}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[PATH_COMPONENT_OF; IN_ELIM_THM]);; let PATH_COMPONENT_OF_SUBTOPOLOGY_EQ = prove (`!top u x:A. path_component_of (subtopology top u) x = path_component_of top x <=> path_component_of top x SUBSET u`, REWRITE_TAC[PATH_COMPONENT_OF_SET_ALT; PATH_CONNECTED_IN_SUBTOPOLOGY] THEN SET_TAC[]);; let PATH_COMPONENTS_OF_SUBTOPOLOGY = prove (`!top u c:A->bool. c IN path_components_of top /\ c SUBSET u ==> c IN path_components_of (subtopology top u)`, GEN_TAC THEN GEN_TAC THEN SIMP_TAC[path_components_of; IMP_CONJ; FORALL_IN_GSPEC] THEN X_GEN_TAC `x:A` THEN REPEAT DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:A` o GEN_REWRITE_RULE I [SUBSET]) THEN ANTS_TAC THENL [ASM_MESON_TAC[PATH_COMPONENT_OF_REFL; IN]; DISCH_TAC] THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `x:A` THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN ASM_MESON_TAC[PATH_COMPONENT_OF_SUBTOPOLOGY_EQ]);; let PATH_COMPONENT_OF_SUBSET_TOPSPACE = prove (`!top x. (path_component_of top x) SUBSET topspace top`, REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[PATH_COMPONENT_IN_TOPSPACE; IN]);; let PATH_COMPONENT_OF_EQ_EMPTY = prove (`!top x. path_component_of top x = {} <=> ~(x IN topspace top)`, REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[IN; PATH_COMPONENT_OF_REFL; PATH_COMPONENT_IN_TOPSPACE]);; let PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT = prove (`!top:A topology. path_connected_space top <=> !x y. x IN topspace top /\ y IN topspace top ==> path_component_of top x y`, REWRITE_TAC[path_connected_space; path_component_of]);; let PATH_CONNECTED_SPACE_IMP_PATH_COMPONENT_OF = prove (`!top a b:A. path_connected_space top /\ a IN topspace top /\ b IN topspace top ==> path_component_of top a b`, MESON_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT]);; let PATH_CONNECTED_SPACE_PATH_COMPONENT_SET = prove (`!top. path_connected_space top <=> !x:A. x IN topspace top ==> path_component_of top x = topspace top`, REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[PATH_COMPONENT_OF_SUBSET_TOPSPACE] THEN SET_TAC[]);; let PATH_COMPONENT_OF_MAXIMAL = prove (`!top s x:A. path_connected_in top s /\ x IN s ==> s SUBSET (path_component_of top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[PATH_CONNECTED_IN] THEN STRIP_TAC THEN REWRITE_TAC[SUBSET; PATH_COMPONENT_OF_SET; IN_ELIM_THM] THEN ASM_MESON_TAC[]);; let PATH_COMPONENT_OF_EQUIV = prove (`!top x y:A. path_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ path_component_of top x = path_component_of top y`, REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[PATH_COMPONENT_OF_REFL; PATH_COMPONENT_OF_TRANS; PATH_COMPONENT_OF_SYM]);; let PATH_COMPONENT_OF_DISJOINT = prove (`!top x y:A. DISJOINT (path_component_of top x) (path_component_of top y) <=> ~(path_component_of top x y)`, REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN REWRITE_TAC[IN] THEN MESON_TAC[PATH_COMPONENT_OF_SYM; PATH_COMPONENT_OF_TRANS]);; let PATH_COMPONENT_OF_EQ = prove (`!top x y:A. path_component_of top x = path_component_of top y <=> ~(x IN topspace top) /\ ~(y IN topspace top) \/ x IN topspace top /\ y IN topspace top /\ path_component_of top x y`, MESON_TAC[PATH_COMPONENT_OF_REFL; PATH_COMPONENT_OF_EQUIV; PATH_COMPONENT_OF_EQ_EMPTY]);; let PATH_CONNECTED_IN_PATH_COMPONENT_OF = prove (`!top x:A. path_connected_in top (path_component_of top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[path_connected_in; PATH_COMPONENT_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; PATH_COMPONENT_OF_SUBSET_TOPSPACE] THEN SUBGOAL_THEN `!y. y IN path_component_of top (x:A) ==> path_component_of (subtopology top (path_component_of top x)) x y` MP_TAC THENL [X_GEN_TAC `y:A` THEN REWRITE_TAC[IN]; MESON_TAC[PATH_COMPONENT_OF_SYM; PATH_COMPONENT_OF_TRANS]] THEN REWRITE_TAC[path_component_of] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real->A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[PATH_IN_SUBTOPOLOGY; SET_RULE `(!x. x IN s ==> f x IN t) <=> IMAGE f s SUBSET t`] THEN MATCH_MP_TAC PATH_COMPONENT_OF_MAXIMAL THEN ASM_SIMP_TAC[PATH_CONNECTED_IN_PATH_IMAGE; IN_IMAGE] THEN EXISTS_TAC `&0:real` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let UNIONS_PATH_COMPONENTS_OF = prove (`!top:A topology. UNIONS (path_components_of top) = topspace top`, GEN_TAC THEN REWRITE_TAC[path_components_of] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; PATH_COMPONENT_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[PATH_COMPONENT_OF_REFL]);; let PATH_COMPONENTS_OF_MAXIMAL = prove (`!top s c:A->bool. c IN path_components_of top /\ path_connected_in top s /\ ~DISJOINT c s ==> s SUBSET c`, REWRITE_TAC[path_components_of; IMP_CONJ; FORALL_IN_GSPEC; LEFT_IMP_EXISTS_THM; SET_RULE `~DISJOINT P t <=> ?x. P x /\ x IN t`] THEN SIMP_TAC[PATH_COMPONENT_OF_EQUIV] THEN MESON_TAC[PATH_COMPONENT_OF_MAXIMAL]);; let PAIRWISE_DISJOINT_PATH_COMPONENTS_OF = prove (`!top:A topology. pairwise DISJOINT (path_components_of top)`, SIMP_TAC[pairwise; IMP_CONJ; path_components_of; RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[PATH_COMPONENT_OF_EQ; PATH_COMPONENT_OF_DISJOINT]);; let COMPLEMENT_PATH_COMPONENTS_OF_UNIONS = prove (`!top c:A->bool. c IN path_components_of top ==> topspace top DIFF c = UNIONS (path_components_of top DELETE c)`, REWRITE_TAC[SET_RULE `s DELETE a = s DIFF {a}`] THEN ASM_SIMP_TAC[GSYM DIFF_UNIONS_PAIRWISE_DISJOINT; PAIRWISE_DISJOINT_PATH_COMPONENTS_OF; SING_SUBSET] THEN REWRITE_TAC[UNIONS_PATH_COMPONENTS_OF; UNIONS_1]);; let NONEMPTY_PATH_COMPONENTS_OF = prove (`!top c:A->bool. c IN path_components_of top ==> ~(c = {})`, SIMP_TAC[path_components_of; FORALL_IN_GSPEC; PATH_COMPONENT_OF_EQ_EMPTY]);; let PATH_COMPONENTS_OF_SUBSET = prove (`!top c:A->bool. c IN path_components_of top ==> c SUBSET topspace top`, SIMP_TAC[path_components_of; FORALL_IN_GSPEC; PATH_COMPONENT_OF_SUBSET_TOPSPACE]);; let PATH_CONNECTED_IN_PATH_COMPONENTS_OF = prove (`!top c:A->bool. c IN path_components_of top ==> path_connected_in top c`, REWRITE_TAC[path_components_of; FORALL_IN_GSPEC] THEN REWRITE_TAC[PATH_CONNECTED_IN_PATH_COMPONENT_OF]);; let PATH_COMPONENT_IN_PATH_COMPONENTS_OF = prove (`!top a:A. path_component_of top a IN path_components_of top <=> a IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN SIMP_TAC[GSYM PATH_COMPONENT_OF_EQ_EMPTY] THEN MESON_TAC[NONEMPTY_PATH_COMPONENTS_OF]; REWRITE_TAC[path_components_of] THEN SET_TAC[]]);; let PATH_CONNECTED_IN_UNIONS = prove (`!top u:(A->bool)->bool. (!s. s IN u ==> path_connected_in top s) /\ ~(INTERS u = {}) ==> path_connected_in top (UNIONS u)`, REWRITE_TAC[path_connected_in] THEN SIMP_TAC[UNIONS_SUBSET] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT] THEN SUBGOAL_THEN `!x. x IN topspace (subtopology top (UNIONS u)) ==> path_component_of (subtopology top (UNIONS u)) (a:A) x` MP_TAC THENL [REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IMP_CONJ_ALT; IN_INTER]; ASM_MESON_TAC[PATH_COMPONENT_OF_SYM; PATH_COMPONENT_OF_TRANS]] THEN REWRITE_TAC[FORALL_IN_UNIONS] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `b:A`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPECL [`a:A`; `b:A`])) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; path_component_of; PATH_IN_SUBTOPOLOGY] THEN ASM SET_TAC[]);; let PATH_CONNECTED_IN_UNION = prove (`!top s t:A->bool. path_connected_in top s /\ path_connected_in top t /\ ~(s INTER t = {}) ==> path_connected_in top (s UNION t)`, REWRITE_TAC[GSYM UNIONS_2; GSYM INTERS_2] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC PATH_CONNECTED_IN_UNIONS THEN ASM SET_TAC[]);; let PATH_CONNECTED_SPACE_IFF_COMPONENTS_EQ = prove (`!top:A topology. path_connected_space top <=> !c c'. c IN path_components_of top /\ c' IN path_components_of top ==> c = c'`, REWRITE_TAC[path_components_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT] THEN SIMP_TAC[PATH_COMPONENT_OF_EQ] THEN MESON_TAC[]);; let PATH_COMPONENTS_OF_EQ_EMPTY = prove (`!top:A topology. path_components_of top = {} <=> topspace top = {}`, REWRITE_TAC[path_components_of] THEN SET_TAC[]);; let PATH_COMPONENTS_OF_EMPTY_SPACE = prove (`!top:A topology. topspace top = {} ==> path_components_of top = {}`, REWRITE_TAC[PATH_COMPONENTS_OF_EQ_EMPTY]);; let PATH_COMPONENTS_OF_SUBSET_SING = prove (`!top s:A->bool. path_components_of top SUBSET {s} <=> path_connected_space top /\ (topspace top = {} \/ topspace top = s)`, REPEAT GEN_TAC THEN REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_COMPONENTS_EQ; SET_RULE `(!x y. x IN s /\ y IN s ==> x = y) <=> s = {} \/ ?a. s = {a}`] THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[PATH_COMPONENTS_OF_EMPTY_SPACE; EMPTY_SUBSET] THEN ASM_REWRITE_TAC[PATH_COMPONENTS_OF_EQ_EMPTY; SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN MESON_TAC[UNIONS_PATH_COMPONENTS_OF; UNIONS_1]);; let PATH_CONNECTED_SPACE_IFF_COMPONENTS_SUBSET_SING = prove (`!top:A topology. path_connected_space top <=> ?a. path_components_of top SUBSET {a}`, MESON_TAC[PATH_COMPONENTS_OF_SUBSET_SING]);; let PATH_COMPONENTS_OF_EQ_SING = prove (`!top s:A->bool. path_components_of top = {s} <=> path_connected_space top /\ ~(topspace top = {}) /\ s = topspace top`, REWRITE_TAC[PATH_COMPONENTS_OF_SUBSET_SING; PATH_COMPONENTS_OF_EQ_EMPTY; SET_RULE `s = {a} <=> s SUBSET {a} /\ ~(s = {})`] THEN MESON_TAC[]);; let PATH_COMPONENTS_OF_PATH_CONNECTED_SPACE = prove (`!top:A topology. path_connected_space top ==> path_components_of top = if topspace top = {} then {} else {topspace top}`, ASM_MESON_TAC[PATH_COMPONENTS_OF_EMPTY_SPACE; PATH_COMPONENTS_OF_EQ_SING]);; let PATH_COMPONENT_SUBSET_CONNECTED_COMPONENT_OF = prove (`!top x:A. path_component_of top x SUBSET connected_component_of top x`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THENL [MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN SIMP_TAC[PATH_CONNECTED_IN_IMP_CONNECTED_IN; PATH_CONNECTED_IN_PATH_COMPONENT_OF] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[PATH_COMPONENT_OF_REFL]; ASM_MESON_TAC[PATH_COMPONENT_OF_EQ_EMPTY; EMPTY_SUBSET]]);; let PATH_IMP_CONNECTED_COMPONENT_OF = prove (`!top x y:A. path_component_of top x y ==> connected_component_of top x y`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[SET_RULE `(!y. P y ==> Q y) <=> P SUBSET Q`] THEN REWRITE_TAC[ETA_AX; PATH_COMPONENT_SUBSET_CONNECTED_COMPONENT_OF]);; let EXISTS_PATH_COMPONENT_OF_SUPERSET = prove (`!top s:A->bool. path_connected_in top s /\ ~(topspace top = {}) ==> ?c. c IN path_components_of top /\ s SUBSET c`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_REWRITE_TAC[EMPTY_SUBSET; MEMBER_NOT_EMPTY] THEN ASM_REWRITE_TAC[PATH_COMPONENTS_OF_EQ_EMPTY]; UNDISCH_TAC `~(s:A->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN EXISTS_TAC `path_component_of top (a:A)` THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[path_connected_in]) THEN REWRITE_TAC[PATH_COMPONENT_IN_PATH_COMPONENTS_OF] THEN ASM SET_TAC[]; MATCH_MP_TAC PATH_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[]]);; let PATH_COMPONENT_OF_EQ_OVERLAP = prove (`!top x y:A. path_component_of top x = path_component_of top y <=> ~(x IN topspace top) /\ ~(y IN topspace top) \/ ~(path_component_of top x INTER path_component_of top y = {})`, REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[PATH_COMPONENT_OF_EQ] THEN MESON_TAC[PATH_COMPONENT_IN_TOPSPACE]);; let PATH_COMPONENT_OF_NONOVERLAP = prove (`!top x y:A. path_component_of top x INTER path_component_of top y = {} <=> ~(x IN topspace top) \/ ~(y IN topspace top) \/ ~(path_component_of top x = path_component_of top y)`, REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[PATH_COMPONENT_OF_EQ] THEN MESON_TAC[PATH_COMPONENT_IN_TOPSPACE]);; let PATH_COMPONENT_OF_OVERLAP = prove (`!top x y:A. ~(path_component_of top x INTER path_component_of top y = {}) <=> x IN topspace top /\ y IN topspace top /\ path_component_of top x = path_component_of top y`, REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[PATH_COMPONENT_OF_EQ] THEN MESON_TAC[PATH_COMPONENT_IN_TOPSPACE]);; let PATH_COMPONENTS_OF_DISJOINT = prove (`!top c c'. c IN path_components_of top /\ c' IN path_components_of top ==> (DISJOINT c c' <=> ~(c = c'))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; path_components_of] THEN SIMP_TAC[FORALL_IN_GSPEC; DISJOINT; PATH_COMPONENT_OF_NONOVERLAP]);; let PATH_COMPONENTS_OF_OVERLAP = prove (`!top c c'. c IN path_components_of top /\ c' IN path_components_of top ==> (~(c INTER c' = {}) <=> c = c')`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; path_components_of] THEN SIMP_TAC[FORALL_IN_GSPEC; DISJOINT; PATH_COMPONENT_OF_NONOVERLAP]);; let CARD_LE_PATH_COMPONENTS_OF_TOPSPACE = prove (`!top:A topology. path_components_of top <=_c topspace top`, GEN_TAC THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `(IN):A->(A->bool)->bool` THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PATH_COMPONENTS_OF_SUBSET) THEN FIRST_ASSUM(MP_TAC o MATCH_MP NONEMPTY_PATH_COMPONENTS_OF) THEN SET_TAC[]; MESON_TAC[REWRITE_RULE[GSYM MEMBER_NOT_EMPTY; IN_INTER] PATH_COMPONENTS_OF_OVERLAP]]);; let FINITE_PATH_COMPONENTS_OF_FINITE = prove (`!top:A topology. FINITE(topspace top) ==> FINITE(path_components_of top)`, GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN REWRITE_TAC[CARD_LE_PATH_COMPONENTS_OF_TOPSPACE]);; let PATH_COMPONENT_OF_UNIQUE = prove (`!top c x:A. x IN c /\ path_connected_in top c /\ (!c'. x IN c' /\ path_connected_in top c' ==> c' SUBSET c) ==> path_component_of top x = c`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `R = s <=> !x. R x <=> x IN s`] THEN REWRITE_TAC[PATH_COMPONENT_OF] THEN ASM SET_TAC[]);; let PATH_COMPONENT_OF_DISCRETE_TOPOLOGY = prove (`!u x:A. path_component_of (discrete_topology u) x = if x IN u then {x} else {}`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[PATH_COMPONENT_OF_EQ_EMPTY; TOPSPACE_DISCRETE_TOPOLOGY] THEN MATCH_MP_TAC PATH_COMPONENT_OF_UNIQUE THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_DISCRETE_TOPOLOGY; IN_SING; SING_SUBSET] THEN SET_TAC[]);; let PATH_COMPONENTS_OF_DISCRETE_TOPOLOGY = prove (`!u:A->bool. path_components_of (discrete_topology u) = {{x} | x IN u}`, GEN_TAC THEN REWRITE_TAC[path_components_of] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; PATH_COMPONENT_OF_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let PATH_COMPONENT_OF_CONTINUOUS_IMAGE = prove (`!top top' (f:A->B) x y. continuous_map(top,top') f /\ path_component_of top x y ==> path_component_of top' (f x) (f y)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[path_component_of] THEN DISCH_THEN(X_CHOOSE_THEN `g:real->A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:A->B) o (g:real->A)` THEN ASM_REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[PATH_IN_COMPOSE]);; let HOMEOMORPHIC_MAP_PATH_COMPONENT_OF = prove (`!(f:A->B) top top' x. homeomorphic_map(top,top') f /\ x IN topspace top ==> path_component_of top' (f x) = IMAGE f (path_component_of top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS; homeomorphic_maps] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `g:B->A` STRIP_ASSUME_TAC) ASSUME_TAC) THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN REWRITE_TAC[IN] THEN MP_TAC(ISPEC `top':B topology` PATH_COMPONENT_IN_TOPSPACE) THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `f:A->B`] PATH_COMPONENT_OF_CONTINUOUS_IMAGE) THEN MP_TAC(ISPECL [`top':B topology`; `top:A topology`; `g:B->A`] PATH_COMPONENT_OF_CONTINUOUS_IMAGE) THEN ASM_REWRITE_TAC[] THEN REPEAT (FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_PATH_COMPONENTS_OF = prove (`!(f:A->B) top top'. homeomorphic_map(top,top') f ==> path_components_of top' = IMAGE (IMAGE f) (path_components_of top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[path_components_of; SIMPLE_IMAGE] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP HOMEOMORPHIC_IMP_SURJECTIVE_MAP) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN REWRITE_TAC[] THEN ASM_MESON_TAC[HOMEOMORPHIC_MAP_PATH_COMPONENT_OF]);; let PATH_COMPONENT_OF_PAIR = prove (`!top1 top2 (x:A) (y:B). path_component_of (prod_topology top1 top2) (x,y) = path_component_of top1 x CROSS path_component_of top2 y`, REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `(s = {} <=> t = {}) /\ (~(s = {}) ==> (s = t)) ==> s = t`) THEN REWRITE_TAC[CROSS_EQ_EMPTY; PATH_COMPONENT_OF_EQ_EMPTY; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; DE_MORGAN_THM] THEN STRIP_TAC THEN MATCH_MP_TAC PATH_COMPONENT_OF_UNIQUE THEN SIMP_TAC[PATH_CONNECTED_IN_CROSS; PATH_CONNECTED_IN_PATH_COMPONENT_OF] THEN REWRITE_TAC[IN_CROSS] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN REWRITE_TAC[PATH_COMPONENT_OF_REFL] THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `c:A#B->bool` THEN STRIP_TAC THEN TRANS_TAC SUBSET_TRANS `(IMAGE FST c CROSS IMAGE SND c):A#B->bool` THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN MESON_TAC[]; REWRITE_TAC[SUBSET_CROSS] THEN REPEAT DISJ2_TAC THEN CONJ_TAC THEN MATCH_MP_TAC PATH_COMPONENT_OF_MAXIMAL THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN (CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN MATCH_MP_TAC PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN ASM_MESON_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]]);; let PATH_COMPONENTS_OF_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). path_components_of (prod_topology top1 top2) = {c1 CROSS c2 | c1 IN path_components_of top1 /\ c2 IN path_components_of top2}`, REPEAT GEN_TAC THEN REWRITE_TAC[path_components_of; TOPSPACE_PROD_TOPOLOGY; CROSS] THEN REWRITE_TAC[SET_RULE `{f z | z IN {x,y | P x y}} = {f(x,y) | P x y}`] THEN REWRITE_TAC[GSYM CROSS; PATH_COMPONENT_OF_PAIR] THEN SET_TAC[]);; let PATH_COMPONENT_OF_PRODUCT_TOPOLOGY = prove (`!k (tops:K->A topology) x. path_component_of (product_topology k tops) x = if EXTENSIONAL k x then cartesian_product k (\i. path_component_of (tops i) (x i)) else {}`, REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `(s = {} <=> t = {}) /\ (~(s = {}) ==> (s = t)) ==> s = t`) THEN REWRITE_TAC[MESON[] `(if p then x else y) = y <=> p ==> x = y`] THEN REWRITE_TAC[PATH_COMPONENT_OF_EQ_EMPTY; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[o_THM; GSYM cartesian_product] THEN CONJ_TAC THENL [MESON_TAC[]; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC PATH_COMPONENT_OF_UNIQUE THEN SIMP_TAC[PATH_CONNECTED_IN_CARTESIAN_PRODUCT; PATH_CONNECTED_IN_PATH_COMPONENT_OF] THEN ASM_REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[PATH_COMPONENT_OF_REFL; IN]; ALL_TAC] THEN X_GEN_TAC `c:(K->A)->bool` THEN STRIP_TAC THEN TRANS_TAC SUBSET_TRANS `cartesian_product k (\i. IMAGE (\x. x i) c):(K->A)->bool` THEN REWRITE_TAC[GSYM cartesian_product; SUBSET_CARTESIAN_PRODUCT] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP PATH_CONNECTED_IN_SUBSET_TOPSPACE) THEN REWRITE_TAC[SUBSET; cartesian_product; IN_ELIM_THM; TOPSPACE_PRODUCT_TOPOLOGY; o_THM; IN_IMAGE] THEN ASM_MESON_TAC[]; DISJ2_TAC THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN MATCH_MP_TAC PATH_COMPONENT_OF_MAXIMAL THEN REWRITE_TAC[IN_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN MATCH_MP_TAC PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN ASM_MESON_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION]]);; let PATH_COMPONENTS_OF_PRODUCT_TOPOLOGY = prove (`!k (tops:K->A topology). path_components_of (product_topology k tops) = { cartesian_product k c |c| !i. i IN k ==> c i IN path_components_of(tops i)}`, REPEAT GEN_TAC THEN REWRITE_TAC[path_components_of; PATH_COMPONENT_OF_PRODUCT_TOPOLOGY] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> p x) /\ {cartesian_product k y | y IN IMAGE f s} = t ==> {if p x then cartesian_product k (f x) else z | x IN s} = t`) THEN CONJ_TAC THENL [SIMP_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM]; ALL_TAC] THEN REWRITE_TAC[IN_ELIM_THM; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN REWRITE_TAC[IN_IMAGE; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[GSYM cartesian_product; o_THM] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `(!x. P x ==> Q x) ==> {f x | P x} SUBSET {f x | Q x}`) THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `c:K->A->bool` THEN DISCH_THEN(X_CHOOSE_TAC `x:K->A`) THEN REWRITE_TAC[IN_ELIM_THM; CARTESIAN_PRODUCT_EQ] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN EXISTS_TAC `RESTRICTION k (x:K->A)` THEN SIMP_TAC[RESTRICTION; EXTENSIONAL; IN_ELIM_THM] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Special characterizations of classes of functions into and out of R. *) (* ------------------------------------------------------------------------- *) let EMBEDDING_MAP_INTO_EUCLIDEANREAL = prove (`!top f:A->real. path_connected_space top ==> (embedding_map(top,euclideanreal) f <=> continuous_map(top,euclideanreal) f /\ !x y. x IN topspace top /\ y IN topspace top /\ f x = f y ==> x = y)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[embedding_map; HOMEOMORPHIC_EQ_EVERYTHING_MAP] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN MESON_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)] THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; embedding_map] THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS; homeomorphic_maps] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real->A` THEN DISCH_TAC THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET_REFL; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[GSYM MTOPOLOGY_SUBMETRIC] THEN REWRITE_TAC[CONTINUOUS_MAP_FROM_METRIC] THEN REWRITE_TAC[SUBMETRIC; REAL_EUCLIDEAN_METRIC; INTER_UNIV] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IMP_CONJ] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN X_GEN_TAC `t:A->bool` THEN REPEAT STRIP_TAC THEN ABBREV_TAC `s = IMAGE (f:A->real) (topspace top)` THEN FIRST_ASSUM(MP_TAC o SPEC `topspace top:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_TOPSPACE; PATH_CONNECTED_IN_EUCLIDEANREAL] THEN DISCH_TAC THEN SUBGOAL_THEN `?u v d. &0 < d /\ u IN topspace top /\ v IN topspace top /\ s INTER real_interval[f x - d,f x + d] SUBSET real_interval[(f:A->real) u,f v]` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `?u. u IN topspace top /\ (f:A->real) u < f x` THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u:A`; EXISTS_TAC `x:A`] THEN (ASM_CASES_TAC `?v. v IN topspace top /\ (f:A->real) x < f v` THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `v:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `v:A`; EXISTS_TAC `x:A`]) THENL [EXISTS_TAC `min ((f:A->real) x - f u) (f v - f x)`; EXISTS_TAC `(f:A->real) x - f u`; EXISTS_TAC `(f:A->real) v - f x`; EXISTS_TAC `&1`] THEN (ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN EXPAND_TAC "s" THEN REWRITE_TAC[SUBSET; IN_INTER; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:A` o GEN_REWRITE_RULE I [NOT_EXISTS_THM])) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `?c:A->bool. compact_in top c /\ connected_in top c /\ u IN c /\ v IN c` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [path_connected_space]) THEN DISCH_THEN(MP_TAC o SPECL [`u:A`; `v:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `h:real->A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (h:real->A) (real_interval[&0,&1])` THEN ASM_SIMP_TAC[COMPACT_IN_PATH_IMAGE; CONNECTED_IN_PATH_IMAGE] THEN MAP_EVERY EXPAND_TAC ["u"; "v"] THEN CONJ_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN SUBGOAL_THEN `continuous_map(subtopology euclideanreal (s INTER real_interval [f(x:A) - d,f x + d]), subtopology top c) (g:real->A)` MP_TAC THENL [MATCH_MP_TAC CONTINUOUS_INVERSE_MAP THEN EXISTS_TAC `f:A->real` THEN REWRITE_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; COMPACT_SPACE_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN TRANS_TAC SUBSET_TRANS `real_interval[f(u:A),f v]` THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; SET_RULE `c SUBSET u ==> u INTER c = c`] THEN MATCH_MP_TAC IS_REALINTERVAL_CONTAINS_INTERVAL THEN ASM_SIMP_TAC[FUN_IN_IMAGE; GSYM CONNECTED_IN_EUCLIDEANREAL] THEN ASM_MESON_TAC[CONNECTED_IN_CONTINUOUS_MAP_IMAGE]; ALL_TAC] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[GSYM MTOPOLOGY_SUBMETRIC] THEN REWRITE_TAC[CONTINUOUS_MAP_FROM_METRIC] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[SUBMETRIC; REAL_EUCLIDEAN_METRIC; INTER_UNIV] THEN EXPAND_TAC "s" THEN REWRITE_TAC[IN_INTER; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `t:A->bool`) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN EXISTS_TAC `min (d:real) e` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN X_GEN_TAC `y:A` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let MONOTONE_MAP_INTO_EUCLIDEANREAL_ALT = prove (`!top (f:A->real). continuous_map(top,euclideanreal) f ==> ((!k. is_realinterval k ==> connected_in top {x | x IN topspace top /\ f x IN k}) <=> connected_space top /\ monotone_map(top,euclideanreal) f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[MONOTONE_MAP; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV] THEN EQ_TAC THEN STRIP_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `(:real)`) THEN REWRITE_TAC[IS_REALINTERVAL_UNIV; IN_UNIV; IN_GSPEC] THEN REWRITE_TAC[CONNECTED_IN_TOPSPACE]; X_GEN_TAC `y:real` THEN FIRST_X_ASSUM(MP_TAC o SPEC `{y:real}`) THEN REWRITE_TAC[IS_REALINTERVAL_SING; IN_SING]]; ALL_TAC] THEN SUBGOAL_THEN `!a b u v. a < b /\ closed_in top u /\ closed_in top v /\ ~(u = {}) /\ ~(v = {}) /\ DISJOINT u v /\ {x:A | x IN topspace top /\ f x IN real_interval[a,b]} = u UNION v /\ DISJOINT u {x | x IN topspace top /\ f x = b} /\ DISJOINT v {x | x IN topspace top /\ f x = a} ==> F` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_SPACE_CLOSED_IN]) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`u UNION {x | x IN topspace top /\ (f:A->real) x IN {c | c <= a}}`; `v UNION {x | x IN topspace top /\ (f:A->real) x IN {c | b <= c}}`] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_UNION THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[GSYM REAL_CLOSED_IN] THEN REWRITE_TAC[REAL_CLOSED_HALFSPACE_LE] THEN REWRITE_TAC[REWRITE_RULE[real_ge] REAL_CLOSED_HALFSPACE_GE]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `{x | x IN t /\ R x} = u UNION v ==> (!x. P x \/ Q x \/ R x) ==> t SUBSET (u UNION {x | x IN t /\ P x}) UNION (v UNION {x | x IN t /\ Q x})`)) THEN REWRITE_TAC[IN_REAL_INTERVAL; IN_ELIM_THM] THEN REAL_ARITH_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `{x | x IN t /\ R x} = u UNION v ==> DISJOINT u v /\ (!x. ~(P x /\ Q x)) /\ DISJOINT u {x | x IN t /\ Q x /\ R x} /\ DISJOINT v {x | x IN t /\ P x /\ R x} ==> (u UNION {x | x IN t /\ P x}) INTER (v UNION {x | x IN t /\ Q x}) = {}`)) THEN ASM_SIMP_TAC[IN_ELIM_THM; IN_REAL_INTERVAL; REAL_ARITH `a < b ==> (b <= x /\ a <= x /\ x <= b <=> x = b) /\ (x <= a /\ a <= x /\ x <= b <=> x = a)`] THEN ASM_REAL_ARITH_TAC; ASM SET_TAC[]; ASM SET_TAC[]]; X_GEN_TAC `k:real->bool` THEN DISCH_TAC THEN REWRITE_TAC[CONNECTED_IN_CLOSED_IN; SUBSET_RESTRICT; SET_RULE `P /\ Q /\ R /\ S /\ ~(u INTER {x | x IN t /\ f x IN k} = {}) /\ ~(v INTER {x | x IN t /\ f x IN k} = {}) <=> ?a b. a IN k /\ b IN k /\ P /\ Q /\ R /\ S /\ ~DISJOINT u {x | x IN t /\ f x = a} /\ ~DISJOINT v {x | x IN t /\ f x = b}`] THEN ONCE_REWRITE_TAC[MESON[] `~(?a b c d. P a b c d) <=> !c d a b. ~P a b c d`] THEN MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THENL [MESON_TAC[INTER_ACI; UNION_COMM]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:A->real) u INTER IMAGE f v INTER k = {}` ASSUME_TAC THENL [REWRITE_TAC[SET_RULE `(IMAGE f u) INTER IMAGE f v INTER k = {} <=> !a b. a IN u /\ b IN v /\ f a = f b /\ f b IN k ==> F`] THEN MAP_EVERY X_GEN_TAC [`p:A`; `q:A`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_IN_CLOSED_IN] o SPEC `(f:A->real) q`) THEN REWRITE_TAC[SUBSET_RESTRICT] THEN MAP_EVERY EXISTS_TAC [`u:A->bool`; `v:A->bool`] THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [REAL_LE_LT]) THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:real`; `b:real`; `u INTER {x:A | x IN topspace top /\ f x IN real_interval[a,b]}`; `v INTER {x:A | x IN topspace top /\ f x IN real_interval[a,b]}`]) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_INTER THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[GSYM REAL_CLOSED_IN] THEN REWRITE_TAC[REAL_CLOSED_REAL_INTERVAL]; ALL_TAC] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~DISJOINT u {x | x IN t /\ f x = a} ==> a IN s ==> ~(u INTER {x | x IN t /\ f x IN s} = {})`)) THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; SUBGOAL_THEN `real_interval[a,b] SUBSET k` ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [is_realinterval]) THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[]; ASM SET_TAC[]]]]);; let MONOTONE_MAP_INTO_EUCLIDEANREAL = prove (`!top (f:A->real). connected_space top /\ continuous_map(top,euclideanreal) f ==> (monotone_map(top,euclideanreal) f <=> !k. is_realinterval k ==> connected_in top {x | x IN topspace top /\ f x IN k})`, SIMP_TAC[MONOTONE_MAP_INTO_EUCLIDEANREAL_ALT]);; let MONOTONE_MAP_EUCLIDEANREAL_ALT = prove (`!f s. (!c. is_realinterval c ==> is_realinterval {x | x IN s /\ f x IN c}) <=> is_realinterval s /\ ((!x y. x IN s /\ y IN s /\ x <= y ==> f x <= f y) \/ (!x y. x IN s /\ y IN s /\ x <= y ==> f y <= f x))`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; REWRITE_TAC[is_realinterval; IN_ELIM_THM] THEN SET_TAC[]] THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `(:real)`) THEN REWRITE_TAC[IS_REALINTERVAL_UNIV; IN_UNIV; IN_GSPEC]; REWRITE_TAC[is_realinterval] THEN DISCH_TAC THEN REWRITE_TAC[REAL_NON_MONOTONE; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `{y | y < (f:real->real) b}`); FIRST_X_ASSUM(MP_TAC o SPEC `{y | (f:real->real) b < y}`)] THEN REWRITE_TAC[is_realinterval; IN_ELIM_THM; NOT_IMP] THEN (CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN DISCH_THEN(MP_TAC o SPECL [`a:real`; `c:real`; `b:real`]) THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LT_REFL]]);; let MONOTONE_MAP_EUCLIDEANREAL = prove (`!f s. is_realinterval s /\ continuous_map(subtopology euclideanreal s,euclideanreal) f ==> (monotone_map(subtopology euclideanreal s,euclideanreal) f <=> (!x y. x IN s /\ y IN s /\ x <= y ==> f x <= f y) \/ (!x y. x IN s /\ y IN s /\ x <= y ==> f y <= f x))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MONOTONE_MAP_INTO_EUCLIDEANREAL; CONNECTED_SPACE_SUBTOPOLOGY; CONNECTED_IN_EUCLIDEANREAL; CONNECTED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; SUBSET_RESTRICT] THEN ASM_REWRITE_TAC[MONOTONE_MAP_EUCLIDEANREAL_ALT]);; let INJECTIVE_EQ_MONOTONE_MAP = prove (`!f s. is_realinterval s /\ continuous_map(subtopology euclideanreal s,euclideanreal) f ==> ((!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=> (!x y. x IN s /\ y IN s /\ x < y ==> f x < f y) \/ (!x y. x IN s /\ y IN s /\ x < y ==> f y < f x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[STRICTLY_INCREASING_ALT; STRICTLY_DECREASING_ALT] THEN REWRITE_TAC[TAUT `(p <=> q /\ p \/ r /\ p) <=> (p ==> q \/ r)`] THEN REWRITE_TAC[INJECTIVE_ON_ALT] THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM MONOTONE_MAP_EUCLIDEANREAL] THEN MATCH_MP_TAC INJECTIVE_IMP_MONOTONE_MAP THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL; INTER_UNIV] THEN ASM SET_TAC[]);; let INJECTIVE_EQ_REAL_OPEN_MAP_EUCLIDEANREAL = prove (`!f s. is_realinterval s /\ continuous_map(subtopology euclideanreal s,euclideanreal) f ==> ((!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=> !u. real_open u /\ u SUBSET s ==> real_open(IMAGE f u))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_SIMP_TAC[INJECTIVE_EQ_MONOTONE_MAP] THEN REWRITE_TAC[real_open] THEN STRIP_TAC THEN X_GEN_TAC `u:real->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:real` THEN ASM_CASES_TAC `(x:real) IN u` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ARITH `abs(y - x) < e <=> x - e < y /\ y < x + e`] THEN REWRITE_TAC[GSYM IN_REAL_INTERVAL; GSYM SUBSET] THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THENL [EXISTS_TAC `min ((f:real->real)(x + r / &2) - f x) (f x - f(x - r / &2))` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[REAL_LT_MIN; REAL_SUB_LT] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REPEAT CONJ_TAC THEN REPEAT(FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET])) THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `real_interval[f(x - r / &2),f(x + r / &2)]` THEN CONJ_TAC THENL [SIMP_TAC[SUBSET_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `IMAGE (f:real->real) (real_interval(x - r,x + r))` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN MATCH_MP_TAC IS_REALINTERVAL_CONTAINS_INTERVAL THEN CONJ_TAC THENL [REWRITE_TAC[GSYM CONNECTED_IN_EUCLIDEANREAL] THEN MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `subtopology euclideanreal s` THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY; IS_REALINTERVAL_INTERVAL; CONNECTED_IN_EUCLIDEANREAL] THEN ASM SET_TAC[]; CONJ_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC]; EXISTS_TAC `min ((f:real->real)(x - r / &2) - f x) (f x - f(x + r / &2))` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[REAL_LT_MIN; REAL_SUB_LT] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REPEAT CONJ_TAC THEN REPEAT(FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET])) THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `real_interval[f(x + r / &2),f(x - r / &2)]` THEN CONJ_TAC THENL [SIMP_TAC[SUBSET_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `IMAGE (f:real->real) (real_interval(x - r,x + r))` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN MATCH_MP_TAC IS_REALINTERVAL_CONTAINS_INTERVAL THEN CONJ_TAC THENL [REWRITE_TAC[GSYM CONNECTED_IN_EUCLIDEANREAL] THEN MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `subtopology euclideanreal s` THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY; IS_REALINTERVAL_INTERVAL; CONNECTED_IN_EUCLIDEANREAL] THEN ASM SET_TAC[]; CONJ_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC]]; DISCH_TAC THEN MATCH_MP_TAC REAL_WLOG_LT THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?u v. IMAGE (f:real->real) (real_interval[a,b]) = real_interval[u,v]` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM REAL_COMPACT_IS_REALINTERVAL] THEN CONJ_TAC THENL [REWRITE_TAC[real_compact_def] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `subtopology euclideanreal s` THEN ASM_REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY] THEN REWRITE_TAC[COMPACT_IN_EUCLIDEANREAL_INTERVAL] THEN MATCH_MP_TAC IS_REALINTERVAL_CONTAINS_INTERVAL THEN ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM CONNECTED_IN_EUCLIDEANREAL] THEN MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `subtopology euclideanreal s` THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[CONNECTED_IN_EUCLIDEANREAL_INTERVAL] THEN MATCH_MP_TAC IS_REALINTERVAL_CONTAINS_INTERVAL THEN ASM_REWRITE_TAC[]]; SUBGOAL_THEN `?x. x IN real_interval(a,b) /\ (f:real->real) x IN {u,v}` STRIP_ASSUME_TAC THENL [REWRITE_TAC[REAL_OPEN_CLOSED_INTERVAL] THEN ASM_CASES_TAC `v:real = u` THENL [MATCH_MP_TAC(SET_RULE `IMAGE f s = {u} /\ ~(s DIFF {a,b} = {}) ==> ?x. x IN s DIFF {a,b} /\ f x IN {u,v}`) THEN ASM_REWRITE_TAC[GSYM REAL_OPEN_CLOSED_INTERVAL] THEN ASM_REWRITE_TAC[REAL_INTERVAL_SING; REAL_INTERVAL_NE_EMPTY]; SUBGOAL_THEN `u IN IMAGE (f:real->real) (real_interval [a,b]) /\ v IN IMAGE (f:real->real) (real_interval [a,b])` MP_TAC THENL [ASM_REWRITE_TAC[ENDS_IN_REAL_INTERVAL] THEN ASM_MESON_TAC[IMAGE_EQ_EMPTY; REAL_INTERVAL_NE_EMPTY; REAL_LT_LE]; REWRITE_TAC[IN_IMAGE] THEN MATCH_MP_TAC(SET_RULE `f a = f b /\ ~(u = v) ==> (?x. u = f x /\ x IN s) /\ (?x. v = f x /\ x IN s) ==> ?x. x IN s DIFF {a,b} /\ f x IN {u,v}`) THEN ASM_REWRITE_TAC[]]]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `real_interval(a,b)`) THEN REWRITE_TAC[REAL_OPEN_REAL_INTERVAL] THEN MATCH_MP_TAC(TAUT `p /\ ~q ==> (p ==> q) ==> r`) THEN REWRITE_TAC[REAL_OPEN_CLOSED_INTERVAL] THEN CONJ_TAC THENL [MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s DIFF t SUBSET u`) THEN MATCH_MP_TAC IS_REALINTERVAL_CONTAINS_INTERVAL THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[real_open; FORALL_IN_IMAGE] THEN DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[GSYM REAL_OPEN_CLOSED_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[REAL_OPEN_CLOSED_INTERVAL] THEN MATCH_MP_TAC(SET_RULE `(?x. P x /\ ~(x IN IMAGE f s)) ==> ~(!x. P x ==> x IN IMAGE f (s DIFF t))`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP (SET_RULE `x IN {a,b} ==> x = a \/ x = b`)) THENL [EXISTS_TAC `u - d / &2`; EXISTS_TAC `v + d / &2`] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC]]);; (* ------------------------------------------------------------------------- *) (* Normal spaces including Urysohn's lemma and the Tietze extension theorem. *) (* ------------------------------------------------------------------------- *) let normal_space = new_definition `normal_space (top:A topology) <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`;; let NORMAL_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ normal_space top ==> normal_space top'`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[normal_space; retraction_map; retraction_maps; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r':B->A` THEN REPEAT DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`s:B->bool`; `t:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x | x IN topspace top /\ (r:A->B) x IN s}`; `{x | x IN topspace top /\ (r:A->B) x IN t}`]) THEN ANTS_TAC THENL [REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x | x IN topspace top' /\ (r':B->A) x IN u}`; `{x | x IN topspace top' /\ (r':B->A) x IN v}`] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]]);; let HOMEOMORPHIC_NORMAL_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (normal_space top <=> normal_space top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN ASM_MESON_TAC[NORMAL_SPACE_RETRACTION_MAP_IMAGE; HOMEOMORPHIC_IMP_RETRACTION_MAP]);; let NORMAL_SPACE = prove (`!top:A topology. normal_space (top:A topology) <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?u. open_in top u /\ s SUBSET u /\ DISJOINT t (top closure_of u)`, GEN_TAC THEN REWRITE_TAC[normal_space] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `t:A->bool` THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p ==> q <=> p ==> r)`) THEN STRIP_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `t SUBSET v ==> v INTER c = {} ==> DISJOINT t c`)) THEN ASM_SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY] THEN ASM SET_TAC[]; STRIP_TAC THEN EXISTS_TAC `topspace top DIFF top closure_of u:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_CLOSURE_OF] THEN MP_TAC(ISPECL [`top:A topology`; `u:A->bool`] CLOSURE_OF_SUBSET) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let NORMAL_SPACE_ALT = prove (`!top:A topology. normal_space (top:A topology) <=> !s u. closed_in top s /\ open_in top u /\ s SUBSET u ==> ?v. open_in top v /\ s SUBSET v /\ top closure_of v SUBSET u`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_OPEN_IN] THEN REWRITE_TAC[SET_RULE `s SUBSET t DIFF u <=> s SUBSET t /\ DISJOINT u s`] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE; NORMAL_SPACE] THEN MESON_TAC[CLOSED_IN_SUBSET; DISJOINT_SYM]);; let NORMAL_SPACE_CLOSURES = prove (`!top:A topology. normal_space top <=> !s t. s SUBSET topspace top /\ t SUBSET topspace top /\ DISJOINT (top closure_of s) (top closure_of t) ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, GEN_TAC THEN REWRITE_TAC[normal_space] THEN EQ_TAC THENL [DISCH_TAC; METIS_TAC[CLOSURE_OF_CLOSED_IN; CLOSED_IN_SUBSET]] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`top closure_of s:A->bool`; `top closure_of t:A->bool`]) THEN ASM_SIMP_TAC[CLOSED_IN_CLOSURE_OF] THEN ASM_MESON_TAC[CLOSURE_OF_SUBSET; SUBSET_TRANS]);; let NORMAL_SPACE_DISJOINT_CLOSURES = prove (`!top:A topology. normal_space top <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT (top closure_of u) (top closure_of v)`, REPEAT STRIP_TAC THEN REWRITE_TAC[normal_space] THEN EQ_TAC THENL [DISCH_TAC; REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t SUBSET t' ==> DISJOINT s' t' ==> DISJOINT s t`) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; OPEN_IN_SUBSET]] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`]) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:A->bool`; `topspace top DIFF u:A->bool`]) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u':A->bool` THEN DISCH_THEN(X_CHOOSE_THEN `v':A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `v:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `!t'. t' INTER s = {} /\ t SUBSET t' ==> DISJOINT s t`) THEN EXISTS_TAC `v':A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `topspace top DIFF u:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]);; let NORMAL_SPACE_DUAL = prove (`!top:A topology. normal_space top <=> !u v. open_in top u /\ open_in top v /\ u UNION v = topspace top ==> ?s t. closed_in top s /\ closed_in top t /\ s SUBSET u /\ t SUBSET v /\ s UNION t = topspace top`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[FORALL_OPEN_IN; EXISTS_CLOSED_IN] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> ~(p /\ q ==> ~r)`] THEN SIMP_TAC[OPEN_IN_SUBSET; CLOSED_IN_SUBSET; SET_RULE `u SUBSET t /\ v SUBSET t ==> (t DIFF u SUBSET t DIFF v <=> v SUBSET u) /\ (t DIFF u UNION t DIFF v = t <=> DISJOINT u v)`] THEN REWRITE_TAC[normal_space] THEN MESON_TAC[]);; let NORMAL_T1_IMP_HAUSDORFF_SPACE = prove (`!top:A topology. normal_space top /\ t1_space top ==> hausdorff_space top`, REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; normal_space; hausdorff_space] THEN GEN_TAC THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `{y:A}`]) THEN ASM_SIMP_TAC[SING_SUBSET; SET_RULE `DISJOINT {x} {y} <=> ~(x = y)`]);; let NORMAL_T1_EQ_HAUSDORFF_SPACE = prove (`!top:A topology. normal_space top ==> (t1_space top <=> hausdorff_space top)`, MESON_TAC[NORMAL_T1_IMP_HAUSDORFF_SPACE; HAUSDORFF_IMP_T1_SPACE]);; let NORMAL_T1_IMP_REGULAR_SPACE = prove (`!top:A topology. normal_space top /\ t1_space top ==> regular_space top`, REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; normal_space; regular_space] THEN GEN_TAC THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `s:A->bool`]) THEN ASM_SIMP_TAC[SING_SUBSET] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]);; let COMPACT_HAUSDORFF_OR_REGULAR_IMP_NORMAL_SPACE = prove (`!top:A topology. compact_space top /\ (hausdorff_space top \/ regular_space top) ==> normal_space top`, REWRITE_TAC[HAUSDORFF_SPACE_COMPACT_SETS; REGULAR_SPACE_COMPACT_CLOSED_SETS] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[normal_space] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[CLOSED_IN_COMPACT_SPACE]);; let NORMAL_SPACE_MTOPOLOGY = prove (`!m:A metric. normal_space(mtopology m)`, GEN_TAC THEN REWRITE_TAC[normal_space] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN MP_TAC(ISPEC `m:A metric` OPEN_IN_MTOPOLOGY) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `topspace(mtopology m) DIFF t:A->bool` th) THEN MP_TAC(SPEC `topspace(mtopology m) DIFF s:A->bool` th)) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE; IMP_IMP] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[IMP_IMP; SKOLEM_THM] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; SUBSET_DIFF] THEN SIMP_TAC[SUBSET; mball; IN_DIFF; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `d:A->real` (LABEL_TAC "d")) (X_CHOOSE_THEN `e:A->real` (LABEL_TAC "e"))) THEN MAP_EVERY EXISTS_TAC [`UNIONS {mball m (x:A,e x / &2) | x IN s}`; `UNIONS {mball m (x:A,d x / &2) | x IN t}`] THEN REWRITE_TAC[SET_RULE `DISJOINT (UNIONS s) (UNIONS t) <=> !u. u IN s ==> !v. v IN t ==> DISJOINT u v`] THEN SIMP_TAC[OPEN_IN_UNIONS; FORALL_IN_GSPEC; OPEN_IN_MBALL] THEN REWRITE_TAC[IN_UNIONS; EXISTS_IN_GSPEC] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN REPEAT DISCH_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[SET_RULE `DISJOINT s t <=> !x. ~(x IN s /\ x IN t)`]) THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[REAL_HALF; CENTRE_IN_MBALL; SUBSET]; ALL_TAC]) THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(x:A) IN mspace m /\ (y:A) IN mspace m` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REMOVE_THEN "e" (MP_TAC o SPEC `x:A`) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(MP_TAC o CONJUNCT2)] THEN REMOVE_THEN "d" (MP_TAC o SPEC `y:A`) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(MP_TAC o CONJUNCT2)] THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `x:A`) (MP_TAC o SPEC `y:A`)) THEN ASM_SIMP_TAC[REAL_NOT_LT; DISJOINT; EXTENSION; NOT_IN_EMPTY; IN_INTER] THEN MAP_EVERY UNDISCH_TAC [`(x:A) IN mspace m`; `(y:A) IN mspace m`] THEN REWRITE_TAC[mball; IN_ELIM_THM] THEN CONV_TAC METRIC_ARITH);; let METRIZABLE_IMP_NORMAL_SPACE = prove (`!top:A topology. metrizable_space top ==> normal_space top`, REWRITE_TAC[FORALL_METRIZABLE_SPACE; NORMAL_SPACE_MTOPOLOGY]);; let NORMAL_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. normal_space(discrete_topology u)`, SIMP_TAC[METRIZABLE_SPACE_DISCRETE_TOPOLOGY; METRIZABLE_IMP_NORMAL_SPACE]);; let NORMAL_SPACE_FSIGMAS = prove (`!top:A topology. normal_space top <=> !s t. fsigma_in top s /\ fsigma_in top t /\ separated_in top s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, GEN_TAC THEN REWRITE_TAC[normal_space] THEN EQ_TAC THENL [ALL_TAC; METIS_TAC[CLOSED_IMP_FSIGMA_IN; SEPARATED_IN_CLOSED_SETS]] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN REWRITE_TAC[separated_in] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] FSIGMA_IN_ASCENDING) THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] FSIGMA_IN_ASCENDING) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:num->A->bool` THEN STRIP_TAC THEN X_GEN_TAC `d:num->A->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP MONO_FORALL o GEN `n:num` o SPECL [`(d:num->A->bool) n`; `top closure_of s:A->bool`]) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP MONO_FORALL o GEN `n:num` o SPECL [`(c:num->A->bool) n`; `top closure_of t:A->bool`]) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; FORALL_AND_THM] THEN MAP_EVERY X_GEN_TAC [`u:num->A->bool`; `u':num->A->bool`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`v:num->A->bool`; `v':num->A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`UNIONS {(u:num->A->bool) n DIFF UNIONS {top closure_of (v m) | m <= n} | n IN (:num)}`; `UNIONS {(v:num->A->bool) n DIFF UNIONS {top closure_of (u m) | m <= n} | n IN (:num)}`] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; CLOSED_IN_CLOSURE_OF] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC FINITE_IMAGE THEN REWRITE_TAC[FINITE_NUMSEG_LE]; ALL_TAC] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN FIRST_X_ASSUM (fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; IN_DIFF; IN_UNIV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN DISCH_THEN(X_CHOOSE_THEN `m:num` (MP_TAC o CONJUNCT2)) THENL [MP_TAC(ISPECL [`top:A topology`; `(v':num->A->bool) m`; `(v:num->A->bool) m`] OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY) THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET); MP_TAC(ISPECL [`top:A topology`; `(u':num->A->bool) m`; `(u:num->A->bool) m`] OPEN_IN_INTER_CLOSURE_OF_EQ_EMPTY) THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] CLOSURE_OF_SUBSET)] THEN ASM_SIMP_TAC[FSIGMA_IN_SUBSET] THEN ASM SET_TAC[]; REWRITE_TAC[DISJOINT; INTER_UNIONS; EMPTY_UNIONS; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISJ_CASES_TAC(SPECL [`m:num`; `n:num`] LE_CASES) THENL [ALL_TAC; ONCE_REWRITE_TAC[INTER_COMM]] THEN MATCH_MP_TAC(SET_RULE `u SUBSET u' ==> (u DIFF v') INTER (v DIFF u') = {}`) THEN MATCH_MP_TAC(SET_RULE `(?n. P n /\ s SUBSET t n) ==> s SUBSET UNIONS {t n | P n}`) THENL [EXISTS_TAC `m:num`; EXISTS_TAC `n:num`] THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; OPEN_IN_SUBSET]]);; let NORMAL_SPACE_FSIGMA_SUBTOPOLOGY = prove (`!top s:A->bool. normal_space top /\ fsigma_in top s ==> normal_space(subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[NORMAL_SPACE_FSIGMAS] THEN STRIP_TAC THEN ASM_SIMP_TAC[FSIGMA_IN_FSIGMA_SUBTOPOLOGY; SEPARATED_IN_SUBTOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `u:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`t:A->bool`; `u:A->bool`]) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSET_INTER] THEN ASM SET_TAC[]);; let NORMAL_SPACE_CLOSED_SUBTOPOLOGY = prove (`!top s:A->bool. normal_space top /\ closed_in top s ==> normal_space (subtopology top s)`, MESON_TAC[NORMAL_SPACE_FSIGMA_SUBTOPOLOGY; CLOSED_IMP_FSIGMA_IN]);; let NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE = prove (`!top top' f:A->B. continuous_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ normal_space top ==> normal_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_space; closed_map] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`s:B->bool`; `t:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`{x | x IN topspace top /\ (f:A->B) x IN s}`; `{x | x IN topspace top /\ (f:A->B) x IN t}`]) THEN ASM_REWRITE_TAC[CONJ_ASSOC] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_OPEN_IN] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`IMAGE (f:A->B) u`; `IMAGE (f:A->B) v`] THEN ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]]);; let HEREDITARILY_NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE = prove (`!top top' f:A->B. continuous_map (top,top') f /\ closed_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ hereditarily normal_space top ==> hereditarily normal_space top'`, REPEAT STRIP_TAC THEN REWRITE_TAC[hereditarily] THEN X_GEN_TAC `t:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN t}` o GEN_REWRITE_RULE I [hereditarily]) THEN REWRITE_TAC[SUBSET_RESTRICT] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE)) THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[CLOSED_MAP_RESTRICTION] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; GSYM CONJ_ASSOC; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_MAP_IMP_SUBSET_TOPSPACE) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_HEREDITARILY_NORMAL_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (hereditarily normal_space top <=> hereditarily normal_space top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN MESON_TAC[HEREDITARILY_NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE; HOMEOMORPHIC_IMP_SURJECTIVE_MAP; HOMEOMORPHIC_IMP_CONTINUOUS_MAP; HOMEOMORPHIC_IMP_CLOSED_MAP]);; let HEREDITARILY_NORMAL_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ hereditarily normal_space top ==> hereditarily normal_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[HEREDITARILY_SUBTOPOLOGY; HOMEOMORPHIC_HEREDITARILY_NORMAL_SPACE]);; let URYSOHN_LEMMA = prove (`!(top:A topology) s t a b. a <= b /\ normal_space top /\ closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[a,b])) f /\ (!x. x IN s ==> f x = a) /\ (!x. x IN t ==> f x = b)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?f. continuous_map (top,subtopology euclideanreal (real_interval[&0,&1])) (f:A->real) /\ (!x. x IN s ==> f x = &0) /\ (!x. x IN t ==> f x = &1)` MP_TAC THENL [UNDISCH_THEN `a:real <= b` (K ALL_TAC); REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN EXISTS_TAC `\x. a + (b - a) * (f:A->real) x` THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_ADD; CONTINUOUS_MAP_REAL_LMUL; CONTINUOUS_MAP_REAL_CONST] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL; REAL_LE_ADDR] THEN REWRITE_TAC[REAL_ARITH `a + (b - a) * y <= b <=> &0 <= (b - a) * (&1 - y)`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_SUB_LE]] THEN FIRST_ASSUM(MP_TAC o SPECL [`s:A->bool`; `topspace top DIFF t:A->bool`] o REWRITE_RULE[NORMAL_SPACE_ALT]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u DIFF t <=> s SUBSET u /\ DISJOINT s t`; CLOSED_IN_SUBSET] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?g:real->A->bool. g(&0) = u /\ g(&1) = topspace top DIFF t /\ !x y. x IN {&k / &2 pow n | k <= 2 EXP n} /\ y IN {&k / &2 pow n | k <= 2 EXP n} /\ x < y ==> open_in top (g x) /\ open_in top (g y) /\ top closure_of (g x) SUBSET (g y)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC RECURSION_ON_DYADIC_FRACTIONS THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET u DIFF t <=> s SUBSET u /\ DISJOINT s t`; CLOSED_IN_SUBSET] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSURE_OF_SUBSET; OPEN_IN_SUBSET; SUBSET_TRANS]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `z:A->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`top closure_of w:A->bool`; `z:A->bool`] o REWRITE_RULE[NORMAL_SPACE_ALT]) THEN ASM_SIMP_TAC[CLOSED_IN_CLOSURE_OF] THEN ASM SET_TAC[]; ALL_TAC] THEN ABBREV_TAC `dint = {&k / &2 pow n | k <= 2 EXP n}` THEN SUBGOAL_THEN `dint SUBSET real_interval[&0,&1]` ASSUME_TAC THENL [EXPAND_TAC "dint" THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_LT_POW2] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_POS; REAL_MUL_LID] THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_POW]; ALL_TAC] THEN ABBREV_TAC `f = \x:A. inf(&1 INSERT {r | r IN dint /\ x IN g r})` THEN EXISTS_TAC `f:A->real` THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN SUBGOAL_THEN `!x. x IN topspace top ==> &0 <= (f:A->real) x /\ f x <= &1` ASSUME_TAC THENL [GEN_TAC THEN DISCH_TAC THEN EXPAND_TAC "f" THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INF_BOUNDS THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN UNDISCH_TAC `dint SUBSET real_interval[&0,&1]` THEN SIMP_TAC[IN_REAL_INTERVAL; IN_ELIM_THM; SUBSET]; ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `&0 IN dint /\ &1 IN dint` STRIP_ASSUME_TAC THENL [EXPAND_TAC "dint" THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [EXISTS_TAC `0`; EXISTS_TAC `1`] THEN EXISTS_TAC `0` THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN SUBGOAL_THEN `!r. r IN dint ==> open_in top ((g:real->A->bool) r)` ASSUME_TAC THENL [X_GEN_TAC `r:real` THEN DISCH_TAC THEN SUBGOAL_THEN `&0 < r \/ r < &1` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN SUBGOAL_THEN `r IN real_interval[&0,&1]` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [ALL_TAC; X_GEN_TAC `x:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; CLOSED_IN_SUBSET]; ASM_SIMP_TAC[GSYM REAL_LE_ANTISYM]] THEN EXPAND_TAC "f" THEN MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [EXISTS_TAC `&0` THEN REWRITE_TAC[FORALL_IN_INSERT; REAL_POS] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN UNDISCH_TAC `dint SUBSET real_interval[&0,&1]` THEN SIMP_TAC[IN_REAL_INTERVAL; IN_ELIM_THM; SUBSET]; REWRITE_TAC[IN_INSERT; IN_ELIM_THM] THEN ASM SET_TAC[]]; X_GEN_TAC `x:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; CLOSED_IN_SUBSET]; ASM_SIMP_TAC[GSYM REAL_LE_ANTISYM]] THEN EXPAND_TAC "f" THEN MATCH_MP_TAC REAL_LE_INF THEN REWRITE_TAC[NOT_INSERT_EMPTY; FORALL_IN_INSERT; REAL_LE_REFL] THEN X_GEN_TAC `r:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`r:real`; `&1`]) THEN ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(SET_RULE `x IN t /\ g SUBSET g' ==> g' SUBSET u DIFF t ==> ~(x IN g)`) THEN ASM_MESON_TAC[OPEN_IN_SUBSET; CLOSURE_OF_SUBSET]] THEN MP_TAC(GEN `z:A` (SPEC `&1 INSERT {r | r IN dint /\ z IN (g:real->A->bool) r}` INF)) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[REWRITE_RULE[] (GEN_REWRITE_RULE I [FUN_EQ_THM] th)]) THEN REWRITE_TAC[NOT_INSERT_EMPTY; FORALL_IN_INSERT] THEN DISCH_THEN(MP_TAC o MATCH_MP MONO_FORALL) THEN ANTS_TAC THENL [GEN_TAC THEN EXISTS_TAC `&0:real` THEN REWRITE_TAC[IN_ELIM_THM; REAL_POS] THEN UNDISCH_TAC `dint SUBSET real_interval[&0,&1]` THEN SIMP_TAC[IN_REAL_INTERVAL; IN_ELIM_THM; SUBSET]; REWRITE_TAC[FORALL_AND_THM; IN_ELIM_THM]] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (LABEL_TAC "*")) THEN SUBGOAL_THEN `!z x. x IN dint /\ ~(z IN (g:real->A->bool) x) ==> x <= (f:A->real) z` ASSUME_TAC THENL [MAP_EVERY X_GEN_TAC [`z:A`; `r:real`] THEN STRIP_TAC THEN REMOVE_THEN "*" MATCH_MP_TAC THEN CONJ_TAC THENL [UNDISCH_TAC `dint SUBSET real_interval[&0,&1]` THEN ASM_SIMP_TAC[IN_REAL_INTERVAL; IN_ELIM_THM; SUBSET]; X_GEN_TAC `s:real` THEN STRIP_TAC] THEN ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:real`; `r:real`]) THEN ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MP_TAC(ISPECL [`top:A topology`; `(g:real->A->bool) s`] CLOSURE_OF_SUBSET) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET] THEN ASM SET_TAC[]; REMOVE_THEN "*" (K ALL_TAC)] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[CONTINUOUS_MAP_TO_METRIC; IN_MBALL; REAL_EUCLIDEAN_METRIC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REWRITE_TAC[IN_UNIV] THEN SUBGOAL_THEN `(!y d. &0 < y /\ y <= &1 /\ &0 < d ==> ?r. r IN dint /\ r < y /\ abs(r - y) < d) /\ (!y d. &0 <= y /\ y < &1 /\ &0 < d ==> ?r. r IN dint /\ y < r /\ abs(r - y) < d)` ASSUME_TAC THENL [REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`&2`; `y:real`; `d:real`] PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`n:num`; `q:num`; `r:num`] THEN STRIP_TAC THEN EXISTS_TAC `&q / &2 pow n` THEN CONJ_TAC THENL [EXPAND_TAC "dint"; ASM_REAL_ARITH_TAC] THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`q:num`; `n:num`] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `&q / &2 pow n <= &1` MP_TAC THENL [ASM_REAL_ARITH_TAC; SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_POW2]] THEN REWRITE_TAC[REAL_MUL_LID; REAL_OF_NUM_POW; REAL_OF_NUM_LE]; MP_TAC(ISPECL [`&2`; `y:real`; `d:real`] PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS_LE) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`n:num`; `q:num`; `r:num`] THEN STRIP_TAC THEN EXISTS_TAC `min (&1) (&r / &2 pow n)` THEN CONJ_TAC THENL [REWRITE_TAC[real_min]; ASM_REAL_ARITH_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "dint" THEN REWRITE_TAC[IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`r:num`; `n:num`] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `&r / &2 pow n <= &1` MP_TAC THENL [ASM_REAL_ARITH_TAC; SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_POW2]] THEN REWRITE_TAC[REAL_MUL_LID; REAL_OF_NUM_POW; REAL_OF_NUM_LE]]; ALL_TAC] THEN ASM_CASES_TAC `(f:A->real) x = &0` THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`(f:A->real) x`; `e / &2`] o CONJUNCT2) THEN ASM_SIMP_TAC[REAL_LT_01; REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(g:real->A->bool) r` THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN SUBGOAL_THEN `r <= (f:A->real) x` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ASM_REAL_ARITH_TAC]; X_GEN_TAC `y:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(f:A->real) y <= r` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `&0 <= (f:A->real) y /\ f y <= &1` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; ASM_REAL_ARITH_TAC] THEN ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]]; ALL_TAC] THEN ASM_CASES_TAC `(f:A->real) x = &1` THENL [FIRST_ASSUM(MP_TAC o SPECL [`(f:A->real) x`; `e / &2`] o CONJUNCT1) THEN ANTS_TAC THENL [ASM SIMP_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN EXISTS_TAC `topspace top DIFF top closure_of (g:real->A->bool) r` THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_CLOSURE_OF] THEN ASM_REWRITE_TAC[IN_DIFF] THEN CONJ_TAC THENL [DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`r:real`; `&1 - r`] o CONJUNCT2) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[REAL_SUB_LT] THEN ASM_MESON_TAC[SUBSET; IN_REAL_INTERVAL]; DISCH_THEN(X_CHOOSE_THEN `r':real` STRIP_ASSUME_TAC)] THEN SUBGOAL_THEN `(f:A->real) x <= r'` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; ASM_REAL_ARITH_TAC]; X_GEN_TAC `y:A` THEN STRIP_TAC THEN SUBGOAL_THEN `r <= (f:A->real) y` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `(g:real->A->bool) r`] CLOSURE_OF_SUBSET) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET] THEN ASM SET_TAC[]; SUBGOAL_THEN `(f:A->real) y <= &1` MP_TAC THENL [ASM_MESON_TAC[SUBSET; IN_REAL_INTERVAL]; ASM_REAL_ARITH_TAC]]]; ALL_TAC] THEN FIRST_ASSUM(CONJUNCTS_THEN(MP_TAC o SPECL [`(f:A->real) x`; `e / &2`])) THEN SUBGOAL_THEN `&0 <= (f:A->real) x /\ f x <= &1` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; IN_REAL_INTERVAL]; ALL_TAC] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `r':real` THEN STRIP_TAC THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN EXISTS_TAC `(g:real->A->bool) r' DIFF top closure_of g r` THEN ASM_SIMP_TAC[IN_DIFF; OPEN_IN_DIFF; CLOSED_IN_CLOSURE_OF] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN SUBGOAL_THEN `r' <= (f:A->real) x` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ASM_REAL_ARITH_TAC]; DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`r:real`; `f(x:A) - r:real`] o CONJUNCT2) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[REAL_SUB_LT] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; IN_REAL_INTERVAL]; ASM_REAL_ARITH_TAC]; DISCH_THEN(X_CHOOSE_THEN `r'':real` STRIP_ASSUME_TAC)] THEN SUBGOAL_THEN `(f:A->real) x <= r''` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; ASM_REAL_ARITH_TAC]; X_GEN_TAC `y:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(y:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `&0 <= (f:A->real) y /\ f y <= &1` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `r <= (f:A->real) y /\ f y <= r'` MP_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`top:A topology`; `(g:real->A->bool) r`] CLOSURE_OF_SUBSET) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET] THEN ASM SET_TAC[]]);; let URYSOHN_LEMMA_ALT = prove (`!(top:A topology) s t a b. normal_space top /\ closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map(top,euclideanreal) f /\ (!x. x IN s ==> f x = a) /\ (!x. x IN t ==> f x = b)`, GEN_TAC THEN ONCE_REWRITE_TAC[MESON[] `(!s t a b. P s t a b) <=> (!a b s t. P s t a b)`] THEN MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THENL [REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN MESON_TAC[DISJOINT_SYM]; REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP URYSOHN_LEMMA) THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN MESON_TAC[]]);; let NORMAL_SPACE_EQ_URYSOHN_GEN_ALT = prove (`!top:A topology a b. ~(a = b) ==> (normal_space top <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,euclideanreal) f /\ (!x. x IN s ==> f x = a) /\ (!x. x IN t ==> f x = b))`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[URYSOHN_LEMMA_ALT] THEN REWRITE_TAC[normal_space] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `s:A->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `t:A->bool` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x:A | x IN topspace top /\ f x IN mball real_euclidean_metric (a,abs(a - b) / &2)}`; `{x:A | x IN topspace top /\ f x IN mball real_euclidean_metric (b,abs(a - b) / &2)}`] THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[OPEN_IN_MBALL; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC]; ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; CENTRE_IN_MBALL_EQ] THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < abs(a - b) / &2 <=> ~(a = b)`] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN ASM_SIMP_TAC[GSYM SUBSET; CLOSED_IN_SUBSET]; SIMP_TAC[EXTENSION; DISJOINT; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM; mball; REAL_EUCLIDEAN_METRIC] THEN REAL_ARITH_TAC]]);; let NORMAL_SPACE_EQ_URYSOHN_GEN = prove (`!top:A topology a b. a < b ==> (normal_space top <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top, subtopology euclideanreal (real_interval[a,b])) f /\ (!x. x IN s ==> f x = a) /\ (!x. x IN t ==> f x = b))`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[URYSOHN_LEMMA; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[NORMAL_SPACE_EQ_URYSOHN_GEN_ALT; REAL_LT_IMP_NE] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MESON_TAC[]);; let NORMAL_SPACE_EQ_URYSOHN_ALT = prove (`!top:A topology. normal_space top <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,euclideanreal) f /\ (!x. x IN s ==> f x = &0) /\ (!x. x IN t ==> f x = &1)`, GEN_TAC THEN MATCH_MP_TAC NORMAL_SPACE_EQ_URYSOHN_GEN_ALT THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let NORMAL_SPACE_EQ_URYSOHN = prove (`!top:A topology. normal_space top <=> !s t. closed_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[&0,&1])) f /\ (!x. x IN s ==> f x = &0) /\ (!x. x IN t ==> f x = &1)`, GEN_TAC THEN MATCH_MP_TAC NORMAL_SPACE_EQ_URYSOHN_GEN THEN REWRITE_TAC[REAL_LT_01]);; let TIETZE_EXTENSION_CLOSED_REAL_INTERVAL = prove (`!top f:A->real s a b. normal_space top /\ closed_in top s /\ a <= b /\ continuous_map (subtopology top s,euclideanreal) f /\ (!x. x IN s ==> f x IN real_interval[a,b]) ==> ?g. continuous_map(top,euclideanreal) g /\ (!x. x IN topspace top ==> g x IN real_interval[a,b]) /\ (!x. x IN s ==> g x = f x)`, REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c. &0 < c /\ !x. x IN s ==> abs((f:A->real) x) <= c` STRIP_ASSUME_TAC THENL [EXISTS_TAC `max (abs a) (abs b) + &1` THEN ASM_SIMP_TAC[REAL_ARITH `a <= x /\ x <= b ==> abs x <= max (abs a) (abs b) + &1`] THEN REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `?g:num->A->real. (!n. continuous_map(top,euclideanreal) (g n) /\ !x. x IN s ==> abs(f x - g n x) <= c * (&2 / &3) pow n) /\ (!n x. x IN topspace top ==> abs(g(SUC n) x - g n x) <= c * (&2 / &3) pow n / &3)` MP_TAC THENL [MATCH_MP_TAC DEPENDENT_CHOICE THEN CONJ_TAC THENL [EXISTS_TAC `(\x. &0):A->real` THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_RID; REAL_SUB_RZERO]; MAP_EVERY X_GEN_TAC [`n:num`; `h:A->real`] THEN STRIP_TAC] THEN MP_TAC(ISPECL [`top:A topology`; `{x | x IN s /\ ((f:A->real) x - h x) IN {y | y <= --(c / &3 * (&2 / &3) pow n)}}`; `{x | x IN s /\ ((f:A->real) x - h x) IN {y | y >= c / &3 * (&2 / &3) pow n}}`; `--(c / &3 * (&2 / &3) pow n)`; `c / &3 * (&2 / &3) pow n`] URYSOHN_LEMMA) THEN REWRITE_TAC[REAL_ARITH `--(c / &3 * x) <= c / &3 * x <=> &0 <= c * x`] THEN SUBGOAL_THEN `&0 < c * (&2 / &3) pow n` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_POW_LT THEN CONV_TAC REAL_RAT_REDUCE_CONV; ASM_SIMP_TAC[REAL_LT_IMP_LE]] THEN ANTS_TAC THENL [REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [SUBGOAL_THEN `s:A->bool = topspace(subtopology top s)` SUBST1_TAC THENL [ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; CLOSED_IN_SUBSET; SET_RULE `s = u INTER s <=> s SUBSET u`]; CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_TRANS_FULL THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_SUB; GSYM REAL_CLOSED_IN; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN REWRITE_TAC[REAL_CLOSED_HALFSPACE_LE; REAL_CLOSED_HALFSPACE_GE]]; SIMP_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC]; REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_REAL_INTERVAL; GSYM REAL_ABS_BOUNDS; IN_ELIM_THM] THEN X_GEN_TAC `g:A->real` THEN STRIP_TAC THEN EXISTS_TAC `\x. h x + (g:A->real) x` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_ADD; REAL_ADD_SUB] THEN ASM_REWRITE_TAC[REAL_ARITH `x * y / &3 = x / &3 * y`] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN REWRITE_TAC[real_pow] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `x:A`)) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM_SIMP_TAC[SUBSET] THEN ASM_REAL_ARITH_TAC]; REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_AND_THM]] THEN X_GEN_TAC `g:num->A->real` THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `real_euclidean_metric`; `g:num->A->real`] CONTINUOUS_MAP_UNIFORMLY_CAUCHY_LIMIT) THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; MTOPOLOGY_REAL_EUCLIDEAN_METRIC; EVENTUALLY_TRUE; MCOMPLETE_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC] THEN ANTS_TAC THENL [X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`&2 / &3`; `e / c:real`] ARCH_EVENTUALLY_POW_INV) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN MATCH_MP_TAC WLOG_LT THEN ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN TRANS_TAC REAL_LET_TRANS `abs(sum(m..n - 1) (\n. g (SUC n) (x:A) - g n x))` THEN CONJ_TAC THENL [REWRITE_TAC[SUM_DIFFS_ALT; ADD1] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `m < n ==> m <= n - 1 /\ n - 1 + 1 = n`)) THEN SIMP_TAC[REAL_LE_REFL]; TRANS_TAC REAL_LET_TRANS `sum (m..n-1) (\j. c * (&2 / &3) pow j / &3)` THEN ASM_SIMP_TAC[SUM_ABS_LE; FINITE_NUMSEG] THEN REWRITE_TAC[real_div; SUM_LMUL; SUM_RMUL; SUM_GP] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `c * (x * &3) * &1 / &3 = x * c`] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `abs x < y /\ &0 <= z ==> x - z < y`) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_POW_LE THEN CONV_TAC REAL_RAT_REDUCE_CONV]; DISCH_THEN(X_CHOOSE_THEN `h:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x. max a (min ((h:A->real) x) b)` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_MAX; CONTINUOUS_MAP_REAL_MIN; CONTINUOUS_MAP_REAL_CONST] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `a <= x /\ x <= b /\ y = x ==> max a (min y b) = x`) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(ISPEC `sequentially` LIMIT_METRIC_UNIQUE) THEN MAP_EVERY EXISTS_TAC [`real_euclidean_metric`; `\n. (g:num->A->real) n x`] THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LIMIT_METRIC] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN CONJ_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM_SIMP_TAC[]; MP_TAC(ISPECL [`&2 / &3`; `e / c:real`] ARCH_EVENTUALLY_POW_INV) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ] THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) THEN REWRITE_TAC[REAL_ARITH `abs x * c = c * (if &0 <= x then x else --x)`] THEN ASM_SIMP_TAC[REAL_POW_LE; REAL_ARITH `&0 <= &2 / &3`]]]);; let TIETZE_EXTENSION_REALINTERVAL = prove (`!top f:A->real s t. normal_space top /\ closed_in top s /\ is_realinterval t /\ ~(t = {}) /\ continuous_map (subtopology top s,euclideanreal) f /\ (!x. x IN s ==> f x IN t) ==> ?g. continuous_map(top,euclideanreal) g /\ (!x. x IN topspace top ==> g x IN t) /\ (!x. x IN s ==> g x = f x)`, GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN MATCH_MP_TAC(MESON[] `((!t. real_bounded t ==> P t) ==> (!t. P t)) /\ (!t. real_bounded t ==> P t) ==> !t. P t`) THEN CONJ_TAC THENL [DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`t:real->bool`; `f:A->real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (\x. x / (&1 + abs x)) t`) THEN ASM_REWRITE_TAC[IS_REALINTERVAL_SHRINK; REAL_BOUNDED_SHRINK] THEN DISCH_THEN(MP_TAC o SPEC `(\x. x / (&1 + abs x)) o (f:A->real)`) THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[o_DEF] THEN ASM SET_TAC[]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_MAP_COMPOSE)) THEN REWRITE_TAC[REWRITE_RULE[CONTINUOUS_MAP_IN_SUBTOPOLOGY] CONTINUOUS_MAP_REAL_SHRINK]; DISCH_THEN(X_CHOOSE_THEN `g:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. x / (&1 - abs x)) o (g:A->real)` THEN ASM_SIMP_TAC[o_THM; REAL_GROW_SHRINK] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology euclideanreal (real_interval(-- &1,&1))` THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_GROW] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. x IN t ==> g x IN IMAGE h u) ==> (!x. x IN u ==> h x IN v) ==> IMAGE g t SUBSET v`)) THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_BOUNDS_LT; REAL_SHRINK_RANGE]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `(!x. x IN u ==> g x IN IMAGE h t) ==> (!x. x IN t ==> f(h x) = x) ==> (!x. x IN u ==> f(g x) IN t)`)) THEN REWRITE_TAC[REAL_GROW_SHRINK]]]; X_GEN_TAC `t:real->bool` THEN DISCH_TAC THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC] THEN MP_TAC(SPEC `euclideanreal closure_of t` REAL_COMPACT_IS_REALINTERVAL) THEN ASM_SIMP_TAC[IS_REALINTERVAL_CLOSURE_OF] THEN REWRITE_TAC[REAL_COMPACT_EQ_BOUNDED_CLOSED; REAL_CLOSED_IN] THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF; GSYM MBOUNDED_REAL_EUCLIDEAN_METRIC] THEN RULE_ASSUM_TAC(REWRITE_RULE[SYM MBOUNDED_REAL_EUCLIDEAN_METRIC]) THEN ASM_SIMP_TAC[MBOUNDED_CLOSURE_OF; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN ASM_CASES_TAC `real_interval[a,b] = {}` THEN ASM_SIMP_TAC[CLOSURE_OF_EQ_EMPTY; TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_INTERVAL_NE_EMPTY]) THEN DISCH_TAC THEN MP_TAC(ISPECL[`top:A topology`; `f:A->real`; `s:A->bool`; `a:real`; `b:real`] TIETZE_EXTENSION_CLOSED_REAL_INTERVAL) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[CLOSURE_OF_SUBSET; SUBSET; IN_UNIV; TOPSPACE_EUCLIDEANREAL]; DISCH_THEN(X_CHOOSE_THEN `g:A->real` STRIP_ASSUME_TAC)] THEN MP_TAC(ISPECL [`top:A topology`; `{x | x IN topspace top /\ (g:A->real) x IN euclideanreal closure_of t DIFF t}`; `s:A->bool`; `&0`; `&1`] URYSOHN_LEMMA) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; REAL_POS] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN THEN REWRITE_TAC[HAUSDORFF_SPACE_EUCLIDEANREAL] THEN MATCH_MP_TAC FINITE_IMP_COMPACT_IN THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; SUBSET_UNIV] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{a:real,b}` THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY] THEN MATCH_MP_TAC(SET_RULE `s DIFF u SUBSET t ==> s DIFF t SUBSET u`) THEN REWRITE_TAC[GSYM REAL_OPEN_CLOSED_INTERVAL] THEN ASM_SIMP_TAC[GSYM REAL_OPEN_SUBSET_CLOSURE_OF_REALINTERVAL_ALT; REAL_OPEN_REAL_INTERVAL; REAL_INTERVAL_OPEN_SUBSET_CLOSED]; REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `h:A->real` THEN REWRITE_TAC[IN_REAL_INTERVAL; IN_ELIM_THM] THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:real`) THEN EXISTS_TAC `\x. z + (h:A->real) x * (g x - z)` THEN ASM_SIMP_TAC[REAL_ARITH `z + &1 * (x - z) = x`] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_ADD; CONTINUOUS_MAP_REAL_SUB; CONTINUOUS_MAP_REAL_MUL; CONTINUOUS_MAP_REAL_CONST; ETA_AX] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_CASES_TAC `(g:A->real) x IN t` THEN ASM_SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN SUBGOAL_THEN `z <= z + h x * (g x - z) /\ z + h x * ((g:A->real) x - z) <= g x \/ g x <= z + h x * (g x - z) /\ z + h x * (g x - z) <= z` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[is_realinterval]] THEN MATCH_MP_TAC(REAL_ARITH `abs(x - a) <= abs(b - a) /\ abs(x - b) <= abs(b - a) ==> a <= x /\ x <= b \/ b <= x /\ x <= a`) THEN REWRITE_TAC[REAL_ARITH `(z + h * (g - z)) - g = --(&1 - h) * (g - z)`] THEN REWRITE_TAC[REAL_ADD_SUB; REAL_ABS_MUL; REAL_ABS_NEG] THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= x /\ x <= &1 ==> abs x <= &1 /\ abs(&1 - x) <= &1`]]);; let NORMAL_SPACE_EQ_TIETZE = prove (`!top:A topology. normal_space top <=> !f s. closed_in top s /\ continuous_map (subtopology top s,euclideanreal) f ==> ?g. continuous_map(top,euclideanreal) g /\ !x. x IN s ==> g x = f x`, GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `f:A->real`; `s:A->bool`; `(:real)`] TIETZE_EXTENSION_REALINTERVAL) THEN ASM_REWRITE_TAC[IS_REALINTERVAL_UNIV; IN_UNIV; UNIV_NOT_EMPTY]; DISCH_TAC THEN REWRITE_TAC[NORMAL_SPACE_EQ_URYSOHN_ALT] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(\x. if x IN s then &0 else &1):A->real`; `s UNION t:A->bool`]) THEN RULE_ASSUM_TAC(REWRITE_RULE[SET_RULE `DISJOINT s t <=> !x. x IN t ==> ~(x IN s)`]) THEN ASM_SIMP_TAC[CLOSED_IN_UNION; FORALL_IN_UNION] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN X_GEN_TAC `c:real->bool` THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN REWRITE_TAC[IN_INTER; GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[COND_RAND] THEN SIMP_TAC[IN_UNION] THEN ASM_SIMP_TAC[COND_EXPAND; TAUT `(q ==> ~p) ==> ((~p \/ z) /\ (p \/ q /\ w) <=> p /\ z \/ q /\ w)`] THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET; SET_RULE `s SUBSET u /\ t SUBSET u ==> {x | x IN u /\ (x IN s /\ P \/ x IN t /\ Q)} = {x | x IN s /\ P} UNION {x | x IN t /\ Q}`] THEN MAP_EVERY ASM_CASES_TAC [`(&0:real) IN c`; `(&1:real) IN c`] THEN ASM_REWRITE_TAC[EMPTY_GSPEC; CLOSED_IN_EMPTY; UNION_EMPTY; IN_GSPEC] THEN ASM_SIMP_TAC[CLOSED_IN_UNION]]);; let NORMAL_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). normal_space top /\ perfect_map(top,top') f ==> normal_space top'`, REWRITE_TAC[perfect_map; proper_map] THEN MESON_TAC[NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE]);; let HAUSDORFF_NORMAL_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE = prove (`!top top' (f:A->B). normal_space top /\ closed_map (top,top') f /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' /\ t1_space top' ==> hausdorff_space top'`, MESON_TAC[NORMAL_T1_IMP_HAUSDORFF_SPACE; NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE]);; let NORMAL_HAUSDORFF_SPACE_CLOSED_CONTINUOUS_MAP_IMAGE = prove (`!top top' (f:A->B). normal_space top /\ hausdorff_space top /\ closed_map (top,top') f /\ continuous_map (top,top') f /\ IMAGE f (topspace top) = topspace top' ==> normal_space top' /\ hausdorff_space top'`, MESON_TAC[NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE; NORMAL_T1_IMP_HAUSDORFF_SPACE; T1_SPACE_CLOSED_MAP_IMAGE; HAUSDORFF_IMP_T1_SPACE]);; let REGULAR_LINDELOF_IMP_NORMAL_SPACE = prove (`!top:A topology. regular_space top /\ lindelof_space top ==> normal_space top`, REPEAT STRIP_TAC THEN REWRITE_TAC[normal_space] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`{}:A->bool`; `topspace top:A->bool`] THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; OPEN_IN_EMPTY; CLOSED_IN_SUBSET] THEN SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `t:A->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`topspace top:A->bool`; `{}:A->bool`] THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; OPEN_IN_EMPTY; CLOSED_IN_SUBSET] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?h:num->A->bool. (!n. open_in top (h n)) /\ (!n. DISJOINT t (top closure_of (h n))) /\ s SUBSET UNIONS (IMAGE h (:num))` STRIP_ASSUME_TAC THENL [SUBGOAL_THEN `!x. x IN s ==> ?u. open_in top u /\ (x:A) IN u /\ DISJOINT t (top closure_of u)` MP_TAC THENL [X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[REGULAR_SPACE]) THEN ASM_REWRITE_TAC[IN_DIFF] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET]; ASM SET_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM]] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:A->A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `lindelof_space(subtopology top (s:A->bool))` MP_TAC THENL [ASM_SIMP_TAC[LINDELOF_SPACE_CLOSED_IN_SUBTOPOLOGY]; ASM_SIMP_TAC[LINDELOF_SPACE_SUBTOPOLOGY_SUBSET; CLOSED_IN_SUBSET]] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (h:A->A->bool) s`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `U:(A->bool)->bool` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `U:(A->bool)->bool = {}` THEN ASM_REWRITE_TAC[UNIONS_0; SUBSET_EMPTY] THEN STRIP_TAC THEN MP_TAC(ISPEC `U:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?k:num->A->bool. (!n. open_in top (k n)) /\ (!n. DISJOINT s (top closure_of (k n))) /\ t SUBSET UNIONS (IMAGE k (:num))` STRIP_ASSUME_TAC THENL [SUBGOAL_THEN `!x. x IN t ==> ?u. open_in top u /\ (x:A) IN u /\ DISJOINT s (top closure_of u)` MP_TAC THENL [X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[REGULAR_SPACE]) THEN ASM_REWRITE_TAC[IN_DIFF] THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET]; ASM SET_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM]] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:A->A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `lindelof_space(subtopology top (t:A->bool))` MP_TAC THENL [ASM_SIMP_TAC[LINDELOF_SPACE_CLOSED_IN_SUBTOPOLOGY]; ASM_SIMP_TAC[LINDELOF_SPACE_SUBTOPOLOGY_SUBSET; CLOSED_IN_SUBSET]] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (k:A->A->bool) t`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `U:(A->bool)->bool` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_CASES_TAC `U:(A->bool)->bool = {}` THEN ASM_REWRITE_TAC[UNIONS_0; SUBSET_EMPTY] THEN STRIP_TAC THEN MP_TAC(ISPEC `U:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`UNIONS (IMAGE (\i. h i DIFF UNIONS {top closure_of (k j) | j < i}) (:num)):A->bool`; `UNIONS (IMAGE (\i. k i DIFF UNIONS {top closure_of (h j) | j <= i}) (:num)):A->bool`] THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LT; FINITE_NUMSEG_LE] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; CLOSED_IN_CLOSURE_OF]; ALL_TAC] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_IMAGE; UNIONS_GSPEC] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SET_RULE `DISJOINT (UNIONS u) (UNIONS v) <=> !s. s IN u ==> !t. t IN v ==> DISJOINT s t`] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISJ_CASES_TAC(ARITH_RULE `n:num < m \/ m <= n`) THENL [ALL_TAC; ONCE_REWRITE_TAC[DISJOINT_SYM]] THEN MATCH_MP_TAC(SET_RULE `(?i. i IN f /\ k SUBSET i) ==> DISJOINT (h DIFF UNIONS f) (k DIFF u)`) THEN REWRITE_TAC[EXISTS_IN_GSPEC] THENL [EXISTS_TAC `n:num`; EXISTS_TAC `m:num`] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSURE_OF_SUBSET THEN ASM_SIMP_TAC[OPEN_IN_SUBSET]);; (* ------------------------------------------------------------------------- *) (* Hereditarily normal spaces. *) (* ------------------------------------------------------------------------- *) let HEREDITARILY_NORMAL_SPACE,HEREDITARILY_NORMAL_SEPARATION = (CONJ_PAIR o prove) (`(!top:A topology. hereditarily normal_space top <=> !u. open_in top u ==> normal_space(subtopology top u)) /\ (!top:A topology. hereditarily normal_space top <=> !s t. separated_in top s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (r ==> p) /\ (q ==> r) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [SIMP_TAC[HEREDITARILY]; DISCH_TAC THEN REWRITE_TAC[hereditarily] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[normal_space] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `separated_in (subtopology top u) (s:A->bool) t` MP_TAC THENL [ASM_SIMP_TAC[SEPARATED_IN_CLOSED_SETS]; REWRITE_TAC[SEPARATED_IN_SUBTOPOLOGY]] THEN STRIP_TAC THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`]) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `topspace top DIFF (top closure_of s) INTER (top closure_of t):A->bool`) THEN SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_INTER; OPEN_IN_TOPSPACE; CLOSED_IN_CLOSURE_OF; NORMAL_SPACE_CLOSURES] THEN DISCH_THEN(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`]) THEN ANTS_TAC THENL [REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN RULE_ASSUM_TAC(REWRITE_RULE[separated_in]) THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC(SET_RULE `top closure_of (u INTER s') SUBSET top closure_of s' /\ top closure_of (v INTER t') SUBSET top closure_of t' /\ s INTER t INTER top closure_of s' INTER top closure_of t' = {} ==> DISJOINT (s INTER top closure_of (u INTER s')) (t INTER top closure_of (v INTER t'))`) THEN SIMP_TAC[CLOSURE_OF_MONO; INTER_SUBSET] THEN ASM SET_TAC[]; REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] OPEN_IN_TRANS_FULL) THEN SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_INTER; OPEN_IN_TOPSPACE; CLOSED_IN_CLOSURE_OF]]]);; let METRIZABLE_IMP_HEREDITARILY_NORMAL_SPACE = prove (`!top:A topology. metrizable_space top ==> hereditarily normal_space top`, SIMP_TAC[hereditarily; METRIZABLE_IMP_NORMAL_SPACE; METRIZABLE_SPACE_SUBTOPOLOGY]);; let METRIZABLE_SPACE_SEPARATION = prove (`!top s t:A->bool. metrizable_space top /\ separated_in top s t ==> ?u v. open_in top u /\ open_in top v /\ s SUBSET u /\ t SUBSET v /\ DISJOINT u v`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM HEREDITARILY_NORMAL_SEPARATION] THEN REWRITE_TAC[METRIZABLE_IMP_HEREDITARILY_NORMAL_SPACE]);; let HEREDITARILY_NORMAL_SEPARATION_PAIRWISE = prove (`!top:A topology. hereditarily normal_space top <=> !u. FINITE u /\ (!s. s IN u ==> s SUBSET topspace top) /\ pairwise (separated_in top) u ==> ?f. (!s. s IN u ==> open_in top (f s) /\ s SUBSET f s) /\ pairwise (\s t. DISJOINT (f s) (f t)) u`, GEN_TAC THEN REWRITE_TAC[HEREDITARILY_NORMAL_SEPARATION] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `u:(A->bool)->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `!s. s IN u ==> ?v w. open_in top v /\ open_in top w /\ s SUBSET v /\ (!t:A->bool. t IN u /\ ~(t = s) ==> t SUBSET w) /\ DISJOINT v w` MP_TAC THENL [X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:A->bool`; `UNIONS(u DELETE (s:A->bool))`]) THEN ASM_SIMP_TAC[SEPARATED_IN_UNIONS; FINITE_DELETE] THEN REWRITE_TAC[UNIONS_SUBSET; IN_DELETE] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN ASM_MESON_TAC[]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`f:(A->bool)->(A->bool)`; `g:(A->bool)->(A->bool)`] THEN STRIP_TAC THEN EXISTS_TAC `\s. (f:(A->bool)->(A->bool)) s INTER INTERS {g t | t IN u DELETE s}` THEN REWRITE_TAC[GSYM INTERS_INSERT; SUBSET_INTERS] THEN REWRITE_TAC[SIMPLE_IMAGE; pairwise] THEN ASM_SIMP_TAC[OPEN_IN_INTERS; NOT_INSERT_EMPTY; FINITE_INSERT; FINITE_IMAGE; IN_DELETE; FORALL_IN_INSERT; FORALL_IN_IMAGE; IN_DELETE; FINITE_DELETE] THEN REWRITE_TAC[INTERS_INSERT; INTERS_IMAGE] THEN ASM SET_TAC[]; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN DISCH_TAC THEN ASM_CASES_TAC `t:A->bool = s` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o GEN_REWRITE_RULE I [SEPARATED_IN_REFL]) THEN REPEAT(EXISTS_TAC `{}:A->bool`) THEN ASM_REWRITE_TAC[OPEN_IN_EMPTY] THEN SET_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `{(s:A->bool),t}`) THEN REWRITE_TAC[PAIRWISE_INSERT; FINITE_INSERT; FORALL_IN_INSERT] THEN REWRITE_TAC[FINITE_EMPTY; NOT_IN_EMPTY; PAIRWISE_EMPTY; IN_SING] THEN ANTS_TAC THENL [ASM_MESON_TAC[separated_in]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ; FORALL_UNWIND_THM2] THEN ASM_MESON_TAC[]]]);; let HEREDITARILY_NORMAL_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). hereditarily normal_space top /\ perfect_map(top,top') f ==> hereditarily normal_space top'`, REWRITE_TAC[perfect_map; proper_map] THEN MESON_TAC[HEREDITARILY_NORMAL_SPACE_CONTINUOUS_CLOSED_MAP_IMAGE]);; let REGULAR_SECOND_COUNTABLE_IMP_HEREDITARILY_NORMAL_SPACE = prove (`!top:A topology. regular_space top /\ second_countable top ==> hereditarily normal_space top`, REWRITE_TAC[hereditarily] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REGULAR_LINDELOF_IMP_NORMAL_SPACE THEN ASM_SIMP_TAC[REGULAR_SPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC SECOND_COUNTABLE_IMP_LINDELOF_SPACE THEN ASM_SIMP_TAC[SECOND_COUNTABLE_SUBTOPOLOGY]);; (* ------------------------------------------------------------------------- *) (* Completely regular spaces. *) (* ------------------------------------------------------------------------- *) let completely_regular_space = new_definition `completely_regular_space (top:A topology) <=> !s x. closed_in top s /\ x IN topspace top DIFF s ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[&0,&1])) f /\ f(x) = &0 /\ !x. x IN s ==> f x = &1`;; let HOMEOMORPHIC_COMPLETELY_REGULAR_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (completely_regular_space top <=> completely_regular_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN REWRITE_TAC[completely_regular_space; IN_DIFF] THEN EQ_TAC THEN DISCH_TAC THENL [MAP_EVERY X_GEN_TAC [`d:B->bool`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`IMAGE (g:B->A) d`; `(g:B->A) y`]); MAP_EVERY X_GEN_TAC [`c:A->bool`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`IMAGE (f:A->B) c`; `(f:A->B) x`])] THEN (ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_MAP_CLOSEDNESS_EQ]; FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN ASM SET_TAC[]]; ALL_TAC]) THENL [DISCH_THEN(X_CHOOSE_THEN `h:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(h:A->real) o (g:B->A)`; DISCH_THEN(X_CHOOSE_THEN `h:B->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(h:B->real) o (f:A->B)`] THEN ASM_REWRITE_TAC[o_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN (CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]; ASM SET_TAC[]]));; let COMPLETELY_REGULAR_SPACE_ALT = prove (`!top:A topology. completely_regular_space top <=> !s x. closed_in top s /\ x IN topspace top DIFF s ==> ?f. continuous_map (top,euclideanreal) f /\ f(x) = &0 /\ (!x. x IN s ==> f x = &1)`, GEN_TAC THEN REWRITE_TAC[completely_regular_space] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `s:A->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x. max (&0) (min ((f:A->real) x) (&1))` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MAX THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MIN THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST]);; let COMPLETELY_REGULAR_SPACE_GEN_ALT = prove (`!(top:A topology) a b. ~(a = b) ==> (completely_regular_space top <=> !s x. closed_in top s /\ x IN topspace top DIFF s ==> ?f. continuous_map (top,euclideanreal) f /\ f(x) = a /\ !x. x IN s ==> f x = b)`, REPEAT STRIP_TAC THEN REWRITE_TAC[COMPLETELY_REGULAR_SPACE_ALT] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `s:A->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THENL [EXISTS_TAC `\x. a + (b - a) * (f:A->real) x`; EXISTS_TAC `\x. inv(b - a) * ((f:A->real) x - a)`] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_ADD; CONTINUOUS_MAP_REAL_LMUL; ETA_AX; CONTINUOUS_MAP_REAL_SUB; CONTINUOUS_MAP_REAL_CONST] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `~(a:real = b)` THEN CONV_TAC REAL_FIELD);; let COMPLETELY_REGULAR_SPACE_GEN = prove (`!(top:A topology) a b. a < b ==> (completely_regular_space top <=> !s x. closed_in top s /\ x IN topspace top DIFF s ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[a,b])) f /\ f(x) = a /\ !x. x IN s ==> f x = b)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[COMPLETELY_REGULAR_SPACE_GEN_ALT; REAL_LT_IMP_NE] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `s:A->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `f:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x. max a (min ((f:A->real) x) b)` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MAX THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MIN THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST]);; let NORMAL_IMP_COMPLETELY_REGULAR_SPACE_GEN = prove (`!top:A topology. normal_space top /\ (t1_space top \/ hausdorff_space top \/ regular_space top) ==> completely_regular_space top`, GEN_TAC THEN REWRITE_TAC[NORMAL_SPACE_EQ_URYSOHN_ALT] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[COMPLETELY_REGULAR_SPACE_ALT; IN_DIFF] THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (p ==> s) /\ (r ==> s) ==> (p \/ q \/ r ==> s)`) THEN REWRITE_TAC[HAUSDORFF_IMP_T1_SPACE] THEN CONJ_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `x:A`] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`{x:A}`; `s:A->bool`]) THEN ASM_SIMP_TAC[SET_RULE `DISJOINT {x} s <=> ~(x IN s)`] THEN REWRITE_TAC[IN_SING; FORALL_UNWIND_THM2] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`topspace top DIFF s:A->bool`; `x:A`]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; IN_DIFF; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `c:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`c:A->bool`; `s:A->bool`]) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]);; let NORMAL_IMP_COMPLETELY_REGULAR_SPACE = prove (`!top:A topology. normal_space top /\ (hausdorff_space top \/ regular_space top) ==> completely_regular_space top`, MESON_TAC[NORMAL_IMP_COMPLETELY_REGULAR_SPACE_GEN]);; let COMPLETELY_REGULAR_SPACE_MTOPOLOGY = prove (`!m:A metric. completely_regular_space (mtopology m)`, SIMP_TAC[NORMAL_IMP_COMPLETELY_REGULAR_SPACE; NORMAL_SPACE_MTOPOLOGY; HAUSDORFF_SPACE_MTOPOLOGY]);; let METRIZABLE_IMP_COMPLETELY_REGULAR_SPACE = prove (`!top:A topology. metrizable_space top ==> completely_regular_space top`, REWRITE_TAC[FORALL_METRIZABLE_SPACE; COMPLETELY_REGULAR_SPACE_MTOPOLOGY]);; let COMPLETELY_REGULAR_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. completely_regular_space(discrete_topology u)`, SIMP_TAC[METRIZABLE_SPACE_DISCRETE_TOPOLOGY; METRIZABLE_IMP_COMPLETELY_REGULAR_SPACE]);; let COMPLETELY_REGULAR_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. completely_regular_space top ==> completely_regular_space (subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[completely_regular_space; IN_DIFF] THEN STRIP_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; CLOSED_IN_SUBTOPOLOGY_ALT] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; FORALL_IN_GSPEC] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`t:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY]);; let COMPLETELY_REGULAR_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ completely_regular_space top ==> completely_regular_space top'`, MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[COMPLETELY_REGULAR_SPACE_SUBTOPOLOGY; HOMEOMORPHIC_COMPLETELY_REGULAR_SPACE]);; let COMPLETELY_REGULAR_IMP_REGULAR_SPACE = prove (`!top:A topology. completely_regular_space top ==> regular_space top`, GEN_TAC THEN REWRITE_TAC[completely_regular_space; regular_space] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `c:A->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_DIFF] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x:A | x IN topspace top /\ f x IN {x | x < &1 / &2}}`; `{x:A | x IN topspace top /\ f x IN {x | x > &1 / &2}}`] THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[GSYM REAL_OPEN_IN] THEN REWRITE_TAC[REAL_OPEN_HALFSPACE_LT; REAL_OPEN_HALFSPACE_GT]; ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUBSET; IN_ELIM_THM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET]; SIMP_TAC[EXTENSION; DISJOINT; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM] THEN REAL_ARITH_TAC]]);; let LOCALLY_COMPACT_REGULAR_IMP_COMPLETELY_REGULAR_SPACE = prove (`!top:A topology. locally_compact_space top /\ (hausdorff_space top \/ regular_space top) ==> completely_regular_space top`, REWRITE_TAC[LOCALLY_COMPACT_HAUSDORFF_OR_REGULAR] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[completely_regular_space; IN_DIFF] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `x:A`] THEN STRIP_TAC THEN MP_TAC(ISPEC `top:A topology` LOCALLY_COMPACT_REGULAR_SPACE_NEIGHBOURHOOD_BASE) THEN ASM_REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`topspace top DIFF s:A->bool`; `x:A`]) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; IN_DIFF; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `m:A->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (m:A->bool)`; `k:A->bool`; `m DIFF u:A->bool`; `&0:real`; `&1:real`] URYSOHN_LEMMA) THEN REWRITE_TAC[REAL_POS; IN_DIFF] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [MATCH_MP_TAC COMPACT_HAUSDORFF_OR_REGULAR_IMP_NORMAL_SPACE THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; REGULAR_SPACE_SUBTOPOLOGY]; MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM SET_TAC[]; REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN EXISTS_TAC `topspace top DIFF u:A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; ASM SET_TAC[]]; REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; TOPSPACE_SUBTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_THEN(X_CHOOSE_THEN `g:A->real` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `\x. if x IN m then (g:A->real) x else &1` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM SET_TAC[]] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ENDS_IN_UNIT_REAL_INTERVAL]] THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN X_GEN_TAC `c:real->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN topspace top /\ (if x IN m then g x else &1) IN c} = {x | x IN m /\ (g:A->real) x IN c} UNION (if &1 IN c then topspace top DIFF u else {})` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM; IN_DIFF] THEN X_GEN_TAC `y:A` THEN ASM_CASES_TAC `(y:A) IN m` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM SET_TAC[]] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_DIFF; NOT_IN_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_UNION THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_TRANS_FULL THEN EXISTS_TAC `m:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE_GEN THEN EXISTS_TAC `euclideanreal` THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET_TOPSPACE; SUBSET_REFL]; COND_CASES_TAC THEN REWRITE_TAC[CLOSED_IN_EMPTY] THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]]]);; let COMPLETELY_REGULAR_EQ_REGULAR_SPACE = prove (`!top:A topology. locally_compact_space top ==> (completely_regular_space top <=> regular_space top)`, MESON_TAC[COMPLETELY_REGULAR_IMP_REGULAR_SPACE; LOCALLY_COMPACT_REGULAR_IMP_COMPLETELY_REGULAR_SPACE]);; let COMPLETELY_REGULAR_SPACE_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). completely_regular_space (prod_topology top1 top2) <=> topspace (prod_topology top1 top2) = {} \/ completely_regular_space top1 /\ completely_regular_space top2`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PROD_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_COMPLETELY_REGULAR_SPACE] THEN SIMP_TAC[COMPLETELY_REGULAR_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THENL [ASM_REWRITE_TAC[completely_regular_space; IN_DIFF; NOT_IN_EMPTY]; ASM_REWRITE_TAC[]] THEN REWRITE_TAC[COMPLETELY_REGULAR_SPACE_ALT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_CLOSED_IN] THEN SIMP_TAC[IN_DIFF; IMP_CONJ] THEN GEN_REWRITE_TAC (BINOP_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN STRIP_TAC THEN REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`w:A#B->bool`; `x:A`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PROD_TOPOLOGY_ALT]) THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`v:B->bool`; `y:B`]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_REAL_INTERVAL] THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN X_GEN_TAC `g:B->real` THEN STRIP_TAC THEN EXISTS_TAC `\(x,y). &1 - (&1 - (f:A->real) x) * (&1 - (g:B->real) y)` THEN ASM_REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL [REWRITE_TAC[LAMBDA_PAIR] THEN REPEAT((MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB ORELSE MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL) THEN CONJ_TAC) THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND]; REWRITE_TAC[REAL_RING `&1 - (&1 - x) * (&1 - y) = &1 <=> x = &1 \/ y = &1`] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_PAIR_THM; IN_CROSS]) THEN ASM SET_TAC[]]);; let COMPLETELY_REGULAR_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) k. completely_regular_space (product_topology k tops) <=> topspace (product_topology k tops) = {} \/ !i. i IN k ==> completely_regular_space (tops i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PRODUCT_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_COMPLETELY_REGULAR_SPACE] THEN SIMP_TAC[COMPLETELY_REGULAR_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN ASM_CASES_TAC `topspace (product_topology k (tops:K->A topology)) = {}` THENL [ASM_REWRITE_TAC[completely_regular_space; NOT_IN_EMPTY; IN_DIFF]; ASM_REWRITE_TAC[]] THEN REWRITE_TAC[COMPLETELY_REGULAR_SPACE_ALT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_CLOSED_IN] THEN SIMP_TAC[IN_DIFF; IMP_CONJ] THEN GEN_REWRITE_TAC (BINOP_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN STRIP_TAC THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`w:(K->A)->bool`; `x:K->A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_PRODUCT_TOPOLOGY_ALT]) THEN DISCH_THEN(MP_TAC o SPEC `x:K->A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:K->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN `i:K` o SPECL [`i:K`; `(u:K->A->bool) i`; `(x:K->A) i`]) THEN REWRITE_TAC[MESON[SUBSET; OPEN_IN_SUBSET] `(P /\ open_in top u /\ x IN topspace top /\ x IN u ==> Q) <=> P ==> open_in top u /\ x IN u ==> Q`] THEN MP_TAC(ASSUME `(x:K->A) IN cartesian_product k u`) THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN X_GEN_TAC `f:K->A->real` THEN DISCH_TAC THEN EXISTS_TAC `\z. &1 - product {i | i IN k /\ ~(u i :A->bool = topspace(tops i))} (\i. &1 - (f:K->A->real) i (z i))` THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_PRODUCT THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `(tops:K->A topology) i` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION]; REWRITE_TAC[REAL_ARITH `&1 - x = &0 <=> x = &1`] THEN MATCH_MP_TAC PRODUCT_EQ_1 THEN ASM_SIMP_TAC[IN_ELIM_THM; REAL_ARITH `&1 - x = &1 <=> x = &0`]; X_GEN_TAC `y:K->A` THEN REWRITE_TAC[o_THM] THEN STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `&1 - x = &1 <=> x = &0`] THEN ASM_SIMP_TAC[PRODUCT_EQ_0; REAL_ARITH `&1 - x = &0 <=> x = &1`] THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:K->A` o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Locally path-connected spaces. *) (* ------------------------------------------------------------------------- *) let weakly_locally_path_connected_at = new_definition `weakly_locally_path_connected_at x top <=> neighbourhood_base_at x (path_connected_in top) top`;; let locally_path_connected_at = new_definition `locally_path_connected_at x top <=> neighbourhood_base_at x (\u. open_in top u /\ path_connected_in top u ) top`;; let locally_path_connected_space = new_definition `locally_path_connected_space top <=> neighbourhood_base_of (path_connected_in top) top`;; let LOCALLY_PATH_CONNECTED_SPACE_ALT, LOCALLY_PATH_CONNECTED_SPACE_EQ_OPEN_PATH_COMPONENT_OF = (CONJ_PAIR o prove) (`(!top:A topology. locally_path_connected_space top <=> neighbourhood_base_of (\u. open_in top u /\ path_connected_in top u) top) /\ (!top:A topology. locally_path_connected_space top <=> !u x. open_in top u /\ x IN u ==> open_in top (path_component_of (subtopology top u) x))`, SIMP_TAC[OPEN_NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[AND_FORALL_THM; locally_path_connected_space] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN X_GEN_TAC `top:A topology` THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (p ==> r) /\ (r ==> q) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[SUBSET_REFL]; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `y:A`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [PATH_COMPONENT_OF_EQUIV] o GEN_REWRITE_RULE I [IN]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[SUBSET] PATH_COMPONENT_OF_SUBSET_TOPSPACE)) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `w:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `v:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `w:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC PATH_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_SUBTOPOLOGY] THEN ASM SET_TAC[]; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `x:A`] THEN STRIP_TAC THEN EXISTS_TAC `path_component_of (subtopology top u) (x:A)` THEN ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL [W(MP_TAC o PART_MATCH rand PATH_CONNECTED_IN_PATH_COMPONENT_OF o rand o snd) THEN SIMP_TAC[PATH_CONNECTED_IN_SUBTOPOLOGY]; REWRITE_TAC[IN] THEN REWRITE_TAC[PATH_COMPONENT_OF_REFL] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]; W(MP_TAC o PART_MATCH lhand PATH_COMPONENT_OF_SUBSET_TOPSPACE o lhand o snd) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER]]]);; let LOCALLY_PATH_CONNECTED_SPACE = prove (`!top:A topology. locally_path_connected_space top <=> !v x. open_in top v /\ x IN v ==> ?u. open_in top u /\ path_connected_in top u /\ x IN u /\ u SUBSET v`, SIMP_TAC[LOCALLY_PATH_CONNECTED_SPACE_ALT; OPEN_NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[GSYM CONJ_ASSOC]);; let LOCALLY_PATH_CONNECTED_SPACE_OPEN_PATH_COMPONENTS = prove (`!top:A topology. locally_path_connected_space top <=> !u c. open_in top u /\ c IN path_components_of(subtopology top u) ==> open_in top c`, REWRITE_TAC[LOCALLY_PATH_CONNECTED_SPACE_EQ_OPEN_PATH_COMPONENT_OF] THEN REWRITE_TAC[path_components_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN MESON_TAC[SUBSET; OPEN_IN_SUBSET]);; let OPEN_IN_PATH_COMPONENT_OF_LOCALLY_PATH_CONNECTED_SPACE = prove (`!top x:A. locally_path_connected_space top ==> open_in top (path_component_of top x)`, METIS_TAC[LOCALLY_PATH_CONNECTED_SPACE_EQ_OPEN_PATH_COMPONENT_OF; SUBTOPOLOGY_TOPSPACE; OPEN_IN_TOPSPACE; OPEN_IN_EMPTY; PATH_COMPONENT_OF_EQ_EMPTY]);; let OPEN_IN_PATH_COMPONENTS_OF_LOCALLY_PATH_CONNECTED_SPACE = prove (`!top c:A->bool. locally_path_connected_space top /\ c IN path_components_of top ==> open_in top c`, REWRITE_TAC[LOCALLY_PATH_CONNECTED_SPACE_OPEN_PATH_COMPONENTS] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; SUBTOPOLOGY_TOPSPACE]);; let CLOSED_IN_PATH_COMPONENTS_OF_LOCALLY_PATH_CONNECTED_SPACE = prove (`!top c:A->bool. locally_path_connected_space top /\ c IN path_components_of top ==> closed_in top c`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[closed_in; PATH_COMPONENTS_OF_SUBSET] THEN ASM_SIMP_TAC[COMPLEMENT_PATH_COMPONENTS_OF_UNIONS] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[IN_DELETE] THEN ASM_SIMP_TAC[OPEN_IN_PATH_COMPONENTS_OF_LOCALLY_PATH_CONNECTED_SPACE]);; let CLOSED_IN_PATH_COMPONENT_OF_LOCALLY_PATH_CONNECTED_SPACE = prove (`!top x:A. locally_path_connected_space top ==> closed_in top (path_component_of top x)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_SIMP_TAC[PATH_COMPONENT_IN_PATH_COMPONENTS_OF; CLOSED_IN_PATH_COMPONENTS_OF_LOCALLY_PATH_CONNECTED_SPACE] THEN ASM_MESON_TAC[CLOSED_IN_EMPTY; PATH_COMPONENT_OF_EQ_EMPTY]);; let WEAKLY_LOCALLY_PATH_CONNECTED_AT = prove (`!top x:A. weakly_locally_path_connected_at x top <=> !v. open_in top v /\ x IN v ==> ?u. open_in top u /\ x IN u /\ u SUBSET v /\ !y. y IN u ==> ?c. path_connected_in top c /\ c SUBSET v /\ x IN c /\ y IN c`, REPEAT GEN_TAC THEN REWRITE_TAC[neighbourhood_base_at; weakly_locally_path_connected_at] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THENL [ASM_MESON_TAC[SUBSET]; STRIP_TAC] THEN EXISTS_TAC `path_component_of (subtopology top v) (x:A)` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MESON_TAC[PATH_CONNECTED_IN_PATH_COMPONENT_OF; PATH_CONNECTED_IN_SUBTOPOLOGY]; REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `c:A->bool` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC PATH_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_SUBTOPOLOGY]; MESON_TAC[PATH_COMPONENT_OF_SUBSET_TOPSPACE; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER]]);; let LOCALLY_PATH_CONNECTED_SPACE_IM_KLEINEN = prove (`!top:A topology. locally_path_connected_space top <=> !v x. open_in top v /\ x IN v ==> ?u. open_in top u /\ x IN u /\ u SUBSET v /\ !y. y IN u ==> ?c. path_connected_in top c /\ c SUBSET v /\ x IN c /\ y IN c`, REWRITE_TAC[locally_path_connected_space; neighbourhood_base_of] THEN GEN_TAC THEN REWRITE_TAC[GSYM weakly_locally_path_connected_at] THEN REWRITE_TAC[WEAKLY_LOCALLY_PATH_CONNECTED_AT] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN EQ_TAC THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let LOCALLY_PATH_CONNECTED_SPACE_OPEN_SUBSET = prove (`!top s:A->bool. locally_path_connected_space top /\ open_in top s ==> locally_path_connected_space (subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_path_connected_space] THEN DISCH_THEN(MP_TAC o MATCH_MP NEIGHBOURHOOD_BASE_OF_OPEN_SUBSET) THEN GEN_REWRITE_TAC LAND_CONV [NEIGHBOURHOOD_BASE_OF_WITH_SUBSET] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_OF_MONO) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; PATH_CONNECTED_IN_SUBTOPOLOGY; SUBSET_INTER]);; let LOCALLY_PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' f:A->B. quotient_map(top,top') f /\ locally_path_connected_space top ==> locally_path_connected_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map] THEN REWRITE_TAC[LOCALLY_PATH_CONNECTED_SPACE_OPEN_PATH_COMPONENTS] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`v:B->bool`; `c:B->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o snd)) THEN ANTS_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP PATH_COMPONENTS_OF_SUBSET) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN EXISTS_TAC `path_component_of (subtopology top {z | z IN topspace top /\ (f:A->B) z IN v}) x` THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `{z | z IN topspace top /\ (f:A->B) z IN v}` THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; path_components_of] THEN REWRITE_TAC[SIMPLE_IMAGE; ETA_AX] THEN MATCH_MP_TAC FUN_IN_IMAGE; GEN_REWRITE_TAC I [IN] THEN REWRITE_TAC[PATH_COMPONENT_OF_REFL]; MATCH_MP_TAC(SET_RULE `!v. s SUBSET u INTER {x | x IN u /\ f x IN v} /\ IMAGE f s SUBSET c ==> s SUBSET {x | x IN u /\ f x IN c}`) THEN EXISTS_TAC `v:B->bool` THEN REWRITE_TAC[PATH_COMPONENT_OF_SUBSET_TOPSPACE; GSYM TOPSPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC PATH_COMPONENTS_OF_MAXIMAL THEN EXISTS_TAC `subtopology top' (v:B->bool)` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `subtopology top {z | z IN topspace top /\ (f:A->B) z IN v}` THEN REWRITE_TAC[PATH_CONNECTED_IN_PATH_COMPONENT_OF] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN MATCH_MP_TAC QUOTIENT_IMP_CONTINUOUS_MAP THEN ASM_REWRITE_TAC[quotient_map]; REWRITE_TAC[SET_RULE `~DISJOINT t (IMAGE f s) <=> ?x. x IN s /\ f x IN t`] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [IN] THEN REWRITE_TAC[PATH_COMPONENT_OF_REFL]]] THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN FIRST_ASSUM(MP_TAC o MATCH_MP PATH_COMPONENTS_OF_SUBSET) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM SET_TAC[]);; let HOMEOMORPHIC_LOCALLY_PATH_CONNECTED_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (locally_path_connected_space top <=> locally_path_connected_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; homeomorphic_map] THEN MESON_TAC[LOCALLY_PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE]);; let LOCALLY_PATH_CONNECTED_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map (top,top') r /\ locally_path_connected_space top ==> locally_path_connected_space top'`, MESON_TAC[LOCALLY_PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let LOCALLY_PATH_CONNECTED_SPACE_EUCLIDEANREAL = prove (`locally_path_connected_space euclideanreal`, REWRITE_TAC[locally_path_connected_space; NEIGHBOURHOOD_BASE_OF] THEN MAP_EVERY X_GEN_TAC [`w:real->bool`; `x:real`] THEN REWRITE_TAC[GSYM REAL_OPEN_IN] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [real_open] THEN DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN REPEAT(EXISTS_TAC `real_interval(x - e,x + e)`) THEN REWRITE_TAC[SUBSET_REFL; REAL_OPEN_REAL_INTERVAL; PATH_CONNECTED_IN_EUCLIDEANREAL_INTERVAL] THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN CONJ_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC] THEN ASM_REAL_ARITH_TAC);; let LOCALLY_PATH_CONNECTED_IS_REALINTERVAL = prove (`!s. is_realinterval s ==> locally_path_connected_space(subtopology euclideanreal s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[locally_path_connected_space] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_IN_GSPEC; IN_INTER; INTER_SUBSET] THEN X_GEN_TAC `u:real->bool` THEN DISCH_TAC THEN X_GEN_TAC `a:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC]) THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY; MBALL_REAL_INTERVAL] THEN DISCH_THEN(MP_TAC o SPEC `a:real` o CONJUNCT2) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN EXISTS_TAC `real_interval(a - r,a + r)` THEN REWRITE_TAC[GSYM REAL_OPEN_IN; REAL_OPEN_REAL_INTERVAL] THEN EXISTS_TAC `s INTER real_interval(a - r,a + r)` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; PATH_CONNECTED_IN_SUBTOPOLOGY] THEN REWRITE_TAC[INTER_SUBSET; SUBSET_INTER] THEN ASM_REWRITE_TAC[REAL_ARITH `a - r:real < a /\ a < a + r <=> &0 < r`] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[PATH_CONNECTED_IN_EUCLIDEANREAL] THEN MATCH_MP_TAC IS_REALINTERVAL_INTER THEN ASM_REWRITE_TAC[IS_REALINTERVAL_INTERVAL]);; let LOCALLY_PATH_CONNECTED_REAL_INTERVAL = prove (`(!a b. locally_path_connected_space (subtopology euclideanreal(real_interval[a,b]))) /\ (!a b. locally_path_connected_space (subtopology euclideanreal(real_interval(a,b))))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC LOCALLY_PATH_CONNECTED_IS_REALINTERVAL THEN REWRITE_TAC[IS_REALINTERVAL_INTERVAL]);; let LOCALLY_PATH_CONNECTED_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. locally_path_connected_space (discrete_topology u)`, GEN_TAC THEN REWRITE_TAC[LOCALLY_PATH_CONNECTED_SPACE] THEN SIMP_TAC[OPEN_IN_DISCRETE_TOPOLOGY; PATH_CONNECTED_IN_DISCRETE_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `x:A`] THEN STRIP_TAC THEN EXISTS_TAC `{x:A}` THEN ASM SET_TAC[]);; let PATH_COMPONENT_EQ_CONNECTED_COMPONENT_OF = prove (`!top x:A. locally_path_connected_space top ==> (path_component_of top x = connected_component_of top x)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THENL [ALL_TAC; ASM_MESON_TAC[PATH_COMPONENT_OF_EQ_EMPTY; CONNECTED_COMPONENT_OF_EQ_EMPTY]] THEN MP_TAC(ISPECL [`top:A topology`; `x:A`] CONNECTED_IN_CONNECTED_COMPONENT_OF) THEN REWRITE_TAC[connected_in; CONNECTED_SPACE_CLOPEN_IN] THEN REWRITE_TAC[TAUT `p ==> q \/ r <=> p /\ ~q ==> r`] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE] THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_SUBSET_TOPSPACE; MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE; ASM_REWRITE_TAC[PATH_COMPONENT_OF_EQ_EMPTY]] THEN REWRITE_TAC[PATH_COMPONENT_SUBSET_CONNECTED_COMPONENT_OF] THEN ASM_SIMP_TAC[OPEN_IN_PATH_COMPONENT_OF_LOCALLY_PATH_CONNECTED_SPACE; CLOSED_IN_PATH_COMPONENT_OF_LOCALLY_PATH_CONNECTED_SPACE]);; let PATH_COMPONENTS_EQ_CONNECTED_COMPONENTS_OF = prove (`!top:A topology. locally_path_connected_space top ==> (path_components_of top = connected_components_of top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[path_components_of; connected_components_of] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> {f x | x IN s} = {g x | x IN s}`) THEN ASM_SIMP_TAC[PATH_COMPONENT_EQ_CONNECTED_COMPONENT_OF]);; let PATH_CONNECTED_EQ_CONNECTED_SPACE = prove (`!top. locally_path_connected_space top ==> (path_connected_space top <=> connected_space top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT; CONNECTED_SPACE_IFF_CONNECTED_COMPONENT] THEN ASM_SIMP_TAC[PATH_COMPONENT_EQ_CONNECTED_COMPONENT_OF]);; let LOCALLY_PATH_CONNECTED_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. locally_path_connected_space (prod_topology top1 top2) <=> topspace (prod_topology top1 top2) = {} \/ locally_path_connected_space top1 /\ locally_path_connected_space top2`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THENL [ASM_REWRITE_TAC[locally_path_connected_space; NEIGHBOURHOOD_BASE_OF] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE)) THENL [EXISTS_TAC `FST:A#B->A`; EXISTS_TAC `SND:A#B->B`] THEN ASM_REWRITE_TAC[QUOTIENT_MAP_FST; QUOTIENT_MAP_SND]; FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:B` THEN DISCH_TAC THEN X_GEN_TAC `w:A` THEN DISCH_TAC THEN REWRITE_TAC[locally_path_connected_space; FORALL_PAIR_THM; IN_CROSS; NEIGHBOURHOOD_BASE_OF; TOPSPACE_PROD_TOPOLOGY] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`uv:A#B->bool`; `x:A`; `y:B`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [OPEN_IN_PROD_TOPOLOGY_ALT] THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`w1:A->bool`; `w2:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w2:B->bool`; `y:B`]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w1:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u1:A->bool`; `k1:A->bool`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`u2:B->bool`; `k2:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(u1:A->bool) CROSS (u2:B->bool)` THEN EXISTS_TAC `(k1:A->bool) CROSS (k2:B->bool)` THEN ASM_SIMP_TAC[OPEN_IN_CROSS; PATH_CONNECTED_IN_CROSS; IN_CROSS; SUBSET_CROSS] THEN TRANS_TAC SUBSET_TRANS `(w1 CROSS w2):A#B->bool` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[SUBSET_CROSS]]);; let LOCALLY_PATH_CONNECTED_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) k. locally_path_connected_space(product_topology k tops) <=> topspace(product_topology k tops) = {} \/ FINITE {i | i IN k /\ ~path_connected_space(tops i)} /\ !i. i IN k ==> locally_path_connected_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THENL [ASM_REWRITE_TAC[locally_path_connected_space; NEIGHBOURHOOD_BASE_OF] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_REWRITE_TAC[locally_path_connected_space; NEIGHBOURHOOD_BASE_OF] THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:K->A`) THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`topspace(product_topology k (tops:K->A topology))`; `z:K->A`]) THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:(K->A)->bool`; `c:(K->A)->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:K->A` o REWRITE_RULE[OPEN_IN_PRODUCT_TOPOLOGY_ALT]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:K->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`\x:K->A. x i`; `(tops:K->A topology) i`] o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; GSYM PATH_CONNECTED_IN_TOPSPACE] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `v = u ==> v SUBSET s /\ s SUBSET u ==> s = u`)) THEN CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) u` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) (cartesian_product k v)` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM SET_TAC[]; TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) (topspace(product_topology k tops))` THEN ASM_SIMP_TAC[IMAGE_SUBSET; PATH_CONNECTED_IN_SUBSET_TOPSPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY]) THEN ASM_REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_THM; SUBSET_REFL]]; X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[GSYM locally_path_connected_space; ETA_AX; GSYM NEIGHBOURHOOD_BASE_OF] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM locally_path_connected_space; ETA_AX; GSYM NEIGHBOURHOOD_BASE_OF]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_PATH_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE))) THEN EXISTS_TAC `\x:K->A. x i` THEN ASM_SIMP_TAC[OPEN_MAP_PRODUCT_PROJECTION; TOPSPACE_PRODUCT_TOPOLOGY; QUOTIENT_MAP_PRODUCT_PROJECTION; IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY; o_THM]]; STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`ww:(K->A)->bool`; `z:K->A`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [OPEN_IN_PRODUCT_TOPOLOGY_ALT] THEN DISCH_THEN(MP_TAC o SPEC `z:K->A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `w:K->A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!i. i IN k ==> ?u c. open_in (tops i) u /\ path_connected_in (tops i) c /\ ((z:K->A) i) IN u /\ u SUBSET c /\ c SUBSET w i /\ (w i = topspace(tops i) /\ path_connected_space(tops i) ==> u = topspace(tops i) /\ c = topspace(tops i))` MP_TAC THENL [X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`i:K`; `(w:K->A->bool) i`] o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_FORALL_THM]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `(z:K->A) i`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [cartesian_product]) THEN ASM_SIMP_TAC[IN_ELIM_THM]; ASM_CASES_TAC `path_connected_space((tops:K->A topology) i)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(w:K->A->bool) i = topspace(tops i)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN REPEAT(EXISTS_TAC `topspace((tops:K->A topology) i)`) THEN ASM_REWRITE_TAC[PATH_CONNECTED_IN_TOPSPACE; SUBSET_REFL] THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM]) THEN ASM SET_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:K->A->bool`; `c:K->A->bool`] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`cartesian_product k (u:K->A->bool)`; `cartesian_product k (c:K->A->bool)`] THEN ASM_SIMP_TAC[PATH_CONNECTED_IN_CARTESIAN_PRODUCT] THEN ASM_SIMP_TAC[SUBSET_CARTESIAN_PRODUCT] THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN REPEAT CONJ_TAC THENL [DISJ2_TAC THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i | i IN k /\ ~path_connected_space (tops i)} UNION {i | i IN k /\ ~((w:K->A->bool) i = topspace (tops i))}` THEN ASM_REWRITE_TAC[FINITE_UNION] THEN ASM SET_TAC[]; UNDISCH_TAC `(z:K->A) IN cartesian_product k w` THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN ASM SET_TAC[]; TRANS_TAC SUBSET_TRANS `cartesian_product k (w:K->A->bool)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN ASM SET_TAC[]]]);; let LOCALLY_PATH_CONNECTED_SPACE_SUM_TOPOLOGY = prove (`!k (top:K->A topology). locally_path_connected_space(sum_topology k top) <=> !i. i IN k ==> locally_path_connected_space(top i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_SUM_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_LOCALLY_PATH_CONNECTED_SPACE] THEN SIMP_TAC[LOCALLY_PATH_CONNECTED_SPACE_OPEN_SUBSET]; REWRITE_TAC[locally_path_connected_space; NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_OPEN_IN_SUM_TOPOLOGY] THEN DISCH_TAC THEN X_GEN_TAC `w:K->A->bool` THEN DISCH_TAC THEN REWRITE_TAC[FORALL_PAIR_THM; disjoint_union; IN_ELIM_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`i:K`; `x:A`] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:K`)) THEN ASM_REWRITE_TAC[] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(w:K->A->bool) i`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\x. (i:K),(x:A)) u` THEN EXISTS_TAC `IMAGE (\x. (i:K),(x:A)) v` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_PAIR_THM] THEN ASM_REWRITE_TAC[GSYM SUBSET] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[open_map; RIGHT_IMP_FORALL_THM; IMP_IMP] OPEN_MAP_COMPONENT_INJECTION) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC PATH_CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `(top:K->A topology) i` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_COMPONENT_INJECTION]; ASM SET_TAC[]]]);; (* ------------------------------------------------------------------------- *) (* Locally connected spaces. *) (* ------------------------------------------------------------------------- *) let weakly_locally_connected_at = new_definition `weakly_locally_connected_at x top <=> neighbourhood_base_at x (connected_in top) top`;; let locally_connected_at = new_definition `locally_connected_at x top <=> neighbourhood_base_at x (\u. open_in top u /\ connected_in top u ) top`;; let locally_connected_space = new_definition `locally_connected_space top <=> neighbourhood_base_of (connected_in top) top`;; let LOCALLY_CONNECTED_SPACE_ALT, LOCALLY_CONNECTED_SPACE_EQ_OPEN_CONNECTED_COMPONENT_OF = (CONJ_PAIR o prove) (`(!top:A topology. locally_connected_space top <=> neighbourhood_base_of (\u. open_in top u /\ connected_in top u) top) /\ (!top:A topology. locally_connected_space top <=> !u x. open_in top u /\ x IN u ==> open_in top (connected_component_of (subtopology top u) x))`, SIMP_TAC[OPEN_NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[AND_FORALL_THM; locally_connected_space] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN X_GEN_TAC `top:A topology` THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (p ==> r) /\ (r ==> q) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[SUBSET_REFL]; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `y:A`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [CONNECTED_COMPONENT_OF_EQUIV] o GEN_REWRITE_RULE I [IN]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `x:A`]) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[SUBSET] CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE)) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `w:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `v:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `w:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY] THEN ASM SET_TAC[]; DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `x:A`] THEN STRIP_TAC THEN EXISTS_TAC `connected_component_of (subtopology top u) (x:A)` THEN ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL [W(MP_TAC o PART_MATCH rand CONNECTED_IN_CONNECTED_COMPONENT_OF o rand o snd) THEN SIMP_TAC[CONNECTED_IN_SUBTOPOLOGY]; REWRITE_TAC[IN] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]; W(MP_TAC o PART_MATCH lhand CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE o lhand o snd) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER]]]);; let LOCALLY_CONNECTED_SPACE = prove (`!top:A topology. locally_connected_space top <=> !v x. open_in top v /\ x IN v ==> ?u. open_in top u /\ connected_in top u /\ x IN u /\ u SUBSET v`, SIMP_TAC[LOCALLY_CONNECTED_SPACE_ALT; OPEN_NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[GSYM CONJ_ASSOC]);; let LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED_SPACE = prove (`!top: A topology. locally_path_connected_space top ==> locally_connected_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_path_connected_space; locally_connected_space] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_OF_MONO) THEN SIMP_TAC[PATH_CONNECTED_IN_IMP_CONNECTED_IN]);; let LOCALLY_CONNECTED_SPACE_OPEN_CONNECTED_COMPONENTS = prove (`!top:A topology. locally_connected_space top <=> !u c. open_in top u /\ c IN connected_components_of(subtopology top u) ==> open_in top c`, REWRITE_TAC[LOCALLY_CONNECTED_SPACE_EQ_OPEN_CONNECTED_COMPONENT_OF] THEN REWRITE_TAC[connected_components_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN MESON_TAC[SUBSET; OPEN_IN_SUBSET]);; let OPEN_IN_CONNECTED_COMPONENT_OF_LOCALLY_CONNECTED_SPACE = prove (`!top x:A. locally_connected_space top ==> open_in top (connected_component_of top x)`, METIS_TAC[LOCALLY_CONNECTED_SPACE_EQ_OPEN_CONNECTED_COMPONENT_OF; SUBTOPOLOGY_TOPSPACE; OPEN_IN_TOPSPACE; OPEN_IN_EMPTY; CONNECTED_COMPONENT_OF_EQ_EMPTY]);; let OPEN_IN_CONNECTED_COMPONENTS_OF_LOCALLY_CONNECTED_SPACE = prove (`!top c:A->bool. locally_connected_space top /\ c IN connected_components_of top ==> open_in top c`, REWRITE_TAC[LOCALLY_CONNECTED_SPACE_OPEN_CONNECTED_COMPONENTS] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; SUBTOPOLOGY_TOPSPACE]);; let WEAKLY_LOCALLY_CONNECTED_AT = prove (`!top x:A. weakly_locally_connected_at x top <=> !v. open_in top v /\ x IN v ==> ?u. open_in top u /\ x IN u /\ u SUBSET v /\ !y. y IN u ==> ?c. connected_in top c /\ c SUBSET v /\ x IN c /\ y IN c`, REPEAT GEN_TAC THEN REWRITE_TAC[neighbourhood_base_at; weakly_locally_connected_at] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `v:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THENL [ASM_MESON_TAC[SUBSET]; STRIP_TAC] THEN EXISTS_TAC `connected_component_of (subtopology top v) (x:A)` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MESON_TAC[CONNECTED_IN_CONNECTED_COMPONENT_OF; CONNECTED_IN_SUBTOPOLOGY]; REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `c:A->bool` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY]; MESON_TAC[CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER]]);; let LOCALLY_CONNECTED_SPACE_IM_KLEINEN = prove (`!top:A topology. locally_connected_space top <=> !v x. open_in top v /\ x IN v ==> ?u. open_in top u /\ x IN u /\ u SUBSET v /\ !y. y IN u ==> ?c. connected_in top c /\ c SUBSET v /\ x IN c /\ y IN c`, REWRITE_TAC[locally_connected_space; neighbourhood_base_of] THEN GEN_TAC THEN REWRITE_TAC[GSYM weakly_locally_connected_at] THEN REWRITE_TAC[WEAKLY_LOCALLY_CONNECTED_AT] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN EQ_TAC THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[REWRITE_RULE[SUBSET] OPEN_IN_SUBSET]);; let LOCALLY_CONNECTED_SPACE_OPEN_SUBSET = prove (`!top s:A->bool. locally_connected_space top /\ open_in top s ==> locally_connected_space (subtopology top s)`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_connected_space] THEN DISCH_THEN(MP_TAC o MATCH_MP NEIGHBOURHOOD_BASE_OF_OPEN_SUBSET) THEN GEN_REWRITE_TAC LAND_CONV [NEIGHBOURHOOD_BASE_OF_WITH_SUBSET] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_OF_MONO) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; CONNECTED_IN_SUBTOPOLOGY; SUBSET_INTER]);; let LOCALLY_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' f:A->B. quotient_map(top,top') f /\ locally_connected_space top ==> locally_connected_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[quotient_map] THEN REWRITE_TAC[LOCALLY_CONNECTED_SPACE_OPEN_CONNECTED_COMPONENTS] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`v:B->bool`; `c:B->bool`] THEN STRIP_TAC THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o snd)) THEN ANTS_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN GEN_REWRITE_TAC I [OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN EXISTS_TAC `connected_component_of (subtopology top {z | z IN topspace top /\ (f:A->B) z IN v}) x` THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `{z | z IN topspace top /\ (f:A->B) z IN v}` THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; connected_components_of] THEN REWRITE_TAC[SIMPLE_IMAGE; ETA_AX] THEN MATCH_MP_TAC FUN_IN_IMAGE; GEN_REWRITE_TAC I [IN] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL]; MATCH_MP_TAC(SET_RULE `!v. s SUBSET u INTER {x | x IN u /\ f x IN v} /\ IMAGE f s SUBSET c ==> s SUBSET {x | x IN u /\ f x IN c}`) THEN EXISTS_TAC `v:B->bool` THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_SUBSET_TOPSPACE; GSYM TOPSPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC CONNECTED_COMPONENTS_OF_MAXIMAL THEN EXISTS_TAC `subtopology top' (v:B->bool)` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `subtopology top {z | z IN topspace top /\ (f:A->B) z IN v}` THEN REWRITE_TAC[CONNECTED_IN_CONNECTED_COMPONENT_OF] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN MATCH_MP_TAC QUOTIENT_IMP_CONTINUOUS_MAP THEN ASM_REWRITE_TAC[quotient_map]; REWRITE_TAC[SET_RULE `~DISJOINT t (IMAGE f s) <=> ?x. x IN s /\ f x IN t`] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [IN] THEN REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL]]] THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN ASM SET_TAC[]);; let LOCALLY_CONNECTED_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map (top,top') r /\ locally_connected_space top ==> locally_connected_space top'`, MESON_TAC[LOCALLY_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let HOMEOMORPHIC_LOCALLY_CONNECTED_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (locally_connected_space top <=> locally_connected_space top')`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space] THEN REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP; homeomorphic_map] THEN MESON_TAC[LOCALLY_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE]);; let LOCALLY_CONNECTED_SPACE_EUCLIDEANREAL = prove (`locally_connected_space euclideanreal`, SIMP_TAC[LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED_SPACE; LOCALLY_PATH_CONNECTED_SPACE_EUCLIDEANREAL]);; let LOCALLY_CONNECTED_IS_REALINTERVAL = prove (`!s. is_realinterval s ==> locally_connected_space(subtopology euclideanreal s)`, MESON_TAC[LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED_SPACE; LOCALLY_PATH_CONNECTED_IS_REALINTERVAL]);; let LOCALLY_CONNECTED_REAL_INTERVAL = prove (`(!a b. locally_connected_space (subtopology euclideanreal(real_interval[a,b]))) /\ (!a b. locally_connected_space (subtopology euclideanreal(real_interval(a,b))))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC LOCALLY_CONNECTED_IS_REALINTERVAL THEN REWRITE_TAC[IS_REALINTERVAL_INTERVAL]);; let LOCALLY_CONNECTED_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. locally_connected_space (discrete_topology u)`, GEN_TAC THEN REWRITE_TAC[LOCALLY_CONNECTED_SPACE] THEN SIMP_TAC[OPEN_IN_DISCRETE_TOPOLOGY; CONNECTED_IN_DISCRETE_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `x:A`] THEN STRIP_TAC THEN EXISTS_TAC `{x:A}` THEN ASM SET_TAC[]);; let LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED_AT = prove (`!top x:a. locally_path_connected_at x top ==> locally_connected_at x top`, REPEAT GEN_TAC THEN REWRITE_TAC[locally_path_connected_at; locally_connected_at] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_AT_MONO) THEN SIMP_TAC[PATH_CONNECTED_IN_IMP_CONNECTED_IN]);; let WEAKLY_LOCALLY_PATH_CONNECTED_IMP_WEAKLY_LOCALLY_CONNECTED_AT = prove (`!top x:a. weakly_locally_path_connected_at x top ==> weakly_locally_connected_at x top`, REPEAT GEN_TAC THEN REWRITE_TAC[weakly_locally_path_connected_at; weakly_locally_connected_at] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] NEIGHBOURHOOD_BASE_AT_MONO) THEN SIMP_TAC[PATH_CONNECTED_IN_IMP_CONNECTED_IN]);; let INTERIOR_OF_LOCALLY_CONNECTED_SUBSPACE_COMPONENT = prove (`!top s c:A->bool. locally_connected_space top /\ c IN connected_components_of (subtopology top s) ==> top interior_of c = c INTER top interior_of s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[SUBSET_INTER; INTERIOR_OF_MONO; INTERIOR_OF_SUBSET] THEN MP_TAC(ISPEC `subtopology top (top interior_of s:A->bool)` UNIONS_CONNECTED_COMPONENTS_OF) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; INTERIOR_OF_SUBSET_TOPSPACE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[UNIONS_SUBSET; INTER_UNIONS; FORALL_IN_GSPEC] THEN X_GEN_TAC `d:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `c INTER d:A->bool = {}` THEN ASM_REWRITE_TAC[EMPTY_SUBSET] THEN MATCH_MP_TAC(SET_RULE `d SUBSET e ==> c INTER d SUBSET e`) THEN MATCH_MP_TAC INTERIOR_OF_MAXIMAL THEN CONJ_TAC THENL [MATCH_MP_TAC CONNECTED_COMPONENTS_OF_MAXIMAL THEN EXISTS_TAC `subtopology top (s:A->bool)` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_CONNECTED_COMPONENTS_OF)) THEN ASM_SIMP_TAC[CONNECTED_IN_SUBTOPOLOGY] THEN ASM_MESON_TAC[SUBSET_TRANS; INTERIOR_OF_SUBSET]; FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [LOCALLY_CONNECTED_SPACE_OPEN_CONNECTED_COMPONENTS]) THEN EXISTS_TAC `top interior_of (s:A->bool)` THEN ASM_REWRITE_TAC[OPEN_IN_INTERIOR_OF]]);; let FRONTIER_OF_LOCALLY_CONNECTED_SUBSPACE_COMPONENT = prove (`!top s c:A->bool. locally_connected_space top /\ closed_in top s /\ c IN connected_components_of (subtopology top s) ==> top frontier_of c = c INTER top frontier_of s`, REPEAT STRIP_TAC THEN REWRITE_TAC[frontier_of] THEN REWRITE_TAC[SET_RULE `s INTER (t DIFF u) = s INTER t DIFF s INTER u`] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_CONNECTED_COMPONENTS_OF) THEN ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY] THEN STRIP_TAC THEN ASM_SIMP_TAC[CLOSURE_OF_CLOSED_IN] THEN ASM_SIMP_TAC[GSYM INTERIOR_OF_LOCALLY_CONNECTED_SUBSPACE_COMPONENT] THEN ASM SET_TAC[]);; let LOCALLY_CONNECTED_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. locally_connected_space (prod_topology top1 top2) <=> topspace (prod_topology top1 top2) = {} \/ locally_connected_space top1 /\ locally_connected_space top2`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THENL [ASM_REWRITE_TAC[locally_connected_space; NEIGHBOURHOOD_BASE_OF] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; DE_MORGAN_THM]) THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE)) THENL [EXISTS_TAC `FST:A#B->A`; EXISTS_TAC `SND:A#B->B`] THEN ASM_REWRITE_TAC[QUOTIENT_MAP_FST; QUOTIENT_MAP_SND]; FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:B` THEN DISCH_TAC THEN X_GEN_TAC `w:A` THEN DISCH_TAC THEN REWRITE_TAC[locally_connected_space; FORALL_PAIR_THM; IN_CROSS; NEIGHBOURHOOD_BASE_OF; TOPSPACE_PROD_TOPOLOGY] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`uv:A#B->bool`; `x:A`; `y:B`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [OPEN_IN_PROD_TOPOLOGY_ALT] THEN DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:B`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`w1:A->bool`; `w2:B->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w2:B->bool`; `y:B`]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w1:A->bool`; `x:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u1:A->bool`; `k1:A->bool`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`u2:B->bool`; `k2:B->bool`] THEN STRIP_TAC THEN EXISTS_TAC `(u1:A->bool) CROSS (u2:B->bool)` THEN EXISTS_TAC `(k1:A->bool) CROSS (k2:B->bool)` THEN ASM_SIMP_TAC[OPEN_IN_CROSS; CONNECTED_IN_CROSS; IN_CROSS; SUBSET_CROSS] THEN TRANS_TAC SUBSET_TRANS `(w1 CROSS w2):A#B->bool` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[SUBSET_CROSS]]);; let LOCALLY_CONNECTED_SPACE_PRODUCT_TOPOLOGY = prove (`!(tops:K->A topology) k. locally_connected_space(product_topology k tops) <=> topspace(product_topology k tops) = {} \/ FINITE {i | i IN k /\ ~connected_space(tops i)} /\ !i. i IN k ==> locally_connected_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THENL [ASM_REWRITE_TAC[locally_connected_space; NEIGHBOURHOOD_BASE_OF] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET; NOT_IN_EMPTY]; ALL_TAC] THEN ASM_REWRITE_TAC[locally_connected_space; NEIGHBOURHOOD_BASE_OF] THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:K->A`) THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`topspace(product_topology k (tops:K->A topology))`; `z:K->A`]) THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:(K->A)->bool`; `c:(K->A)->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:K->A` o REWRITE_RULE[OPEN_IN_PRODUCT_TOPOLOGY_ALT]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:K->A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`\x:K->A. x i`; `(tops:K->A topology) i`] o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; GSYM CONNECTED_IN_TOPSPACE] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `v = u ==> v SUBSET s /\ s SUBSET u ==> s = u`)) THEN CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) u` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) (cartesian_product k v)` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM SET_TAC[]; TRANS_TAC SUBSET_TRANS `IMAGE (\x:K->A. x i) (topspace(product_topology k tops))` THEN ASM_SIMP_TAC[IMAGE_SUBSET; CONNECTED_IN_SUBSET_TOPSPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY]) THEN ASM_REWRITE_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_THM; SUBSET_REFL]]; X_GEN_TAC `i:K` THEN DISCH_TAC THEN REWRITE_TAC[GSYM locally_connected_space; ETA_AX; GSYM NEIGHBOURHOOD_BASE_OF] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM locally_connected_space; ETA_AX; GSYM NEIGHBOURHOOD_BASE_OF]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_CONNECTED_SPACE_QUOTIENT_MAP_IMAGE))) THEN EXISTS_TAC `\x:K->A. x i` THEN ASM_SIMP_TAC[OPEN_MAP_PRODUCT_PROJECTION; TOPSPACE_PRODUCT_TOPOLOGY; QUOTIENT_MAP_PRODUCT_PROJECTION; IMAGE_PROJECTION_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY; o_THM]]; STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`ww:(K->A)->bool`; `z:K->A`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [OPEN_IN_PRODUCT_TOPOLOGY_ALT] THEN DISCH_THEN(MP_TAC o SPEC `z:K->A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `w:K->A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!i. i IN k ==> ?u c. open_in (tops i) u /\ connected_in (tops i) c /\ ((z:K->A) i) IN u /\ u SUBSET c /\ c SUBSET w i /\ (w i = topspace(tops i) /\ connected_space(tops i) ==> u = topspace(tops i) /\ c = topspace(tops i))` MP_TAC THENL [X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`i:K`; `(w:K->A->bool) i`] o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_FORALL_THM]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `(z:K->A) i`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [cartesian_product]) THEN ASM_SIMP_TAC[IN_ELIM_THM]; ASM_CASES_TAC `connected_space((tops:K->A topology) i)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(w:K->A->bool) i = topspace(tops i)` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN REPEAT(EXISTS_TAC `topspace((tops:K->A topology) i)`) THEN ASM_REWRITE_TAC[CONNECTED_IN_TOPSPACE; SUBSET_REFL] THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM]) THEN ASM SET_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`u:K->A->bool`; `c:K->A->bool`] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`cartesian_product k (u:K->A->bool)`; `cartesian_product k (c:K->A->bool)`] THEN ASM_SIMP_TAC[CONNECTED_IN_CARTESIAN_PRODUCT] THEN ASM_SIMP_TAC[SUBSET_CARTESIAN_PRODUCT] THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN REPEAT CONJ_TAC THENL [DISJ2_TAC THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i | i IN k /\ ~connected_space (tops i)} UNION {i | i IN k /\ ~((w:K->A->bool) i = topspace (tops i))}` THEN ASM_REWRITE_TAC[FINITE_UNION] THEN ASM SET_TAC[]; UNDISCH_TAC `(z:K->A) IN cartesian_product k w` THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN ASM SET_TAC[]; TRANS_TAC SUBSET_TRANS `cartesian_product k (w:K->A->bool)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN ASM SET_TAC[]]]);; let LOCALLY_CONNECTED_SPACE_SUM_TOPOLOGY = prove (`!k (top:K->A topology). locally_connected_space(sum_topology k top) <=> !i. i IN k ==> locally_connected_space(top i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_SUM_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_LOCALLY_CONNECTED_SPACE] THEN SIMP_TAC[LOCALLY_CONNECTED_SPACE_OPEN_SUBSET]; REWRITE_TAC[locally_connected_space; NEIGHBOURHOOD_BASE_OF] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_OPEN_IN_SUM_TOPOLOGY] THEN DISCH_TAC THEN X_GEN_TAC `w:K->A->bool` THEN DISCH_TAC THEN REWRITE_TAC[FORALL_PAIR_THM; disjoint_union; IN_ELIM_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`i:K`; `x:A`] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:K`)) THEN ASM_REWRITE_TAC[] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(w:K->A->bool) i`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\x. (i:K),(x:A)) u` THEN EXISTS_TAC `IMAGE (\x. (i:K),(x:A)) v` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_PAIR_THM] THEN ASM_REWRITE_TAC[GSYM SUBSET] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[open_map; RIGHT_IMP_FORALL_THM; IMP_IMP] OPEN_MAP_COMPONENT_INJECTION) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC CONNECTED_IN_CONTINUOUS_MAP_IMAGE THEN EXISTS_TAC `(top:K->A topology) i` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_COMPONENT_INJECTION]; ASM SET_TAC[]]]);; (* ------------------------------------------------------------------------- *) (* Quasi-components. *) (* ------------------------------------------------------------------------- *) let quasi_component_of = new_definition `quasi_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ !t. closed_in top t /\ open_in top t ==> (x IN t <=> y IN t)`;; let quasi_components_of = new_definition `quasi_components_of top = {quasi_component_of top x |x| x IN topspace top}`;; let QUASI_COMPONENT_IN_TOPSPACE = prove (`!top x y:A. quasi_component_of top x y ==> x IN topspace top /\ y IN topspace top`, REWRITE_TAC[quasi_component_of] THEN MESON_TAC[]);; let QUASI_COMPONENT_OF_REFL = prove (`!top x:A. quasi_component_of top x x <=> x IN topspace top`, REWRITE_TAC[quasi_component_of] THEN MESON_TAC[]);; let QUASI_COMPONENT_OF_SYM = prove (`!top x y:A. quasi_component_of top x y <=> quasi_component_of top y x`, REWRITE_TAC[quasi_component_of] THEN MESON_TAC[]);; let QUASI_COMPONENT_OF_TRANS = prove (`!top x y z:A. quasi_component_of top x y /\ quasi_component_of top y z ==> quasi_component_of top x z`, REWRITE_TAC[quasi_component_of] THEN MESON_TAC[]);; let QUASI_COMPONENT_OF_SUBSET_TOPSPACE = prove (`!top x. (quasi_component_of top x) SUBSET topspace top`, REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[QUASI_COMPONENT_IN_TOPSPACE; IN]);; let QUASI_COMPONENT_OF_EQ_EMPTY = prove (`!top x. quasi_component_of top x = {} <=> ~(x IN topspace top)`, REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[IN; QUASI_COMPONENT_OF_REFL; QUASI_COMPONENT_IN_TOPSPACE]);; let QUASI_COMPONENT_OF = prove (`!top x y:A. quasi_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ !t. x IN t /\ closed_in top t /\ open_in top t ==> y IN t`, REPEAT GEN_TAC THEN REWRITE_TAC[quasi_component_of] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `topspace top DIFF s:A->bool`) THEN ASM_REWRITE_TAC[IN_DIFF] THEN ASM_MESON_TAC[OPEN_IN_CLOSED_IN_EQ; closed_in]);; let QUASI_COMPONENT_OF_ALT = prove (`!top x y:A. quasi_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ ~(?u v. open_in top u /\ open_in top v /\ u UNION v = topspace top /\ DISJOINT u v /\ x IN u /\ y IN v)`, REPEAT GEN_TAC THEN REWRITE_TAC[QUASI_COMPONENT_OF] THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(y:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[SET_RULE `u UNION v = s /\ DISJOINT u v /\ x IN u /\ y IN v <=> u SUBSET s /\ v = s DIFF u /\ x IN u /\ y IN s /\ ~(y IN u)`] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s /\ t <=> s /\ p /\ q /\ r /\ t`] THEN REWRITE_TAC[UNWIND_THM2; closed_in] THEN SET_TAC[]);; let QUASI_COMPONENT_OF_SET = prove (`!top x:A. quasi_component_of top x = if x IN topspace top then INTERS {t | closed_in top t /\ open_in top t /\ x IN t} else {}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `y:A` THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[QUASI_COMPONENT_OF] THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_REWRITE_TAC[IN_INTERS; NOT_IN_EMPTY; IN_ELIM_THM] THEN ASM_MESON_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE]);; let QUASI_COMPONENT_OF_SEPARATED = prove (`!top x y:A. quasi_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ ~(?u v. separated_in top u v /\ u UNION v = topspace top /\ x IN u /\ y IN v)`, REPEAT GEN_TAC THEN REWRITE_TAC[QUASI_COMPONENT_OF_ALT] THEN MESON_TAC[SEPARATED_IN_OPEN_SETS; SEPARATED_IN_FULL]);; let QUASI_COMPONENT_OF_SUBTOPOLOGY = prove (`!top s x y:A. quasi_component_of (subtopology top s) x y ==> quasi_component_of top x y`, REPEAT GEN_TAC THEN REWRITE_TAC[quasi_component_of] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s INTER t:A->bool`) THEN ASM_REWRITE_TAC[IN_INTER] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED]);; let QUASI_COMPONENT_OF_MONO = prove (`!top s t x y:A. quasi_component_of (subtopology top s) x y /\ s SUBSET t ==> quasi_component_of (subtopology top t) x y`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ_ALT] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP (SET_RULE `s SUBSET t ==> s = t INTER s`)) THEN REWRITE_TAC[GSYM SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[QUASI_COMPONENT_OF_SUBTOPOLOGY]);; let QUASI_COMPONENT_OF_EQUIV = prove (`!top x y:A. quasi_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ quasi_component_of top x = quasi_component_of top y`, REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[QUASI_COMPONENT_OF_REFL; QUASI_COMPONENT_OF_TRANS; QUASI_COMPONENT_OF_SYM]);; let QUASI_COMPONENT_OF_DISJOINT = prove (`!top x y:A. DISJOINT (quasi_component_of top x) (quasi_component_of top y) <=> ~(quasi_component_of top x y)`, REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN REWRITE_TAC[IN] THEN MESON_TAC[QUASI_COMPONENT_OF_SYM; QUASI_COMPONENT_OF_TRANS]);; let QUASI_COMPONENT_OF_EQ = prove (`!top x y:A. quasi_component_of top x = quasi_component_of top y <=> ~(x IN topspace top) /\ ~(y IN topspace top) \/ x IN topspace top /\ y IN topspace top /\ quasi_component_of top x y`, MESON_TAC[QUASI_COMPONENT_OF_REFL; QUASI_COMPONENT_OF_EQUIV; QUASI_COMPONENT_OF_EQ_EMPTY]);; let UNIONS_QUASI_COMPONENTS_OF = prove (`!top:A topology. UNIONS (quasi_components_of top) = topspace top`, GEN_TAC THEN REWRITE_TAC[quasi_components_of] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; QUASI_COMPONENT_OF_SUBSET_TOPSPACE] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[QUASI_COMPONENT_OF_REFL]);; let PAIRWISE_DISJOINT_QUASI_COMPONENTS_OF = prove (`!top:A topology. pairwise DISJOINT (quasi_components_of top)`, SIMP_TAC[pairwise; IMP_CONJ; quasi_components_of; RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[QUASI_COMPONENT_OF_EQ; QUASI_COMPONENT_OF_DISJOINT]);; let COMPLEMENT_QUASI_COMPONENTS_OF_UNIONS = prove (`!top c:A->bool. c IN quasi_components_of top ==> topspace top DIFF c = UNIONS (quasi_components_of top DELETE c)`, REWRITE_TAC[SET_RULE `s DELETE a = s DIFF {a}`] THEN ASM_SIMP_TAC[GSYM DIFF_UNIONS_PAIRWISE_DISJOINT; PAIRWISE_DISJOINT_QUASI_COMPONENTS_OF; SING_SUBSET] THEN REWRITE_TAC[UNIONS_QUASI_COMPONENTS_OF; UNIONS_1]);; let NONEMPTY_QUASI_COMPONENTS_OF = prove (`!top c:A->bool. c IN quasi_components_of top ==> ~(c = {})`, SIMP_TAC[quasi_components_of; FORALL_IN_GSPEC; QUASI_COMPONENT_OF_EQ_EMPTY]);; let QUASI_COMPONENTS_OF_SUBSET = prove (`!top c:A->bool. c IN quasi_components_of top ==> c SUBSET topspace top`, SIMP_TAC[quasi_components_of; FORALL_IN_GSPEC; QUASI_COMPONENT_OF_SUBSET_TOPSPACE]);; let QUASI_COMPONENT_IN_QUASI_COMPONENTS_OF = prove (`!top a:A. quasi_component_of top a IN quasi_components_of top <=> a IN topspace top`, REPEAT GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN SIMP_TAC[GSYM QUASI_COMPONENT_OF_EQ_EMPTY] THEN MESON_TAC[NONEMPTY_QUASI_COMPONENTS_OF]; REWRITE_TAC[quasi_components_of] THEN SET_TAC[]]);; let QUASI_COMPONENTS_OF_EQ_EMPTY = prove (`!top:A topology. quasi_components_of top = {} <=> topspace top = {}`, REWRITE_TAC[quasi_components_of] THEN SET_TAC[]);; let QUASI_COMPONENTS_OF_EMPTY_SPACE = prove (`!top:A topology. topspace top = {} ==> quasi_components_of top = {}`, REWRITE_TAC[QUASI_COMPONENTS_OF_EQ_EMPTY]);; let CLOSED_IN_QUASI_COMPONENT_OF = prove (`!top x:A. closed_in top (quasi_component_of top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[QUASI_COMPONENT_OF_SET] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CLOSED_IN_EMPTY] THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN SIMP_TAC[IN_ELIM_THM; GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `topspace top:A->bool` THEN ASM_REWRITE_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE]);; let CLOSED_IN_QUASI_COMPONENTS_OF = prove (`!top c:A->bool. c IN quasi_components_of top ==> closed_in top c`, REWRITE_TAC[quasi_components_of; FORALL_IN_GSPEC] THEN REWRITE_TAC[CLOSED_IN_QUASI_COMPONENT_OF]);; let OPEN_IN_FINITE_QUASI_COMPONENTS = prove (`!top c:A->bool. FINITE(quasi_components_of top) /\ c IN quasi_components_of top ==> open_in top c`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[OPEN_IN_CLOSED_IN_EQ; QUASI_COMPONENTS_OF_SUBSET] THEN ASM_SIMP_TAC[COMPLEMENT_QUASI_COMPONENTS_OF_UNIONS] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[FINITE_DELETE; IN_DELETE; CLOSED_IN_QUASI_COMPONENTS_OF]);; let QUASI_COMPONENT_OF_EQ_OVERLAP = prove (`!top x y:A. quasi_component_of top x = quasi_component_of top y <=> ~(x IN topspace top) /\ ~(y IN topspace top) \/ ~(quasi_component_of top x INTER quasi_component_of top y = {})`, REWRITE_TAC[GSYM DISJOINT; QUASI_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[QUASI_COMPONENT_OF_EQ] THEN MESON_TAC[QUASI_COMPONENT_IN_TOPSPACE]);; let QUASI_COMPONENT_OF_NONOVERLAP = prove (`!top x y:A. quasi_component_of top x INTER quasi_component_of top y = {} <=> ~(x IN topspace top) \/ ~(y IN topspace top) \/ ~(quasi_component_of top x = quasi_component_of top y)`, REWRITE_TAC[GSYM DISJOINT; QUASI_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[QUASI_COMPONENT_OF_EQ] THEN MESON_TAC[QUASI_COMPONENT_IN_TOPSPACE]);; let QUASI_COMPONENT_OF_OVERLAP = prove (`!top x y:A. ~(quasi_component_of top x INTER quasi_component_of top y = {}) <=> x IN topspace top /\ y IN topspace top /\ quasi_component_of top x = quasi_component_of top y`, REWRITE_TAC[GSYM DISJOINT; QUASI_COMPONENT_OF_DISJOINT] THEN REWRITE_TAC[QUASI_COMPONENT_OF_EQ] THEN MESON_TAC[QUASI_COMPONENT_IN_TOPSPACE]);; let QUASI_COMPONENTS_OF_DISJOINT = prove (`!top c c'. c IN quasi_components_of top /\ c' IN quasi_components_of top ==> (DISJOINT c c' <=> ~(c = c'))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; quasi_components_of] THEN SIMP_TAC[FORALL_IN_GSPEC; DISJOINT; QUASI_COMPONENT_OF_NONOVERLAP]);; let QUASI_COMPONENTS_OF_OVERLAP = prove (`!top c c'. c IN quasi_components_of top /\ c' IN quasi_components_of top ==> (~(c INTER c' = {}) <=> c = c')`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; quasi_components_of] THEN SIMP_TAC[FORALL_IN_GSPEC; DISJOINT; QUASI_COMPONENT_OF_NONOVERLAP]);; let PAIRWISE_SEPARATED_QUASI_COMPONENTS_OF = prove (`!top:A topology. pairwise (separated_in top) (quasi_components_of top)`, REWRITE_TAC[pairwise] THEN SIMP_TAC[CLOSED_IN_QUASI_COMPONENTS_OF; SEPARATED_IN_CLOSED_SETS] THEN REWRITE_TAC[GSYM pairwise; PAIRWISE_DISJOINT_QUASI_COMPONENTS_OF]);; let CARD_LE_QUASI_COMPONENTS_OF_TOPSPACE = prove (`!top:A topology. quasi_components_of top <=_c topspace top`, GEN_TAC THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `(IN):A->(A->bool)->bool` THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP QUASI_COMPONENTS_OF_SUBSET) THEN FIRST_ASSUM(MP_TAC o MATCH_MP NONEMPTY_QUASI_COMPONENTS_OF) THEN SET_TAC[]; MESON_TAC[REWRITE_RULE[GSYM MEMBER_NOT_EMPTY; IN_INTER] QUASI_COMPONENTS_OF_OVERLAP]]);; let FINITE_QUASI_COMPONENTS_OF_FINITE = prove (`!top:A topology. FINITE(topspace top) ==> FINITE(quasi_components_of top)`, GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN REWRITE_TAC[CARD_LE_QUASI_COMPONENTS_OF_TOPSPACE]);; let CONNECTED_IMP_QUASI_COMPONENT_OF = prove (`!top x y:A. connected_component_of top x y ==> quasi_component_of top x y`, REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP CONNECTED_COMPONENT_IN_TOPSPACE) THEN ASM_REWRITE_TAC[QUASI_COMPONENT_OF] THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connected_component_of]) THEN DISCH_THEN(X_CHOOSE_THEN `c:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `t:A->bool`] CONNECTED_IN_CLOPEN_CASES) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF = prove (`!top x:A. connected_component_of top x SUBSET quasi_component_of top x`, REWRITE_TAC[SUBSET; IN; CONNECTED_IMP_QUASI_COMPONENT_OF]);; let QUASI_COMPONENT_AS_CONNECTED_COMPONENT_UNIONS = prove (`!top x:A. quasi_component_of top x = UNIONS {connected_component_of top y |y| quasi_component_of top x y}`, REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [SUBSET] THEN X_GEN_TAC `y:A` THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN DISCH_TAC THEN EXISTS_TAC `y:A` THEN ASM_MESON_TAC[CONNECTED_COMPONENT_OF_REFL; QUASI_COMPONENT_IN_TOPSPACE]; X_GEN_TAC `y:A` THEN SIMP_TAC[QUASI_COMPONENT_OF_EQUIV] THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF]]);; let QUASI_COMPONENTS_AS_CONNECTED_COMPONENTS_UNIONS = prove (`!top c:A->bool. c IN quasi_components_of top ==> ?t. t SUBSET connected_components_of top /\ UNIONS t = c`, REPEAT GEN_TAC THEN REWRITE_TAC[quasi_components_of; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN EXISTS_TAC `{connected_component_of top (y:A) |y| quasi_component_of top x y}` THEN REWRITE_TAC[GSYM QUASI_COMPONENT_AS_CONNECTED_COMPONENT_UNIONS] THEN REWRITE_TAC[SUBSET; connected_components_of; FORALL_IN_GSPEC] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[QUASI_COMPONENT_IN_TOPSPACE]);; let PATH_IMP_QUASI_COMPONENT_OF = prove (`!top x y:A. path_component_of top x y ==> quasi_component_of top x y`, MESON_TAC[CONNECTED_IMP_QUASI_COMPONENT_OF; PATH_IMP_CONNECTED_COMPONENT_OF]);; let PATH_COMPONENT_SUBSET_QUASI_COMPONENT_OF = prove (`!top x:A. path_component_of top x SUBSET quasi_component_of top x`, REWRITE_TAC[SUBSET; IN; PATH_IMP_QUASI_COMPONENT_OF]);; let CONNECTED_SPACE_IFF_QUASI_COMPONENT = prove (`!top:A topology. connected_space top <=> !x y. x IN topspace top /\ y IN topspace top ==> quasi_component_of top x y`, GEN_TAC THEN REWRITE_TAC[CONNECTED_SPACE_CLOPEN_IN] THEN REWRITE_TAC[QUASI_COMPONENT_OF] THEN REWRITE_TAC[closed_in] THEN SET_TAC[]);; let CONNECTED_SPACE_IMP_QUASI_COMPONENT_OF = prove (`!top a b:A. connected_space top /\ a IN topspace top /\ b IN topspace top ==> quasi_component_of top a b`, MESON_TAC[CONNECTED_SPACE_IFF_QUASI_COMPONENT]);; let CONNECTED_SPACE_QUASI_COMPONENT_SET = prove (`!top. connected_space top <=> !x:A. x IN topspace top ==> quasi_component_of top x = topspace top`, REWRITE_TAC[CONNECTED_SPACE_IFF_QUASI_COMPONENT; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[QUASI_COMPONENT_OF_SUBSET_TOPSPACE] THEN SET_TAC[]);; let CONNECTED_SPACE_IFF_QUASI_COMPONENTS_EQ = prove (`!top:A topology. connected_space top <=> !c c'. c IN quasi_components_of top /\ c' IN quasi_components_of top ==> c = c'`, REWRITE_TAC[quasi_components_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; CONNECTED_SPACE_IFF_QUASI_COMPONENT] THEN SIMP_TAC[QUASI_COMPONENT_OF_EQ] THEN MESON_TAC[]);; let QUASI_COMPONENTS_OF_SUBSET_SING = prove (`!top s:A->bool. quasi_components_of top SUBSET {s} <=> connected_space top /\ (topspace top = {} \/ topspace top = s)`, REPEAT GEN_TAC THEN REWRITE_TAC[CONNECTED_SPACE_IFF_QUASI_COMPONENTS_EQ; SET_RULE `(!x y. x IN s /\ y IN s ==> x = y) <=> s = {} \/ ?a. s = {a}`] THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[QUASI_COMPONENTS_OF_EMPTY_SPACE; EMPTY_SUBSET] THEN ASM_REWRITE_TAC[QUASI_COMPONENTS_OF_EQ_EMPTY; SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN MESON_TAC[UNIONS_QUASI_COMPONENTS_OF; UNIONS_1]);; let CONNECTED_SPACE_IFF_QUASI_COMPONENTS_SUBSET_SING = prove (`!top:A topology. connected_space top <=> ?a. quasi_components_of top SUBSET {a}`, MESON_TAC[QUASI_COMPONENTS_OF_SUBSET_SING]);; let QUASI_COMPONENTS_OF_EQ_SING = prove (`!top s:A->bool. quasi_components_of top = {s} <=> connected_space top /\ ~(topspace top = {}) /\ s = topspace top`, REWRITE_TAC[QUASI_COMPONENTS_OF_SUBSET_SING; QUASI_COMPONENTS_OF_EQ_EMPTY; SET_RULE `s = {a} <=> s SUBSET {a} /\ ~(s = {})`] THEN MESON_TAC[]);; let QUASI_COMPONENTS_OF_CONNECTED_SPACE = prove (`!top:A topology. connected_space top ==> quasi_components_of top = if topspace top = {} then {} else {topspace top}`, ASM_MESON_TAC[QUASI_COMPONENTS_OF_EMPTY_SPACE; QUASI_COMPONENTS_OF_EQ_SING]);; let SEPARATED_BETWEEN_SINGS = prove (`!top x y:A. separated_between top {x} {y} <=> x IN topspace top /\ y IN topspace top /\ ~(quasi_component_of top x y)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THENL [ALL_TAC; ASM_MESON_TAC[SEPARATED_BETWEEN_IMP_SUBSET; SING_SUBSET]] THEN ASM_CASES_TAC `(y:A) IN topspace top` THENL [ALL_TAC; ASM_MESON_TAC[SEPARATED_BETWEEN_IMP_SUBSET; SING_SUBSET]] THEN ASM_REWRITE_TAC[separated_between; QUASI_COMPONENT_OF_ALT; SING_SUBSET]);; let QUASI_COMPONENT_NONSEPARATED = prove (`!top x y:A. quasi_component_of top x y <=> x IN topspace top /\ y IN topspace top /\ ~(separated_between top {x} {y})`, REPEAT GEN_TAC THEN REWRITE_TAC[SEPARATED_BETWEEN_SINGS] THEN MESON_TAC[QUASI_COMPONENT_IN_TOPSPACE]);; let SEPARATED_BETWEEN_QUASI_COMPONENT_POINTWISE_LEFT = prove (`!top c s:A->bool. c IN quasi_components_of top ==> (separated_between top c s <=> ?x. x IN c /\ separated_between top {x} s)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[NONEMPTY_QUASI_COMPONENTS_OF; SING_SUBSET; MEMBER_NOT_EMPTY; SEPARATED_BETWEEN_MONO; SUBSET_REFL]; DISCH_THEN(X_CHOOSE_THEN `y:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))] THEN REWRITE_TAC[SEPARATED_BETWEEN; SING_SUBSET] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [quasi_components_of]) THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `(y:A) IN c` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[quasi_component_of] THEN DISCH_TAC THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `z:A` THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[quasi_component_of] THEN ASM_MESON_TAC[]);; let SEPARATED_BETWEEN_QUASI_COMPONENT_POINTWISE_RIGHT = prove (`!top s c:A->bool. c IN quasi_components_of top ==> (separated_between top s c <=> ?x. x IN c /\ separated_between top s {x})`, ONCE_REWRITE_TAC[SEPARATED_BETWEEN_SYM] THEN REWRITE_TAC[SEPARATED_BETWEEN_QUASI_COMPONENT_POINTWISE_LEFT]);; let SEPARATED_BETWEEN_QUASI_COMPONENT_POINT = prove (`!top c x:A. c IN quasi_components_of top ==> (separated_between top c {x} <=> x IN topspace top DIFF c)`, REWRITE_TAC[IN_DIFF] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[SEPARATED_BETWEEN_IMP_DISJOINT; DISJOINT_SING; SEPARATED_BETWEEN_IMP_SUBSET; SING_SUBSET]; ASM_SIMP_TAC[SEPARATED_BETWEEN_QUASI_COMPONENT_POINTWISE_LEFT]] THEN REWRITE_TAC[SEPARATED_BETWEEN_SINGS; RIGHT_IMP_EXISTS_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [quasi_components_of]) THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[quasi_component_of]);; let SEPARATED_BETWEEN_POINT_QUASI_COMPONENT = prove (`!top (x:A) c. c IN quasi_components_of top ==> (separated_between top {x} c <=> x IN topspace top DIFF c)`, ONCE_REWRITE_TAC[SEPARATED_BETWEEN_SYM] THEN REWRITE_TAC[SEPARATED_BETWEEN_QUASI_COMPONENT_POINT]);; let SEPARATED_BETWEEN_QUASI_COMPONENT_COMPACT = prove (`!top c k:A->bool. c IN quasi_components_of top /\ compact_in top k ==> (separated_between top c k <=> DISJOINT c k)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[SEPARATED_BETWEEN_IMP_DISJOINT] THEN DISCH_TAC THEN ASM_SIMP_TAC[SEPARATED_BETWEEN_POINTWISE_RIGHT] THEN ASM_SIMP_TAC[SEPARATED_BETWEEN_QUASI_COMPONENT_POINT] THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP QUASI_COMPONENTS_OF_SUBSET) THEN ASM SET_TAC[]);; let SEPARATED_BETWEEN_COMPACT_QUASI_COMPONENT = prove (`!top k c:A->bool. compact_in top k /\ c IN quasi_components_of top ==> (separated_between top k c <=> DISJOINT k c)`, ONCE_REWRITE_TAC[SEPARATED_BETWEEN_SYM; DISJOINT_SYM] THEN SIMP_TAC[SEPARATED_BETWEEN_QUASI_COMPONENT_COMPACT]);; let SEPARATED_BETWEEN_QUASI_COMPONENTS = prove (`!top c c':A->bool. c IN quasi_components_of top /\ c' IN quasi_components_of top ==> (separated_between top c c' <=> DISJOINT c c')`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[SEPARATED_BETWEEN_IMP_DISJOINT] THEN DISCH_TAC THEN ASM_SIMP_TAC[SEPARATED_BETWEEN_QUASI_COMPONENT_POINTWISE_RIGHT; SEPARATED_BETWEEN_QUASI_COMPONENT_POINTWISE_LEFT] THEN UNDISCH_TAC `(c:A->bool) IN quasi_components_of top` THEN REWRITE_TAC[quasi_components_of; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[QUASI_COMPONENT_OF_REFL; IN]; ALL_TAC] THEN UNDISCH_TAC `(c':A->bool) IN quasi_components_of top` THEN REWRITE_TAC[quasi_components_of; IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN CONJ_TAC THENL [ASM_MESON_TAC[QUASI_COMPONENT_OF_REFL; IN]; ALL_TAC] THEN ASM_REWRITE_TAC[SEPARATED_BETWEEN_SINGS] THEN ASM_REWRITE_TAC[GSYM QUASI_COMPONENT_OF_DISJOINT]);; let QUASI_EQ_CONNECTED_COMPONENT_OF_EQ = prove (`!top x:A. quasi_component_of top x = connected_component_of top x <=> connected_in top (quasi_component_of top x)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THENL [ALL_TAC; ASM_MESON_TAC[QUASI_COMPONENT_OF_EQ_EMPTY; CONNECTED_COMPONENT_OF_EQ_EMPTY; CONNECTED_IN_EMPTY]] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[CONNECTED_IN_CONNECTED_COMPONENT_OF]; DISCH_TAC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF] THEN MATCH_MP_TAC CONNECTED_COMPONENT_OF_MAXIMAL THEN ASM_REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[QUASI_COMPONENT_OF_REFL]);; let CONNECTED_QUASI_COMPONENT_OF = prove (`!top c:A->bool. c IN quasi_components_of top ==> (c IN connected_components_of top <=> connected_in top c)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[CONNECTED_IN_CONNECTED_COMPONENTS_OF] THEN DISCH_TAC THEN UNDISCH_TAC `(c:A->bool) IN quasi_components_of top` THEN REWRITE_TAC[quasi_components_of; connected_components_of] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[QUASI_EQ_CONNECTED_COMPONENT_OF_EQ]);; let QUASI_COMPONENT_OF_CLOPEN_CASES = prove (`!top c t:A->bool. c IN quasi_components_of top /\ closed_in top t /\ open_in top t ==> c SUBSET t \/ DISJOINT c t`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; quasi_components_of; IN_ELIM_THM; LEFT_IMP_EXISTS_THM; SET_RULE `c = s <=> !x. x IN c <=> s x`] THEN REWRITE_TAC[quasi_component_of] THEN REWRITE_TAC[closed_in] THEN SET_TAC[]);; let QUASI_COMPONENTS_OF_SET = prove (`!top c:A->bool. c IN quasi_components_of top ==> INTERS {t | closed_in top t /\ open_in top t /\ c SUBSET t} = c`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_INTERS; FORALL_IN_GSPEC] THEN GEN_REWRITE_TAC I [SUBSET] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> ~q ==> ~p`] THEN DISCH_THEN(MP_TAC o SPEC `topspace top:A->bool`) THEN ASM_SIMP_TAC[QUASI_COMPONENTS_OF_SUBSET] THEN REWRITE_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE] THEN REWRITE_TAC[GSYM IN_DIFF; IMP_IMP] THEN ASM_SIMP_TAC[GSYM SEPARATED_BETWEEN_QUASI_COMPONENT_POINT] THEN REWRITE_TAC[SEPARATED_BETWEEN] THEN SET_TAC[]);; let OPEN_QUASI_EQ_CONNECTED_COMPONENTS_OF = prove (`!top c:A->bool. open_in top c ==> (c IN quasi_components_of top <=> c IN connected_components_of top)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `closed_in top (c:A->bool)` THENL [STRIP_TAC; ASM_MESON_TAC[CLOSED_IN_CONNECTED_COMPONENTS_OF; CLOSED_IN_QUASI_COMPONENTS_OF]] THEN EQ_TAC THENL [SIMP_TAC[CONNECTED_QUASI_COMPONENT_OF] THEN SIMP_TAC[connected_in; QUASI_COMPONENTS_OF_SUBSET] THEN DISCH_TAC THEN REWRITE_TAC[CONNECTED_SPACE_CLOPEN_IN] THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; CLOSED_IN_CLOSED_SUBTOPOLOGY] THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> P) ==> s = {} \/ P`) THEN X_GEN_TAC `z:A` THEN DISCH_TAC THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; QUASI_COMPONENTS_OF_SUBSET] THEN ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `t:A->bool`] QUASI_COMPONENT_OF_CLOPEN_CASES) THEN ASM SET_TAC[]; REWRITE_TAC[connected_components_of; quasi_components_of] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF] THEN ASM_SIMP_TAC[QUASI_COMPONENT_OF_SET] THEN MATCH_MP_TAC INTERS_SUBSET_STRONG THEN EXISTS_TAC `c:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL]]);; let QUASI_COMPONENT_OF_CONTINUOUS_IMAGE = prove (`!top top' (f:A->B) x y. continuous_map(top,top') f /\ quasi_component_of top x y ==> quasi_component_of top' (f x) (f y)`, REPEAT GEN_TAC THEN REWRITE_TAC[quasi_component_of] THEN STRIP_TAC THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[continuous_map]; ALL_TAC]) THEN X_GEN_TAC `t:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `{x | x IN topspace top /\ (f:A->B) x IN t}`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE; MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE] THEN ASM_MESON_TAC[]);; let QUASI_COMPONENT_OF_DISCRETE_TOPOLOGY = prove (`!u x:A. quasi_component_of (discrete_topology u) x = if x IN u then {x} else {}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `y:A` THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[quasi_component_of; TOPSPACE_DISCRETE_TOPOLOGY] THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; CLOSED_IN_DISCRETE_TOPOLOGY] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING; NOT_IN_EMPTY] THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:A}`) THEN ASM_REWRITE_TAC[IN_SING; SING_SUBSET]);; let QUASI_COMPONENTS_OF_DISCRETE_TOPOLOGY = prove (`!u:A->bool. quasi_components_of (discrete_topology u) = {{x} | x IN u}`, GEN_TAC THEN REWRITE_TAC[quasi_components_of] THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; QUASI_COMPONENT_OF_DISCRETE_TOPOLOGY] THEN SET_TAC[]);; let HOMEOMORPHIC_MAP_QUASI_COMPONENT_OF = prove (`!(f:A->B) top top' x. homeomorphic_map(top,top') f /\ x IN topspace top ==> quasi_component_of top' (f x) = IMAGE f (quasi_component_of top x)`, REPEAT GEN_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MAP_MAPS; homeomorphic_maps] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `g:B->A` STRIP_ASSUME_TAC) ASSUME_TAC) THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN REWRITE_TAC[IN] THEN MP_TAC(ISPEC `top':B topology` QUASI_COMPONENT_IN_TOPSPACE) THEN MP_TAC(ISPECL [`top:A topology`; `top':B topology`; `f:A->B`] QUASI_COMPONENT_OF_CONTINUOUS_IMAGE) THEN MP_TAC(ISPECL [`top':B topology`; `top:A topology`; `g:B->A`] QUASI_COMPONENT_OF_CONTINUOUS_IMAGE) THEN ASM_REWRITE_TAC[] THEN REPEAT (FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN ASM SET_TAC[]);; let HOMEOMORPHIC_MAP_QUASI_COMPONENTS_OF = prove (`!(f:A->B) top top'. homeomorphic_map(top,top') f ==> quasi_components_of top' = IMAGE (IMAGE f) (quasi_components_of top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[quasi_components_of; SIMPLE_IMAGE] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP HOMEOMORPHIC_IMP_SURJECTIVE_MAP) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN REWRITE_TAC[] THEN ASM_MESON_TAC[HOMEOMORPHIC_MAP_QUASI_COMPONENT_OF]);; let OPEN_IN_QUASI_COMPONENT_OF_LOCALLY_CONNECTED_SPACE = prove (`!top x:A. locally_connected_space top ==> open_in top (quasi_component_of top x)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[QUASI_COMPONENT_AS_CONNECTED_COMPONENT_UNIONS] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[OPEN_IN_CONNECTED_COMPONENT_OF_LOCALLY_CONNECTED_SPACE]);; let OPEN_IN_QUASI_COMPONENTS_OF_LOCALLY_CONNECTED_SPACE = prove (`!top c:A->bool. locally_connected_space top /\ c IN quasi_components_of top ==> open_in top c`, REWRITE_TAC[quasi_components_of; IN_ELIM_THM] THEN MESON_TAC[OPEN_IN_QUASI_COMPONENT_OF_LOCALLY_CONNECTED_SPACE]);; let QUASI_EQ_CONNECTED_COMPONENTS_OF_ALT = prove (`!top:A topology. quasi_components_of top = connected_components_of top <=> !c. c IN quasi_components_of top ==> connected_in top c`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[CONNECTED_IN_CONNECTED_COMPONENTS_OF] THEN DISCH_TAC THEN REWRITE_TAC[EXTENSION] THEN X_GEN_TAC `c:A->bool` THEN REWRITE_TAC[quasi_components_of; connected_components_of] THEN REWRITE_TAC[IN_ELIM_THM] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[QUASI_EQ_CONNECTED_COMPONENT_OF_EQ] THEN ASM_SIMP_TAC[QUASI_COMPONENT_IN_QUASI_COMPONENTS_OF]);; let CONNECTED_SUBSET_QUASI_COMPONENTS_OF_POINTWISE = prove (`!top:A topology. connected_components_of top SUBSET quasi_components_of top <=> !x. x IN topspace top ==> quasi_component_of top x = connected_component_of top x`, REPEAT GEN_TAC THEN REWRITE_TAC[quasi_components_of; connected_components_of] THEN EQ_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> x IN f x /\ f x SUBSET g x) /\ (!x y. x IN s /\ y IN s ==> g x = g y \/ DISJOINT (g x) (g y)) ==> {f x | x IN s} SUBSET {g x | x IN s} ==> !x. x IN s ==> f x = g x`) THEN SIMP_TAC[QUASI_COMPONENT_OF_DISJOINT; QUASI_COMPONENT_OF_EQ] THEN SIMP_TAC[CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF; EXCLUDED_MIDDLE] THEN REWRITE_TAC[IN; CONNECTED_COMPONENT_OF_REFL]);; let QUASI_SUBSET_CONNECTED_COMPONENTS_OF_POINTWISE = prove (`!top:A topology. quasi_components_of top SUBSET connected_components_of top <=> !x. x IN topspace top ==> quasi_component_of top x = connected_component_of top x`, REPEAT GEN_TAC THEN REWRITE_TAC[quasi_components_of; connected_components_of] THEN EQ_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> x IN f x /\ f x SUBSET g x) /\ (!x y. x IN s /\ y IN s ==> f x = f y \/ DISJOINT (f x) (f y)) ==> {g x | x IN s} SUBSET {f x | x IN s} ==> !x. x IN s ==> f x = g x`) THEN SIMP_TAC[CONNECTED_COMPONENT_OF_DISJOINT; CONNECTED_COMPONENT_OF_EQ] THEN SIMP_TAC[CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF; EXCLUDED_MIDDLE] THEN REWRITE_TAC[IN; CONNECTED_COMPONENT_OF_REFL]);; let QUASI_EQ_CONNECTED_COMPONENTS_OF_POINTWISE = prove (`!top:A topology. quasi_components_of top = connected_components_of top <=> !x. x IN topspace top ==> quasi_component_of top x = connected_component_of top x`, REPEAT GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[GSYM CONNECTED_SUBSET_QUASI_COMPONENTS_OF_POINTWISE; SUBSET_REFL]; REWRITE_TAC[quasi_components_of; connected_components_of] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[]]);; let QUASI_EQ_CONNECTED_COMPONENTS_OF_POINTWISE_ALT = prove (`!top:A topology. quasi_components_of top = connected_components_of top <=> !x. quasi_component_of top x = connected_component_of top x`, GEN_TAC THEN REWRITE_TAC[QUASI_EQ_CONNECTED_COMPONENTS_OF_POINTWISE] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN topspace top` THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[CONNECTED_COMPONENT_OF_EQ_EMPTY; QUASI_COMPONENT_OF_EQ_EMPTY]);; let QUASI_EQ_CONNECTED_COMPONENTS_OF_INCLUSION = prove (`!top:A topology. quasi_components_of top = connected_components_of top <=> connected_components_of top SUBSET quasi_components_of top \/ quasi_components_of top SUBSET connected_components_of top`, REWRITE_TAC[CONNECTED_SUBSET_QUASI_COMPONENTS_OF_POINTWISE; QUASI_SUBSET_CONNECTED_COMPONENTS_OF_POINTWISE; QUASI_EQ_CONNECTED_COMPONENTS_OF_POINTWISE]);; let QUASI_EQ_CONNECTED_COMPONENTS_OF = prove (`!top:A topology. FINITE(connected_components_of top) \/ FINITE(quasi_components_of top) \/ locally_connected_space top \/ compact_space top /\ (hausdorff_space top \/ regular_space top \/ normal_space top) ==> quasi_components_of top = connected_components_of top`, REPEAT GEN_TAC THEN DISCH_THEN (REPEAT_TCL DISJ_CASES_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THENL [REWRITE_TAC[QUASI_EQ_CONNECTED_COMPONENTS_OF_INCLUSION] THEN DISJ1_TAC THEN REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[OPEN_QUASI_EQ_CONNECTED_COMPONENTS_OF; OPEN_IN_FINITE_CONNECTED_COMPONENTS]; REWRITE_TAC[QUASI_EQ_CONNECTED_COMPONENTS_OF_INCLUSION] THEN DISJ2_TAC THEN REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[OPEN_QUASI_EQ_CONNECTED_COMPONENTS_OF; OPEN_IN_FINITE_QUASI_COMPONENTS]; REWRITE_TAC[EXTENSION] THEN ASM_MESON_TAC[OPEN_QUASI_EQ_CONNECTED_COMPONENTS_OF; OPEN_IN_CONNECTED_COMPONENTS_OF_LOCALLY_CONNECTED_SPACE; OPEN_IN_QUASI_COMPONENTS_OF_LOCALLY_CONNECTED_SPACE]; REWRITE_TAC[QUASI_EQ_CONNECTED_COMPONENTS_OF_ALT]] THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP QUASI_COMPONENTS_OF_SUBSET) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_QUASI_COMPONENTS_OF) THEN ASM_REWRITE_TAC[connected_in; CONNECTED_SPACE_CLOSED_IN_EQ] THEN ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; GSYM DISJOINT] THEN STRIP_TAC THEN MP_TAC(fst(EQ_IMP_RULE(ISPEC `top:A topology` normal_space))) THEN ANTS_TAC THENL [ASM_MESON_TAC[COMPACT_HAUSDORFF_OR_REGULAR_IMP_NORMAL_SPACE]; DISCH_THEN(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`])] THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `v:A->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `topspace top DIFF (u UNION v):A->bool`] SEPARATED_BETWEEN_QUASI_COMPONENT_COMPACT) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN ASM_SIMP_TAC[OPEN_IN_UNION; CLOSED_IN_TOPSPACE]; DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE)] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[separated_between]] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`e:A->bool`; `g:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `g UNION u:A->bool` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] QUASI_COMPONENT_OF_CLOPEN_CASES)) THEN ASM_SIMP_TAC[OPEN_IN_UNION; NOT_IMP] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN SUBGOAL_THEN `g UNION u:A->bool = topspace top DIFF (e INTER v)` SUBST1_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_DIFF THEN ASM_SIMP_TAC[CLOSED_IN_TOPSPACE; OPEN_IN_INTER]]);; let QUASI_EQ_CONNECTED_COMPONENT_OF = prove (`!top (x:A). FINITE(connected_components_of top) \/ FINITE(quasi_components_of top) \/ locally_connected_space top \/ compact_space top /\ (hausdorff_space top \/ regular_space top \/ normal_space top) ==> quasi_component_of top x = connected_component_of top x`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP QUASI_EQ_CONNECTED_COMPONENTS_OF) THEN SIMP_TAC[QUASI_EQ_CONNECTED_COMPONENTS_OF_POINTWISE_ALT]);; (* ------------------------------------------------------------------------- *) (* Additional quasicomponent and continuum properties like Boundary Bumping. *) (* ------------------------------------------------------------------------- *) let CUT_WIRE_FENCE_THEOREM_GEN = prove (`!top s t:A->bool. compact_space top /\ (hausdorff_space top \/ regular_space top \/ normal_space top) /\ compact_in top s /\ closed_in top t /\ (!c. connected_in top c ==> DISJOINT c s \/ DISJOINT c t) ==> separated_between top s t`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_SIMP_TAC[SEPARATED_BETWEEN_POINTWISE_LEFT; CLOSED_IN_COMPACT_SPACE] THEN ASM_SIMP_TAC[SEPARATED_BETWEEN_POINTWISE_RIGHT; CLOSED_IN_COMPACT_SPACE] THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET; SING_SUBSET] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_CASES_TAC `(x:A) IN topspace top` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[COMPACT_IN_SUBSET_TOPSPACE; SUBSET]] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN ASM_CASES_TAC `(y:A) IN topspace top` THENL [ASM_REWRITE_TAC[SEPARATED_BETWEEN_SINGS]; ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET]] THEN ASM_SIMP_TAC[QUASI_EQ_CONNECTED_COMPONENT_OF] THEN REWRITE_TAC[connected_component_of; NOT_EXISTS_THM] THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:A->bool`) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let CUT_WIRE_FENCE_THEOREM = prove (`!top s t:A->bool. compact_space top /\ hausdorff_space top /\ closed_in top s /\ closed_in top t /\ (!c. connected_in top c ==> DISJOINT c s \/ DISJOINT c t) ==> separated_between top s t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CUT_WIRE_FENCE_THEOREM_GEN THEN ASM_SIMP_TAC[CLOSED_IN_COMPACT_SPACE]);; let SEPARATED_BETWEEN_FROM_CLOSED_SUBTOPOLOGY = prove (`!top s t c:A->bool. separated_between (subtopology top c) s (top frontier_of c) /\ separated_between (subtopology top c) s t ==> separated_between top s t`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SEPARATED_BETWEEN_UNION] THEN REWRITE_TAC[SEPARATED_BETWEEN] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MP_TAC(ISPECL [`top:A topology`; `topspace top INTER c:A->bool`; `u:A->bool`] CLOSED_IN_CLOSED_SUBTOPOLOGY) THEN ASM_REWRITE_TAC[GSYM SUBTOPOLOGY_RESTRICT] THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN SIMP_TAC[GSYM FRONTIER_OF_SUBSET_EQ; INTER_SUBSET] THEN REWRITE_TAC[GSYM FRONTIER_OF_RESTRICT] THEN ASM SET_TAC[]; MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `u:A->bool`] OPEN_IN_SUBSET_TOPSPACE_EQ) THEN ASM SET_TAC[]; ASM SET_TAC[]]);; let SEPARATED_BETWEEN_FROM_CLOSED_SUBTOPOLOGY_FRONTIER = prove (`!top s t:A->bool. separated_between (subtopology top t) s (top frontier_of t) ==> separated_between top s (top frontier_of t)`, ASM_MESON_TAC[SEPARATED_BETWEEN_FROM_CLOSED_SUBTOPOLOGY]);; let SEPARATED_BETWEEN_FROM_FRONTIER_OF_CLOSED_SUBTOPOLOGY = prove (`!top s t:A->bool. separated_between (subtopology top t) s (top frontier_of t) ==> separated_between top s (topspace top DIFF t)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [CONJUNCT2 SEPARATED_BETWEEN_FRONTIER_OF_EQ] THEN REPEAT CONJ_TAC THENL [SET_TAC[]; FIRST_X_ASSUM(MP_TAC o MATCH_MP SEPARATED_BETWEEN_IMP_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]; REWRITE_TAC[FRONTIER_OF_COMPLEMENT]] THEN MATCH_MP_TAC SEPARATED_BETWEEN_FROM_CLOSED_SUBTOPOLOGY_FRONTIER THEN ASM_REWRITE_TAC[]);; let SEPARATED_BETWEEN_COMPACT_CONNECTED_COMPONENT = prove (`!top c t:A->bool. locally_compact_space top /\ hausdorff_space top /\ c IN connected_components_of top /\ compact_in top c /\ closed_in top t /\ DISJOINT c t ==> separated_between top c t`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?n l:A->bool. open_in top n /\ compact_in top l /\ closed_in top l /\ c SUBSET n /\ n SUBSET l /\ l SUBSET topspace top DIFF t` STRIP_ASSUME_TAC THENL [MP_TAC(ISPEC `subtopology top (topspace top DIFF t:A->bool)` LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_COMPACT) THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY] THEN ASM_SIMP_TAC[LOCALLY_COMPACT_SPACE_OPEN_SUBSET; OPEN_IN_OPEN_SUBTOPOLOGY; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN DISCH_THEN(MP_TAC o SPEC `c:A->bool`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN ASM SET_TAC[]; REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_SIMP_TAC[COMPACT_IN_IMP_CLOSED_IN]]; ALL_TAC] THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `topspace top DIFF l:A->bool`] (CONJUNCT2 SEPARATED_BETWEEN_FRONTIER_OF)) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE)] THEN ANTS_TAC THENL [ALL_TAC; REWRITE_TAC[separated_between] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]] THEN MATCH_MP_TAC SEPARATED_BETWEEN_FROM_CLOSED_SUBTOPOLOGY THEN EXISTS_TAC `l:A->bool` THEN ASM_REWRITE_TAC[FRONTIER_OF_COMPLEMENT] THEN MATCH_MP_TAC CUT_WIRE_FENCE_THEOREM THEN ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY] THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[FRONTIER_OF_SUBSET_CLOSED_IN; COMPACT_IN_IMP_CLOSED_IN] THEN REWRITE_TAC[CLOSED_IN_FRONTIER_OF; CONNECTED_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `d:A->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `d:A->bool`; `c:A->bool`] CONNECTED_COMPONENTS_OF_MAXIMAL) THEN ASM_REWRITE_TAC[TAUT `p \/ q <=> ~p ==> q`] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[frontier_of] THEN MATCH_MP_TAC(SET_RULE `c SUBSET v ==> d SUBSET c ==> DISJOINT d (u DIFF v)`) THEN TRANS_TAC SUBSET_TRANS `n:A->bool` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[INTERIOR_OF_MAXIMAL]);; let WILDER_LOCALLY_COMPACT_COMPONENT_THM = prove (`!top c w:A->bool. locally_compact_space top /\ hausdorff_space top /\ c IN connected_components_of top /\ compact_in top c /\ open_in top w /\ c SUBSET w ==> ?u v. open_in top u /\ open_in top v /\ DISJOINT u v /\ u UNION v = topspace top /\ c SUBSET u /\ u SUBSET w`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `topspace top DIFF w:A->bool`] SEPARATED_BETWEEN_COMPACT_CONNECTED_COMPONENT) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[separated_between]] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]);; let COMPACT_QUASI_EQ_CONNECTED_COMPONENTS_OF = prove (`!top c:A->bool. locally_compact_space top /\ hausdorff_space top /\ compact_in top c ==> (c IN quasi_components_of top <=> c IN connected_components_of top)`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN REPEAT DISCH_TAC THEN REWRITE_TAC[quasi_components_of; connected_components_of] THEN MATCH_MP_TAC(SET_RULE `(!x. P x /\ Q(g x) ==> Q(f x)) /\ (!x. P x /\ Q(f x) ==> f x = g x) ==> !c. Q c ==> (c IN {g x | P x} <=> c IN {f x | P x})`) THEN REWRITE_TAC[] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THENL [MATCH_MP_TAC CLOSED_COMPACT_IN THEN EXISTS_TAC `quasi_component_of top (x:A)` THEN ASM_REWRITE_TAC[CLOSED_IN_CONNECTED_COMPONENT_OF; CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF]; ALL_TAC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET_QUASI_COMPONENT_OF] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:A` THEN REWRITE_TAC[TAUT `p ==> q <=> ~(p /\ ~q)`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `connected_component_of top (x:A)`; `{y:A}`] SEPARATED_BETWEEN_COMPACT_CONNECTED_COMPONENT) THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_IN_CONNECTED_COMPONENTS_OF] THEN ASM_REWRITE_TAC[NOT_IMP; DISJOINT_SING] THEN SUBGOAL_THEN `(y:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; QUASI_COMPONENT_OF_SUBSET_TOPSPACE]; ASM_SIMP_TAC[CLOSED_IN_HAUSDORFF_SING]] THEN DISCH_THEN(MP_TAC o SPECL [`{x:A}`; `{y:A}`] o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] SEPARATED_BETWEEN_MONO)) THEN ASM_REWRITE_TAC[SUBSET_REFL; SEPARATED_BETWEEN_SINGS; SING_SUBSET] THEN REWRITE_TAC[IN_SING] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_OF_REFL] THEN ASM_MESON_TAC[IN]);; let BOUNDARY_BUMPING_THEOREM_CLOSED_GEN = prove (`!top s c:A->bool. connected_space top /\ locally_compact_space top /\ hausdorff_space top /\ closed_in top s /\ ~(s = topspace top) /\ compact_in top c /\ c IN connected_components_of(subtopology top s) ==> ~(c INTER top frontier_of s = {})`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (s:A->bool)`; `c:A->bool`; `top frontier_of s:A->bool`] SEPARATED_BETWEEN_COMPACT_CONNECTED_COMPONENT) THEN ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC LOCALLY_COMPACT_SPACE_CLOSED_SUBSET THEN ASM_REWRITE_TAC[]; ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY]; ASM_REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER]; ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY; CLOSED_IN_FRONTIER_OF] THEN ASM_SIMP_TAC[FRONTIER_OF_SUBSET_CLOSED_IN]; ASM SET_TAC[]; DISCH_THEN(MP_TAC o MATCH_MP SEPARATED_BETWEEN_FROM_CLOSED_SUBTOPOLOGY_FRONTIER)] THEN ASM_SIMP_TAC[CONNECTED_SPACE_IMP_SEPARATED_BETWEEN_TRIVIAL] THEN ASM_SIMP_TAC[CONNECTED_SPACE_FRONTIER_EQ_EMPTY; CLOSED_IN_SUBSET] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN FIRST_ASSUM(MP_TAC o MATCH_MP NONEMPTY_CONNECTED_COMPONENTS_OF) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `c IN s ==> ~(s = {})`)) THEN REWRITE_TAC[CONNECTED_COMPONENTS_OF_EQ_EMPTY; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let BOUNDARY_BUMPING_THEOREM_CLOSED = prove (`!top s c:A->bool. connected_space top /\ compact_space top /\ hausdorff_space top /\ closed_in top s /\ ~(s = topspace top) /\ c IN connected_components_of(subtopology top s) ==> ~(c INTER top frontier_of s = {})`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC BOUNDARY_BUMPING_THEOREM_CLOSED_GEN THEN ASM_SIMP_TAC[COMPACT_IMP_LOCALLY_COMPACT_SPACE] THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_CONNECTED_COMPONENTS_OF) THEN ASM_SIMP_TAC[CLOSED_IN_CLOSED_SUBTOPOLOGY]);; let INTERMEDIATE_CONTINUUM_EXISTS = prove (`!top c u:A->bool. connected_space top /\ locally_compact_space top /\ hausdorff_space top /\ compact_in top c /\ connected_in top c /\ ~(c = {}) /\ ~(c = topspace top) /\ open_in top u /\ c SUBSET u ==> ?d. compact_in top d /\ connected_in top d /\ c PSUBSET d /\ d PSUBSET u`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONNECTED_IN_SUBSET_TOPSPACE) THEN SUBGOAL_THEN `?a:A. a IN topspace top /\ ~(a IN c)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPEC `subtopology top (u DELETE (a:A))` LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_COMPACT) THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY] THEN ASM_SIMP_TAC[LOCALLY_COMPACT_SPACE_OPEN_SUBSET; OPEN_IN_OPEN_SUBTOPOLOGY; OPEN_IN_HAUSDORFF_DELETE; SUBSET_DELETE] THEN DISCH_THEN(MP_TAC o SPEC `c:A->bool`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN MP_TAC(SPECL [`subtopology top (k:A->bool)`; `c:A->bool`] EXISTS_CONNECTED_COMPONENT_OF_SUPERSET) THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:A->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_CONNECTED_COMPONENTS_OF) THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CLOSED_IN_COMPACT_SPACE)) THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_CONNECTED_COMPONENTS_OF) THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY] THEN DISCH_TAC THEN ASM_REWRITE_TAC[PSUBSET] THEN REPEAT CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]; DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool` o GEN_REWRITE_RULE I [CONNECTED_SPACE_CLOPEN_IN]) THEN ASM_SIMP_TAC[COMPACT_IN_IMP_CLOSED_IN] THEN ASM SET_TAC[]] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN MP_TAC(ISPECL [`top:A topology`; `k:A->bool`; `c:A->bool`] BOUNDARY_BUMPING_THEOREM_CLOSED_GEN) THEN ASM_SIMP_TAC[COMPACT_IN_IMP_CLOSED_IN; NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[frontier_of]] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s INTER (t DIFF u) = {}`) THEN TRANS_TAC SUBSET_TRANS `v:A->bool` THEN ASM_SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ]);; let BOUNDARY_BUMPING_THEOREM_GEN = prove (`!top s c:A->bool. connected_space top /\ locally_compact_space top /\ hausdorff_space top /\ s PSUBSET topspace top /\ c IN connected_components_of(subtopology top s) /\ compact_in top (top closure_of c) ==> ~(top frontier_of c INTER top frontier_of s = {})`, REPEAT GEN_TAC THEN REWRITE_TAC[PSUBSET] THEN STRIP_TAC THEN REWRITE_TAC[frontier_of] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN REWRITE_TAC[SUBSET_INTER; TOPSPACE_SUBTOPOLOGY] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONNECTED_IN_CONNECTED_COMPONENTS_OF) THEN REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP NONEMPTY_CONNECTED_COMPONENTS_OF) THEN MATCH_MP_TAC(SET_RULE `i SUBSET i' /\ c SUBSET c' /\ ~(c SUBSET i') ==> ~((c DIFF i) INTER (c' DIFF i') = {})`) THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[INTERIOR_OF_MONO]; ASM_MESON_TAC[CLOSURE_OF_MONO]; DISCH_TAC] THEN SUBGOAL_THEN `top closure_of c:A->bool = c` SUBST_ALL_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET] THEN MATCH_MP_TAC CONNECTED_COMPONENTS_OF_MAXIMAL THEN EXISTS_TAC `subtopology top (s:A->bool)`THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_SIMP_TAC[CONNECTED_IN_SUBTOPOLOGY; CONNECTED_IN_CLOSURE_OF] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] INTERIOR_OF_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `c SUBSET d /\ ~(c = {}) ==> ~DISJOINT c d`) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET]]; ALL_TAC] THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `top interior_of s:A->bool`] INTERMEDIATE_CONTINUUM_EXISTS) THEN ASM_REWRITE_TAC[OPEN_IN_INTERIOR_OF; NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(SET_RULE `(c:A->bool) PSUBSET d ==> ~(d SUBSET c)`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONNECTED_COMPONENTS_OF_MAXIMAL THEN EXISTS_TAC `subtopology top (s:A->bool)` THEN ASM_REWRITE_TAC[CONNECTED_IN_SUBTOPOLOGY] THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`] INTERIOR_OF_SUBSET) THEN ASM SET_TAC[]);; let BOUNDARY_BUMPING_THEOREM = prove (`!top s c:A->bool. connected_space top /\ compact_space top /\ hausdorff_space top /\ s PSUBSET topspace top /\ c IN connected_components_of(subtopology top s) ==> ~(top frontier_of c INTER top frontier_of s = {})`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC BOUNDARY_BUMPING_THEOREM_GEN THEN ASM_SIMP_TAC[COMPACT_IMP_LOCALLY_COMPACT_SPACE] THEN ASM_SIMP_TAC[CLOSED_IN_COMPACT_SPACE; CLOSED_IN_CLOSURE_OF]);; (* ------------------------------------------------------------------------- *) (* k-spaces (with no Hausdorff-ness assumptions built in). *) (* ------------------------------------------------------------------------- *) let k_space = new_definition `k_space (top:A topology) <=> !s. s SUBSET topspace top ==> (closed_in top s <=> !k. compact_in top k ==> closed_in (subtopology top k) (k INTER s))`;; let K_SPACE = prove (`!top:A topology. k_space top <=> !s. s SUBSET topspace top /\ (!k. compact_in top k ==> closed_in (subtopology top k) (k INTER s)) ==> closed_in top s`, GEN_TAC THEN REWRITE_TAC[k_space] THEN MESON_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED]);; let K_SPACE_OPEN = prove (`!top:A topology. k_space top <=> !s. s SUBSET topspace top /\ (!k. compact_in top k ==> open_in (subtopology top k) (k INTER s)) ==> open_in top s`, GEN_TAC THEN REWRITE_TAC[K_SPACE] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN GEN_REWRITE_TAC I [OPEN_IN_CLOSED_IN_EQ; closed_in] THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SUBSET_DIFF] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC I [OPEN_IN_CLOSED_IN_EQ; closed_in] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN (CONJ_TAC THENL [SET_TAC[]; ALL_TAC]) THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let K_SPACE_ALT = prove (`!top:A topology. k_space top <=> !s. s SUBSET topspace top ==> (open_in top s <=> !k. compact_in top k ==> open_in (subtopology top k) (k INTER s))`, GEN_TAC THEN REWRITE_TAC[K_SPACE_OPEN] THEN MESON_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN]);; let K_SPACE_QUOTIENT_MAP_IMAGE = prove (`!top top' (q:A->B). quotient_map(top,top') q /\ k_space top ==> k_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[K_SPACE] THEN STRIP_TAC THEN X_GEN_TAC `s:B->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o CONJUNCT2 o GEN_REWRITE_RULE I [QUOTIENT_MAP]) THEN DISCH_THEN(MP_TAC o SPEC `s:B->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SUBSET_RESTRICT] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `subtopology top k = subtopology (subtopology top {x | x IN topspace top /\ (q:A->B) x IN IMAGE q k}) k` SUBST1_TAC THENL [REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `k INTER {x | x IN topspace top /\ q x IN s} = k INTER {x | x IN topspace(subtopology top {x | x IN topspace top /\ (q:A->B) x IN IMAGE q k}) /\ q x IN (IMAGE (q:A->B) k INTER s)}` SUBST1_TAC THENL [REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `subtopology top' (IMAGE (q:A->B) k)` THEN CONJ_TAC THENL [REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN ASM_MESON_TAC[QUOTIENT_IMP_CONTINUOUS_MAP]; FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN ASM_MESON_TAC[QUOTIENT_IMP_CONTINUOUS_MAP]]);; let K_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map (top,top') r /\ k_space top ==> k_space top'`, MESON_TAC[K_SPACE_QUOTIENT_MAP_IMAGE; RETRACTION_IMP_QUOTIENT_MAP]);; let HOMEOMORPHIC_K_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (k_space top <=> k_space top')`, REWRITE_TAC[homeomorphic_space; HOMEOMORPHIC_MAPS_MAP] THEN REWRITE_TAC[GSYM SECTION_AND_RETRACTION_EQ_HOMEOMORPHIC_MAP] THEN MESON_TAC[K_SPACE_RETRACTION_MAP_IMAGE]);; let K_SPACE_PERFECT_MAP_IMAGE = prove (`!top top' (f:A->B). k_space top /\ perfect_map(top,top') f ==> k_space top'`, MESON_TAC[PERFECT_IMP_QUOTIENT_MAP; K_SPACE_QUOTIENT_MAP_IMAGE]);; let LOCALLY_COMPACT_IMP_K_SPACE = prove (`!top:A topology. locally_compact_space top ==> k_space top`, REPEAT STRIP_TAC THEN REWRITE_TAC[K_SPACE] THEN X_GEN_TAC `s:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM CLOSURE_OF_SUBSET_EQ] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSURE_OF_SUBSET_TOPSPACE; SUBSET]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally_compact_space]) THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ] THEN DISCH_THEN(MP_TAC o SPEC `x:A` o REWRITE_RULE[SUBSET] o CONJUNCT2) THEN ASM_REWRITE_TAC[IN_INTER; CLOSURE_OF_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[SET_RULE `k INTER k INTER s = s INTER k`; IN_CLOSURE_OF] THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_CLOSURE_OF]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `u INTER v:A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN ASM SET_TAC[]);; let COMPACT_IMP_K_SPACE = prove (`!top:A topology. compact_space top ==> k_space top`, MESON_TAC[LOCALLY_COMPACT_IMP_K_SPACE; COMPACT_IMP_LOCALLY_COMPACT_SPACE]);; let K_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. k_space(discrete_topology u)`, SIMP_TAC[K_SPACE; CLOSED_IN_DISCRETE_TOPOLOGY; TOPSPACE_DISCRETE_TOPOLOGY]);; let METRIZABLE_IMP_K_SPACE = prove (`!top:A topology. metrizable_space top ==> k_space top`, REWRITE_TAC[FORALL_METRIZABLE_SPACE] THEN X_GEN_TAC `m:A metric` THEN REWRITE_TAC[K_SPACE] THEN X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN STRIP_TAC THEN ASM_REWRITE_TAC[METRIC_CLOSED_IN_IFF_SEQUENTIALLY_CLOSED] THEN MAP_EVERY X_GEN_TAC [`a:num->A`; `l:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(l:A) INSERT IMAGE a (:num)`) THEN ANTS_TAC THENL [MATCH_MP_TAC COMPACT_IN_SEQUENCE_WITH_LIMIT THEN EXISTS_TAC `a:num->A` THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[]; REWRITE_TAC[GSYM MTOPOLOGY_SUBMETRIC] THEN REWRITE_TAC[METRIC_CLOSED_IN_IFF_SEQUENTIALLY_CLOSED] THEN DISCH_THEN(MP_TAC o SPECL [`a:num->A`; `l:A`] o CONJUNCT2) THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[IN_INTER]] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[LIMIT_SUBTOPOLOGY; MTOPOLOGY_SUBMETRIC] THEN REWRITE_TAC[IN_INSERT] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN REWRITE_TAC[] THEN SET_TAC[]]);; let K_SPACE_MTOPOLOGY = prove (`!m:A metric. k_space(mtopology m)`, REWRITE_TAC[GSYM FORALL_METRIZABLE_SPACE; METRIZABLE_IMP_K_SPACE]);; let K_SPACE_EUCLIDEANREAL = prove (`k_space euclideanreal`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; K_SPACE_MTOPOLOGY]);; let K_SPACE_CLOSED_SUBTOPOLOGY = prove (`!top s:A->bool. k_space top /\ closed_in top s ==> k_space(subtopology top s)`, MAP_EVERY X_GEN_TAC [`top:A topology`; `c:A->bool`] THEN REWRITE_TAC[K_SPACE] THEN STRIP_TAC THEN X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; COMPACT_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k INTER c:A->bool`) THEN REWRITE_TAC[INTER_SUBSET] THEN ANTS_TAC THENL [MP_TAC(ISPECL [`subtopology top (k:A->bool)`; `k INTER c:A->bool`] CLOSED_IN_COMPACT_SPACE) THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED] THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY]; ASM_SIMP_TAC[SET_RULE `s SUBSET c ==> (k INTER c) INTER s = k INTER s`; SUBTOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CLOSED_IN_TRANS) THEN REWRITE_TAC[SET_RULE `c INTER k INTER c = k INTER c`] THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED]]);; let K_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. (!t. t SUBSET topspace top /\ t SUBSET s /\ (!k. compact_in top k ==> closed_in (subtopology top (k INTER s)) (k INTER t)) ==> closed_in (subtopology top s) t) /\ (!k. compact_in top k ==> k_space(subtopology top (k INTER s))) ==> k_space(subtopology top s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[K_SPACE] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; COMPACT_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [K_SPACE] o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `c:A->bool`] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:A->bool`) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [AP_TERM_TAC; ALL_TAC] THEN ASM SET_TAC[]);; let K_SPACE_SUBTOPOLOGY_OPEN = prove (`!top s:A->bool. (!t. t SUBSET topspace top /\ t SUBSET s /\ (!k. compact_in top k ==> open_in (subtopology top (k INTER s)) (k INTER t)) ==> open_in (subtopology top s) t) /\ (!k. compact_in top k ==> k_space(subtopology top (k INTER s))) ==> k_space(subtopology top s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[K_SPACE_OPEN] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; COMPACT_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [K_SPACE_OPEN] o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `c:A->bool`] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:A->bool`) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [AP_TERM_TAC; ALL_TAC] THEN ASM SET_TAC[]);; let K_SPACE_OPEN_SUBTOPOLOGY = prove (`!top s:A->bool. (kc_space top \/ hausdorff_space top \/ regular_space top) /\ k_space top /\ open_in top s ==> k_space(subtopology top s)`, let lemma = prove (`!top (v:A->bool). kc_space top /\ compact_space top /\ open_in top v ==> k_space(subtopology top v)`, REPEAT STRIP_TAC THEN REWRITE_TAC[K_SPACE; TOPSPACE_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY; COMPACT_IN_SUBTOPOLOGY; SUBSET_INTER] THEN X_GEN_TAC `s:A->bool` THEN SIMP_TAC[SET_RULE `k SUBSET v ==> v INTER k = k`] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (LABEL_TAC "*")) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SUBGOAL_THEN `s:A->bool = v INTER ((topspace top DIFF v) UNION s)` SUBST1_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED] THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN_GEN THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[compact_in; UNION_SUBSET; SUBSET_DIFF] THEN X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `compact_in top (topspace top DIFF v:A->bool)` MP_TAC THENL [MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]; REWRITE_TAC[compact_in; SUBSET_DIFF]] THEN DISCH_THEN(MP_TAC o SPEC `U:(A->bool)->bool`) THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> (t DIFF u) INTER s = s DIFF u`] THEN DISCH_THEN(X_CHOOSE_THEN `V1:(A->bool)->bool` STRIP_ASSUME_TAC) THEN REMOVE_THEN "*" (MP_TAC o SPEC `topspace top DIFF UNIONS V1:A->bool`) THEN SUBGOAL_THEN `open_in top (UNIONS V1:A->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[OPEN_IN_UNIONS; SUBSET]; ALL_TAC] THEN ASM_SIMP_TAC[CLOSED_IN_COMPACT_SPACE; CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE; CLOSED_IN_CLOSED_SUBTOPOLOGY] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CLOSED_IN_COMPACT_SPACE) o CONJUNCT1) THEN ASM_REWRITE_TAC[compact_in] THEN DISCH_THEN(MP_TAC o SPEC `U:(A->bool)->bool` o CONJUNCT2) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `V2:(A->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `V1 UNION V2:(A->bool)->bool` THEN ASM_REWRITE_TAC[FINITE_UNION] THEN ASM SET_TAC[]) in REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC K_SPACE_SUBTOPOLOGY_OPEN THEN CONJ_TAC THENL [X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_SUBSET_TOPSPACE THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [K_SPACE_OPEN]) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] OPEN_IN_TRANS) THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN]; X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [MP_TAC(ISPECL [`subtopology top (k:A->bool)`; `k INTER s:A->bool`] lemma) THEN ASM_SIMP_TAC[KC_SPACE_SUBTOPOLOGY; OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY; INTER_ACI]; MATCH_MP_TAC LOCALLY_COMPACT_IMP_K_SPACE THEN ONCE_REWRITE_TAC[SET_RULE `k INTER s = k INTER (k INTER s)`] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC LOCALLY_COMPACT_SPACE_OPEN_SUBSET THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN] THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; COMPACT_IMP_LOCALLY_COMPACT_SPACE] THEN ASM_MESON_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; REGULAR_SPACE_SUBTOPOLOGY]]]);; let K_KC_SPACE_SUBTOPOLOGY = prove (`!top s:A->bool. k_space top /\ kc_space top /\ (open_in top s \/ closed_in top s) ==> k_space(subtopology top s) /\ kc_space(subtopology top s)`, MESON_TAC[K_SPACE_OPEN_SUBTOPOLOGY; K_SPACE_CLOSED_SUBTOPOLOGY; KC_SPACE_SUBTOPOLOGY]);; let K_SPACE_AS_QUOTIENT_EXPLICIT = prove (`!top:A topology. k_space top <=> quotient_map (sum_topology {k | compact_in top k} (subtopology top), top) SND`, REWRITE_TAC[quotient_map; OPEN_IN_SUM_TOPOLOGY] THEN REWRITE_TAC[IN_ELIM_THM; TOPSPACE_SUM_TOPOLOGY; SUBSET_RESTRICT] THEN REWRITE_TAC[disjoint_union; IN_ELIM_PAIR_THM] THEN GEN_TAC THEN SIMP_TAC[K_SPACE_ALT; IN_ELIM_THM] THEN SIMP_TAC[o_THM; TOPSPACE_SUBTOPOLOGY_SUBSET; COMPACT_IN_SUBSET_TOPSPACE] THEN REWRITE_TAC[GSYM INTER] THEN MATCH_MP_TAC(TAUT `(p <=> p') /\ q ==> (p <=> q /\ p')`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[SET_RULE `IMAGE f {x,y | P x y} = {f(x,y) | P x y}`] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`{x:A}`; `x:A`] THEN ASM_REWRITE_TAC[COMPACT_IN_SING; IN_SING]);; let K_SPACE_AS_QUOTIENT = prove (`!top:A topology. k_space top <=> ?q (top':((A->bool)#A)topology). locally_compact_space top' /\ quotient_map(top',top) q`, GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`SND:(A->bool)#A->A`; `sum_topology {k:A->bool | compact_in top k} (subtopology top)`] THEN ASM_REWRITE_TAC[GSYM K_SPACE_AS_QUOTIENT_EXPLICIT] THEN REWRITE_TAC[LOCALLY_COMPACT_SPACE_SUM_TOPOLOGY; IN_ELIM_THM] THEN SIMP_TAC[COMPACT_IMP_LOCALLY_COMPACT_SPACE; COMPACT_SPACE_SUBTOPOLOGY]; MESON_TAC[LOCALLY_COMPACT_IMP_K_SPACE; K_SPACE_QUOTIENT_MAP_IMAGE]]);; let K_SPACE_PROD_TOPOLOGY_LEFT = prove (`!(top:A topology) (top':B topology). locally_compact_space top /\ (hausdorff_space top \/ regular_space top) /\ k_space top' ==> k_space(prod_topology top top')`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [K_SPACE_AS_QUOTIENT]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`q:(B->bool)#B->B`; `top'':((B->bool)#B)topology`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `top'':((B->bool)#B)topology`; `top':B topology`; `q:(B->bool)#B->B`] QUOTIENT_MAP_PROD_RIGHT) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] K_SPACE_QUOTIENT_MAP_IMAGE) THEN MATCH_MP_TAC LOCALLY_COMPACT_IMP_K_SPACE THEN ASM_REWRITE_TAC[LOCALLY_COMPACT_SPACE_PROD_TOPOLOGY]);; let K_SPACE_PROD_TOPOLOGY_RIGHT = prove (`!(top:A topology) (top':B topology). k_space top /\ locally_compact_space top' /\ (hausdorff_space top' \/ regular_space top') ==> k_space(prod_topology top top')`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [K_SPACE_AS_QUOTIENT]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`q:(A->bool)#A->A`; `top'':((A->bool)#A)topology`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top'':((A->bool)#A)topology`; `top:A topology`; `top':B topology`; `q:(A->bool)#A->A`] QUOTIENT_MAP_PROD_LEFT) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] K_SPACE_QUOTIENT_MAP_IMAGE) THEN MATCH_MP_TAC LOCALLY_COMPACT_IMP_K_SPACE THEN ASM_REWRITE_TAC[LOCALLY_COMPACT_SPACE_PROD_TOPOLOGY]);; let CONTINUOUS_MAP_FROM_K_SPACE = prove (`!top top' (f:A->B). k_space top /\ (!k. compact_in top k ==> continuous_map(subtopology top k,top') f) ==> continuous_map(top,top') f`, REWRITE_TAC[K_SPACE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [X_GEN_TAC `x:A` THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `{x:A}`)) THEN ASM_REWRITE_TAC[SING_SUBSET; COMPACT_IN_SING] THEN REWRITE_TAC[continuous_map; TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]; DISCH_TAC] THEN X_GEN_TAC `c:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SUBSET_RESTRICT] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `k INTER {x | x IN topspace top /\ (f:A->B) x IN c} = {x | x IN topspace(subtopology top k) /\ f x IN (IMAGE f k INTER c)}` SUBST1_TAC THENL [REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `subtopology top' (IMAGE (f:A->B) k)` THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);; let CLOSED_MAP_INTO_K_SPACE = prove (`!top top' (f:A->B). k_space top' /\ IMAGE f (topspace top) SUBSET topspace top' /\ (!k. compact_in top' k ==> closed_map(subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f) ==> closed_map(top,top') f`, REWRITE_TAC[K_SPACE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[closed_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]; X_GEN_TAC `k:B->bool` THEN DISCH_TAC] THEN SUBGOAL_THEN `k INTER IMAGE f c = IMAGE (f:A->B) ({x | x IN topspace top /\ f x IN k} INTER c)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:B->bool`) THEN ASM_REWRITE_TAC[closed_map] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED]);; let OPEN_MAP_INTO_K_SPACE = prove (`!top top' (f:A->B). k_space top' /\ IMAGE f (topspace top) SUBSET topspace top' /\ (!k. compact_in top' k ==> open_map(subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f) ==> open_map(top,top') f`, REWRITE_TAC[K_SPACE_OPEN] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[open_map] THEN X_GEN_TAC `c:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]; X_GEN_TAC `k:B->bool` THEN DISCH_TAC] THEN SUBGOAL_THEN `k INTER IMAGE f c = IMAGE (f:A->B) ({x | x IN topspace top /\ f x IN k} INTER c)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:B->bool`) THEN ASM_REWRITE_TAC[open_map] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN]);; let QUOTIENT_MAP_INTO_K_SPACE = prove (`!top top' (f:A->B). k_space top' /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!k. compact_in top' k ==> quotient_map(subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f) ==> quotient_map(top,top') f`, REWRITE_TAC[K_SPACE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QUOTIENT_MAP] THEN X_GEN_TAC `c:B->bool` THEN DISCH_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[CLOSED_IN_CONTINUOUS_MAP_PREIMAGE]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:B->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:B->bool`) THEN ASM_REWRITE_TAC[QUOTIENT_MAP; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER] THEN DISCH_THEN(MP_TAC o SPEC `k INTER c:B->bool` o CONJUNCT2) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN REWRITE_TAC[SET_RULE `{x | x IN topspace top INTER {x | x IN topspace top /\ f x IN k} /\ f x IN k INTER c} = {x | x IN topspace top /\ f x IN k} INTER {x | x IN topspace top /\ f x IN c}`] THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED]);; let QUOTIENT_MAP_INTO_K_SPACE_EQ = prove (`!top top' (f:A->B). k_space top' /\ kc_space top' ==> (quotient_map(top,top') f <=> continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' /\ !k. compact_in top' k ==> quotient_map (subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [ASM_SIMP_TAC[QUOTIENT_IMP_SURJECTIVE_MAP; QUOTIENT_IMP_CONTINUOUS_MAP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC QUOTIENT_MAP_RESTRICTION THEN RULE_ASSUM_TAC(REWRITE_RULE[kc_space]) THEN ASM_SIMP_TAC[]; MATCH_MP_TAC QUOTIENT_MAP_INTO_K_SPACE THEN ASM_REWRITE_TAC[]]);; let OPEN_MAP_INTO_K_SPACE_EQ = prove (`!top top' (f:A->B). k_space top' ==> (open_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !k. compact_in top' k ==> open_map (subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[OPEN_MAP_INTO_K_SPACE] THEN ASM_SIMP_TAC[OPEN_MAP_IMP_SUBSET_TOPSPACE] THEN ASM_SIMP_TAC[OPEN_MAP_RESTRICTION]);; let CLOSED_MAP_INTO_K_SPACE_EQ = prove (`!top top' (f:A->B). k_space top' ==> (closed_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !k. compact_in top' k ==> closed_map (subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[CLOSED_MAP_INTO_K_SPACE] THEN ASM_SIMP_TAC[CLOSED_MAP_IMP_SUBSET_TOPSPACE] THEN ASM_SIMP_TAC[CLOSED_MAP_RESTRICTION]);; let PROPER_MAP_INTO_K_SPACE = prove (`!top top' (f:A->B). k_space top' /\ IMAGE f (topspace top) SUBSET topspace top' /\ (!k. compact_in top' k ==> proper_map(subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f) ==> proper_map(top,top') f`, REWRITE_TAC[proper_map] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC CLOSED_MAP_INTO_K_SPACE THEN ASM_SIMP_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `{y:B}`) THEN ASM_REWRITE_TAC[COMPACT_IN_SING] THEN DISCH_THEN(MP_TAC o SPEC `y:B` o CONJUNCT2) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_INTER; TOPSPACE_SUBTOPOLOGY; IN_SING] THEN REWRITE_TAC[TAUT `(p /\ p /\ q) /\ q <=> p /\ q`] THEN SIMP_TAC[COMPACT_IN_SUBTOPOLOGY]]);; let PROPER_MAP_INTO_K_SPACE_EQ = prove (`!top top' (f:A->B). k_space top' ==> (proper_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !k. compact_in top' k ==> proper_map (subtopology top {x | x IN topspace top /\ f x IN k}, subtopology top' k) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[PROPER_MAP_INTO_K_SPACE] THEN ASM_SIMP_TAC[PROPER_MAP_IMP_SUBSET_TOPSPACE] THEN ASM_SIMP_TAC[PROPER_MAP_RESTRICTION]);; let COMPACT_IMP_PROPER_MAP = prove (`!top top' (f:A->B). k_space top' /\ kc_space top' /\ IMAGE f (topspace top) SUBSET topspace top' /\ (continuous_map(top,top') f \/ kc_space top) /\ (!k. compact_in top' k ==> compact_in top {x | x IN topspace top /\ f x IN k}) ==> proper_map(top,top') f`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] COMPACT_IMP_PROPER_MAP_GEN) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[K_SPACE]) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:B->bool` THEN DISCH_TAC THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN_GEN THEN ASM_SIMP_TAC[KC_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; INTER_SUBSET] THEN ASM_MESON_TAC[INTER_COMM]);; let PROPER_EQ_COMPACT_MAP = prove (`!top top' (f:A->B). k_space top' /\ kc_space top' /\ (continuous_map(top,top') f \/ kc_space top) ==> (proper_map(top,top') f <=> IMAGE f (topspace top) SUBSET topspace top' /\ !k. compact_in top' k ==> compact_in top {x | x IN topspace top /\ f x IN k})`, REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL [SIMP_TAC[PROPER_MAP_IMP_SUBSET_TOPSPACE] THEN SIMP_TAC[PROPER_MAP_ALT]; STRIP_TAC THEN MATCH_MP_TAC COMPACT_IMP_PROPER_MAP THEN ASM_REWRITE_TAC[]]);; let COMPACT_IMP_PERFECT_MAP = prove (`!top top' (f:A->B). k_space top' /\ kc_space top' /\ continuous_map(top,top') f /\ IMAGE f (topspace top) = topspace top' /\ (!k. compact_in top' k ==> compact_in top {x | x IN topspace top /\ f x IN k}) ==> perfect_map(top,top') f`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[perfect_map] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN MATCH_MP_TAC COMPACT_IMP_PROPER_MAP THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* More generally, the k-ification functor. *) (* ------------------------------------------------------------------------- *) let kification = define `kification (top:A topology) = topology {s | s SUBSET topspace top /\ !k. compact_in top k ==> open_in (subtopology top k) (k INTER s)}`;; let OPEN_IN_KIFICATION = prove (`!top (u:A->bool). open_in (kification top) u <=> u SUBSET topspace top /\ !k. compact_in top k ==> open_in (subtopology top k) (k INTER u)`, REPEAT GEN_TAC THEN REWRITE_TAC[kification] THEN W(MP_TAC o fst o EQ_IMP_RULE o PART_MATCH (lhand o rand) (CONJUNCT2 topology_tybij) o rator o lhand o snd) THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[IN_ELIM_THM]] THEN REWRITE_TAC[istopology; IN_ELIM_THM; INTER_EMPTY; EMPTY_SUBSET] THEN SIMP_TAC[OPEN_IN_EMPTY; UNIONS_SUBSET; INTER_UNIONS] THEN CONJ_TAC THEN (REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THENL [ONCE_REWRITE_TAC[SET_RULE `k INTER s INTER t = (k INTER s) INTER (k INTER t)`] THEN ASM_SIMP_TAC[OPEN_IN_INTER]; MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM SET_TAC[]]);; let OPEN_IN_KIFICATION_FINER = prove (`!top (s:A->bool). open_in top s ==> open_in (kification top) s`, SIMP_TAC[OPEN_IN_SUBTOPOLOGY_INTER_OPEN; OPEN_IN_KIFICATION; OPEN_IN_SUBSET]);; let TOPSPACE_KIFICATION = prove (`!top:A topology. topspace(kification top) = topspace top`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [topspace] THEN MATCH_MP_TAC(SET_RULE `s IN u /\ (!t. t IN u ==> t SUBSET s) ==> UNIONS u = s`) THEN SIMP_TAC[IN_ELIM_THM; OPEN_IN_KIFICATION; SUBSET_REFL] THEN SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; OPEN_IN_SUBTOPOLOGY_REFL; SET_RULE `s SUBSET u ==> s INTER u = s`]);; let CLOSED_IN_KIFICATION = prove (`!top (u:A->bool). closed_in (kification top) u <=> u SUBSET topspace top /\ !k. compact_in top k ==> closed_in (subtopology top k) (k INTER u)`, REPEAT GEN_TAC THEN REWRITE_TAC[closed_in; TOPSPACE_KIFICATION] THEN ASM_CASES_TAC `(u:A->bool) SUBSET topspace top` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[OPEN_IN_KIFICATION; TOPSPACE_SUBTOPOLOGY; SUBSET_DIFF] THEN ASM_SIMP_TAC[SET_RULE `u SUBSET v ==> k INTER u SUBSET v INTER k`] THEN REWRITE_TAC[SET_RULE `u INTER k DIFF k INTER s = k INTER (u DIFF s)`]);; let CLOSED_IN_KIFICATION_FINER = prove (`!top (s:A->bool). closed_in top s ==> closed_in (kification top) s`, SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_INTER_CLOSED; CLOSED_IN_KIFICATION; CLOSED_IN_SUBSET]);; let KIFICATION_EQ_SELF = prove (`!top:A topology. kification top = top <=> k_space top`, REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_KIFICATION; K_SPACE_ALT] THEN MESON_TAC[OPEN_IN_SUBSET]);; let COMPACT_IN_KIFICATION = prove (`!top (k:A->bool). compact_in (kification top) k <=> compact_in top k`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[COMPACT_IN_CONTRACTIVE; OPEN_IN_KIFICATION_FINER; TOPSPACE_KIFICATION]; DISCH_TAC THEN REWRITE_TAC[compact_in]] THEN ASM_SIMP_TAC[TOPSPACE_KIFICATION; COMPACT_IN_SUBSET_TOPSPACE] THEN X_GEN_TAC `U:(A->bool)->bool` THEN REWRITE_TAC[OPEN_IN_KIFICATION] THEN REWRITE_TAC[RIGHT_AND_FORALL_THM; RIGHT_IMP_FORALL_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_IN_SUBSPACE]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[COMPACT_SPACE] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (\u:A->bool. k INTER u) U`) THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET] THEN REWRITE_TAC[GSYM SIMPLE_IMAGE; GSYM INTER_UNIONS] THEN ASM_REWRITE_TAC[SET_RULE `k INTER u = k <=> k SUBSET u`]);; let COMPACT_SPACE_KIFICATION = prove (`!top:A topology. compact_space(kification top) <=> compact_space top`, REWRITE_TAC[compact_space; COMPACT_IN_KIFICATION; TOPSPACE_KIFICATION]);; let KIFICATION_KIFICATION = prove (`!top:A topology. kification(kification top) = kification top`, REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_KIFICATION; TOPSPACE_KIFICATION; COMPACT_IN_KIFICATION] THEN REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[OPEN_IN_KIFICATION_FINER]] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_KIFICATION]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:A->bool`)) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);; let K_SPACE_KIFICATION = prove (`!top:A topology. k_space(kification top)`, REWRITE_TAC[GSYM KIFICATION_EQ_SELF; KIFICATION_KIFICATION]);; let CONTINUOUS_MAP_INTO_KIFICATION = prove (`!top top' (f:A->B). k_space top ==> (continuous_map(top,kification top') f <=> continuous_map(top,top') f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_map; TOPSPACE_KIFICATION] THEN EQ_TAC THEN SIMP_TAC[OPEN_IN_KIFICATION_FINER] THEN STRIP_TAC THEN X_GEN_TAC `v:B->bool` THEN REWRITE_TAC[OPEN_IN_KIFICATION] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*")) THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM(REWRITE_RULE[GSYM KIFICATION_EQ_SELF] th)]) THEN REWRITE_TAC[OPEN_IN_KIFICATION; SUBSET_RESTRICT] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN REMOVE_THEN "*" (MP_TAC o SPEC `IMAGE (f:A->B) k`) THEN ANTS_TAC THENL [MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[continuous_map]; REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `u:B->bool` THEN STRIP_TAC THEN EXISTS_TAC `{x | x IN topspace top /\ (f:A->B) x IN u}` THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_FROM_KIFICATION = prove (`!top top' (f:A->B). continuous_map(top,top') f ==> continuous_map(kification top,top') f`, REWRITE_TAC[continuous_map; TOPSPACE_KIFICATION] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[OPEN_IN_KIFICATION_FINER]);; let CONTINUOUS_MAP_KIFICATION = prove (`!top top' (f:A->B). continuous_map(top,top') f ==> continuous_map(kification top,kification top') f`, SIMP_TAC[CONTINUOUS_MAP_INTO_KIFICATION; K_SPACE_KIFICATION] THEN REWRITE_TAC[CONTINUOUS_MAP_FROM_KIFICATION]);; let SUBTOPOLOGY_KIFICATION_COMPACT = prove (`!top (k:A->bool). compact_in top k ==> subtopology (kification top) k = subtopology top k`, REPEAT STRIP_TAC THEN REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_SUBTOPOLOGY] THEN X_GEN_TAC `u:A->bool` THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[OPEN_IN_KIFICATION_FINER]] THEN REWRITE_TAC[OPEN_IN_KIFICATION] THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN MESON_TAC[INTER_COMM]);; let SUBTOPOLOGY_KIFICATION_FINER = prove (`!top (s:A->bool) u. open_in (subtopology (kification top) s) u ==> open_in (kification (subtopology top s)) u`, REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_KIFICATION; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);; let PROPER_MAP_FROM_KIFICATION = prove (`!top top' (f:A->B). k_space top' ==> (proper_map(kification top,top') f <=> proper_map(top,top') f)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PROPER_MAP_INTO_K_SPACE_EQ] THEN REWRITE_TAC[TOPSPACE_KIFICATION; PROPER_MAP_ALT] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; COMPACT_IN_KIFICATION; TOPSPACE_SUBTOPOLOGY; IN_ELIM_THM; IN_INTER; TOPSPACE_KIFICATION] THEN MATCH_MP_TAC(MESON[] `(P /\ (!k. Q k ==> S k) ==> (!k. Q k ==> (R k <=> R' k))) ==> (P /\ (!k. Q k ==> R k /\ S k) <=> P /\ (!k. Q k ==> R' k /\ S k))`) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o MATCH_MP (MESON[] `(!x. P x ==> (!y. P y /\ Q x y ==> R x y)) ==> (!x. P x /\ Q x x ==> R x x)`))) THEN REWRITE_TAC[TAUT `(p /\ p /\ q) /\ q <=> p /\ q`; SUBSET_REFL] THEN SIMP_TAC[SUBTOPOLOGY_KIFICATION_COMPACT]);; let PERFECT_MAP_FROM_KIFICATION = prove (`!top top' (f:A->B). k_space top' /\ perfect_map(top,top') f ==> perfect_map(kification top,top') f`, SIMP_TAC[perfect_map; PROPER_MAP_FROM_KIFICATION; CONTINUOUS_MAP_FROM_KIFICATION; TOPSPACE_KIFICATION]);; let K_SPACE_PERFECT_MAP_IMAGE_EQ = prove (`!top top' (f:A->B). hausdorff_space top /\ perfect_map(top,top') f ==> (k_space top <=> k_space top')`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[K_SPACE_PERFECT_MAP_IMAGE]; DISCH_TAC] THEN MP_TAC(ISPECL [`kification top:A topology`; `top:A topology`] HOMEOMORPHIC_K_SPACE) THEN ASM_REWRITE_TAC[HOMEOMORPHIC_SPACE; K_SPACE_KIFICATION] THEN DISCH_THEN MATCH_MP_TAC THEN EXISTS_TAC `\x:A. x` THEN REWRITE_TAC[HOMEOMORPHIC_EQ_INJECTIVE_PERFECT_MAP] THEN MP_TAC(ISPECL [`kification top:A topology`; `top:A topology`; `top':B topology`; `\x:A. x`; `f:A->B`] PERFECT_MAP_FROM_COMPOSITION_RIGHT) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[o_DEF; ETA_AX; IMAGE_ID; TOPSPACE_KIFICATION] THEN ASM_SIMP_TAC[PERFECT_MAP_FROM_KIFICATION] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_KIFICATION; CONTINUOUS_MAP_ID] THEN ASM_SIMP_TAC[PERFECT_IMP_CONTINUOUS_MAP]);; (* ------------------------------------------------------------------------- *) (* One-point compactifications and the Alexandroff extension construction. *) (* ------------------------------------------------------------------------- *) let ONE_POINT_COMPACTIFICATION_DENSE = prove (`!top a:A. compact_space top /\ ~compact_in top (topspace top DELETE a) ==> top closure_of (topspace top DELETE a) = topspace top`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:A) IN topspace top` THENL [STRIP_TAC; ASM_MESON_TAC[compact_space; SET_RULE `~(a IN s) ==> s DELETE a = s`]] THEN MATCH_MP_TAC(SET_RULE `u DELETE a SUBSET s /\ s SUBSET u /\ ~(s = u DELETE a) ==> s = u`) THEN REWRITE_TAC[CLOSURE_OF_EQ; CLOSURE_OF_SUBSET_TOPSPACE] THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; DELETE_SUBSET] THEN ASM_MESON_TAC[CLOSED_IN_COMPACT_SPACE]);; let ONE_POINT_COMPACTIFICATION_INTERIOR = prove (`!top a:A. compact_space top /\ ~compact_in top (topspace top DELETE a) ==> top interior_of {a} = {}`, REWRITE_TAC[INTERIOR_OF_CLOSURE_OF; SET_RULE `s DIFF {a} = s DELETE a`] THEN SIMP_TAC[ONE_POINT_COMPACTIFICATION_DENSE; DIFF_EQ_EMPTY]);; let KC_SPACE_ONE_POINT_COMPACTIFICATION_GEN = prove (`!top a:A. compact_space top ==> (kc_space top <=> open_in top (topspace top DELETE a) /\ (!k. compact_in top k /\ ~(a IN k) ==> closed_in top k) /\ k_space (subtopology top (topspace top DELETE a)) /\ kc_space (subtopology top (topspace top DELETE a)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; KC_IMP_T1_SPACE; OPEN_IN_TOPSPACE]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[kc_space]; ALL_TAC] THEN MATCH_MP_TAC K_KC_SPACE_SUBTOPOLOGY THEN ASM_SIMP_TAC[COMPACT_IMP_K_SPACE] THEN DISJ1_TAC THEN ASM_MESON_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; KC_IMP_T1_SPACE; OPEN_IN_TOPSPACE]; STRIP_TAC] THEN REWRITE_TAC[kc_space] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `(a:A) IN s` THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM_REWRITE_TAC[closed_in] THEN SUBGOAL_THEN `topspace top DIFF s:A->bool = (topspace top DELETE a) DIFF (s DELETE a)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC OPEN_IN_TRANS_FULL THEN EXISTS_TAC `topspace top DELETE (a:A)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; SUBSET_REFL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [K_SPACE]) THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY; SUBSET_INTER; SUBSET_DELETE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_SIMP_TAC[SET_RULE `~(a IN k) ==> k INTER s DELETE a = k INTER s`] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_INTER] THEN MATCH_MP_TAC CLOSED_INTER_COMPACT_IN THEN ASM_SIMP_TAC[]);; let alexandroff_compactification = new_definition `alexandroff_compactification (top:A topology) = topology ({ IMAGE INL u | open_in top u} UNION { INR one INSERT IMAGE INL (topspace top DIFF c) | c | compact_in top c /\ closed_in top c})`;; let OPEN_IN_ALEXANDROFF_COMPACTIFICATION = prove (`!(top:A topology) v. open_in(alexandroff_compactification top) v <=> (?u. open_in top u /\ v = IMAGE INL u) \/ (?c. compact_in top c /\ closed_in top c /\ v = INR one INSERT IMAGE INL (topspace top DIFF c))`, REPEAT GEN_TAC THEN REWRITE_TAC[alexandroff_compactification] THEN W(MP_TAC o fst o EQ_IMP_RULE o PART_MATCH (lhand o rand) (CONJUNCT2 topology_tybij) o rator o lhand o snd) THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN SUBST1_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM IN] THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]] THEN REWRITE_TAC[istopology] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN DISJ1_TAC THEN REWRITE_TAC[SET_RULE `P /\ {} = IMAGE f s <=> s = {} /\ P`] THEN REWRITE_TAC[UNWIND_THM2; OPEN_IN_EMPTY]; MATCH_MP_TAC(SET_RULE `(!x y. R x y ==> R y x) /\ (!x y. x IN s /\ y IN s ==> R x y) /\ (!x y. x IN s /\ y IN t ==> R x y) /\ (!x y. x IN t /\ y IN t ==> R x y) ==> !x y. x IN (s UNION t) /\ y IN (s UNION t) ==> R x y`) THEN CONJ_TAC THENL [MESON_TAC[INTER_COMM]; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN X_GEN_TAC `v:A->bool` THEN DISCH_TAC THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN DISJ1_TAC THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC IMAGE_INTER_INJ THEN REWRITE_TAC[sum_INJECTIVE]; X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN X_GEN_TAC `c:A->bool` THEN REPEAT DISCH_TAC THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN DISJ1_TAC THEN EXISTS_TAC `u DIFF c:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_DIFF] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INTER; IN_INSERT] THEN MATCH_MP_TAC sum_INDUCT THEN REWRITE_TAC[IN_DIFF; sum_DISTINCT; sum_INJECTIVE; UNWIND_THM1] THEN ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; X_GEN_TAC `c:A->bool` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `d:A->bool` THEN REPEAT DISCH_TAC THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN DISJ2_TAC THEN EXISTS_TAC `c UNION d:A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_UNION; COMPACT_IN_UNION] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INTER; IN_INSERT; IN_UNION] THEN MATCH_MP_TAC sum_INDUCT THEN REWRITE_TAC[IN_DIFF; sum_DISTINCT; sum_INJECTIVE; UNWIND_THM1] THEN SET_TAC[]]; REWRITE_TAC[FORALL_SUBSET_UNION] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN REWRITE_TAC[SET_RULE `s SUBSET {x | P x} <=> !x. x IN s ==> P x`] THEN X_GEN_TAC `uu:(A->bool)->bool` THEN DISCH_TAC THEN X_GEN_TAC `cc:(A->bool)->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `cc:(A->bool)->bool = {}` THENL [ASM_REWRITE_TAC[IMAGE_CLAUSES; UNION_EMPTY] THEN REWRITE_TAC[IN_UNION; IN_IMAGE] THEN DISJ1_TAC THEN EXISTS_TAC `UNIONS uu:A->bool` THEN ASM_SIMP_TAC[IN_ELIM_THM; OPEN_IN_UNIONS] THEN REWRITE_TAC[UNIONS_IMAGE] THEN SET_TAC[]; REWRITE_TAC[IN_UNION; IN_IMAGE] THEN DISJ2_TAC THEN EXISTS_TAC `INTERS(cc UNION IMAGE (\u. topspace top DIFF u) uu):A->bool` THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION] THEN MATCH_MP_TAC sum_INDUCT THEN REWRITE_TAC[IN_IMAGE; IN_DIFF; IN_INTERS; IN_INSERT; IN_UNIONS; IN_UNION; IN_UNIV] THEN REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE] THEN REWRITE_TAC[RIGHT_OR_DISTRIB; EXISTS_OR_THM; UNWIND_THM1] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[IN_IMAGE; IN_UNIV; IN_DIFF; IN_INSERT] THEN REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN X_GEN_TAC `a:A` THEN REWRITE_TAC[FORALL_AND_THM; UNWIND_THM1] THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]] THEN ONCE_REWRITE_TAC[TAUT `~(p /\ q) <=> ~q \/ ~p`] THEN BINOP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; IN_DIFF] THEN ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; FIRST_X_ASSUM(X_CHOOSE_TAC `c:A->bool` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN SUBGOAL_THEN `cc = (c:A->bool) INSERT cc` SUBST1_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[INTERS_INSERT; SET_RULE `(x INSERT s) UNION t = x INSERT (s UNION t)`]] THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC (MESON[CLOSED_IN_INTER; COMPACT_INTER_CLOSED_IN] `closed_in top c /\ compact_in top c /\ closed_in top d ==> compact_in top (c INTER d) /\ closed_in top (c INTER d)`) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[FORALL_IN_UNION]] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]]]]);; let TOPSPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. topspace(alexandroff_compactification top) = INR one INSERT IMAGE INL (topspace top)`, GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [topspace] THEN MATCH_MP_TAC(SET_RULE `u IN s /\ (!c. c IN s ==> c SUBSET u) ==> UNIONS s = u`) THEN REWRITE_TAC[FORALL_IN_GSPEC; OPEN_IN_ALEXANDROFF_COMPACTIFICATION] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [MESON_TAC[COMPACT_IN_EMPTY; CLOSED_IN_EMPTY; DIFF_EMPTY]; ALL_TAC] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN SET_TAC[]);; let CLOSED_IN_ALEXANDROFF_COMPACTIFICATION = prove (`!(top:A topology) c. closed_in (alexandroff_compactification top) c <=> (?k. compact_in top k /\ closed_in top k /\ c = IMAGE INL k) \/ (?u. open_in top u /\ c = topspace(alexandroff_compactification top) DIFF IMAGE INL u)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [closed_in] THEN REWRITE_TAC[OPEN_IN_ALEXANDROFF_COMPACTIFICATION] THEN MATCH_MP_TAC(TAUT `(q' ==> p) /\ (r' ==> p) /\ (p ==> (q <=> q') /\ (r <=> r')) ==> (p /\ (q \/ r) <=> r' \/ q')`) THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[closed_in] THEN SET_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC) THENL [FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET); FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET)] THEN REWRITE_TAC[EXTENSION; FORALL_SUM_THM; FORALL_ONE_THM] THEN REWRITE_TAC[IN_INSERT; IN_DIFF; IN_IMAGE] THEN REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE; UNWIND_THM1] THEN MP_TAC(INST_TYPE [`:1`,`:B`] sum_DISTINCT) THEN MP_TAC(INST_TYPE [`:1`,`:B`] sum_INJECTIVE) THEN ASM SET_TAC[]);; let CLOSED_IN_ALEXANDROFF_COMPACTIFICATION_IMAGE_INL = prove (`!(top:A topology) k. closed_in (alexandroff_compactification top) (IMAGE INL k) <=> compact_in top k /\ closed_in top k`, REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_ALEXANDROFF_COMPACTIFICATION] THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN MATCH_MP_TAC(TAUT `(p' <=> p) /\ ~q ==> (p \/ q <=> p')`) THEN SIMP_TAC[MATCH_MP (SET_RULE `(!x y. f x = f y <=> x = y) ==> (IMAGE f s = IMAGE f t <=> s = t)`) (CONJUNCT1 sum_INJECTIVE)] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MP_TAC(INST_TYPE [`:1`,`:B`] sum_DISTINCT) THEN SET_TAC[]);; let OPEN_MAP_INL = prove (`!top:A topology. open_map(top,alexandroff_compactification top) INL`, REWRITE_TAC[open_map; OPEN_IN_ALEXANDROFF_COMPACTIFICATION] THEN MESON_TAC[]);; let CONTINUOUS_MAP_INL = prove (`!top:A topology. continuous_map(top,alexandroff_compactification top) INL`, REWRITE_TAC[continuous_map; OPEN_IN_ALEXANDROFF_COMPACTIFICATION] THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION; IN_INSERT] THEN GEN_TAC THEN SIMP_TAC[FUN_IN_IMAGE] THEN X_GEN_TAC `v:A+1->bool` THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[IN_INSERT; IN_IMAGE] THEN REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE; UNWIND_THM1] THEN REWRITE_TAC[SET_RULE `x IN s /\ x IN s DIFF t <=> x IN s DIFF t`] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> (x IN t /\ x IN s <=> x IN s)`; OPEN_IN_SUBSET; IN_GSPEC; OPEN_IN_DIFF; OPEN_IN_TOPSPACE]);; let EMBEDDING_MAP_INL = prove (`!top:A topology. embedding_map(top,alexandroff_compactification top) INL`, GEN_TAC THEN MATCH_MP_TAC INJECTIVE_OPEN_IMP_EMBEDDING_MAP THEN REWRITE_TAC[CONTINUOUS_MAP_INL; OPEN_MAP_INL; sum_INJECTIVE]);; let COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. compact_space(alexandroff_compactification top)`, GEN_TAC THEN REWRITE_TAC[COMPACT_SPACE_ALT] THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN X_GEN_TAC `uu:(A+1->bool)->bool` THEN REWRITE_TAC[INSERT_SUBSET] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_UNIONS]) THEN DISCH_THEN(X_CHOOSE_THEN `u:A+1->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `compact_in (alexandroff_compactification(top:A topology)) (topspace(alexandroff_compactification top) DIFF u)` MP_TAC THENL [SUBGOAL_THEN `?c. compact_in top c /\ closed_in top c /\ topspace(alexandroff_compactification top) DIFF u = IMAGE INL (c:A->bool)` STRIP_ASSUME_TAC THENL [ALL_TAC; ASM_MESON_TAC[IMAGE_COMPACT_IN; CONTINUOUS_MAP_INL]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A+1->bool`) THEN ASM_REWRITE_TAC[OPEN_IN_ALEXANDROFF_COMPACTIFICATION] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [STRIP_TAC THEN UNDISCH_TAC `INR one IN (u:A+1->bool)` THEN ASM_REWRITE_TAC[IN_IMAGE; sum_DISTINCT]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN MATCH_MP_TAC(SET_RULE `c SUBSET s /\ (!x. ~(z = f x)) /\ (!x y. f x = f y <=> x = y) ==> (z INSERT IMAGE f s) DIFF (z INSERT IMAGE f (s DIFF c)) = IMAGE f c`) THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET; sum_DISTINCT; sum_INJECTIVE]]; REWRITE_TAC[compact_in; SUBSET_DIFF] THEN ASM_REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN DISCH_THEN(MP_TAC o SPEC `uu:(A+1->bool)->bool`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `vv:(A+1->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(u:A+1->bool) INSERT vv` THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN ASM SET_TAC[]]);; let TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE = prove (`!top:A topology. topspace(alexandroff_compactification top) DELETE (INR one) = IMAGE INL (topspace top)`, GEN_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN REWRITE_TAC[SET_RULE `(a INSERT s) DELETE a = s <=> ~(a IN s)`] THEN REWRITE_TAC[IN_IMAGE; sum_DISTINCT]);; let ALEXANDROFF_COMPACTIFICATION_DENSE = prove (`!top:A topology. ~compact_space top ==> (alexandroff_compactification top) closure_of (IMAGE INL (topspace top)) = topspace(alexandroff_compactification top)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN MATCH_MP_TAC ONE_POINT_COMPACTIFICATION_DENSE THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN REWRITE_TAC[CONTRAPOS_THM; COMPACT_IN_SUBSPACE] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_COMPACT_SPACE THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]);; let T0_SPACE_ONE_POINT_COMPACTIFICATION = prove (`!top a:A. compact_space top /\ open_in top (topspace top DELETE a) ==> (t0_space top <=> t0_space (subtopology top (topspace top DELETE a)))`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[T0_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[t0_space; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[SET_RULE `s INTER s DELETE a = s DELETE a`] THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; IN_DELETE; SUBSET_DELETE] THEN DISCH_TAC THEN MATCH_MP_TAC(MESON[] `(!x y. R x y ==> R y x) /\ (?a. (!x y. (P x /\ ~(x = a)) /\ (P y /\ ~(y = a)) /\ ~(x = y) ==> R x y) /\ (!x. P x /\ ~(x = a) ==> R a x)) ==> !x y. P x /\ P y /\ ~(x = y) ==> R x y`) THEN CONJ_TAC THENL [MESON_TAC[]; EXISTS_TAC `a:A`] THEN CONJ_TAC THENL [ASM_METIS_TAC[]; REPEAT STRIP_TAC] THEN EXISTS_TAC `topspace top DELETE (a:A)` THEN ASM_REWRITE_TAC[IN_DELETE]);; let T0_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. t0_space(alexandroff_compactification top) <=> t0_space top`, GEN_TAC THEN MP_TAC(ISPECL [`alexandroff_compactification(top:A topology)`; `INR one:A+1`] T0_SPACE_ONE_POINT_COMPACTIFICATION) THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN ANTS_TAC THENL [REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN MESON_TAC[open_map; OPEN_IN_TOPSPACE; OPEN_MAP_INL]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN MATCH_MP_TAC HOMEOMORPHIC_T0_SPACE THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]]);; let T1_SPACE_ONE_POINT_COMPACTIFICATION = prove (`!top a:A. open_in top (topspace top DELETE a) /\ (!k. compact_in (subtopology top (topspace top DELETE a)) k /\ closed_in (subtopology top (topspace top DELETE a)) k ==> closed_in top k) ==> (t1_space top <=> t1_space (subtopology top (topspace top DELETE a)))`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[T1_SPACE_SUBTOPOLOGY] THEN REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_CASES_TAC `x:A = a` THENL [ASM_REWRITE_TAC[closed_in; SING_SUBSET] THEN ASM_REWRITE_TAC[SET_RULE `s DIFF {a} = s DELETE a`]; FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[COMPACT_IN_SING; TOPSPACE_SUBTOPOLOGY] THEN ASM_REWRITE_TAC[IN_INTER; IN_DELETE] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_DELETE]]);; let T1_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. t1_space(alexandroff_compactification top) <=> t1_space top`, GEN_TAC THEN MP_TAC(ISPECL [`alexandroff_compactification(top:A topology)`; `INR one:A+1`] T1_SPACE_ONE_POINT_COMPACTIFICATION) THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN ANTS_TAC THENL [SIMP_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN CONJ_TAC THENL [MESON_TAC[open_map; OPEN_IN_TOPSPACE; OPEN_MAP_INL]; ALL_TAC] THEN ONCE_REWRITE_TAC[MESON[COMPACT_IN_SUBTOPOLOGY] `(compact_in (subtopology top u) k /\ P k ==> Q k) <=> (k SUBSET u ==> compact_in (subtopology top u) k /\ P k ==> Q k)`] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [CLOSED_IN_ALEXANDROFF_COMPACTIFICATION_IMAGE_INL] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_MAP_COMPACTNESS; MATCH_MP_TAC HOMEOMORPHIC_MAP_CLOSEDNESS] THEN ASM_REWRITE_TAC[GSYM embedding_map; EMBEDDING_MAP_INL]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN MATCH_MP_TAC HOMEOMORPHIC_T1_SPACE THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]]);; let KC_SPACE_ONE_POINT_COMPACTIFICATION = prove (`!top a:A. compact_space top /\ open_in top (topspace top DELETE a) /\ (!k. compact_in (subtopology top (topspace top DELETE a)) k /\ closed_in (subtopology top (topspace top DELETE a)) k ==> closed_in top k) ==> (kc_space top <=> k_space (subtopology top (topspace top DELETE a)) /\ kc_space (subtopology top (topspace top DELETE a)))`, SIMP_TAC[KC_SPACE_ONE_POINT_COMPACTIFICATION_GEN] THEN REWRITE_TAC[kc_space; COMPACT_IN_SUBTOPOLOGY; SUBSET_DELETE] THEN MESON_TAC[COMPACT_IN_SUBSET_TOPSPACE]);; let KC_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. kc_space(alexandroff_compactification top) <=> k_space top /\ kc_space top`, GEN_TAC THEN MP_TAC(ISPECL [`alexandroff_compactification(top:A topology)`; `INR one:A+1`] KC_SPACE_ONE_POINT_COMPACTIFICATION) THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN ANTS_TAC THENL [SIMP_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN CONJ_TAC THENL [MESON_TAC[open_map; OPEN_IN_TOPSPACE; OPEN_MAP_INL]; ALL_TAC] THEN ONCE_REWRITE_TAC[MESON[COMPACT_IN_SUBTOPOLOGY] `(compact_in (subtopology top u) k /\ P k ==> Q k) <=> (k SUBSET u ==> compact_in (subtopology top u) k /\ P k ==> Q k)`] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [CLOSED_IN_ALEXANDROFF_COMPACTIFICATION_IMAGE_INL] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_MAP_COMPACTNESS; MATCH_MP_TAC HOMEOMORPHIC_MAP_CLOSEDNESS] THEN ASM_REWRITE_TAC[GSYM embedding_map; EMBEDDING_MAP_INL]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_K_SPACE; MATCH_MP_TAC HOMEOMORPHIC_KC_SPACE] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]]);; let REGULAR_SPACE_ONE_POINT_COMPACTIFICATION = prove (`!top a:A. compact_space top /\ open_in top (topspace top DELETE a) /\ (!k. compact_in (subtopology top (topspace top DELETE a)) k /\ closed_in (subtopology top (topspace top DELETE a)) k ==> closed_in top k) ==> (regular_space top <=> regular_space (subtopology top (topspace top DELETE a)) /\ locally_compact_space (subtopology top (topspace top DELETE a)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [SIMP_TAC[REGULAR_SPACE_SUBTOPOLOGY] THEN ASM_MESON_TAC[LOCALLY_COMPACT_SPACE_OPEN_SUBSET; COMPACT_IMP_LOCALLY_COMPACT_SPACE]; STRIP_TAC] THEN REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `x:A`] THEN ASM_CASES_TAC `x:A = a` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [MP_TAC(ISPEC `subtopology top (topspace top DELETE (a:A))` LOCALLY_COMPACT_SPACE_COMPACT_CLOSED_COMPACT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `topspace top DIFF u:A->bool`) THEN ANTS_TAC THENL [REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CLOSED_IN_COMPACT_SPACE THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE]; ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; SUBSET_DIFF; SUBSET_DELETE; COMPACT_IN_SUBTOPOLOGY; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:A->bool`) THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; SUBSET_DELETE] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`topspace top DIFF k:A->bool`; `topspace top DIFF v:A->bool`] THEN ASM_SIMP_TAC[OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE; CLOSED_IN_TOPSPACE] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]; MP_TAC(ISPEC `subtopology top (topspace top DELETE (a:A))` LOCALLY_COMPACT_REGULAR_SPACE_NEIGHBOURHOOD_BASE) THEN ASM_REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`(topspace top DELETE (a:A)) INTER u`; `x:A`]) THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; SUBSET_DELETE; OPEN_IN_INTER; IN_INTER; IN_DELETE] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);; let REGULAR_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. regular_space(alexandroff_compactification top) <=> regular_space top /\ locally_compact_space top`, GEN_TAC THEN MP_TAC(ISPECL [`alexandroff_compactification(top:A topology)`; `INR one:A+1`] REGULAR_SPACE_ONE_POINT_COMPACTIFICATION) THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN ANTS_TAC THENL [SIMP_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN CONJ_TAC THENL [MESON_TAC[open_map; OPEN_IN_TOPSPACE; OPEN_MAP_INL]; ALL_TAC] THEN ONCE_REWRITE_TAC[MESON[COMPACT_IN_SUBTOPOLOGY] `(compact_in (subtopology top u) k /\ P k ==> Q k) <=> (k SUBSET u ==> compact_in (subtopology top u) k /\ P k ==> Q k)`] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [CLOSED_IN_ALEXANDROFF_COMPACTIFICATION_IMAGE_INL] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_MAP_COMPACTNESS; MATCH_MP_TAC HOMEOMORPHIC_MAP_CLOSEDNESS] THEN ASM_REWRITE_TAC[GSYM embedding_map; EMBEDDING_MAP_INL]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_REGULAR_SPACE; MATCH_MP_TAC HOMEOMORPHIC_LOCALLY_COMPACT_SPACE] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]]);; let HAUSDORFF_SPACE_ONE_POINT_COMPACTIFICATION = prove (`!top a:A. compact_space top /\ open_in top (topspace top DELETE a) /\ (!k. compact_in (subtopology top (topspace top DELETE a)) k /\ closed_in (subtopology top (topspace top DELETE a)) k ==> closed_in top k) ==> (hausdorff_space top <=> hausdorff_space (subtopology top (topspace top DELETE a)) /\ locally_compact_space (subtopology top (topspace top DELETE a)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN ASM_MESON_TAC[COMPACT_HAUSDORFF_IMP_REGULAR_SPACE; REGULAR_SPACE_ONE_POINT_COMPACTIFICATION]; ASM_METIS_TAC[REGULAR_SPACE_ONE_POINT_COMPACTIFICATION; LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE; REGULAR_T1_IMP_HAUSDORFF_SPACE; HAUSDORFF_IMP_T1_SPACE; T1_SPACE_ONE_POINT_COMPACTIFICATION]]);; let HAUSDORFF_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. hausdorff_space(alexandroff_compactification top) <=> hausdorff_space top /\ locally_compact_space top`, GEN_TAC THEN MP_TAC(ISPECL [`alexandroff_compactification(top:A topology)`; `INR one:A+1`] HAUSDORFF_SPACE_ONE_POINT_COMPACTIFICATION) THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN ANTS_TAC THENL [SIMP_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN CONJ_TAC THENL [MESON_TAC[open_map; OPEN_IN_TOPSPACE; OPEN_MAP_INL]; ALL_TAC] THEN ONCE_REWRITE_TAC[MESON[COMPACT_IN_SUBTOPOLOGY] `(compact_in (subtopology top u) k /\ P k ==> Q k) <=> (k SUBSET u ==> compact_in (subtopology top u) k /\ P k ==> Q k)`] THEN REWRITE_TAC[FORALL_SUBSET_IMAGE] THEN X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [CLOSED_IN_ALEXANDROFF_COMPACTIFICATION_IMAGE_INL] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_MAP_COMPACTNESS; MATCH_MP_TAC HOMEOMORPHIC_MAP_CLOSEDNESS] THEN ASM_REWRITE_TAC[GSYM embedding_map; EMBEDDING_MAP_INL]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN BINOP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_HAUSDORFF_SPACE; MATCH_MP_TAC HOMEOMORPHIC_LOCALLY_COMPACT_SPACE] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]]);; let COMPLETELY_REGULAR_SPACE_ALEXANDROFF_COMPACTIFICATION = prove (`!top:A topology. completely_regular_space(alexandroff_compactification top) <=> completely_regular_space top /\ locally_compact_space top`, MESON_TAC[REGULAR_SPACE_ALEXANDROFF_COMPACTIFICATION; COMPLETELY_REGULAR_EQ_REGULAR_SPACE; COMPACT_IMP_LOCALLY_COMPACT_SPACE; COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION]);; let HAUSDORFF_SPACE_ONE_POINT_COMPACTIFICATION_ASYMMETRIC_PROD = prove (`!top a:A. compact_space top ==> (hausdorff_space top <=> kc_space (prod_topology top (subtopology top (topspace top DELETE a))) /\ k_space (prod_topology top (subtopology top (topspace top DELETE a))))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:A) IN topspace top` THENL [ALL_TAC; ASM_SIMP_TAC[SUBTOPOLOGY_TOPSPACE; KC_SPACE_COMPACT_PROD_TOPOLOGY; SET_RULE `~(a IN s) ==> s DELETE a = s`] THEN SIMP_TAC[COMPACT_IMP_K_SPACE; COMPACT_SPACE_PROD_TOPOLOGY]] THEN STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [REWRITE_TAC[PROD_TOPOLOGY_SUBTOPOLOGY] THEN CONJ_TAC THENL [MATCH_MP_TAC HAUSDORFF_IMP_KC_SPACE THEN MATCH_MP_TAC HAUSDORFF_SPACE_SUBTOPOLOGY THEN ASM_REWRITE_TAC[HAUSDORFF_SPACE_PROD_TOPOLOGY]; MATCH_MP_TAC K_SPACE_OPEN_SUBTOPOLOGY THEN ASM_REWRITE_TAC[HAUSDORFF_SPACE_PROD_TOPOLOGY] THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE] THEN ASM_SIMP_TAC[COMPACT_IMP_K_SPACE; COMPACT_SPACE_PROD_TOPOLOGY] THEN REPEAT DISJ2_TAC THEN ONCE_REWRITE_TAC[SET_RULE `s DELETE a = s DIFF {a}`] THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; CLOSED_IN_HAUSDORFF_SING]]; ALL_TAC] THEN ASM_CASES_TAC `topspace top = {a:A}` THENL [ASM_REWRITE_TAC[hausdorff_space] THEN SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`prod_topology top (subtopology top (topspace top DELETE (a:A)))`; `top:A topology`; `FST:A#A->A`] KC_SPACE_RETRACTION_MAP_IMAGE) THEN ASM_REWRITE_TAC[RETRACTION_MAP_FST; TOPSPACE_SUBTOPOLOGY] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN REWRITE_TAC[HAUSDORFF_SPACE_CLOSED_IN_DIAGONAL] THEN SUBGOAL_THEN `closed_in (prod_topology top (subtopology top (topspace top DELETE a))) {x:A,x | x IN topspace top DELETE a}` MP_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [K_SPACE]) THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; TOPSPACE_PROD_TOPOLOGY] THEN SIMP_TAC[IN_DELETE; IN_CROSS; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN X_GEN_TAC `k:A#A->bool` THEN DISCH_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBTOPOLOGY_INTER_SUBSET THEN EXISTS_TAC `(IMAGE FST (k:A#A->bool)) CROSS (IMAGE SND k)` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS; IN_IMAGE; EXISTS_PAIR_THM; PAIR_EQ] THEN SET_TAC[]] THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN REWRITE_TAC[INTER_SUBSET] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [kc_space]) THEN SUBGOAL_THEN `(IMAGE FST k CROSS IMAGE SND k) INTER {x,x | x IN topspace top /\ ~(x:A = a)} = IMAGE (\x:A. x,x) (IMAGE FST k INTER IMAGE SND k)` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN REWRITE_TAC[SUBSET; EXTENSION; FORALL_PAIR_THM] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IN_INTER; IN_IMAGE; IN_DELETE; EXISTS_PAIR_THM; PAIR_EQ; IN_ELIM_THM; IN_CROSS; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `subtopology top (topspace top DELETE (a:A))` THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_ID] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID] THEN REWRITE_TAC[COMPACT_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN REWRITE_TAC[SUBSET; EXTENSION; FORALL_PAIR_THM] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IN_INTER; IN_IMAGE; IN_DELETE; EXISTS_PAIR_THM; PAIR_EQ; IN_ELIM_THM; IN_CROSS; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN MESON_TAC[]] THEN MATCH_MP_TAC COMPACT_INTER_CLOSED_IN THEN CONJ_TAC THENL [MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `prod_topology top (subtopology top (topspace top DELETE (a:A)))` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_FST]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN_GEN THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `prod_topology top (subtopology top (topspace top DELETE (a:A)))` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[PROD_TOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN REWRITE_TAC[CONTINUOUS_MAP_SND]; ALL_TAC] THEN REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN REWRITE_TAC[FORALL_PAIR_THM; closure_of; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[EXISTS_PAIR_THM; PAIR_EQ; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[MESON[] `(?x. P x /\ a = x /\ b = x) <=> a = b /\ P b`] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM1; IN_CROSS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `~(x:A = a) \/ ~(y = a)` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `(y,x):A#A`); FIRST_X_ASSUM(MP_TAC o SPEC `(x,y):A#A`)] THEN ASM_REWRITE_TAC[closure_of; IN_ELIM_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; IN_DELETE; PAIR_EQ; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN (ANTS_TAC THENL [ALL_TAC; MESON_TAC[]]) THEN REWRITE_TAC[IMP_CONJ_ALT; PROD_TOPOLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN ASM_REWRITE_TAC[IN_INTER; IN_CROSS; IN_DELETE; EXISTS_PAIR_THM] THEN REWRITE_TAC[PAIR_EQ] THEN REWRITE_TAC[MESON[] `(?x. P x /\ a = x /\ b = x) <=> a = b /\ P b`] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM1] THENL [ALL_TAC; X_GEN_TAC `t:A#A->bool` THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t INTER (topspace top CROSS (topspace top DELETE (a:A)))`) THEN ASM_SIMP_TAC[IN_INTER; IN_CROSS; IN_DELETE] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC OPEN_IN_INTER THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE] THEN ASM_MESON_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; OPEN_IN_TOPSPACE; KC_IMP_T1_SPACE]] THEN X_GEN_TAC `t:A#A->bool` THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{z | z IN topspace(prod_topology top top) /\ (SND z:A,FST z) IN (t INTER (topspace top CROSS (topspace top DELETE (a:A))))}`) THEN ANTS_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[IN_ELIM_THM; IN_INTER; IN_CROSS; TOPSPACE_PROD_TOPOLOGY; IN_DELETE] THEN MESON_TAC[]] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[IN_ELIM_THM; IN_INTER; IN_CROSS; TOPSPACE_PROD_TOPOLOGY; IN_DELETE]; MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `prod_topology (top:A topology) top` THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRED] THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN MATCH_MP_TAC OPEN_IN_INTER THEN ASM_REWRITE_TAC[OPEN_IN_CROSS; OPEN_IN_TOPSPACE] THEN ASM_MESON_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; OPEN_IN_TOPSPACE; KC_IMP_T1_SPACE]]);; let HAUSDORFF_SPACE_ALEXANDROFF_COMPACTIFICATION_ASYMMETRIC_PROD = prove (`!top:A topology. hausdorff_space(alexandroff_compactification top) <=> kc_space(prod_topology (alexandroff_compactification top) top) /\ k_space(prod_topology (alexandroff_compactification top) top)`, GEN_TAC THEN MP_TAC(ISPECL [`alexandroff_compactification(top:A topology)`; `INR one:A+1`] HAUSDORFF_SPACE_ONE_POINT_COMPACTIFICATION_ASYMMETRIC_PROD) THEN REWRITE_TAC[COMPACT_SPACE_ALEXANDROFF_COMPACTIFICATION] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC (MESON[HOMEOMORPHIC_K_SPACE; HOMEOMORPHIC_KC_SPACE] `top homeomorphic_space top' ==> (kc_space top /\ k_space top <=> kc_space top' /\ k_space top')`) THEN MATCH_MP_TAC HOMEOMORPHIC_SPACE_PROD_TOPOLOGY THEN REWRITE_TAC[HOMEOMORPHIC_SPACE_REFL] THEN REWRITE_TAC[TOPSPACE_ALEXANDROFF_COMPACTIFICATION_DELETE] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN MATCH_MP_TAC EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE THEN REWRITE_TAC[EMBEDDING_MAP_INL]);; let KC_SPACE_AS_COMPACTIFICATION_UNIQUE = prove (`!top a:A. kc_space top /\ compact_space top ==> !u. open_in top u <=> if a IN u then u SUBSET topspace top /\ compact_in top (topspace top DIFF u) else open_in (subtopology top (topspace top DELETE a)) u`, REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `u:A->bool` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[OPEN_IN_CLOSED_IN_EQ; CLOSED_IN_COMPACT_SPACE; kc_space]; FIRST_ASSUM(MP_TAC o MATCH_MP KC_IMP_T1_SPACE) THEN ASM_SIMP_TAC[T1_SPACE_OPEN_IN_DELETE_ALT; OPEN_IN_TOPSPACE; OPEN_IN_OPEN_SUBTOPOLOGY; SUBSET_DELETE] THEN MESON_TAC[OPEN_IN_SUBSET]]);; let KC_SPACE_AS_COMPACTIFICATION_UNIQUE_EXPLICIT = prove (`!top a:A. kc_space top /\ compact_space top ==> !u. open_in top u <=> if a IN u then u SUBSET topspace top /\ compact_in (subtopology top (topspace top DELETE a)) (topspace top DIFF u) /\ closed_in (subtopology top (topspace top DELETE a)) (topspace top DIFF u) else open_in (subtopology top (topspace top DELETE a)) u`, SIMP_TAC[KC_SPACE_SUBTOPOLOGY; MESON[kc_space] `kc_space top ==> (compact_in top s /\ closed_in top s <=> compact_in top s)`] THEN SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; SET_RULE `a IN u ==> s DIFF u SUBSET s DELETE a`] THEN REWRITE_TAC[KC_SPACE_AS_COMPACTIFICATION_UNIQUE]);; let ALEXANDROFF_COMPACTIFICATION_UNIQUE = prove (`!top a:A. kc_space top /\ compact_space top /\ a IN topspace top ==> alexandroff_compactification (subtopology top (topspace top DELETE a)) homeomorphic_space top`, let lemma = prove (`(IMAGE INL s = IMAGE INL t <=> s = t) /\ (INR x INSERT IMAGE INL s = INR x INSERT IMAGE INL t <=> s = t) /\ ~(INR x INSERT IMAGE INL s = IMAGE INL t)`, REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INSERT; sum_DISTINCT; sum_INJECTIVE] THEN MESON_TAC[sum_DISTINCT; sum_INJECTIVE]) in REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SPACE_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_SPACE; homeomorphic_map] THEN EXISTS_TAC `\x:A. if x = a then INR one else INL x` THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[sum_INJECTIVE; sum_DISTINCT]] THEN REWRITE_TAC[quotient_map; TOPSPACE_ALEXANDROFF_COMPACTIFICATION] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; DELETE_SUBSET] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[FORALL_SUBSET_INSERT; FORALL_SUBSET_IMAGE] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[SUBSET_DELETE] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN REWRITE_TAC[IN_INSERT; IN_IMAGE; sum_DISTINCT; sum_INJECTIVE] THEN REWRITE_TAC[UNWIND_THM1] THEN MP_TAC(ISPECL [`top:A topology`; `a:A`] KC_SPACE_AS_COMPACTIFICATION_UNIQUE_EXPLICIT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN ASM_REWRITE_TAC[IN_ELIM_THM; SUBSET_RESTRICT] THEN REWRITE_TAC[OPEN_IN_ALEXANDROFF_COMPACTIFICATION] THEN REWRITE_TAC[lemma] THEN SUBGOAL_THEN `{x:A | x IN topspace top /\ (if x = a then F else x IN u)} = u` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[TAUT `(if p then T else q) <=> p \/ q`] THEN REWRITE_TAC[SET_RULE `u DIFF {x | x IN u /\ (x = a \/ x IN s)} = u DELETE a DIFF s`] THEN ONCE_REWRITE_TAC[MESON[CLOSED_IN_SUBSET] `closed_in top s /\ P s <=> ~(s SUBSET topspace top ==> closed_in top s ==> ~P s)`] THEN SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; DELETE_SUBSET] THEN ASM_SIMP_TAC[SET_RULE `a IN t /\ ~(a IN u) /\ u SUBSET t /\ s SUBSET t DELETE a ==> (u = t DELETE a DIFF s <=> t DELETE a DIFF u = s)`] THEN REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s <=> s /\ p /\ q /\ r`] THEN REWRITE_TAC[UNWIND_THM1] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Homotopy of maps p,q : X->Y with property P of all intermediate maps. *) (* We often just want to require that it fixes some subset, but to take in *) (* the case of loop homotopy it's convenient to have a general property P. *) (* ------------------------------------------------------------------------- *) let homotopic_with = new_definition `homotopic_with P (X,Y) p q <=> ?h. continuous_map (prod_topology (subtopology euclideanreal (real_interval[&0,&1])) X, Y) h /\ (!x. h(&0,x) = p x) /\ (!x. h(&1,x) = q x) /\ (!t. t IN real_interval[&0,&1] ==> P(\x. h(t,x)))`;; let HOMOTOPIC_WITH = prove (`!P X Y p q:A->B. (!h k. (!x. x IN topspace X ==> h x = k x) ==> (P h <=> P k)) ==> (homotopic_with P (X,Y) p q <=> ?h. continuous_map (prod_topology (subtopology euclideanreal (real_interval [&0,&1])) X, Y) h /\ (!x. x IN topspace X ==> h (&0,x) = p x) /\ (!x. x IN topspace X ==> h (&1,x) = q x) /\ (!t. t IN real_interval[&0,&1] ==> P (\x. h (t,x))))`, REPEAT STRIP_TAC THEN REWRITE_TAC[homotopic_with] THEN EQ_TAC THENL [MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `h:real#A->B` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\(t,x). if x IN topspace X then (h:real#A->B)(t,x) else if t = &0 then p x else q x` THEN ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[COND_ID] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONTINUOUS_MAP_EQ)) THEN SIMP_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS]; X_GEN_TAC `t:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SIMP_TAC[]]);; let HOMOTOPIC_WITH_IMP_CONTINUOUS_MAPS = prove (`!P X Y p q:A->B. homotopic_with P (X,Y) p q ==> continuous_map (X,Y) p /\ continuous_map (X,Y) q`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopic_with; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:real#A->B` THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `p = (h:real#A->B) o (\x. (&0,x))` SUBST1_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM; o_THM]; ALL_TAC]; SUBGOAL_THEN `q = (h:real#A->B) o (\x. (&1,x))` SUBST1_TAC THENL [ASM_REWRITE_TAC[FUN_EQ_THM; o_THM]; ALL_TAC]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONTINUOUS_MAP_COMPOSE)) THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX] THEN REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST] THEN DISJ2_TAC THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL; INTER_UNIV] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let HOMOTOPIC_WITH_IMP_PROPERTY = prove (`!P X Y f g:A->B. homotopic_with P (X,Y) f g ==> P f /\ P g`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopic_with] THEN DISCH_THEN(X_CHOOSE_THEN `h:real#A->B` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN (fun th -> MP_TAC(SPEC `&0:real` th) THEN MP_TAC(SPEC `&1:real` th)) THEN ASM_SIMP_TAC[ENDS_IN_UNIT_REAL_INTERVAL; ETA_AX]);; let HOMOTOPIC_WITH_EQUAL = prove (`!P top top' (f:A->B) g. P f /\ P g /\ continuous_map(top,top') f /\ (!x. x IN topspace top ==> f x = g x) ==> homotopic_with P (top,top') f g`, REPEAT STRIP_TAC THEN REWRITE_TAC[homotopic_with] THEN EXISTS_TAC `(\(t,x). if t = &1 then g x else f x):real#A->B` THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_EQ THEN EXISTS_TAC `(f o SND):real#A->B` THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; FORALL_PAIR_THM] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; o_THM; IN_CROSS] THEN ASM_SIMP_TAC[COND_ID] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[PROD_TOPOLOGY_SUBTOPOLOGY; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_SND]; X_GEN_TAC `t:real` THEN ASM_CASES_TAC `t:real = &1` THEN ASM_REWRITE_TAC[ETA_AX]]);; let HOMOTOPIC_WITH_REFL = prove (`!P top top' f:A->B. homotopic_with P (top,top') f f <=> continuous_map (top,top') f /\ P f`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[HOMOTOPIC_WITH_IMP_CONTINUOUS_MAPS; HOMOTOPIC_WITH_IMP_PROPERTY]; DISCH_TAC THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQUAL THEN ASM_REWRITE_TAC[]]);; let HOMOTOPIC_WITH_SYM = prove (`!P X Y f g:A->B. homotopic_with P (X,Y) f g <=> homotopic_with P (X,Y) g f`, REPLICATE_TAC 3 GEN_TAC THEN MATCH_MP_TAC(MESON[] `(!x y. P x y ==> P y x) ==> (!x y. P x y <=> P y x)`) THEN REPEAT GEN_TAC THEN REWRITE_TAC[homotopic_with] THEN DISCH_THEN(X_CHOOSE_THEN `h:real#A->B` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\(t,x). (h:real#A->B) (&1 - t,x)` THEN ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_SUB_RZERO] THEN CONJ_TAC THENL [REWRITE_TAC[LAMBDA_PAIR] THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval [&0,&1])) (X:A topology)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; FORALL_PAIR_THM; IN_CROSS; IN_REAL_INTERVAL] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN REWRITE_TAC[CONTINUOUS_MAP_OF_FST] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID]; REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC]);; let HOMOTOPIC_WITH_TRANS = prove (`!P top top' (f:A->B) g h. homotopic_with P (top,top') f g /\ homotopic_with P (top,top') g h ==> homotopic_with P (top,top') f h`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopic_with; IN_REAL_INTERVAL] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `h:real#A->B` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `k:real#A->B` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `\z. if FST z <= &1 / &2 then (h:real#A->B)(&2 * FST z,SND z) else (k:real#A->B)(&2 * FST z - &1,SND z)` THEN REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_CASES_LE THEN SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN CONJ_TAC THENL [REWRITE_TAC[PROD_TOPOLOGY_SUBTOPOLOGY] THEN SIMP_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_FROM_SUBTOPOLOGY]; CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval [&0,&1])) (top:A topology)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY; FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_INTER; IN_ELIM_THM; IN_CROSS; IN_REAL_INTERVAL] THEN (CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC]) THEN TRY(MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB) THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_LMUL THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN REWRITE_TAC[PROD_TOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN REWRITE_TAC[CONTINUOUS_MAP_FST; ETA_AX]]; X_GEN_TAC `t:real` THEN STRIP_TAC THEN ASM_CASES_TAC `t <= &1 / &2` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]);; let HOMOTOPIC_WITH_COMPOSE_CONTINUOUS_MAP_LEFT = prove (`!p q (f:A->B) g (h:B->C) top1 top2 top3. homotopic_with p (top1,top2) f g /\ continuous_map (top2,top3) h /\ (!j. p j ==> q(h o j)) ==> homotopic_with q (top1,top3) (h o f) (h o g)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN STRIP_TAC THEN REWRITE_TAC[homotopic_with; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:real#A->B` THEN STRIP_TAC THEN EXISTS_TAC `(h:B->C) o (k:real#A->B)` THEN ASM_REWRITE_TAC[o_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]; ALL_TAC] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN ASM_SIMP_TAC[]);; let HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_LEFT = prove (`!(f:A->B) g (h:B->C) top1 top2 top3. homotopic_with (\k. T) (top1,top2) f g /\ continuous_map (top2,top3) h ==> homotopic_with (\k. T) (top1,top3) (h o f) (h o g)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN STRIP_TAC THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_COMPOSE_CONTINUOUS_MAP_LEFT) THEN ASM_REWRITE_TAC[]);; let HOMOTOPIC_WITH_COMPOSE_CONTINUOUS_MAP_RIGHT = prove (`!p q (f:B->C) g (h:A->B) top1 top2 top3. homotopic_with p (top2,top3) f g /\ continuous_map (top1,top2) h /\ (!j. p j ==> q(j o h)) ==> homotopic_with q (top1,top3) (f o h) (g o h)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN STRIP_TAC THEN REWRITE_TAC[homotopic_with; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:real#B->C` THEN STRIP_TAC THEN EXISTS_TAC `\(t,x). (k:real#B->C)(t,(h:A->B) x)` THEN ASM_REWRITE_TAC[o_THM] THEN CONJ_TAC THENL [REWRITE_TAC[LAMBDA_PAIR] THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONTINUOUS_MAP_COMPOSE)) THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_OF_SND]; GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(ANTE_RES_THEN MP_TAC)) THEN REWRITE_TAC[o_DEF]]);; let HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_RIGHT = prove (`!(f:B->C) g (h:A->B) top1 top2 top3. homotopic_with (\k. T) (top2,top3) f g /\ continuous_map (top1,top2) h ==> homotopic_with (\k. T) (top1,top3) (f o h) (g o h)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN STRIP_TAC THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_COMPOSE_CONTINUOUS_MAP_RIGHT) THEN ASM_REWRITE_TAC[]);; let HOMOTOPIC_FROM_SUBTOPOLOGY = prove (`!P top top' s f (g:A->B). homotopic_with P (top,top') f g ==> homotopic_with P (subtopology top s,top') f g`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopic_with] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONJUNCT2 PROD_TOPOLOGY_SUBTOPOLOGY] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY]);; let HOMOTOPIC_ON_EMPTY = prove (`!top top' (f:A->B) g. topspace top = {} ==> (homotopic_with P (top,top') f g <=> P f /\ P g)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[HOMOTOPIC_WITH_IMP_PROPERTY] THEN STRIP_TAC THEN REWRITE_TAC[homotopic_with] THEN EXISTS_TAC `(\(t,x). if t = &0 then f x else g x):real#A->B` THEN ASM_SIMP_TAC[REAL_OF_NUM_EQ; ARITH_EQ; CROSS_EMPTY; CONTINUOUS_MAP_ON_EMPTY; TOPSPACE_PROD_TOPOLOGY] THEN X_GEN_TAC `t:real` THEN ASM_CASES_TAC `t:real = &0` THEN ASM_REWRITE_TAC[ETA_AX]);; let HOMOTOPIC_CONSTANT_MAPS = prove (`!(top:A topology) (top':B topology) a b. homotopic_with (\x. T) (top,top') (\x. a) (\x. b) <=> topspace top = {} \/ path_component_of top' a b`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[HOMOTOPIC_ON_EMPTY] THEN REWRITE_TAC[path_component_of; path_in; homotopic_with] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `h:real#A->B` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN EXISTS_TAC `(h:real#A->B) o (\t. t,a)` THEN ASM_REWRITE_TAC[o_THM] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval[&0,&1])) (top:A topology)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRED; CONTINUOUS_MAP_ID] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_CONST]; DISCH_THEN(X_CHOOSE_THEN `g:real->B` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(g:real->B) o (FST:real#A->real)` THEN ASM_REWRITE_TAC[o_DEF; CONTINUOUS_MAP_OF_FST]]);; let HOMOTOPIC_WITH_EQ = prove (`!P top top' f g f' g':A->B. homotopic_with P (top,top') f g /\ (!x. x IN topspace top ==> f' x = f x /\ g' x = g x) /\ (!h k. (!x. x IN topspace top ==> h x = k x) ==> (P h <=> P k)) ==> homotopic_with P (top,top') f' g'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[homotopic_with] THEN DISCH_THEN(X_CHOOSE_THEN `h:real#A->B` (fun th -> EXISTS_TAC `\y. if SND y IN topspace top then (h:real#A->B) y else if FST y = &0 then f'(SND y) else g'(SND y)` THEN MP_TAC th)) THEN REWRITE_TAC[REAL_OF_NUM_EQ; ARITH_EQ] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTINUOUS_MAP_EQ) THEN SIMP_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS]; ASM_MESON_TAC[]; ASM_MESON_TAC[]; MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `t:real` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SIMP_TAC[]]);; let HOMOTOPIC_WITH_PROD_TOPOLOGY = prove (`!p q r top1 top1' top2 top2' (f:A->B) (g:C->D) f' g'. homotopic_with p (top1,top1') f f' /\ homotopic_with q (top2,top2') g g' /\ (!i j. p i /\ q j ==> r(\(x,y). i x,j y)) ==> homotopic_with r (prod_topology top1 top2,prod_topology top1' top2') (\z. f(FST z),g(SND z)) (\z. f'(FST z),g'(SND z))`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[homotopic_with; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:real#A->B` THEN STRIP_TAC THEN X_GEN_TAC `k:real#C->D` THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN EXISTS_TAC `\(t,x,y). (h:real#A->B) (t,x),(k:real#C->D) (t,y)` THEN ASM_REWRITE_TAC[FORALL_PAIR_THM] THEN ASM_SIMP_TAC[LAMBDA_PAIR_THM] THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN REWRITE_TAC[LAMBDA_TRIPLE_THM] THEN REWRITE_TAC[LAMBDA_TRIPLE] THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THENL [EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval [&0,&1])) (top1:A topology)`; EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval [&0,&1])) (top2:C topology)`] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRED] THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND] THEN REWRITE_TAC[CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND] THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]);; let HOMOTOPIC_WITH_PRODUCT_TOPOLOGY = prove (`!k (tops:K->A topology) (tops':K->B topology) p q f g. (!i. i IN k ==> homotopic_with (p i) (tops i,tops' i) (f i) (g i)) /\ (!h. (!i. i IN k ==> p i (h i)) ==> q(\x. RESTRICTION k (\i. h i (x i)))) ==> homotopic_with q (product_topology k tops,product_topology k tops') (\z. RESTRICTION k (\i. (f i) (z i))) (\z. RESTRICTION k (\i. (g i) (z i)))`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ_ALT] THEN DISCH_TAC THEN REWRITE_TAC[homotopic_with] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:K->real#A->B` THEN DISCH_TAC THEN EXISTS_TAC `\(t,z). RESTRICTION k (\i. (h:K->real#A->B) i (t,z i))` THEN ASM_SIMP_TAC[RESTRICTION_EXTENSION] THEN ONCE_REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN REWRITE_TAC[RESTRICTION_IN_EXTENSIONAL] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [LAMBDA_PAIR_THM] THEN ASM_REWRITE_TAC[RESTRICTION] THEN REWRITE_TAC[LAMBDA_PAIR] THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval [&0,&1])) ((tops:K->A topology) i)` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PAIRED] THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_OF_SND] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION]);; (* ------------------------------------------------------------------------- *) (* Homotopy equivalence of topological spaces. *) (* ------------------------------------------------------------------------- *) parse_as_infix("homotopy_equivalent_space",(12,"right"));; let homotopy_equivalent_space = new_definition `(top:A topology) homotopy_equivalent_space (top':B topology) <=> ?f g. continuous_map (top,top') f /\ continuous_map (top',top) g /\ homotopic_with (\x. T) (top,top) (g o f) I /\ homotopic_with (\x. T) (top',top') (f o g) I`;; let HOMEOMORPHIC_IMP_HOMOTOPY_EQUIVALENT_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> top homotopy_equivalent_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic_space; homotopy_equivalent_space] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REWRITE_TAC[homeomorphic_maps] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQUAL THEN ASM_REWRITE_TAC[o_THM; I_THM] THEN ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]);; let HOMOTOPY_EQUIVALENT_SPACE_REFL = prove (`!top:A topology. top homotopy_equivalent_space top`, SIMP_TAC[HOMEOMORPHIC_IMP_HOMOTOPY_EQUIVALENT_SPACE; HOMEOMORPHIC_SPACE_REFL]);; let HOMOTOPY_EQUIVALENT_SPACE_SYM = prove (`!(top:A topology) (top':B topology). top homotopy_equivalent_space top' <=> top' homotopy_equivalent_space top`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopy_equivalent_space] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN CONV_TAC TAUT);; let HOMOTOPY_EQUIVALENT_SPACE_TRANS = prove (`!top1:A topology top2:B topology top3:C topology. top1 homotopy_equivalent_space top2 /\ top2 homotopy_equivalent_space top3 ==> top1 homotopy_equivalent_space top3`, REPEAT GEN_TAC THEN REWRITE_TAC[homotopy_equivalent_space] THEN SIMP_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN SIMP_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f1:A->B`; `g1:B->A`; `f2:B->C`; `g2:C->B`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(f2:B->C) o (f1:A->B)`; `(g1:B->A) o (g2:C->B)`] THEN REWRITE_TAC[IMAGE_o] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]; ALL_TAC]) THEN CONJ_TAC THEN MATCH_MP_TAC HOMOTOPIC_WITH_TRANS THENL [EXISTS_TAC `(g1:B->A) o I o (f1:A->B)`; EXISTS_TAC `(f2:B->C) o I o (g2:C->B)`] THEN (CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[I_O_ID]]) THEN REWRITE_TAC[GSYM o_ASSOC] THEN MATCH_MP_TAC HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_LEFT THEN EXISTS_TAC `top2:B topology` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_RIGHT THEN EXISTS_TAC `top2:B topology` THEN ASM_REWRITE_TAC[]);; let DEFORMATION_RETRACTION_IMP_HOMOTOPY_EQUIVALENT_SPACE = prove (`!top top' (r:A->B) s. homotopic_with (\x. T) (top,top) (s o r) I /\ retraction_maps(top,top') (r,s) ==> top homotopy_equivalent_space top'`, REWRITE_TAC[LEFT_FORALL_IMP_THM; I_DEF] THEN REPEAT GEN_TAC THEN REWRITE_TAC[homotopy_equivalent_space] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:A->B` THEN REWRITE_TAC[retraction_maps] THEN STRIP_TAC THEN EXISTS_TAC `s:B->A` THEN ASM_REWRITE_TAC[I_DEF] THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQUAL THEN ASM_REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[CONTINUOUS_MAP_COMPOSE]);; let DEFORMATION_RETRACT_IMP_HOMOTOPY_EQUIVALENT_SPACE = prove (`!top top' (r:A->A). homotopic_with (\x. T) (top,top) r I /\ retraction_maps(top,top') (r,I) ==> top homotopy_equivalent_space top'`, REPEAT STRIP_TAC THEN MATCH_MP_TAC DEFORMATION_RETRACTION_IMP_HOMOTOPY_EQUIVALENT_SPACE THEN MAP_EVERY EXISTS_TAC [`r:A->A`; `I:A->A`] THEN ASM_REWRITE_TAC[I_O_ID]);; let DEFORMATION_RETRACT_OF_SPACE = prove (`!top s:A->bool. s SUBSET topspace top /\ (?r. homotopic_with (\x. T) (top,top) I r /\ retraction_maps(top,subtopology top s) (r,I)) <=> s retract_of_space top /\ (?f. homotopic_with (\x. T) (top,top) I f /\ IMAGE f (topspace top) SUBSET s)`, REPEAT GEN_TAC THEN REWRITE_TAC[retract_of_space; retraction_maps; I_DEF] THEN SIMP_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN ASM_CASES_TAC `(s:A->bool) SUBSET topspace top` THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:A->A` THEN REPEAT STRIP_TAC THEN EXISTS_TAC `r:A->A` THEN ASM_REWRITE_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `r:A->A` STRIP_ASSUME_TAC) MP_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->A` THEN STRIP_TAC THEN EXISTS_TAC `r:A->A` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC HOMOTOPIC_WITH_TRANS `f:A->A` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQ THEN MAP_EVERY EXISTS_TAC [`(r:A->A) o (f:A->A)`; `(r:A->A) o (\x. x)`] THEN ASM_SIMP_TAC[o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_LEFT THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[HOMOTOPIC_WITH_SYM] THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Contractible spaces. The definition (which agrees with "contractible" on *) (* subsets of Euclidean space) is a little cryptic because we don't in fact *) (* assume that the constant "a" is in the space. This forces the convention *) (* that the empty space / set is contractible, avoiding some special cases. *) (* ------------------------------------------------------------------------- *) let contractible_space = new_definition `contractible_space (top:A topology) <=> ?a. homotopic_with (\x. T) (top,top) (\x. x) (\x. a)`;; let CONTRACTIBLE_SPACE_EMPTY = prove (`!top:A topology. topspace top = {} ==> contractible_space top`, REWRITE_TAC[contractible_space; homotopic_with] THEN SIMP_TAC[CONTINUOUS_MAP_ON_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EMPTY] THEN REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`ARB:A`; `\(t,x):real#A. if t = &0 then x else ARB`] THEN REWRITE_TAC[REAL_ARITH `~(&1 = &0)`]);; let CONTRACTIBLE_SPACE_SING = prove (`!top a:A. topspace top = {a} ==> contractible_space top`, REPEAT STRIP_TAC THEN REWRITE_TAC[contractible_space] THEN EXISTS_TAC `a:A` THEN REWRITE_TAC[homotopic_with] THEN EXISTS_TAC `(\(t,x). if t = &0 then x else a):real#A->A` THEN REWRITE_TAC[REAL_ARITH `~(&1 = &0)`] THEN MATCH_MP_TAC CONTINUOUS_MAP_EQ THEN EXISTS_TAC `(\z. a):real#A->A` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_CONST; IN_SING] THEN ASM_REWRITE_TAC[FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN SET_TAC[]);; let CONTRACTIBLE_SPACE_SUBSET_SING = prove (`!top a:A. topspace top SUBSET {a} ==> contractible_space top`, REWRITE_TAC[SET_RULE `s SUBSET {a} <=> s = {} \/ s = {a}`] THEN MESON_TAC[CONTRACTIBLE_SPACE_EMPTY; CONTRACTIBLE_SPACE_SING]);; let CONTRACTIBLE_SPACE_SUBTOPOLOGY_SING = prove (`!top a:A. contractible_space(subtopology top {a})`, REPEAT GEN_TAC THEN MATCH_MP_TAC CONTRACTIBLE_SPACE_SUBSET_SING THEN EXISTS_TAC `a:A` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; INTER_SUBSET]);; let CONTRACTIBLE_SPACE = prove (`!top:A topology. contractible_space top <=> topspace top = {} \/ ?a. a IN topspace top /\ homotopic_with (\x. T) (top,top) (\x. x) (\x. a)`, GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[CONTRACTIBLE_SPACE_EMPTY] THEN REWRITE_TAC[contractible_space] THEN EQ_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_CONTINUOUS_MAPS) THEN REWRITE_TAC[continuous_map] THEN ASM SET_TAC[]);; let CONTRACTIBLE_IMP_PATH_CONNECTED_SPACE = prove (`!top:A topology. contractible_space top ==> path_connected_space top`, GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[PATH_CONNECTED_SPACE_TOPSPACE_EMPTY; CONTRACTIBLE_SPACE] THEN REWRITE_TAC[homotopic_with; LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:A`; `h:real#A->A`] THEN STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT] THEN SUBGOAL_THEN `!x:A. x IN topspace top ==> path_component_of top x a` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[PATH_COMPONENT_OF_TRANS; PATH_COMPONENT_OF_SYM]] THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN REWRITE_TAC[path_component_of] THEN EXISTS_TAC `(h:real#A->A) o (\x. x,b)` THEN ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[path_in] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (subtopology euclideanreal (real_interval[&0,&1])) (top:A topology)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST]);; let CONTRACTIBLE_IMP_CONNECTED_SPACE = prove (`!top:A topology. contractible_space top ==> connected_space top`, MESON_TAC[CONTRACTIBLE_IMP_PATH_CONNECTED_SPACE; PATH_CONNECTED_IMP_CONNECTED_SPACE]);; let CONTRACTIBLE_SPACE_ALT = prove (`!top:A topology. contractible_space top <=> !a. a IN topspace top ==> homotopic_with (\x. T) (top,top) (\x. x) (\x. a)`, GEN_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTRACTIBLE_SPACE]) THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `b:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_TRANS) THEN REWRITE_TAC[HOMOTOPIC_CONSTANT_MAPS] THEN DISJ2_TAC THEN MATCH_MP_TAC PATH_CONNECTED_SPACE_IMP_PATH_COMPONENT_OF THEN ASM_SIMP_TAC[CONTRACTIBLE_IMP_PATH_CONNECTED_SPACE]; DISCH_TAC THEN REWRITE_TAC[CONTRACTIBLE_SPACE] THEN ASM SET_TAC[]]);; let NULLHOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE = prove (`!(f:A->B) (g:B->C) top1 top2 top3. continuous_map (top1,top2) f /\ continuous_map (top2,top3) g /\ contractible_space top2 ==> ?c. homotopic_with (\h. T) (top1,top3) (g o f) (\x. c)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [contractible_space]) THEN DISCH_THEN(X_CHOOSE_THEN `b:B` MP_TAC) THEN DISCH_THEN(MP_TAC o ISPECL [`g:B->C`; `top3:C topology`] o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_LEFT)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o ISPECL [`f:A->B`; `top1:A topology`] o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_RIGHT)) THEN ASM_REWRITE_TAC[o_DEF] THEN DISCH_TAC THEN EXISTS_TAC `(g:B->C) b` THEN ASM_REWRITE_TAC[]);; let NULLHOMOTOPIC_INTO_CONTRACTIBLE_SPACE = prove (`!(f:A->B) top1 top2. continuous_map (top1,top2) f /\ contractible_space top2 ==> ?c. homotopic_with (\h. T) (top1,top2) f (\x. c)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(f:A->B) = (\x. x) o f` SUBST1_TAC THENL [REWRITE_TAC[o_THM; FUN_EQ_THM]; MATCH_MP_TAC NULLHOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE THEN EXISTS_TAC `top2:B topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID]]);; let NULLHOMOTOPIC_FROM_CONTRACTIBLE_SPACE = prove (`!(f:A->B) top1 top2. continuous_map (top1,top2) f /\ contractible_space top1 ==> ?c. homotopic_with (\h. T) (top1,top2) f (\x. c)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(f:A->B) = f o (\x. x)` SUBST1_TAC THENL [REWRITE_TAC[o_THM; FUN_EQ_THM]; MATCH_MP_TAC NULLHOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE THEN EXISTS_TAC `top1:A topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID]]);; let HOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE = prove (`!(f:A->B) (g:B->C) f' g' top1 top2 top3. continuous_map (top1,top2) f /\ continuous_map (top1,top2) f' /\ continuous_map (top2,top3) g /\ continuous_map (top2,top3) g' /\ contractible_space top2 /\ path_connected_space top3 ==> homotopic_with (\h. T) (top1,top3) (g o f) (g' o f')`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A->B`; `g:B->C`; `top1:A topology`; `top2:B topology`; `top3:C topology`] NULLHOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE) THEN MP_TAC(ISPECL [`f':A->B`; `g':B->C`; `top1:A topology`; `top2:B topology`; `top3:C topology`] NULLHOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:C` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMOTOPIC_WITH_IMP_CONTINUOUS_MAPS) THEN REWRITE_TAC[CONTINUOUS_MAP_CONST] THEN DISCH_TAC THEN X_GEN_TAC `d:C` THEN DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(MATCH_MP HOMOTOPIC_WITH_IMP_CONTINUOUS_MAPS th)) THEN REWRITE_TAC[CONTINUOUS_MAP_CONST] THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_TRANS) THEN ONCE_REWRITE_TAC[HOMOTOPIC_WITH_SYM] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] HOMOTOPIC_WITH_TRANS)) THEN REWRITE_TAC[HOMOTOPIC_CONSTANT_MAPS] THEN ASM_MESON_TAC[PATH_CONNECTED_SPACE_IFF_PATH_COMPONENT]);; let HOMOTOPIC_FROM_CONTRACTIBLE_SPACE = prove (`!(f:A->B) g top top'. continuous_map (top,top') f /\ continuous_map (top,top') g /\ contractible_space top /\ path_connected_space top' ==> homotopic_with (\x. T) (top,top') f g`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x:A. x`; `f:A->B`; `\x:A. x`; `g:A->B`; `top:A topology`; `top:A topology`; `top':B topology`] HOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; o_DEF; ETA_AX]);; let HOMOTOPIC_INTO_CONTRACTIBLE_SPACE = prove (`!(f:A->B) g top top'. continuous_map (top,top') f /\ continuous_map (top,top') g /\ contractible_space top' ==> homotopic_with (\x. T) (top,top') f g`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A->B`; `\x:B. x`; `g:A->B`; `\x:B. x`; `top:A topology`; `top':B topology`; `top':B topology`] HOMOTOPIC_THROUGH_CONTRACTIBLE_SPACE) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; o_DEF; ETA_AX] THEN ASM_SIMP_TAC[CONTRACTIBLE_IMP_PATH_CONNECTED_SPACE]);; let HOMOTOPY_DOMINATED_CONTRACTIBILITY = prove (`!(f:A->B) g top top'. continuous_map (top,top') f /\ continuous_map (top',top) g /\ homotopic_with (\x. T) (top',top') (f o g) I /\ contractible_space top ==> contractible_space top'`, REPEAT GEN_TAC THEN SIMP_TAC[contractible_space; I_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`f:A->B`; `top:A topology`; `top':B topology`] NULLHOMOTOPIC_FROM_CONTRACTIBLE_SPACE) THEN ASM_REWRITE_TAC[contractible_space; I_DEF] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:B` THEN ONCE_REWRITE_TAC[HOMOTOPIC_WITH_SYM] THEN DISCH_TAC THEN MATCH_MP_TAC HOMOTOPIC_WITH_TRANS THEN EXISTS_TAC `(f:A->B) o (g:B->A)` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(\x. (b:B)) = (\x. b) o (g:B->A)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN MATCH_MP_TAC HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_RIGHT THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[]);; let HOMOTOPY_EQUIVALENT_SPACE_CONTRACTIBILITY = prove (`!(top:A topology) (top':B topology). top homotopy_equivalent_space top' ==> (contractible_space top <=> contractible_space top')`, REWRITE_TAC[homotopy_equivalent_space] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] HOMOTOPY_DOMINATED_CONTRACTIBILITY)) THEN ASM_MESON_TAC[]);; let HOMEOMORPHIC_SPACE_CONTRACTIBILITY = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (contractible_space top <=> contractible_space top')`, MESON_TAC[HOMOTOPY_EQUIVALENT_SPACE_CONTRACTIBILITY; HOMEOMORPHIC_IMP_HOMOTOPY_EQUIVALENT_SPACE]);; let CONTRACTIBLE_EQ_HOMOTOPY_EQUIVALENT_SINGLETON_SUBTOPOLOGY = prove (`!top:A topology. contractible_space top <=> topspace top = {} \/ ?a. a IN topspace top /\ top homotopy_equivalent_space (subtopology top {a})`, GEN_TAC THEN ASM_CASES_TAC `topspace top:A->bool = {}` THEN ASM_SIMP_TAC[CONTRACTIBLE_SPACE_EMPTY] THEN EQ_TAC THENL [ASM_REWRITE_TAC[CONTRACTIBLE_SPACE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[homotopy_equivalent_space] THEN MAP_EVERY EXISTS_TAC [`(\x. a):A->A`; `(\x. x):A->A`] THEN ASM_SIMP_TAC[o_DEF; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_ID; IN_INTER; CONTINUOUS_MAP_CONST; TOPSPACE_SUBTOPOLOGY; IN_SING] THEN ONCE_REWRITE_TAC[HOMOTOPIC_WITH_SYM] THEN ASM_REWRITE_TAC[I_DEF] THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQUAL THEN REWRITE_TAC[CONTINUOUS_MAP_ID; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]; DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP HOMOTOPY_EQUIVALENT_SPACE_CONTRACTIBILITY) THEN MATCH_MP_TAC CONTRACTIBLE_SPACE_SING THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]]);; let CONTRACTIBLE_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (f:A->B). retraction_map(top,top') f /\ contractible_space top ==> contractible_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; retraction_map; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:B->A` THEN REWRITE_TAC[retraction_maps] THEN STRIP_TAC THEN REWRITE_TAC[contractible_space; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN EXISTS_TAC `(f:A->B) a` THEN MATCH_MP_TAC HOMOTOPIC_WITH_EQ THEN EXISTS_TAC `(f:A->B) o (\x. x) o (g:B->A)` THEN EXISTS_TAC `(f:A->B) o (\x. a) o (g:B->A)` THEN ASM_SIMP_TAC[o_THM] THEN MATCH_MP_TAC HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_LEFT THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HOMOTOPIC_COMPOSE_CONTINUOUS_MAP_RIGHT THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[]);; let CONTRACTIBLE_SPACE_PROD_TOPOLOGY = prove (`!(top1:A topology) (top2:B topology). contractible_space(prod_topology top1 top2) <=> topspace top1 = {} \/ topspace top2 = {} \/ contractible_space top1 /\ contractible_space top2`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace top1:A->bool = {}` THEN ASM_SIMP_TAC[CONTRACTIBLE_SPACE_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY] THEN ASM_CASES_TAC `topspace top2:B->bool = {}` THEN ASM_SIMP_TAC[CONTRACTIBLE_SPACE_EMPTY; TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY] THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTRACTIBLE_SPACE_RETRACTION_MAP_IMAGE) THENL [EXISTS_TAC `FST:A#B->A`; EXISTS_TAC `SND:A#B->B`] THEN ASM_REWRITE_TAC[RETRACTION_MAP_FST; RETRACTION_MAP_SND]; ASM_REWRITE_TAC[CONTRACTIBLE_SPACE; TOPSPACE_PROD_TOPOLOGY; CROSS_EQ_EMPTY; EXISTS_PAIR_THM] THEN REWRITE_TAC[IN_CROSS; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:B` THEN ASM_CASES_TAC `(a:A) IN topspace top1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(b:B) IN topspace top2` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[TAUT `p /\ q /\ r ==> s <=> p /\ q ==> r ==> s`] HOMOTOPIC_WITH_PROD_TOPOLOGY)) THEN SIMP_TAC[]]);; let CONTRACTIBLE_SPACE_PRODUCT_TOPOLOGY = prove (`!k (tops:K->A topology). contractible_space(product_topology k tops) <=> topspace (product_topology k tops) = {} \/ !i. i IN k ==> contractible_space(tops i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace(product_topology k (tops:K->A topology)) = {}` THEN ASM_SIMP_TAC[CONTRACTIBLE_SPACE_EMPTY] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONTRACTIBLE_SPACE_RETRACTION_MAP_IMAGE)) THEN EXISTS_TAC `\x:K->A. x i` THEN ASM_SIMP_TAC[RETRACTION_MAP_PRODUCT_PROJECTION]; REWRITE_TAC[contractible_space] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:K->A` THEN DISCH_TAC THEN EXISTS_TAC `RESTRICTION k (a:K->A)` THEN FIRST_X_ASSUM (MP_TAC o ISPEC `\z:(K->A)->(K->A). T` o MATCH_MP (REWRITE_RULE[IMP_CONJ] HOMOTOPIC_WITH_PRODUCT_TOPOLOGY)) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] HOMOTOPIC_WITH_EQ) THEN REWRITE_TAC[ETA_AX] THEN REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM; RESTRICTION] THEN MESON_TAC[]]);; let CONTRACTIBLE_SPACE_SUBTOPOLOGY_EUCLIDEANREAL = prove (`!s. contractible_space(subtopology euclideanreal s) <=> is_realinterval s`, GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP CONTRACTIBLE_IMP_PATH_CONNECTED_SPACE) THEN REWRITE_TAC[GSYM PATH_CONNECTED_IN_TOPSPACE] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REWRITE_TAC[PATH_CONNECTED_IN_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[PATH_CONNECTED_IN_EUCLIDEANREAL]; ALL_TAC] THEN ASM_CASES_TAC `s:real->bool = {}` THEN ASM_SIMP_TAC[CONTRACTIBLE_SPACE_EMPTY; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:real`) THEN REWRITE_TAC[is_realinterval] THEN STRIP_TAC THEN REWRITE_TAC[contractible_space; homotopic_with] THEN EXISTS_TAC `z:real` THEN EXISTS_TAC `\(t:real,x). (&1 - t) * x + t * z` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [REWRITE_TAC[LAMBDA_PAIR; GSYM SUBTOPOLOGY_CROSS] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_ADD THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL THEN SIMP_TAC[CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND; CONTINUOUS_MAP_REAL_SUB]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`t:real`; `x:real`] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; IN_REAL_INTERVAL] THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`min x z:real`; `max z x:real`] THEN GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [REWRITE_TAC[real_max; real_min] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC REAL_CONVEX_BOUNDS_LE THEN ASM_REAL_ARITH_TAC]);; let CONTRACTIBLE_SPACE_EUCLIDEANREAL = prove (`contractible_space euclideanreal`, ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN REWRITE_TAC[CONTRACTIBLE_SPACE_SUBTOPOLOGY_EUCLIDEANREAL] THEN REWRITE_TAC[IS_REALINTERVAL_UNIV]);; (* ------------------------------------------------------------------------- *) (* Completely metrizable (a.k.a. "topologically complete") spaces. *) (* ------------------------------------------------------------------------- *) let completely_metrizable_space = new_definition `completely_metrizable_space top <=> ?m. mcomplete m /\ top = mtopology m`;; let COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE = prove (`!top:A topology. completely_metrizable_space top ==> metrizable_space top`, REWRITE_TAC[completely_metrizable_space; metrizable_space] THEN MESON_TAC[]);; let FORALL_MCOMPLETE_TOPOLOGY = prove (`!P. (!m:A metric. mcomplete m ==> P (mtopology m) (mspace m)) <=> !top. completely_metrizable_space top ==> P top (topspace top)`, SIMP_TAC[completely_metrizable_space; LEFT_IMP_EXISTS_THM; TOPSPACE_MTOPOLOGY] THEN MESON_TAC[]);; let FORALL_COMPLETELY_METRIZABLE_SPACE = prove (`(!top. completely_metrizable_space top ==> P top (topspace top)) <=> (!m:A metric. mcomplete m ==> P (mtopology m) (mspace m))`, SIMP_TAC[completely_metrizable_space; LEFT_IMP_EXISTS_THM; TOPSPACE_MTOPOLOGY] THEN MESON_TAC[]);; let EXISTS_COMPLETELY_METRIZABLE_SPACE = prove (`!P. (?top. completely_metrizable_space top /\ P top (topspace top)) <=> (?m:A metric.mcomplete m /\ P (mtopology m) (mspace m))`, REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN REWRITE_TAC[FORALL_MCOMPLETE_TOPOLOGY] THEN MESON_TAC[]);; let COMPLETELY_METRIZABLE_SPACE_MTOPOLOGY = prove (`!m:A metric. mcomplete m ==> completely_metrizable_space(mtopology m)`, REWRITE_TAC[FORALL_MCOMPLETE_TOPOLOGY]);; let COMPLETELY_METRIZABLE_SPACE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. completely_metrizable_space(discrete_topology u)`, REWRITE_TAC[completely_metrizable_space] THEN MESON_TAC[MTOPOLOGY_DISCRETE_METRIC; MCOMPLETE_DISCRETE_METRIC]);; let COMPLETELY_METRIZABLE_SPACE_EUCLIDEANREAL = prove (`completely_metrizable_space euclideanreal`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_MTOPOLOGY THEN REWRITE_TAC[MCOMPLETE_REAL_EUCLIDEAN_METRIC]);; let COMPLETELY_METRIZABLE_SPACE_CLOSED_IN = prove (`!top s:A->bool. completely_metrizable_space top /\ closed_in top s ==> completely_metrizable_space(subtopology top s)`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM FORALL_MCOMPLETE_TOPOLOGY] THEN REWRITE_TAC[GSYM MTOPOLOGY_SUBMETRIC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_MTOPOLOGY THEN MATCH_MP_TAC CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE THEN ASM_REWRITE_TAC[]);; let HOMEOMORPHIC_COMPLETELY_METRIZABLE_SPACE = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> (completely_metrizable_space top <=> completely_metrizable_space top')`, let lemma = prove (`!(top:A topology) (top':B topology). top homeomorphic_space top' ==> completely_metrizable_space top ==> completely_metrizable_space top'`, REPEAT GEN_TAC THEN REWRITE_TAC[completely_metrizable_space] THEN REWRITE_TAC[homeomorphic_space; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN DISCH_TAC THEN X_GEN_TAC `m:A metric` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ABBREV_TAC `m' = metric(topspace top',\(x,y). mdist m ((g:B->A) x,g y))` THEN MP_TAC(ISPECL [`g:B->A`; `m:A metric`; `topspace top':B->bool`] METRIC_INJECTIVE_IMAGE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic_maps]) THEN EXPAND_TAC "top" THEN REWRITE_TAC[continuous_map; TOPSPACE_MTOPOLOGY] THEN SET_TAC[]; STRIP_TAC THEN EXISTS_TAC `m':B metric`] THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN CONJ_TAC THENL [DISCH_THEN(ASSUME_TAC o SYM) THEN UNDISCH_TAC `mcomplete(m:A metric)` THEN ASM_REWRITE_TAC[mcomplete; cauchy_in; GSYM TOPSPACE_MTOPOLOGY] THEN DISCH_TAC THEN X_GEN_TAC `x:num->B` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(g:B->A) o (x:num->B)`) THEN ASM_REWRITE_TAC[o_THM] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [homeomorphic_maps]) THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; DISCH_THEN(X_CHOOSE_TAC `y:A`)] THEN EXISTS_TAC `(f:A->B) y` THEN SUBGOAL_THEN `x = f o (g:B->A) o (x:num->B)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[continuous_map]) THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_MAP_LIMIT THEN ASM_MESON_TAC[]]; ALL_TAC] THEN REWRITE_TAC[TOPOLOGY_EQ; OPEN_IN_MTOPOLOGY] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_MAPS_SYM]) THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_MAPS_IMP_MAP) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP HOMEOMORPHIC_MAP_OPENNESS_EQ th]) THEN X_GEN_TAC `v:B->bool` THEN ASM_CASES_TAC `(v:B->bool) SUBSET topspace top'` THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "top" THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN ASM_REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IN_MBALL] THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphic_maps; continuous_map]) THEN MATCH_MP_TAC(TAUT `p /\ (q <=> r) ==> (p /\ q <=> r)`) THEN CONJ_TAC THENL [ASM SET_TAC[]; EQ_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `b:B` THEN ASM_CASES_TAC `(b:B) IN v` THEN ASM_REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [X_GEN_TAC `y:B` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(g:B->A) y`) THEN ASM SET_TAC[]; ASM SET_TAC[]]) in REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC lemma THEN ASM_MESON_TAC[HOMEOMORPHIC_SPACE_SYM]);; let COMPLETELY_METRIZABLE_SPACE_RETRACTION_MAP_IMAGE = prove (`!top top' (r:A->B). retraction_map(top,top') r /\ completely_metrizable_space top ==> completely_metrizable_space top'`, MATCH_MP_TAC WEAKLY_HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[HOMEOMORPHIC_COMPLETELY_METRIZABLE_SPACE] THEN REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_CLOSED_IN] THEN MESON_TAC[COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE; METRIZABLE_IMP_HAUSDORFF_SPACE]);; (* ------------------------------------------------------------------------- *) (* Product metric. For the nicest fit with the main Euclidean theories, we *) (* make this the Euclidean product, though others would work topologically. *) (* ------------------------------------------------------------------------- *) let prod_metric = new_definition `prod_metric m1 m2 = metric((mspace m1 CROSS mspace m2):A#B->bool, \((x,y),(x',y')). sqrt(mdist m1 (x,x') pow 2 + mdist m2 (y,y') pow 2))`;; let PROD_METRIC = prove (`(!(m1:A metric) (m2:B metric). mspace(prod_metric m1 m2) = mspace m1 CROSS mspace m2) /\ (!(m1:A metric) (m2:B metric). mdist(prod_metric m1 m2) = \((x,y),(x',y')). sqrt(mdist m1 (x,x') pow 2 + mdist m2 (y,y') pow 2))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [mspace] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [mdist] THEN REWRITE_TAC[PAIR; GSYM PAIR_EQ] THEN REWRITE_TAC[prod_metric] THEN REWRITE_TAC[GSYM(CONJUNCT2 metric_tybij)] THEN REWRITE_TAC[is_metric_space; FORALL_PAIR_THM; IN_CROSS] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[SQRT_POS_LE; REAL_LE_ADD; REAL_LE_POW_2]; REWRITE_TAC[PAIR_EQ; SQRT_EQ_0] THEN SIMP_TAC[REAL_LE_POW_2; REAL_ARITH `&0 <= x /\ &0 <= y ==> (x + y = &0 <=> x = &0 /\ y = &0)`] THEN SIMP_TAC[REAL_POW_EQ_0; MDIST_0] THEN CONV_TAC NUM_REDUCE_CONV; SIMP_TAC[MDIST_SYM]; MAP_EVERY X_GEN_TAC [`x1:A`; `y1:B`; `x2:A`; `y2:B`; `x3:A`; `y3:B`] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_LSQRT THEN ASM_SIMP_TAC[REAL_LE_ADD; SQRT_POS_LE; REAL_LE_POW_2] THEN REWRITE_TAC[REAL_ARITH `(a + b:real) pow 2 = (a pow 2 + b pow 2) + &2 * a * b`] THEN SIMP_TAC[SQRT_POW_2; REAL_LE_ADD; REAL_LE_POW_2] THEN TRANS_TAC REAL_LE_TRANS `(mdist m1 (x1:A,x2) + mdist m1 (x2,x3)) pow 2 + (mdist m2 (y1:B,y2) + mdist m2 (y2,y3)) pow 2` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN MATCH_MP_TAC REAL_POW_LE2 THEN ASM_MESON_TAC[MDIST_POS_LE; MDIST_TRIANGLE]; REWRITE_TAC[REAL_ARITH `(x1 + x2) pow 2 + (y1 + y2) pow 2 <= ((x1 pow 2 + y1 pow 2) + (x2 pow 2 + y2 pow 2)) + &2 * b <=> x1 * x2 + y1 * y2 <= b`] THEN REWRITE_TAC[GSYM SQRT_MUL] THEN MATCH_MP_TAC REAL_LE_RSQRT THEN REWRITE_TAC[REAL_LE_POW_2; REAL_ARITH `(x1 * x2 + y1 * y2) pow 2 <= (x1 pow 2 + y1 pow 2) * (x2 pow 2 + y2 pow 2) <=> &0 <= (x1 * y2 - x2 * y1) pow 2`]]]);; let COMPONENT_LE_PROD_METRIC = prove (`!m1 m2 x1 y1 x2:A y2:B. mdist m1 (x1,x2) <= mdist (prod_metric m1 m2) ((x1,y1),(x2,y2)) /\ mdist m2 (y1,y2) <= mdist (prod_metric m1 m2) ((x1,y1),(x2,y2))`, REPEAT GEN_TAC THEN CONJ_TAC THEN REWRITE_TAC[PROD_METRIC] THEN MATCH_MP_TAC REAL_LE_RSQRT THEN REWRITE_TAC[REAL_LE_ADDR; REAL_LE_ADDL] THEN REWRITE_TAC[REAL_LE_POW_2]);; let PROD_METRIC_LE_COMPONENTS = prove (`!m1 m2 x1 y1 x2:A y2:B. x1 IN mspace m1 /\ x2 IN mspace m1 /\ y1 IN mspace m2 /\ y2 IN mspace m2 ==> mdist (prod_metric m1 m2) ((x1,y1),(x2,y2)) <= mdist m1 (x1,x2) + mdist m2 (y1,y2)`, REPEAT STRIP_TAC THEN REWRITE_TAC[PROD_METRIC] THEN MATCH_MP_TAC REAL_LE_LSQRT THEN ASM_SIMP_TAC[REAL_LE_ADD; MDIST_POS_LE; REAL_ARITH `x pow 2 + y pow 2 <= (x + y) pow 2 <=> &0 <= x * y`] THEN ASM_SIMP_TAC[REAL_LE_MUL; MDIST_POS_LE]);; let MBALL_PROD_METRIC_SUBSET = prove (`!m1 m2 x:A y:B r. mball (prod_metric m1 m2) ((x,y),r) SUBSET mball m1 (x,r) CROSS mball m2 (y,r)`, REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_MBALL; IN_CROSS; CONJUNCT1 PROD_METRIC] THEN MESON_TAC[COMPONENT_LE_PROD_METRIC; REAL_LET_TRANS]);; let MCBALL_PROD_METRIC_SUBSET = prove (`!m1 m2 x:A y:B r. mcball (prod_metric m1 m2) ((x,y),r) SUBSET mcball m1 (x,r) CROSS mcball m2 (y,r)`, REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_MCBALL; IN_CROSS; CONJUNCT1 PROD_METRIC] THEN MESON_TAC[COMPONENT_LE_PROD_METRIC; REAL_LE_TRANS]);; let MBALL_SUBSET_PROD_METRIC = prove (`!m1 m2 x:A y:B r r'. mball m1 (x,r) CROSS mball m2 (y,r') SUBSET mball (prod_metric m1 m2) ((x,y),r + r')`, REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_MBALL; IN_CROSS; CONJUNCT1 PROD_METRIC] THEN MESON_TAC[REAL_ARITH `x <= y + z /\ y < a /\ z < b ==> x < a + b`; PROD_METRIC_LE_COMPONENTS]);; let MCBALL_SUBSET_PROD_METRIC = prove (`!m1 m2 x:A y:B r r'. mcball m1 (x,r) CROSS mcball m2 (y,r') SUBSET mcball (prod_metric m1 m2) ((x,y),r + r')`, REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_MCBALL; IN_CROSS; CONJUNCT1 PROD_METRIC] THEN MESON_TAC[REAL_ARITH `x <= y + z /\ y <= a /\ z <= b ==> x <= a + b`; PROD_METRIC_LE_COMPONENTS]);; let MTOPOLOGY_PROD_METRIC = prove (`!(m1:A metric) (m2:B metric). mtopology(prod_metric m1 m2) = prod_topology (mtopology m1) (mtopology m2)`, REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[prod_topology] THEN MATCH_MP_TAC TOPOLOGY_BASE_UNIQUE THEN REWRITE_TAC[SET_RULE `GSPEC a x <=> x IN GSPEC a`] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC; OPEN_IN_MTOPOLOGY; PROD_METRIC] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:B->bool`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSET_CROSS; FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:B`) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r1:real` THEN STRIP_TAC THEN X_GEN_TAC `r2:real` THEN STRIP_TAC THEN EXISTS_TAC `min r1 r2:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN W(MP_TAC o PART_MATCH lhand MBALL_PROD_METRIC_SUBSET o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN REWRITE_TAC[SUBSET_CROSS] THEN REPEAT DISJ2_TAC THEN CONJ_TAC; REWRITE_TAC[FORALL_PAIR_THM; EXISTS_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`u:A#B->bool`; `x:A`; `y:B`] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [OPEN_IN_MTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `(x,y):A#B`)) ASSUME_TAC) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`mball m1 (x:A,r / &2)`; `mball m2 (y:B,r / &2)`] THEN FIRST_ASSUM(MP_TAC o SPEC `(x,y):A#B` o REWRITE_RULE[SUBSET] o GEN_REWRITE_RULE RAND_CONV [CONJUNCT1 PROD_METRIC]) THEN ASM_REWRITE_TAC[IN_CROSS] THEN STRIP_TAC THEN ASM_SIMP_TAC[OPEN_IN_MBALL; IN_CROSS; CENTRE_IN_MBALL; REAL_HALF] THEN W(MP_TAC o PART_MATCH lhand MBALL_SUBSET_PROD_METRIC o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS)] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS)) THEN MATCH_MP_TAC MBALL_SUBSET_CONCENTRIC THEN REAL_ARITH_TAC);; let SUBMETRIC_PROD_METRIC = prove (`!m1 m2 s:A->bool t:B->bool. submetric (prod_metric m1 m2) (s CROSS t) = prod_metric (submetric m1 s) (submetric m2 t)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [prod_metric] THEN GEN_REWRITE_TAC LAND_CONV [submetric] THEN REWRITE_TAC[SUBMETRIC; PROD_METRIC; INTER_CROSS]);; let METRIZABLE_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. metrizable_space (prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ metrizable_space top1 /\ metrizable_space top2`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THENL [ASM_MESON_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY; METRIZABLE_SPACE_DISCRETE_TOPOLOGY]; ASM_REWRITE_TAC[]] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[MTOPOLOGY_PROD_METRIC; metrizable_space]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:B`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP METRIZABLE_SPACE_SUBTOPOLOGY) THENL [DISCH_THEN(MP_TAC o SPEC `(topspace top1 CROSS {b}):A#B->bool`); DISCH_THEN(MP_TAC o SPEC `({a} CROSS topspace top2):A#B->bool`)] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_METRIZABLE_SPACE THEN REWRITE_TAC[SUBTOPOLOGY_CROSS; SUBTOPOLOGY_TOPSPACE] THENL [MATCH_MP_TAC PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_LEFT; MATCH_MP_TAC PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_RIGHT] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]);; let CAUCHY_IN_PROD_METRIC = prove (`!m1 m2 x:num->A#B. cauchy_in (prod_metric m1 m2) x <=> cauchy_in m1 (FST o x) /\ cauchy_in m2 (SND o x)`, REWRITE_TAC[FORALL_PAIR_FUN_THM] THEN MAP_EVERY X_GEN_TAC [`m1:A metric`; `m2:B metric`; `a:num->A`; `b:num->B`] THEN REWRITE_TAC[cauchy_in; CONJUNCT1 PROD_METRIC; IN_CROSS; o_DEF] THEN ASM_CASES_TAC `!n. (a:num->A) n IN mspace m1` THEN ASM_REWRITE_TAC[FORALL_AND_THM] THEN ASM_CASES_TAC `!n. (b:num->B) n IN mspace m2` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [ASM_MESON_TAC[COMPONENT_LE_PROD_METRIC; REAL_LET_TRANS]; DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC] THEN FIRST_X_ASSUM(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2`)) THEN ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN DISCH_TAC THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `MAX M N` THEN REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`])) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `z <= x + y ==> x < e / &2 ==> y < e / &2 ==> z < e`) THEN ASM_MESON_TAC[PROD_METRIC_LE_COMPONENTS; REAL_ADD_SYM]);; let MCOMPLETE_PROD_METRIC = prove (`!(m1:A metric) (m2:B metric). mcomplete (prod_metric m1 m2) <=> mspace m1 = {} \/ mspace m2 = {} \/ mcomplete m1 /\ mcomplete m2`, REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`mspace m1:A->bool = {}`; `mspace m2:B->bool = {}`] THEN ASM_SIMP_TAC[MCOMPLETE_EMPTY_MSPACE; CONJUNCT1 PROD_METRIC; CROSS_EMPTY] THEN REWRITE_TAC[mcomplete; CAUCHY_IN_PROD_METRIC] THEN REWRITE_TAC[MTOPOLOGY_PROD_METRIC; LIMIT_PAIRWISE; EXISTS_PAIR_THM] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN DISCH_TAC THEN CONJ_TAC THENL [X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN UNDISCH_TAC `~(mspace m2:B->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(\n. (x n,y)):num->A#B`); X_GEN_TAC `y:num->B` THEN DISCH_TAC THEN UNDISCH_TAC `~(mspace m1:A->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(\n. (x,y n)):num->A#B`)] THEN ASM_REWRITE_TAC[o_DEF; ETA_AX; CAUCHY_IN_CONST] THEN MESON_TAC[]);; let COMPLETELY_METRIZABLE_SPACE_PROD_TOPOLOGY = prove (`!top1:A topology top2:B topology. completely_metrizable_space (prod_topology top1 top2) <=> topspace(prod_topology top1 top2) = {} \/ completely_metrizable_space top1 /\ completely_metrizable_space top2`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `topspace(prod_topology top1 top2):A#B->bool = {}` THENL [ASM_MESON_TAC[SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY; COMPLETELY_METRIZABLE_SPACE_DISCRETE_TOPOLOGY]; ASM_REWRITE_TAC[]] THEN EQ_TAC THENL [ALL_TAC; REWRITE_TAC[completely_metrizable_space] THEN METIS_TAC[MCOMPLETE_PROD_METRIC; MTOPOLOGY_PROD_METRIC]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:B`] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP METRIZABLE_IMP_HAUSDORFF_SPACE o MATCH_MP COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE) THEN REWRITE_TAC[HAUSDORFF_SPACE_PROD_TOPOLOGY; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_CROSS; FORALL_PAIR_THM] THEN (STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] COMPLETELY_METRIZABLE_SPACE_CLOSED_IN)) THENL [DISCH_THEN(MP_TAC o SPEC `(topspace top1 CROSS {b}):A#B->bool`); DISCH_THEN(MP_TAC o SPEC `({a} CROSS topspace top2):A#B->bool`)] THEN REWRITE_TAC[CLOSED_IN_CROSS; CLOSED_IN_TOPSPACE] THEN ASM_SIMP_TAC[CLOSED_IN_HAUSDORFF_SING] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_COMPLETELY_METRIZABLE_SPACE THEN REWRITE_TAC[SUBTOPOLOGY_CROSS; SUBTOPOLOGY_TOPSPACE] THENL [MATCH_MP_TAC PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_LEFT; MATCH_MP_TAC PROD_TOPOLOGY_HOMEOMORPHIC_SPACE_RIGHT] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]);; let MBOUNDED_CROSS = prove (`!(m1:A metric) (m2:B metric) s t. mbounded (prod_metric m1 m2) (s CROSS t) <=> s = {} \/ t = {} \/ mbounded m1 s /\ mbounded m2 t`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:A->bool = {}`; `t:B->bool = {}`] THEN ASM_REWRITE_TAC[MBOUNDED_EMPTY; CROSS_EMPTY] THEN REWRITE_TAC[mbounded; EXISTS_PAIR_THM] THEN MATCH_MP_TAC(MESON[] `(!x y. P x y <=> Q x /\ R y) ==> ((?x y. P x y) <=> (?x. Q x) /\ (?y. R y))`) THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `r:real`) THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN REPEAT(EXISTS_TAC `r:real`) THEN MATCH_MP_TAC(MESON[SUBSET_CROSS] `s CROSS t SUBSET u CROSS v /\ ~(s = {}) /\ ~(t = {}) ==> s SUBSET u /\ t SUBSET v`) THEN ASM_MESON_TAC[SUBSET_TRANS; MCBALL_PROD_METRIC_SUBSET]; DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `r1:real`) (X_CHOOSE_TAC `r2:real`)) THEN EXISTS_TAC `r1 + r2:real` THEN W(MP_TAC o PART_MATCH rand MCBALL_SUBSET_PROD_METRIC o rand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN ASM_REWRITE_TAC[SUBSET_CROSS]]);; let MBOUNDED_PROD_METRIC = prove (`!(m1:A metric) (m2:B metric) u. mbounded (prod_metric m1 m2) u <=> mbounded m1 (IMAGE FST u) /\ mbounded m2 (IMAGE SND u)`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[mbounded; SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN REWRITE_TAC[EXISTS_PAIR_THM] THEN MATCH_MP_TAC(MESON[] `(!r x y. R x y r ==> P x r /\ Q y r) ==> (?x y r. R x y r) ==> (?x r. P x r) /\ (?y r. Q y r)`) THEN MAP_EVERY X_GEN_TAC [`r:real`; `x:A`; `y:B`] THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `x:A`; `y:B`; `r:real`] MCBALL_PROD_METRIC_SUBSET) THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN MESON_TAC[]; STRIP_TAC THEN MATCH_MP_TAC MBOUNDED_SUBSET THEN EXISTS_TAC `((IMAGE FST u) CROSS (IMAGE SND u)):A#B->bool` THEN ASM_REWRITE_TAC[MBOUNDED_CROSS; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN MESON_TAC[]]);; let TOTALLY_BOUNDED_IN_CROSS = prove (`!(m1:A metric) (m2:B metric) s t. totally_bounded_in (prod_metric m1 m2) (s CROSS t) <=> s = {} \/ t = {} \/ totally_bounded_in m1 s /\ totally_bounded_in m2 t`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:A->bool = {}`; `t:B->bool = {}`] THEN ASM_REWRITE_TAC[CROSS_EMPTY; TOTALLY_BOUNDED_IN_EMPTY] THEN REWRITE_TAC[TOTALLY_BOUNDED_IN_SEQUENTIALLY] THEN ASM_REWRITE_TAC[CONJUNCT1 PROD_METRIC; SUBSET_CROSS] THEN ASM_CASES_TAC `(s:A->bool) SUBSET mspace m1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(t:B->bool) SUBSET mspace m2` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN STRIP_TAC THEN TRY CONJ_TAC THENL [X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN UNDISCH_TAC `~(t:B->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(\n. (x n,y)):num->A#B`) THEN ASM_REWRITE_TAC[IN_CROSS; CAUCHY_IN_PROD_METRIC] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[o_DEF]; X_GEN_TAC `y:num->B` THEN DISCH_TAC THEN UNDISCH_TAC `~(s:A->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(\n. (x,y n)):num->A#B`) THEN ASM_REWRITE_TAC[IN_CROSS; CAUCHY_IN_PROD_METRIC] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[o_DEF]; REWRITE_TAC[FORALL_PAIR_FUN_THM; IN_CROSS; FORALL_AND_THM] THEN MAP_EVERY X_GEN_TAC [`x:num->A`; `y:num->B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r1:num->num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `(y:num->B) o (r1:num->num)`) THEN ASM_REWRITE_TAC[o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `r2:num->num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(r1:num->num) o (r2:num->num)` THEN ASM_SIMP_TAC[o_THM; CAUCHY_IN_PROD_METRIC; o_ASSOC] THEN ONCE_REWRITE_TAC[o_ASSOC] THEN GEN_REWRITE_TAC (BINOP_CONV o RAND_CONV o LAND_CONV o LAND_CONV) [o_DEF] THEN ASM_REWRITE_TAC[ETA_AX] THEN ASM_SIMP_TAC[CAUCHY_IN_SUBSEQUENCE]]);; let TOTALLY_BOUNDED_IN_PROD_METRIC = prove (`!(m1:A metric) (m2:B metric) u. totally_bounded_in (prod_metric m1 m2) u <=> totally_bounded_in m1 (IMAGE FST u) /\ totally_bounded_in m2 (IMAGE SND u)`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[TOTALLY_BOUNDED_IN_SEQUENTIALLY] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN REWRITE_TAC[CONJUNCT1 PROD_METRIC; IN_CROSS] THEN STRIP_TAC THEN CONJ_TAC THEN (CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN SIMP_TAC[IN_IMAGE; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `z:num->A#B` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:num->A#B`) THEN ASM_REWRITE_TAC[CAUCHY_IN_PROD_METRIC] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[o_DEF]; STRIP_TAC THEN MATCH_MP_TAC TOTALLY_BOUNDED_IN_SUBSET THEN EXISTS_TAC `((IMAGE FST u) CROSS (IMAGE SND u)):A#B->bool` THEN ASM_REWRITE_TAC[TOTALLY_BOUNDED_IN_CROSS; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Three more restrictive notions of continuity for metric spaces. *) (* ------------------------------------------------------------------------- *) let lipschitz_continuous_map = new_definition `lipschitz_continuous_map (m1,m2) f <=> IMAGE f (mspace m1) SUBSET mspace m2 /\ ?B. !x y. x IN mspace m1 /\ y IN mspace m1 ==> mdist m2 (f x,f y) <= B * mdist m1 (x,y)`;; let LIPSCHITZ_CONTINUOUS_MAP_POS = prove (`!m1 m2 f:A->B. lipschitz_continuous_map (m1,m2) f <=> IMAGE f (mspace m1) SUBSET mspace m2 /\ ?B. &0 < B /\ !x y. x IN mspace m1 /\ y IN mspace m1 ==> mdist m2 (f x,f y) <= B * mdist m1 (x,y)`, REPEAT GEN_TAC THEN REWRITE_TAC[lipschitz_continuous_map] THEN AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `abs B + &1` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `B * mdist m1 (x:A,y)` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[MDIST_POS_LE] THEN REAL_ARITH_TAC);; let LIPSCHITZ_CONTINUOUS_MAP_EQ = prove (`!m1 m2 f g. (!x. x IN mspace m1 ==> f x = g x) /\ lipschitz_continuous_map (m1,m2) f ==> lipschitz_continuous_map (m1,m2) g`, REWRITE_TAC[lipschitz_continuous_map] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_CONJ] THEN SIMP_TAC[]);; let LIPSCHITZ_CONTINUOUS_MAP_FROM_SUBMETRIC = prove (`!m1 m2 s f:A->B. lipschitz_continuous_map (m1,m2) f ==> lipschitz_continuous_map (submetric m1 s,m2) f`, REWRITE_TAC[lipschitz_continuous_map; SUBMETRIC] THEN SET_TAC[]);; let LIPSCHITZ_CONTINUOUS_MAP_FROM_SUBMETRIC_MONO = prove (`!m1 m2 f s t. lipschitz_continuous_map (submetric m1 t,m2) f /\ s SUBSET t ==> lipschitz_continuous_map (submetric m1 s,m2) f`, MESON_TAC[LIPSCHITZ_CONTINUOUS_MAP_FROM_SUBMETRIC; SUBMETRIC_SUBMETRIC; SET_RULE `s SUBSET t ==> t INTER s = s`]);; let LIPSCHITZ_CONTINUOUS_MAP_INTO_SUBMETRIC = prove (`!m1 m2 s f:A->B. lipschitz_continuous_map (m1,submetric m2 s) f <=> IMAGE f (mspace m1) SUBSET s /\ lipschitz_continuous_map (m1,m2) f`, REWRITE_TAC[lipschitz_continuous_map; SUBMETRIC] THEN SET_TAC[]);; let LIPSCHITZ_CONTINUOUS_MAP_CONST = prove (`!m1:A metric m2:B metric c. lipschitz_continuous_map (m1,m2) (\x. c) <=> mspace m1 = {} \/ c IN mspace m2`, REPEAT GEN_TAC THEN REWRITE_TAC[lipschitz_continuous_map] THEN ASM_CASES_TAC `mspace m1:A->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; EMPTY_SUBSET; NOT_IN_EMPTY] THEN ASM_CASES_TAC `(c:B) IN mspace m2` THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `&1` THEN ASM_SIMP_TAC[MDIST_REFL; MDIST_POS_LE; REAL_MUL_LID]);; let LIPSCHITZ_CONTINUOUS_MAP_ID = prove (`!m1:A metric. lipschitz_continuous_map (m1,m1) (\x. x)`, REWRITE_TAC[lipschitz_continuous_map; IMAGE_ID; SUBSET_REFL] THEN GEN_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LE_REFL; REAL_MUL_LID]);; let LIPSCHITZ_CONTINUOUS_MAP_COMPOSE = prove (`!m1 m2 m3 f:A->B g:B->C. lipschitz_continuous_map (m1,m2) f /\ lipschitz_continuous_map (m2,m3) g ==> lipschitz_continuous_map (m1,m3) (g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_POS] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN DISCH_TAC THEN X_GEN_TAC `B:real` THEN REPEAT DISCH_TAC THEN X_GEN_TAC `C:real` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[o_THM] THEN EXISTS_TAC `C * B:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REPEAT DISCH_TAC THEN TRANS_TAC REAL_LE_TRANS `C * mdist m2 ((f:A->B) x,f y)` THEN ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_LE_LMUL_EQ]);; let uniformly_continuous_map = new_definition `uniformly_continuous_map (m1,m2) f <=> IMAGE f (mspace m1) SUBSET mspace m2 /\ !e. &0 < e ==> ?d. &0 < d /\ !x x'. x IN mspace m1 /\ x' IN mspace m1 /\ mdist m1 (x',x) < d ==> mdist m2 (f x',f x) < e`;; let UNIFORMLY_CONTINUOUS_MAP_SEQUENTIALLY, UNIFORMLY_CONTINUOUS_MAP_SEQUENTIALLY_ALT = (CONJ_PAIR o prove) (`(!m1 m2 f:A->B. uniformly_continuous_map (m1,m2) f <=> IMAGE f (mspace m1) SUBSET mspace m2 /\ !x y. (!n. x n IN mspace m1) /\ (!n. y n IN mspace m1) /\ limit euclideanreal (\n. mdist m1 (x n,y n)) (&0) sequentially ==> limit euclideanreal (\n. mdist m2 (f(x n),f(y n))) (&0) sequentially) /\ (!m1 m2 f:A->B. uniformly_continuous_map (m1,m2) f <=> IMAGE f (mspace m1) SUBSET mspace m2 /\ !e x y. &0 < e /\ (!n. x n IN mspace m1) /\ (!n. y n IN mspace m1) /\ limit euclideanreal (\n. mdist m1 (x n,y n)) (&0) sequentially ==> ?n. mdist m2 (f(x n),f(y n)) < e)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> r) /\ (r ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[uniformly_continuous_map; SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC; EVENTUALLY_SEQUENTIALLY] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV; IMP_CONJ] THEN ASM_SIMP_TAC[MDIST_POS_LE; REAL_ARITH `&0 <= x ==> abs(&0 - x) = x`] THEN ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`e:real`; `x:num->A`; `y:num->A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:num->A`; `y:num->A`]) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[LIMIT_METRIC] THEN DISCH_THEN(MP_TAC o SPEC `e:real` o CONJUNCT2) THEN ASM_REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN ASM_SIMP_TAC[MDIST_POS_LE; REAL_ARITH `&0 <= x ==> abs(&0 - x) = x`]; REWRITE_TAC[uniformly_continuous_map; SUBSET; FORALL_IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ONCE_REWRITE_TAC[TAUT `p ==> q ==> r <=> q ==> ~r ==> ~p`] THEN DISCH_TAC THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `inv(&n + &1)`) THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:num->A` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:num->A` THEN REWRITE_TAC[AND_FORALL_THM; REAL_NOT_LT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[MDIST_SYM; REAL_NOT_LT]] THEN MATCH_MP_TAC LIMIT_NULL_REAL_COMPARISON THEN EXISTS_TAC `\n. inv(&n + &1)` THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY; LIMIT_NULL_REAL_HARMONIC_OFFSET] THEN EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_ABS_INV; REAL_ARITH `abs(&n + &1) = &n + &1`; METRIC_ARITH `x IN mspace m /\ y IN mspace m ==> abs(mdist m (x,y)) = mdist m (y,x)`] THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]]);; let UNIFORMLY_CONTINUOUS_MAP_EQ = prove (`!m1 m2 f g. (!x. x IN mspace m1 ==> f x = g x) /\ uniformly_continuous_map (m1,m2) f ==> uniformly_continuous_map (m1,m2) g`, REWRITE_TAC[uniformly_continuous_map] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_CONJ] THEN SIMP_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_FROM_SUBMETRIC = prove (`!m1 m2 s f:A->B. uniformly_continuous_map (m1,m2) f ==> uniformly_continuous_map (submetric m1 s,m2) f`, REWRITE_TAC[uniformly_continuous_map; SUBMETRIC] THEN SET_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_FROM_SUBMETRIC_MONO = prove (`!m1 m2 f s t. uniformly_continuous_map (submetric m1 t,m2) f /\ s SUBSET t ==> uniformly_continuous_map (submetric m1 s,m2) f`, MESON_TAC[UNIFORMLY_CONTINUOUS_MAP_FROM_SUBMETRIC; SUBMETRIC_SUBMETRIC; SET_RULE `s SUBSET t ==> t INTER s = s`]);; let UNIFORMLY_CONTINUOUS_MAP_INTO_SUBMETRIC = prove (`!m1 m2 s f:A->B. uniformly_continuous_map (m1,submetric m2 s) f <=> IMAGE f (mspace m1) SUBSET s /\ uniformly_continuous_map (m1,m2) f`, REWRITE_TAC[uniformly_continuous_map; SUBMETRIC] THEN SET_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_CONST = prove (`!m1:A metric m2:B metric c. uniformly_continuous_map (m1,m2) (\x. c) <=> mspace m1 = {} \/ c IN mspace m2`, REPEAT GEN_TAC THEN REWRITE_TAC[uniformly_continuous_map] THEN ASM_CASES_TAC `mspace m1:A->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; EMPTY_SUBSET; NOT_IN_EMPTY] THENL [MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `(c:B) IN mspace m2` THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[MDIST_REFL] THEN MESON_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_CONST = prove (`!m. uniformly_continuous_map (m,real_euclidean_metric) (\x:A. c)`, REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_CONST; REAL_EUCLIDEAN_METRIC; IN_UNIV]);; let UNIFORMLY_CONTINUOUS_MAP_ID = prove (`!m1:A metric. uniformly_continuous_map (m1,m1) (\x. x)`, REWRITE_TAC[uniformly_continuous_map; IMAGE_ID; SUBSET_REFL] THEN MESON_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_COMPOSE = prove (`!m1 m2 f:A->B g:B->C. uniformly_continuous_map (m1,m2) f /\ uniformly_continuous_map (m2,m3) g ==> uniformly_continuous_map (m1,m3) (g o f)`, REWRITE_TAC[uniformly_continuous_map; o_DEF; SUBSET; FORALL_IN_IMAGE] THEN REPEAT GEN_TAC THEN SIMP_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let cauchy_continuous_map = new_definition `cauchy_continuous_map (m1,m2) f <=> !x. cauchy_in m1 x ==> cauchy_in m2 (f o x)`;; let CAUCHY_CONTINUOUS_MAP_IMAGE = prove (`!m1 m2 f:A->B. cauchy_continuous_map (m1,m2) f ==> IMAGE f (mspace m1) SUBSET mspace m2`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `(\n. a):num->A` o REWRITE_RULE[cauchy_continuous_map]) THEN ASM_REWRITE_TAC[o_DEF; CAUCHY_IN_CONST]);; let CAUCHY_CONTINUOUS_MAP_EQ = prove (`!m1 m2 f g. (!x. x IN mspace m1 ==> f x = g x) /\ cauchy_continuous_map (m1,m2) f ==> cauchy_continuous_map (m1,m2) g`, REWRITE_TAC[cauchy_continuous_map; cauchy_in; o_DEF; IMP_CONJ] THEN SIMP_TAC[]);; let CAUCHY_CONTINUOUS_MAP_FROM_SUBMETRIC = prove (`!m1 m2 s f:A->B. cauchy_continuous_map (m1,m2) f ==> cauchy_continuous_map (submetric m1 s,m2) f`, SIMP_TAC[cauchy_continuous_map; CAUCHY_IN_SUBMETRIC]);; let CAUCHY_CONTINUOUS_MAP_FROM_SUBMETRIC_MONO = prove (`!m1 m2 f s t. cauchy_continuous_map (submetric m1 t,m2) f /\ s SUBSET t ==> cauchy_continuous_map (submetric m1 s,m2) f`, MESON_TAC[CAUCHY_CONTINUOUS_MAP_FROM_SUBMETRIC; SUBMETRIC_SUBMETRIC; SET_RULE `s SUBSET t ==> t INTER s = s`]);; let CAUCHY_CONTINUOUS_MAP_INTO_SUBMETRIC = prove (`!m1 m2 s f:A->B. cauchy_continuous_map (m1,submetric m2 s) f <=> IMAGE f (mspace m1) SUBSET s /\ cauchy_continuous_map (m1,m2) f`, REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL [CONJ_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN REWRITE_TAC[SUBMETRIC] THEN SET_TAC[]; POP_ASSUM MP_TAC THEN SIMP_TAC[cauchy_continuous_map; CAUCHY_IN_SUBMETRIC; o_THM]]; REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[cauchy_continuous_map; CAUCHY_IN_SUBMETRIC; o_THM] THEN REWRITE_TAC[cauchy_in] THEN SET_TAC[]]);; let CAUCHY_CONTINUOUS_MAP_CONST = prove (`!m1:A metric m2:B metric c. cauchy_continuous_map (m1,m2) (\x. c) <=> mspace m1 = {} \/ c IN mspace m2`, REPEAT GEN_TAC THEN REWRITE_TAC[cauchy_continuous_map] THEN REWRITE_TAC[o_DEF; CAUCHY_IN_CONST] THEN ASM_CASES_TAC `(c:B) IN mspace m2` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[cauchy_in; NOT_IN_EMPTY]] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `(\n. a):num->A`) THEN ASM_REWRITE_TAC[CAUCHY_IN_CONST]);; let CAUCHY_CONTINUOUS_MAP_REAL_CONST = prove (`!m. cauchy_continuous_map (m,real_euclidean_metric) (\x:A. c)`, REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_CONST; REAL_EUCLIDEAN_METRIC; IN_UNIV]);; let CAUCHY_CONTINUOUS_MAP_ID = prove (`!m1:A metric. cauchy_continuous_map (m1,m1) (\x. x)`, REWRITE_TAC[cauchy_continuous_map; o_DEF; ETA_AX]);; let CAUCHY_CONTINUOUS_MAP_COMPOSE = prove (`!m1 m2 f:A->B g:B->C. cauchy_continuous_map (m1,m2) f /\ cauchy_continuous_map (m2,m3) g ==> cauchy_continuous_map (m1,m3) (g o f)`, REWRITE_TAC[cauchy_continuous_map; o_DEF; SUBSET; FORALL_IN_IMAGE] THEN REPEAT GEN_TAC THEN SIMP_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. lipschitz_continuous_map (m1,m2) f ==> uniformly_continuous_map (m1,m2) f`, REPEAT GEN_TAC THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_POS; uniformly_continuous_map] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC)) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e / B:real` THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_MUL_LZERO] THEN ASM_MESON_TAC[REAL_LET_TRANS; REAL_MUL_SYM]);; let UNIFORMLY_IMP_CAUCHY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. uniformly_continuous_map (m1,m2) f ==> cauchy_continuous_map (m1,m2) f`, REPEAT GEN_TAC THEN REWRITE_TAC[uniformly_continuous_map; cauchy_continuous_map] THEN STRIP_TAC THEN X_GEN_TAC `x:num->A` THEN REWRITE_TAC[cauchy_in] THEN STRIP_TAC THEN REWRITE_TAC[o_THM] THEN ASM SET_TAC[]);; let LOCALLY_CAUCHY_CONTINUOUS_MAP = prove (`!m1 m2 e f:A->B. &0 < e /\ (!x. x IN mspace m1 ==> cauchy_continuous_map (submetric m1 (mball m1 (x,e)),m2) f) ==> cauchy_continuous_map (m1,m2) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[cauchy_continuous_map] THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cauchy_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e:real`)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN STRIP_TAC THEN MATCH_MP_TAC CAUCHY_IN_OFFSET THEN EXISTS_TAC `M:num` THEN CONJ_TAC THENL [X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(x:num->A) n`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; SUBMETRIC; SUBMETRIC; o_THM; IN_INTER; CENTRE_IN_MBALL]; FIRST_X_ASSUM(MP_TAC o SPEC `(x:num->A) M`) THEN ASM_REWRITE_TAC[cauchy_continuous_map; o_DEF] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[CAUCHY_IN_SUBMETRIC; IN_MBALL] THEN ASM_SIMP_TAC[LE_ADD; LE_REFL] THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CAUCHY_IN_SUBSEQUENCE THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL]]);; let CAUCHY_CONTINUOUS_IMP_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. cauchy_continuous_map (m1,m2) f ==> continuous_map (mtopology m1,mtopology m2) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF] THEN X_GEN_TAC `a:A` THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_TAC THEN REWRITE_TAC[LIMIT_ATPOINTOF_SEQUENTIALLY] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:num->A` THEN REWRITE_TAC[IN_DELETE; FORALL_AND_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\n. if EVEN n then x(n DIV 2) else a:A` o REWRITE_RULE[cauchy_continuous_map]) THEN ASM_SIMP_TAC[o_DEF; COND_RAND; CAUCHY_IN_INTERLEAVING]);; let UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. uniformly_continuous_map (m1,m2) f ==> continuous_map (mtopology m1,mtopology m2) f`, MESON_TAC[UNIFORMLY_IMP_CAUCHY_CONTINUOUS_MAP; CAUCHY_CONTINUOUS_IMP_CONTINUOUS_MAP]);; let LIPSCHITZ_CONTINUOUS_IMP_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. lipschitz_continuous_map(m1,m2) f ==> continuous_map (mtopology m1,mtopology m2) f`, SIMP_TAC[UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS_MAP; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP]);; let LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. lipschitz_continuous_map(m1,m2) f ==> cauchy_continuous_map(m1,m2) f`, SIMP_TAC[LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP; UNIFORMLY_IMP_CAUCHY_CONTINUOUS_MAP]);; let CONTINUOUS_IMP_CAUCHY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. mcomplete m1 /\ continuous_map (mtopology m1,mtopology m2) f ==> cauchy_continuous_map (m1,m2) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[cauchy_continuous_map] THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:num->A` o REWRITE_RULE[mcomplete]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] (ISPEC `sequentially` CONTINUOUS_MAP_LIMIT))) THEN DISCH_THEN(MP_TAC o SPECL [`x:num->A`; `y:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONVERGENT_IMP_CAUCHY_IN)) THEN RULE_ASSUM_TAC(REWRITE_RULE [continuous_map; TOPSPACE_MTOPOLOGY; cauchy_in]) THEN REWRITE_TAC[o_DEF] THEN ASM SET_TAC[]);; let CAUCHY_IMP_UNIFORMLY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. totally_bounded_in m1 (mspace m1) /\ cauchy_continuous_map (m1,m2) f ==> uniformly_continuous_map (m1,m2) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_SEQUENTIALLY_ALT] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`e:real`; `x:num->A`; `y:num->A`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:num->A` o CONJUNCT2 o REWRITE_RULE[TOTALLY_BOUNDED_IN_SEQUENTIALLY]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r1:num->num` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `(y:num->A) o (r1:num->num)` o CONJUNCT2 o REWRITE_RULE[TOTALLY_BOUNDED_IN_SEQUENTIALLY]) THEN ASM_REWRITE_TAC[o_THM; GSYM o_ASSOC; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r2:num->num` THEN STRIP_TAC THEN ABBREV_TAC `r = (r1:num->num) o (r2:num->num)` THEN SUBGOAL_THEN `!m n. m < n ==> (r:num->num) m < r n` ASSUME_TAC THENL [EXPAND_TAC "r" THEN REWRITE_TAC[o_DEF] THEN ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `\n. if EVEN n then (x o r) (n DIV 2):A else (y o (r:num->num)) (n DIV 2)` o REWRITE_RULE[cauchy_continuous_map]) THEN ASM_REWRITE_TAC[CAUCHY_IN_INTERLEAVING_GEN; ETA_AX] THEN ANTS_TAC THENL [EXPAND_TAC "r" THEN REWRITE_TAC[o_ASSOC] THEN ASM_SIMP_TAC[CAUCHY_IN_SUBSEQUENCE] THEN FIRST_X_ASSUM(MP_TAC o SPEC `r:num->num` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] LIMIT_SUBSEQUENCE)) THEN ASM_REWRITE_TAC[GSYM o_ASSOC] THEN REWRITE_TAC[o_DEF]; ONCE_REWRITE_TAC[o_DEF] THEN REWRITE_TAC[COND_RAND; CAUCHY_IN_INTERLEAVING_GEN] THEN DISCH_THEN(MP_TAC o CONJUNCT2 o CONJUNCT2) THEN REWRITE_TAC[LIMIT_NULL_REAL] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN REWRITE_TAC[o_DEF; TRIVIAL_LIMIT_SEQUENTIALLY] THEN ASM_SIMP_TAC[real_abs; MDIST_POS_LE] THEN MESON_TAC[]]);; let CONTINUOUS_IMP_UNIFORMLY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. compact_space (mtopology m1) /\ continuous_map (mtopology m1,mtopology m2) f ==> uniformly_continuous_map (m1,m2) f`, REWRITE_TAC[COMPACT_SPACE_EQ_MCOMPLETE_TOTALLY_BOUNDED_IN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CAUCHY_IMP_UNIFORMLY_CONTINUOUS_MAP THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_IMP_CAUCHY_CONTINUOUS_MAP THEN ASM_REWRITE_TAC[]);; let CONTINUOUS_EQ_CAUCHY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. mcomplete m1 ==> (continuous_map (mtopology m1,mtopology m2) f <=> cauchy_continuous_map (m1,m2) f)`, MESON_TAC[CONTINUOUS_IMP_CAUCHY_CONTINUOUS_MAP; CAUCHY_CONTINUOUS_IMP_CONTINUOUS_MAP]);; let CONTINUOUS_EQ_UNIFORMLY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. compact_space (mtopology m1) ==> (continuous_map (mtopology m1,mtopology m2) f <=> uniformly_continuous_map (m1,m2) f)`, MESON_TAC[CONTINUOUS_IMP_UNIFORMLY_CONTINUOUS_MAP; UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS_MAP]);; let CAUCHY_EQ_UNIFORMLY_CONTINUOUS_MAP = prove (`!m1 m2 f:A->B. totally_bounded_in m1 (mspace m1) ==> (cauchy_continuous_map (m1,m2) f <=> uniformly_continuous_map (m1,m2) f)`, MESON_TAC[CAUCHY_IMP_UNIFORMLY_CONTINUOUS_MAP; UNIFORMLY_IMP_CAUCHY_CONTINUOUS_MAP]);; let LIPSCHITZ_CONTINUOUS_MAP_PROJECTIONS = prove (`(!m1:A metric m2:B metric. lipschitz_continuous_map (prod_metric m1 m2,m1) FST) /\ (!m1:A metric m2:B metric. lipschitz_continuous_map (prod_metric m1 m2,m2) SND)`, CONJ_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[lipschitz_continuous_map] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; CONJUNCT1 PROD_METRIC] THEN SIMP_TAC[FORALL_PAIR_THM; IN_CROSS] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_MUL_LID; COMPONENT_LE_PROD_METRIC]);; let LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE = prove (`!m m1 m2 (f:A->B#C). lipschitz_continuous_map(m,prod_metric m1 m2) f <=> lipschitz_continuous_map(m,m1) (FST o f) /\ lipschitz_continuous_map(m,m2) (SND o f)`, REWRITE_TAC[FORALL_AND_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN CONJ_TAC THENL [MESON_TAC[LIPSCHITZ_CONTINUOUS_MAP_COMPOSE; LIPSCHITZ_CONTINUOUS_MAP_PROJECTIONS]; REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FORALL_PAIR_FUN_THM; o_DEF; ETA_AX] THEN MAP_EVERY X_GEN_TAC [`x:A->B`; `y:A->C`] THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_POS] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; CONJUNCT1 PROD_METRIC] THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[IN_CROSS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:real` THEN STRIP_TAC THEN X_GEN_TAC `C:real` THEN STRIP_TAC THEN EXISTS_TAC `B + C:real` THEN ASM_SIMP_TAC[REAL_LT_ADD] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) PROD_METRIC_LE_COMPONENTS o lhand o snd) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `y <= c * m /\ z <= b * m ==> x <= y + z ==> x <= (b + c) * m`) THEN ASM_SIMP_TAC[]]);; let UNIFORMLY_CONTINUOUS_MAP_PAIRWISE = prove (`!m m1 m2 (f:A->B#C). uniformly_continuous_map(m,prod_metric m1 m2) f <=> uniformly_continuous_map(m,m1) (FST o f) /\ uniformly_continuous_map(m,m2) (SND o f)`, REWRITE_TAC[FORALL_AND_THM; TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN CONJ_TAC THENL [MESON_TAC[UNIFORMLY_CONTINUOUS_MAP_COMPOSE; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP; LIPSCHITZ_CONTINUOUS_MAP_PROJECTIONS]; REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FORALL_PAIR_FUN_THM; o_DEF; ETA_AX] THEN MAP_EVERY X_GEN_TAC [`x:A->B`; `y:A->C`] THEN REWRITE_TAC[uniformly_continuous_map] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; CONJUNCT1 PROD_METRIC] THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[IN_CROSS; IMP_IMP] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN(MP_TAC o SPEC `e / &2`)) THEN ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d1:real` THEN STRIP_TAC THEN X_GEN_TAC `d2:real` THEN STRIP_TAC THEN EXISTS_TAC `min d1 d2:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) PROD_METRIC_LE_COMPONENTS o lhand o snd) THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `x < e / &2 /\ y < e / &2 ==> z <= x + y ==> z < e`) THEN ASM_SIMP_TAC[]]);; let CAUCHY_CONTINUOUS_MAP_PAIRWISE = prove (`!m m1 m2 (f:A->B#C). cauchy_continuous_map(m,prod_metric m1 m2) f <=> cauchy_continuous_map(m,m1) (FST o f) /\ cauchy_continuous_map(m,m2) (SND o f)`, REWRITE_TAC[cauchy_continuous_map; CAUCHY_IN_PROD_METRIC; o_ASSOC] THEN MESON_TAC[]);; let LIPSCHITZ_CONTINUOUS_MAP_PAIRED = prove (`!m m1 m2 (f:A->B) (g:A->C). lipschitz_continuous_map (m,prod_metric m1 m2) (\x. f x,g x) <=> lipschitz_continuous_map(m,m1) f /\ lipschitz_continuous_map(m,m2) g`, REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let UNIFORMLY_CONTINUOUS_MAP_PAIRED = prove (`!m m1 m2 (f:A->B) (g:A->C). uniformly_continuous_map (m,prod_metric m1 m2) (\x. f x,g x) <=> uniformly_continuous_map(m,m1) f /\ uniformly_continuous_map(m,m2) g`, REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let CAUCHY_CONTINUOUS_MAP_PAIRED = prove (`!m m1 m2 (f:A->B) (g:A->C). cauchy_continuous_map (m,prod_metric m1 m2) (\x. f x,g x) <=> cauchy_continuous_map(m,m1) f /\ cauchy_continuous_map(m,m2) g`, REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let MBOUNDED_LIPSCHITZ_CONTINUOUS_IMAGE = prove (`!m1 m2 (f:A->B) s. lipschitz_continuous_map (m1,m2) f /\ mbounded m1 s ==> mbounded m2 (IMAGE f s)`, REPEAT GEN_TAC THEN REWRITE_TAC[MBOUNDED_ALT_POS; LIPSCHITZ_CONTINUOUS_MAP_POS] THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN DISCH_TAC THEN X_GEN_TAC `B:real` THEN DISCH_TAC THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN X_GEN_TAC `C:real` THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[FORALL_IN_IMAGE_2]] THEN EXISTS_TAC `B * C:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `B * mdist m1 (x:A,y)` THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN ASM SET_TAC[]);; let TOTALLY_BOUNDED_IN_CAUCHY_CONTINUOUS_IMAGE = prove (`!m1 m2 (f:A->B) s. cauchy_continuous_map (m1,m2) f /\ totally_bounded_in m1 s ==> totally_bounded_in m2 (IMAGE f s)`, REPEAT GEN_TAC THEN REWRITE_TAC[TOTALLY_BOUNDED_IN_SEQUENTIALLY] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_IMAGE]] THEN X_GEN_TAC `y:num->B` THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM]THEN DISCH_THEN(X_CHOOSE_THEN `x:num->A` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->A`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cauchy_continuous_map]) THEN DISCH_THEN(MP_TAC o SPEC `(x:num->A) o (r:num->num)`) THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[o_DEF]);; let LIPSCHITZ_COEFFICIENT_POS = prove (`!m m' f:A->B k. (!x. x IN mspace m ==> f x IN mspace m') /\ (!x y. x IN mspace m /\ y IN mspace m ==> mdist m' (f x,f y) <= k * mdist m (x,y)) /\ (?x y. x IN mspace m /\ y IN mspace m /\ ~(f x = f y)) ==> &0 < k`, REPEAT GEN_TAC THEN INTRO_TAC "f k (@x y. x y fneq)" THEN CLAIM_TAC "neq" `~(x:A = y)` THENL [HYP MESON_TAC "fneq" []; ALL_TAC] THEN TRANS_TAC REAL_LTE_TRANS `mdist m' (f x:B,f y) / mdist m (x:A,y)` THEN ASM_SIMP_TAC[REAL_LT_DIV; MDIST_POS_LT; REAL_LE_LDIV_EQ]);; let LIPSCHITZ_CONTINUOUS_MAP_METRIC = prove (`!m:A metric. lipschitz_continuous_map (prod_metric m m,real_euclidean_metric) (mdist m)`, SIMP_TAC[lipschitz_continuous_map; CONJUNCT1 PROD_METRIC; REAL_EUCLIDEAN_METRIC] THEN GEN_TAC THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; SUBSET_UNIV] THEN EXISTS_TAC `&2` THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN STRIP_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) COMPONENT_LE_PROD_METRIC o rand o rand o snd) THEN MATCH_MP_TAC(REAL_ARITH `x <= y + z ==> y <= p /\ z <= p ==> x <= &2 * p`) THEN REWRITE_TAC[REAL_ABS_BOUNDS] THEN CONJ_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC METRIC_ARITH);; let LIPSCHITZ_CONTINUOUS_MAP_MDIST = prove (`!m m' (f:A->B) g. lipschitz_continuous_map (m,m') f /\ lipschitz_continuous_map (m,m') g ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. mdist m' (f x,g x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric (m':B metric) m'` THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_METRIC] THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRED]);; let UNIFORMLY_CONTINUOUS_MAP_MDIST = prove (`!m m' (f:A->B) g. uniformly_continuous_map (m,m') f /\ uniformly_continuous_map (m,m') g ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. mdist m' (f x,g x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric (m':B metric) m'` THEN SIMP_TAC[LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP; LIPSCHITZ_CONTINUOUS_MAP_METRIC] THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRED]);; let CAUCHY_CONTINUOUS_MAP_MDIST = prove (`!m m' (f:A->B) g. cauchy_continuous_map (m,m') f /\ cauchy_continuous_map (m,m') g ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. mdist m' (f x,g x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric (m':B metric) m'` THEN SIMP_TAC[LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP; LIPSCHITZ_CONTINUOUS_MAP_METRIC] THEN ASM_REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_PAIRED]);; let CONTINUOUS_MAP_METRIC = prove (`!m:A metric. continuous_map (prod_topology (mtopology m) (mtopology m), euclideanreal) (mdist m)`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; GSYM MTOPOLOGY_PROD_METRIC] THEN GEN_TAC THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_IMP_CONTINUOUS_MAP THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_METRIC]);; let CONTINUOUS_MAP_MDIST_ALT = prove (`!m f:A->B#B. continuous_map (top,prod_topology (mtopology m) (mtopology m)) f ==> continuous_map (top,euclideanreal) (\x. mdist m (f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN ASM_MESON_TAC[CONTINUOUS_MAP_METRIC; CONTINUOUS_MAP_COMPOSE]);; let CONTINUOUS_MAP_MDIST = prove (`!top m f g:A->B. continuous_map (top,mtopology m) f /\ continuous_map (top,mtopology m) g ==> continuous_map (top,euclideanreal) (\x. mdist m (f x,g x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_topology (mtopology m:B topology) (mtopology m)` THEN REWRITE_TAC[CONTINUOUS_MAP_METRIC; CONTINUOUS_MAP_PAIRWISE] THEN ASM_REWRITE_TAC[o_DEF; ETA_AX]);; let CONTINUOUS_ON_MDIST = prove (`!m a. a:A IN mspace m ==> continuous_map (mtopology m,euclideanreal) (\x. mdist m (a,x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_MDIST THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; CONTINUOUS_MAP_CONST] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_LEFT_MULTIPLICATION = prove (`!c. lipschitz_continuous_map(real_euclidean_metric,real_euclidean_metric) (\x. c * x)`, GEN_TAC THEN REWRITE_TAC[lipschitz_continuous_map] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV; SUBSET_UNIV] THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; REAL_ABS_MUL] THEN MESON_TAC[REAL_LE_REFL]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_RIGHT_MULTIPLICATION = prove (`!c. lipschitz_continuous_map(real_euclidean_metric,real_euclidean_metric) (\x. x * c)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_LEFT_MULTIPLICATION]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_NEGATION = prove (`lipschitz_continuous_map(real_euclidean_metric,real_euclidean_metric) (--)`, GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_LEFT_MULTIPLICATION]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_ABSOLUTE_VALUE = prove (`lipschitz_continuous_map(real_euclidean_metric,real_euclidean_metric) abs`, SIMP_TAC[lipschitz_continuous_map; REAL_EUCLIDEAN_METRIC; SUBSET_UNIV] THEN EXISTS_TAC `&1` THEN REAL_ARITH_TAC);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_ADDITION = prove (`lipschitz_continuous_map (prod_metric real_euclidean_metric real_euclidean_metric, real_euclidean_metric) (\(x,y). x + y)`, REWRITE_TAC[lipschitz_continuous_map; CONJUNCT1 PROD_METRIC] THEN REWRITE_TAC[FORALL_PAIR_THM; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV; IN_CROSS] THEN EXISTS_TAC `&2` THEN REPEAT GEN_TAC THEN REWRITE_TAC[REAL_ARITH `x <= &2 * y <=> x / &2 <= y`] THEN W(MP_TAC o PART_MATCH (rand o rand) COMPONENT_LE_PROD_METRIC o rand o snd) THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC] THEN REAL_ARITH_TAC);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_SUBTRACTION = prove (`lipschitz_continuous_map (prod_metric real_euclidean_metric real_euclidean_metric, real_euclidean_metric) (\(x,y). x - y)`, REWRITE_TAC[lipschitz_continuous_map; CONJUNCT1 PROD_METRIC] THEN REWRITE_TAC[FORALL_PAIR_THM; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV; IN_CROSS] THEN EXISTS_TAC `&2` THEN REPEAT GEN_TAC THEN REWRITE_TAC[REAL_ARITH `x <= &2 * y <=> x / &2 <= y`] THEN W(MP_TAC o PART_MATCH (rand o rand) COMPONENT_LE_PROD_METRIC o rand o snd) THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC] THEN REAL_ARITH_TAC);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_MAXIMUM = prove (`lipschitz_continuous_map (prod_metric real_euclidean_metric real_euclidean_metric, real_euclidean_metric) (\(x,y). max x y)`, REWRITE_TAC[lipschitz_continuous_map; CONJUNCT1 PROD_METRIC] THEN REWRITE_TAC[FORALL_PAIR_THM; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV; IN_CROSS] THEN EXISTS_TAC `&1` THEN REPEAT GEN_TAC THEN REWRITE_TAC[REAL_MUL_LID] THEN W(MP_TAC o PART_MATCH (rand o rand) COMPONENT_LE_PROD_METRIC o rand o snd) THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC] THEN REAL_ARITH_TAC);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_MINIMUM = prove (`lipschitz_continuous_map (prod_metric real_euclidean_metric real_euclidean_metric, real_euclidean_metric) (\(x,y). min x y)`, REWRITE_TAC[lipschitz_continuous_map; CONJUNCT1 PROD_METRIC] THEN REWRITE_TAC[FORALL_PAIR_THM; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV; IN_CROSS] THEN EXISTS_TAC `&1` THEN REPEAT GEN_TAC THEN REWRITE_TAC[REAL_MUL_LID] THEN W(MP_TAC o PART_MATCH (rand o rand) COMPONENT_LE_PROD_METRIC o rand o snd) THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC] THEN REAL_ARITH_TAC);; let LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_MULTIPLICATION = prove (`!s. mbounded (prod_metric real_euclidean_metric real_euclidean_metric) s ==> lipschitz_continuous_map (submetric (prod_metric real_euclidean_metric real_euclidean_metric) s, real_euclidean_metric) (\(x,y). x * y)`, GEN_TAC THEN REWRITE_TAC[MBOUNDED_PROD_METRIC] THEN REWRITE_TAC[MBOUNDED_REAL_EUCLIDEAN_METRIC; REAL_BOUNDED_POS] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:real` THEN REWRITE_TAC[FORALL_PAIR_THM] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `C:real` THEN REPEAT DISCH_TAC THEN SIMP_TAC[lipschitz_continuous_map; REAL_EUCLIDEAN_METRIC; SUBSET_UNIV] THEN EXISTS_TAC `B + C:real` THEN REWRITE_TAC[FORALL_PAIR_THM; SUBMETRIC; IN_INTER; CONJUNCT1 PROD_METRIC] THEN MAP_EVERY X_GEN_TAC [`x1:real`; `y1:real`; `x2:real`; `y2:real`] THEN REWRITE_TAC[IN_CROSS; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `B * mdist real_euclidean_metric (y1,y2) + C * mdist real_euclidean_metric (x1,x2)` THEN CONJ_TAC THENL [REWRITE_TAC[REAL_EUCLIDEAN_METRIC]; MATCH_MP_TAC(REAL_ARITH `x <= b * d /\ y <= c * d ==> x + y <= (b + c) * d`) THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; COMPONENT_LE_PROD_METRIC]] THEN ONCE_REWRITE_TAC[REAL_ARITH `x2 * y2 - x1 * y1:real = x2 * (y2 - y1) + y1 * (x2 - x1)`] THEN MATCH_MP_TAC(REAL_ARITH `abs x <= a /\ abs y <= b ==> abs(x + y) <= a + b`) THEN REWRITE_TAC[REAL_ABS_MUL] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN ASM_MESON_TAC[]);; let CAUCHY_CONTINUOUS_MAP_REAL_MULTIPLICATION = prove (`cauchy_continuous_map (prod_metric real_euclidean_metric real_euclidean_metric, real_euclidean_metric) (\(x,y). x * y)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC LOCALLY_CAUCHY_CONTINUOUS_MAP THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP THEN MATCH_MP_TAC LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_MULTIPLICATION THEN REWRITE_TAC[MBOUNDED_MBALL]);; let LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_INVERSION = prove (`!s. ~(&0 IN euclideanreal closure_of s) ==> lipschitz_continuous_map (submetric real_euclidean_metric s,real_euclidean_metric) inv`, X_GEN_TAC `s:real->bool` THEN REWRITE_TAC[CLOSURE_OF_INTERIOR_OF; IN_DIFF; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[IN_UNIV; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_INTERIOR_OF_MBALL] THEN REWRITE_TAC[SUBSET; IN_MBALL; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_NOT_LT; SET_RULE `(!x. P x ==> x IN UNIV DIFF s) <=> (!x. x IN s ==> ~P x)`] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN REWRITE_TAC[lipschitz_continuous_map; REAL_EUCLIDEAN_METRIC; SUBSET_UNIV; SUBMETRIC; INTER_UNIV] THEN EXISTS_TAC `inv(b pow 2):real` THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN ASM_CASES_TAC `x = &0` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `y = &0` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `y:real`) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[REAL_FIELD `~(x = &0) /\ ~(y = &0) ==> inv y - inv x = --inv(x * y) * (y - x)`] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NEG; REAL_ABS_INV] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_POW_LT] THEN REWRITE_TAC[REAL_POW_2] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]);; let LIPSCHITZ_CONTINUOUS_MAP_FST = prove (`!m m1 m2 f:A->B#C. lipschitz_continuous_map(m,prod_metric m1 m2) f ==> lipschitz_continuous_map(m,m1) (\x. FST(f x))`, SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF]);; let LIPSCHITZ_CONTINUOUS_MAP_SND = prove (`!m m1 m2 f:A->B#C. lipschitz_continuous_map(m,prod_metric m1 m2) f ==> lipschitz_continuous_map(m,m2) (\x. SND(f x))`, SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_LMUL = prove (`!m c f:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. c * f x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. c * f x) = (\y. c * y) o (f:A->real)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF]; ALL_TAC] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_LEFT_MULTIPLICATION]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_RMUL = prove (`!m c f:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. f x * c)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_LMUL]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_NEG = prove (`!m f:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. --(f x))`, ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_LMUL]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_ABS = prove (`!m f:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. abs(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ABSOLUTE_VALUE]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_INV = prove (`!m f:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ ~(&0 IN euclideanreal closure_of (IMAGE f (mspace m))) ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. inv(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `submetric real_euclidean_metric (IMAGE f (mspace m:A->bool))` THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_INTO_SUBMETRIC; SUBSET_REFL] THEN MATCH_MP_TAC LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_INVERSION THEN ASM_REWRITE_TAC[]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_ADD = prove (`!m f g:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ lipschitz_continuous_map (m,real_euclidean_metric) g ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. f x + g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x + g x) = (\(x,y). x + y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ADDITION] THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_SUB = prove (`!m f g:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ lipschitz_continuous_map (m,real_euclidean_metric) g ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. f x - g x)`, REWRITE_TAC[real_sub] THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ADD; LIPSCHITZ_CONTINUOUS_MAP_REAL_NEG]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_MAX = prove (`!m f g:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ lipschitz_continuous_map (m,real_euclidean_metric) g ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. max (f x) (g x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. max (f x) (g x)) = (\(x,y). max x y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_MAXIMUM] THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_MIN = prove (`!m f g:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ lipschitz_continuous_map (m,real_euclidean_metric) g ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. min (f x) (g x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. min (f x) (g x)) = (\(x,y). min x y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_MINIMUM] THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_MUL = prove (`!m f g:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ lipschitz_continuous_map (m,real_euclidean_metric) g /\ real_bounded (IMAGE f (mspace m)) /\ real_bounded (IMAGE g (mspace m)) ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. f x * g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x * g x) = (\(x,y). x * y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `submetric (prod_metric real_euclidean_metric real_euclidean_metric) (IMAGE (f:A->real) (mspace m) CROSS IMAGE g (mspace m))` THEN ASM_REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX; LIPSCHITZ_CONTINUOUS_MAP_INTO_SUBMETRIC] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_CROSS; FUN_IN_IMAGE] THEN MATCH_MP_TAC LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_MULTIPLICATION THEN ASM_REWRITE_TAC[MBOUNDED_CROSS; MBOUNDED_REAL_EUCLIDEAN_METRIC]);; let LIPSCHITZ_CONTINUOUS_MAP_REAL_DIV = prove (`!m f g:A->real. lipschitz_continuous_map (m,real_euclidean_metric) f /\ lipschitz_continuous_map (m,real_euclidean_metric) g /\ real_bounded (IMAGE f (mspace m)) /\ ~(&0 IN euclideanreal closure_of (IMAGE g (mspace m))) ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. f x / g x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_REAL_MUL THEN ASM_SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_INV] THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN REWRITE_TAC[CLOSURE_OF_INTERIOR_OF; IN_DIFF; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[IN_UNIV; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_INTERIOR_OF_MBALL] THEN REWRITE_TAC[SUBSET; IN_MBALL; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_NOT_LT; SET_RULE `(!x. P x ==> x IN UNIV DIFF s) <=> (!x. x IN s ==> ~P x)`] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN X_GEN_TAC `b:real` THEN STRIP_TAC THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE; REAL_ABS_INV] THEN EXISTS_TAC `inv b:real` THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[]);; let LIPSCHITZ_CONTINUOUS_MAP_SUM = prove (`!m f:K->A->real k. FINITE k /\ (!i. i IN k ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. f x i)) ==> lipschitz_continuous_map (m,real_euclidean_metric) (\x. sum k (f x))`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; LIPSCHITZ_CONTINUOUS_MAP_CONST; REAL_EUCLIDEAN_METRIC; FORALL_IN_INSERT; LIPSCHITZ_CONTINUOUS_MAP_REAL_ADD; ETA_AX; IN_UNIV]);; let UNIFORMLY_CONTINUOUS_MAP_FST = prove (`!m m1 m2 f:A->B#C. uniformly_continuous_map(m,prod_metric m1 m2) f ==> uniformly_continuous_map(m,m1) (\x. FST(f x))`, SIMP_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF]);; let UNIFORMLY_CONTINUOUS_MAP_SND = prove (`!m m1 m2 f:A->B#C. uniformly_continuous_map(m,prod_metric m1 m2) f ==> uniformly_continuous_map(m,m2) (\x. SND(f x))`, SIMP_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_LMUL = prove (`!m c f:A->real. uniformly_continuous_map (m,real_euclidean_metric) f ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. c * f x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. c * f x) = (\y. c * y) o (f:A->real)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF]; ALL_TAC] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_LEFT_MULTIPLICATION; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_RMUL = prove (`!m c f:A->real. uniformly_continuous_map (m,real_euclidean_metric) f ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. f x * c)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_REAL_LMUL]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_NEG = prove (`!m f:A->real. uniformly_continuous_map (m,real_euclidean_metric) f ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. --(f x))`, ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_REAL_LMUL]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_ABS = prove (`!m f:A->real. uniformly_continuous_map (m,real_euclidean_metric) f ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. abs(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ABSOLUTE_VALUE; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_INV = prove (`!m f:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ ~(&0 IN euclideanreal closure_of (IMAGE f (mspace m))) ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. inv(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `submetric real_euclidean_metric (IMAGE f (mspace m:A->bool))` THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_INTO_SUBMETRIC; SUBSET_REFL] THEN MATCH_MP_TAC LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP THEN MATCH_MP_TAC LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_INVERSION THEN ASM_REWRITE_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_ADD = prove (`!m f g:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ uniformly_continuous_map (m,real_euclidean_metric) g ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. f x + g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x + g x) = (\(x,y). x + y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ADDITION; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP] THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_SUB = prove (`!m f g:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ uniformly_continuous_map (m,real_euclidean_metric) g ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. f x - g x)`, REWRITE_TAC[real_sub] THEN SIMP_TAC[UNIFORMLY_CONTINUOUS_MAP_REAL_ADD; UNIFORMLY_CONTINUOUS_MAP_REAL_NEG]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_MAX = prove (`!m f g:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ uniformly_continuous_map (m,real_euclidean_metric) g ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. max (f x) (g x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. max (f x) (g x)) = (\(x,y). max x y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_MAXIMUM; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP] THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_MIN = prove (`!m f g:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ uniformly_continuous_map (m,real_euclidean_metric) g ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. min (f x) (g x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. min (f x) (g x)) = (\(x,y). min x y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_MINIMUM; LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP] THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_MUL = prove (`!m f g:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ uniformly_continuous_map (m,real_euclidean_metric) g /\ real_bounded (IMAGE f (mspace m)) /\ real_bounded (IMAGE g (mspace m)) ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. f x * g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x * g x) = (\(x,y). x * y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `submetric (prod_metric real_euclidean_metric real_euclidean_metric) (IMAGE (f:A->real) (mspace m) CROSS IMAGE g (mspace m))` THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX; UNIFORMLY_CONTINUOUS_MAP_INTO_SUBMETRIC] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_CROSS; FUN_IN_IMAGE] THEN MATCH_MP_TAC LIPSCHITZ_IMP_UNIFORMLY_CONTINUOUS_MAP THEN MATCH_MP_TAC LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_MULTIPLICATION THEN ASM_REWRITE_TAC[MBOUNDED_CROSS; MBOUNDED_REAL_EUCLIDEAN_METRIC]);; let UNIFORMLY_CONTINUOUS_MAP_REAL_DIV = prove (`!m f g:A->real. uniformly_continuous_map (m,real_euclidean_metric) f /\ uniformly_continuous_map (m,real_euclidean_metric) g /\ real_bounded (IMAGE f (mspace m)) /\ ~(&0 IN euclideanreal closure_of (IMAGE g (mspace m))) ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. f x / g x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_REAL_MUL THEN ASM_SIMP_TAC[UNIFORMLY_CONTINUOUS_MAP_REAL_INV] THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN REWRITE_TAC[CLOSURE_OF_INTERIOR_OF; IN_DIFF; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[IN_UNIV; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_INTERIOR_OF_MBALL] THEN REWRITE_TAC[SUBSET; IN_MBALL; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_NOT_LT; SET_RULE `(!x. P x ==> x IN UNIV DIFF s) <=> (!x. x IN s ==> ~P x)`] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN X_GEN_TAC `b:real` THEN STRIP_TAC THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE; REAL_ABS_INV] THEN EXISTS_TAC `inv b:real` THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[]);; let UNIFORMLY_CONTINUOUS_MAP_SUM = prove (`!m f:K->A->real k. FINITE k /\ (!i. i IN k ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. f x i)) ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. sum k (f x))`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; UNIFORMLY_CONTINUOUS_MAP_CONST; REAL_EUCLIDEAN_METRIC; FORALL_IN_INSERT; UNIFORMLY_CONTINUOUS_MAP_REAL_ADD; ETA_AX; IN_UNIV]);; let CAUCHY_CONTINUOUS_MAP_FST = prove (`!m m1 m2 f:A->B#C. cauchy_continuous_map(m,prod_metric m1 m2) f ==> cauchy_continuous_map(m,m1) (\x. FST(f x))`, SIMP_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF]);; let CAUCHY_CONTINUOUS_MAP_SND = prove (`!m m1 m2 f:A->B#C. cauchy_continuous_map(m,prod_metric m1 m2) f ==> cauchy_continuous_map(m,m2) (\x. SND(f x))`, SIMP_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF]);; let CAUCHY_CONTINUOUS_MAP_REAL_INV = prove (`!m f:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ ~(&0 IN euclideanreal closure_of (IMAGE f (mspace m))) ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. inv(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `submetric real_euclidean_metric (IMAGE f (mspace m:A->bool))` THEN ASM_REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_INTO_SUBMETRIC; SUBSET_REFL] THEN MATCH_MP_TAC LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP THEN MATCH_MP_TAC LOCALLY_LIPSCHITZ_CONTINUOUS_MAP_REAL_INVERSION THEN ASM_REWRITE_TAC[]);; let CAUCHY_CONTINUOUS_MAP_REAL_ADD = prove (`!m f g:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ cauchy_continuous_map (m,real_euclidean_metric) g ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x + g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x + g x) = (\(x,y). x + y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ADDITION; LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP] THEN ASM_REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let CAUCHY_CONTINUOUS_MAP_REAL_MUL = prove (`!m f g:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ cauchy_continuous_map (m,real_euclidean_metric) g ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x * g x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x * g x) = (\(x,y). x * y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_REAL_MULTIPLICATION] THEN ASM_REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let CAUCHY_CONTINUOUS_MAP_REAL_LMUL = prove (`!m c f:A->real. cauchy_continuous_map (m,real_euclidean_metric) f ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. c * f x)`, SIMP_TAC[CAUCHY_CONTINUOUS_MAP_REAL_MUL; CAUCHY_CONTINUOUS_MAP_REAL_CONST]);; let CAUCHY_CONTINUOUS_MAP_REAL_RMUL = prove (`!m c f:A->real. cauchy_continuous_map (m,real_euclidean_metric) f ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x * c)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_REAL_LMUL]);; let CAUCHY_CONTINUOUS_MAP_REAL_POW = prove (`!m (f:A->real) n. cauchy_continuous_map (m,real_euclidean_metric) f ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x pow n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_pow; CAUCHY_CONTINUOUS_MAP_REAL_CONST; CAUCHY_CONTINUOUS_MAP_REAL_MUL]);; let CAUCHY_CONTINUOUS_MAP_REAL_NEG = prove (`!m f:A->real. cauchy_continuous_map (m,real_euclidean_metric) f ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. --(f x))`, ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_REAL_LMUL]);; let CAUCHY_CONTINUOUS_MAP_REAL_ABS = prove (`!m f:A->real. cauchy_continuous_map (m,real_euclidean_metric) f ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. abs(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_ABSOLUTE_VALUE; LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP]);; let CAUCHY_CONTINUOUS_MAP_REAL_SUB = prove (`!m f g:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ cauchy_continuous_map (m,real_euclidean_metric) g ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x - g x)`, REWRITE_TAC[real_sub] THEN SIMP_TAC[CAUCHY_CONTINUOUS_MAP_REAL_ADD; CAUCHY_CONTINUOUS_MAP_REAL_NEG]);; let CAUCHY_CONTINUOUS_MAP_REAL_MAX = prove (`!m f g:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ cauchy_continuous_map (m,real_euclidean_metric) g ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. max (f x) (g x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. max (f x) (g x)) = (\(x,y). max x y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_MAXIMUM; LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP] THEN ASM_REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let CAUCHY_CONTINUOUS_MAP_REAL_MIN = prove (`!m f g:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ cauchy_continuous_map (m,real_euclidean_metric) g ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. min (f x) (g x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. min (f x) (g x)) = (\(x,y). min x y) o (\z. (f:A->real) z,g z)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; FORALL_PAIR_THM]; ALL_TAC] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `prod_metric real_euclidean_metric real_euclidean_metric` THEN SIMP_TAC[LIPSCHITZ_CONTINUOUS_MAP_REAL_MINIMUM; LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP] THEN ASM_REWRITE_TAC[CAUCHY_CONTINUOUS_MAP_PAIRWISE; o_DEF; ETA_AX]);; let CAUCHY_CONTINUOUS_MAP_REAL_DIV = prove (`!m f g:A->real. cauchy_continuous_map (m,real_euclidean_metric) f /\ cauchy_continuous_map (m,real_euclidean_metric) g /\ ~(&0 IN euclideanreal closure_of (IMAGE g (mspace m))) ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x / g x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_REAL_MUL THEN ASM_SIMP_TAC[CAUCHY_CONTINUOUS_MAP_REAL_INV] THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN REWRITE_TAC[CLOSURE_OF_INTERIOR_OF; IN_DIFF; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[IN_UNIV; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_INTERIOR_OF_MBALL] THEN REWRITE_TAC[SUBSET; IN_MBALL; REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_NOT_LT; SET_RULE `(!x. P x ==> x IN UNIV DIFF s) <=> (!x. x IN s ==> ~P x)`] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN X_GEN_TAC `b:real` THEN STRIP_TAC THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE; REAL_ABS_INV] THEN EXISTS_TAC `inv b:real` THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[]);; let CAUCHY_CONTINUOUS_MAP_SUM = prove (`!m f:K->A->real k. FINITE k /\ (!i. i IN k ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. f x i)) ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. sum k (f x))`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; CAUCHY_CONTINUOUS_MAP_REAL_CONST; FORALL_IN_INSERT; CAUCHY_CONTINUOUS_MAP_REAL_ADD; ETA_AX]);; let UNIFORMLY_CONTINUOUS_MAP_SQUARE_ROOT = prove (`uniformly_continuous_map(real_euclidean_metric,real_euclidean_metric) sqrt`, REWRITE_TAC[uniformly_continuous_map; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e pow 2 / &2` THEN ASM_SIMP_TAC[REAL_HALF; REAL_POW_LT] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN DISCH_TAC THEN TRANS_TAC REAL_LET_TRANS `sqrt(&2 * abs(x - y))` THEN REWRITE_TAC[REAL_ABS_LE_SQRT] THEN MATCH_MP_TAC REAL_LT_LSQRT THEN ASM_REAL_ARITH_TAC);; let CONTINUOUS_MAP_SQUARE_ROOT = prove (`continuous_map(euclideanreal,euclideanreal) sqrt`, REWRITE_TAC[GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS_MAP THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_SQUARE_ROOT]);; let UNIFORMLY_CONTINUOUS_MAP_SQRT = prove (`!m f:A->real. uniformly_continuous_map (m,real_euclidean_metric) f ==> uniformly_continuous_map (m,real_euclidean_metric) (\x. sqrt(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_REWRITE_TAC[UNIFORMLY_CONTINUOUS_MAP_SQUARE_ROOT]);; let CAUCHY_CONTINUOUS_MAP_SQRT = prove (`!m f:A->real. cauchy_continuous_map (m,real_euclidean_metric) f ==> cauchy_continuous_map (m,real_euclidean_metric) (\x. sqrt(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `real_euclidean_metric` THEN ASM_SIMP_TAC[UNIFORMLY_CONTINUOUS_MAP_SQUARE_ROOT; UNIFORMLY_IMP_CAUCHY_CONTINUOUS_MAP]);; let CONTINUOUS_MAP_SQRT = prove (`!top f:A->real. continuous_map (top,euclideanreal) f ==> continuous_map (top,euclideanreal) (\x. sqrt(f x))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[UNIFORMLY_CONTINUOUS_MAP_SQUARE_ROOT; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC; UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS_MAP]);; let ISOMETRY_IMP_EMBEDDING_MAP = prove (`!m m' (f:A->B). IMAGE f (mspace m) SUBSET mspace m' /\ (!x y. x IN mspace m /\ y IN mspace m ==> mdist m' (f x,f y) = mdist m (x,y)) ==> embedding_map(mtopology m,mtopology m') f`, REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x y. x IN mspace m /\ y IN mspace m /\ (f:A->B) x = f y ==> x = y` MP_TAC THENL [ASM_MESON_TAC[MDIST_0]; ALL_TAC] THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:B->A` THEN DISCH_TAC THEN REWRITE_TAC[embedding_map; HOMEOMORPHIC_MAP_MAPS] THEN EXISTS_TAC `g:B->A` THEN ASM_REWRITE_TAC[homeomorphic_maps; TOPSPACE_MTOPOLOGY; TOPSPACE_SUBTOPOLOGY; IN_INTER; IMP_CONJ_ALT] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_MTOPOLOGY] THEN SIMP_TAC[FUN_IN_IMAGE; GSYM MTOPOLOGY_SUBMETRIC] THEN CONJ_TAC THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_IMP_CONTINUOUS_MAP THEN ASM_SIMP_TAC[lipschitz_continuous_map; SUBSET; FORALL_IN_IMAGE; SUBMETRIC; IMP_CONJ; IN_INTER] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; REAL_MUL_LID] THEN ASM_SIMP_TAC[REAL_LE_REFL]);; let ISOMETRY_IMP_HOMEOMORPHIC_MAP = prove (`!m m' (f:A->B). IMAGE f (mspace m) = mspace m' /\ (!x y. x IN mspace m /\ y IN mspace m ==> mdist m' (f x,f y) = mdist m (x,y)) ==> homeomorphic_map(mtopology m,mtopology m') f`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m:A metric`; `m':B metric`; `f:A->B`] ISOMETRY_IMP_EMBEDDING_MAP) THEN ASM_REWRITE_TAC[SUBSET_REFL; embedding_map; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; SUBTOPOLOGY_TOPSPACE]);; (* ------------------------------------------------------------------------- *) (* Extending continuous maps "pointwise" in a regular space. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE_OF = prove (`!top top' f:A->B s t. regular_space top' /\ t SUBSET top closure_of s /\ (!x. x IN t ==> limit top' f (f x) (atpointof top x within s)) ==> continuous_map (subtopology top t,top') f`, REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:A->B) t SUBSET topspace top'` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[limit]) THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN ASM_SIMP_TAC[ATPOINTOF_SUBTOPOLOGY] THEN REWRITE_TAC[limit] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `w:B->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NEIGHBOURHOOD_BASE_OF]) THEN DISCH_THEN(MP_TAC o SPECL [`w:B->bool`; `(f:A->B) a`]) THEN ASM_REWRITE_TAC[SUBTOPOLOGY_TOPSPACE; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:B->bool`; `c:B->bool`] THEN STRIP_TAC THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF; EVENTUALLY_WITHIN_IMP] THEN DISJ2_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `a:A`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; REWRITE_TAC[limit]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `v:B->bool`)) THEN ASM_REWRITE_TAC[EVENTUALLY_ATPOINTOF; EVENTUALLY_WITHIN_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN SUBGOAL_THEN `z IN topspace top /\ (f:A->B) z IN topspace top'` STRIP_ASSUME_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~((f:A->B) z IN topspace top' DIFF c)` MP_TAC THENL [REWRITE_TAC[IN_DIFF] THEN STRIP_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [limit] o SPEC `z:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `topspace top' DIFF c:B->bool`) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE; IN_DIFF] THEN ASM_REWRITE_TAC[EVENTUALLY_ATPOINTOF; EVENTUALLY_WITHIN_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `u':A->bool` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `(t:A->bool) SUBSET top closure_of s` THEN REWRITE_TAC[closure_of; IN_ELIM_THM; SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `z:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `u INTER u':A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE_OF_EQ = prove (`!top top' f:A->B s t. regular_space top' /\ s SUBSET t /\ t SUBSET top closure_of s ==> (continuous_map (subtopology top t,top') f <=> !x. x IN t ==> limit top' f (f x) (atpointof top x within s))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF; TOPSPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN t` THEN ASM_SIMP_TAC[ATPOINTOF_SUBTOPOLOGY] THEN ASSUME_TAC(ISPECL [`top:A topology`; `s:A->bool`] CLOSURE_OF_SUBSET_TOPSPACE) THEN ANTS_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[LIMIT_WITHIN_SUBSET]]; ASM_MESON_TAC[CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE_OF]]);; let CONTINUOUS_MAP_EXTENSION_POINTWISE_ALT = prove (`!top1 top2 f:A->B s t. regular_space top2 /\ s SUBSET t /\ t SUBSET top1 closure_of s /\ continuous_map (subtopology top1 s,top2) f /\ (!x. x IN t DIFF s ==> ?l. limit top2 f l (atpointof top1 x within s)) ==> ?g. continuous_map (subtopology top1 t,top2) g /\ (!x. x IN s ==> g x = f x)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; IN_DIFF] THEN X_GEN_TAC `g:A->B` THEN DISCH_TAC THEN EXISTS_TAC `\x. if x IN s then (f:A->B) x else g x` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE_OF_EQ] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC LIMIT_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `f:A->B` THEN SIMP_TAC[ALWAYS_WITHIN_EVENTUALLY] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GSYM ATPOINTOF_SUBTOPOLOGY] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_MAP_ATPOINTOF]) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN RULE_ASSUM_TAC(REWRITE_RULE[closure_of]) THEN ASM SET_TAC[]);; let CONTINUOUS_MAP_EXTENSION_POINTWISE = prove (`!top1 top2 f:A->B s t. regular_space top2 /\ s SUBSET t /\ t SUBSET top1 closure_of s /\ (!x. x IN t ==> ?g. continuous_map (subtopology top1 (x INSERT s),top2) g /\ !x. x IN s ==> g x = f x) ==> ?g. continuous_map (subtopology top1 t,top2) g /\ (!x. x IN s ==> g x = f x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_EXTENSION_POINTWISE_ALT THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_DIFF; IN_INTER] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN (SUBGOAL_THEN `(x:A) IN topspace top1` ASSUME_TAC THENL [RULE_ASSUM_TAC(SIMP_RULE[closure_of]) THEN ASM SET_TAC[]; ALL_TAC]) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN (ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]]) THEN X_GEN_TAC `g:A->B` THEN REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `x:A`) ASSUME_TAC) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_INSERT] THEN ASM_SIMP_TAC[ATPOINTOF_SUBTOPOLOGY; IN_INSERT] THEN STRIP_TAC THENL [ALL_TAC; EXISTS_TAC `(g:A->B) x`] THEN MATCH_MP_TAC LIMIT_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `(g:A->B)` THEN ASM_SIMP_TAC[ALWAYS_WITHIN_EVENTUALLY] THEN MATCH_MP_TAC LIMIT_WITHIN_SUBSET THEN EXISTS_TAC `(x:A) INSERT s` THEN ASM_REWRITE_TAC[SET_RULE `s SUBSET x INSERT s`]);; (* ------------------------------------------------------------------------- *) (* Extending Cauchy continuous functions to the closure. *) (* ------------------------------------------------------------------------- *) let CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s. mcomplete m2 /\ cauchy_continuous_map (submetric m1 s,m2) f ==> ?g. continuous_map (subtopology (mtopology m1) (mtopology m1 closure_of s), mtopology m2) g /\ !x. x IN s ==> g x = f x`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC(MESON[] `!m. ((!s. s SUBSET mspace m ==> P s) ==> (!s. P s)) /\ (!s. s SUBSET mspace m ==> P s) ==> !s. P s`) THEN EXISTS_TAC `m1:A metric` THEN CONJ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `mspace m1 INTER s:A->bool`) THEN ASM_REWRITE_TAC[GSYM SUBMETRIC_SUBMETRIC; SUBMETRIC_MSPACE] THEN REWRITE_TAC[INTER_SUBSET; GSYM TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT; IN_INTER] THEN DISCH_THEN(X_CHOOSE_THEN `g:A->B` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x. if x IN topspace(mtopology m1) then (g:A->B) x else f x` THEN ASM_SIMP_TAC[COND_ID] THEN MATCH_MP_TAC CONTINUOUS_MAP_EQ THEN EXISTS_TAC `g:A->B` THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_EXTENSION_POINTWISE_ALT THEN REWRITE_TAC[REGULAR_SPACE_MTOPOLOGY; SUBSET_REFL] THEN ASM_SIMP_TAC[CLOSURE_OF_SUBSET; TOPSPACE_MTOPOLOGY] THEN ASM_SIMP_TAC[CAUCHY_CONTINUOUS_IMP_CONTINUOUS_MAP; GSYM MTOPOLOGY_SUBMETRIC; IN_DIFF] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN FIRST_ASSUM (MP_TAC o GEN_REWRITE_RULE RAND_CONV [CLOSURE_OF_SEQUENTIALLY]) THEN REWRITE_TAC[IN_ELIM_THM; IN_INTER; FORALL_AND_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `x:num->A` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONVERGENT_IMP_CAUCHY_IN)) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:num->A` o REWRITE_RULE[cauchy_continuous_map]) THEN ASM_REWRITE_TAC[CAUCHY_IN_SUBMETRIC] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `(f:A->B) o (x:num->A)` o REWRITE_RULE[mcomplete]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:B` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[limit]) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_TAC THEN ASM_REWRITE_TAC[LIMIT_ATPOINTOF_SEQUENTIALLY_WITHIN] THEN X_GEN_TAC `y:num->A` THEN REWRITE_TAC[IN_INTER; IN_DELETE; FORALL_AND_THM] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\n. if EVEN n then x(n DIV 2):A else y(n DIV 2)` o REWRITE_RULE[cauchy_continuous_map]) THEN REWRITE_TAC[CAUCHY_IN_INTERLEAVING_GEN; o_DEF; COND_RAND] THEN ASM_REWRITE_TAC[SUBMETRIC; CAUCHY_IN_SUBMETRIC] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[CONVERGENT_IMP_CAUCHY_IN]; ALL_TAC] THEN MAP_EVERY UNDISCH_TAC [`limit (mtopology m1) y (a:A) sequentially`; `limit (mtopology m1) x (a:A) sequentially`] THEN REWRITE_TAC[IMP_IMP] THEN GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [LIMIT_METRIC_DIST_NULL] THEN ASM_REWRITE_TAC[EVENTUALLY_TRUE] THEN DISCH_THEN(MP_TAC o MATCH_MP LIMIT_REAL_ADD) THEN REWRITE_TAC[REAL_ADD_LID] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LIMIT_NULL_REAL_COMPARISON) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC(METRIC_ARITH `a IN mspace m /\ x IN mspace m /\ y IN mspace m ==> abs(mdist m (x,y)) <= abs(mdist m (x,a) + mdist m (y,a))`) THEN ASM_REWRITE_TAC[]; DISCH_THEN(MP_TAC o CONJUNCT2 o CONJUNCT2) THEN GEN_REWRITE_TAC RAND_CONV [LIMIT_METRIC_DIST_NULL] THEN UNDISCH_TAC `limit (mtopology m2) ((f:A->B) o x) l sequentially` THEN GEN_REWRITE_TAC LAND_CONV [LIMIT_METRIC_DIST_NULL] THEN SIMP_TAC[o_DEF] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP LIMIT_REAL_ADD) THEN REWRITE_TAC[REAL_ADD_RID] THEN DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL [DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN REWRITE_TAC[SUBMETRIC] THEN ASM SET_TAC[]; MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LIMIT_NULL_REAL_COMPARISON) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC(METRIC_ARITH `a IN mspace m /\ x IN mspace m /\ y IN mspace m ==> abs(mdist m (y,a)) <= abs(mdist m (x,a) + mdist m (x,y))`) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_IMAGE) THEN REWRITE_TAC[SUBMETRIC] THEN ASM SET_TAC[]]]);; let CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_INTERMEDIATE_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s t. mcomplete m2 /\ cauchy_continuous_map (submetric m1 s,m2) f /\ t SUBSET mtopology m1 closure_of s ==> ?g. continuous_map(subtopology (mtopology m1) t,mtopology m2) g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `f:A->B`; `s:A->bool`] CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO]);; let LIPSCHITZ_CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE = prove (`!m1 m2 f:A->B s t. s SUBSET t /\ t SUBSET (mtopology m1) closure_of s /\ continuous_map (subtopology (mtopology m1) t,mtopology m2) f /\ lipschitz_continuous_map (submetric m1 s,m2) f ==> lipschitz_continuous_map (submetric m1 t,m2) f`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN SUBGOAL_THEN `submetric m1 (s:A->bool) = submetric m1 (mspace m1 INTER s)` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBMETRIC_SUBMETRIC; SUBMETRIC_MSPACE]; DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `mspace m1:A->bool` o MATCH_MP (SET_RULE `s SUBSET t ==> !u. u INTER s SUBSET u /\ u INTER s SUBSET t`)) MP_TAC) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN SPEC_TAC(`mspace m1 INTER (s:A->bool)`,`s:A->bool`)] THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `(t:A->bool) SUBSET mspace m1` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[closure_of; TOPSPACE_MTOPOLOGY]) THEN ASM SET_TAC[]; FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[CONTINUOUS_MAP])] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[LIPSCHITZ_CONTINUOUS_MAP_POS] THEN ASM_SIMP_TAC[SUBMETRIC; SET_RULE `s SUBSET u ==> s INTER u = s`; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `B:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`prod_topology (subtopology (mtopology m1) (t:A->bool)) (subtopology (mtopology m1) (t:A->bool))`; `\z. mdist m2 ((f:A->B) (FST z),f(SND z)) <= B * mdist m1 (FST z,SND z)`; `s CROSS (s:A->bool)`] FORALL_IN_CLOSURE_OF) THEN ASM_REWRITE_TAC[CLOSURE_OF_CROSS; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s /\ s INTER t = s`] THEN ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ &0 <= f x} = {x | x IN s /\ f x IN {y | &0 <= y}}`] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN REWRITE_TAC[GSYM REAL_CLOSED_IN] THEN REWRITE_TAC[REWRITE_RULE[real_ge] REAL_CLOSED_HALFSPACE_GE] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_REAL_LMUL THEN GEN_REWRITE_TAC (RAND_CONV o ABS_CONV o RAND_CONV) [GSYM PAIR]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_MDIST THENL [ALL_TAC; CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology (mtopology m1) (t:A->bool)`] THEN REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC CONTINUOUS_MAP_INTO_SUBTOPOLOGY THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IMAGE_FST_CROSS; IMAGE_SND_CROSS; INTER_CROSS] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]]) THEN ASM_REWRITE_TAC[GSYM SUBTOPOLOGY_CROSS] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN REWRITE_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]);; let LIPSCHITZ_CONTINUOUS_MAP_EXTENDS_TO_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s. mcomplete m2 /\ lipschitz_continuous_map (submetric m1 s,m2) f ==> ?g. lipschitz_continuous_map (submetric m1 (mtopology m1 closure_of s),m2) g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `f:A->B`; `s:A->bool`] CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN ASM_SIMP_TAC[LIPSCHITZ_IMP_CAUCHY_CONTINUOUS_MAP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:A->B` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE THEN EXISTS_TAC `mspace m1 INTER s:A->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_INTER; GSYM TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT; SUBSET_REFL] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; GSYM SUBMETRIC_RESTRICT] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_MAP_EQ THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[SUBMETRIC; IN_INTER]);; let LIPSCHITZ_CONTINUOUS_MAP_EXTENDS_TO_INTERMEDIATE_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s t. mcomplete m2 /\ lipschitz_continuous_map (submetric m1 s,m2) f /\ t SUBSET mtopology m1 closure_of s ==> ?g. lipschitz_continuous_map (submetric m1 t,m2) g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `f:A->B`; `s:A->bool`] LIPSCHITZ_CONTINUOUS_MAP_EXTENDS_TO_CLOSURE_OF) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LIPSCHITZ_CONTINUOUS_MAP_FROM_SUBMETRIC_MONO]);; let UNIFORMLY_CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE = prove (`!m1 m2 f:A->B s t. s SUBSET t /\ t SUBSET (mtopology m1) closure_of s /\ continuous_map (subtopology (mtopology m1) t,mtopology m2) f /\ uniformly_continuous_map (submetric m1 s,m2) f ==> uniformly_continuous_map (submetric m1 t,m2) f`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN SUBGOAL_THEN `submetric m1 (s:A->bool) = submetric m1 (mspace m1 INTER s)` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBMETRIC_SUBMETRIC; SUBMETRIC_MSPACE]; DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `mspace m1:A->bool` o MATCH_MP (SET_RULE `s SUBSET t ==> !u. u INTER s SUBSET u /\ u INTER s SUBSET t`)) MP_TAC) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN SPEC_TAC(`mspace m1 INTER (s:A->bool)`,`s:A->bool`)] THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `(t:A->bool) SUBSET mspace m1` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[closure_of; TOPSPACE_MTOPOLOGY]) THEN ASM SET_TAC[]; FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[CONTINUOUS_MAP])] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[uniformly_continuous_map] THEN ASM_SIMP_TAC[SUBMETRIC; SET_RULE `s SUBSET u ==> s INTER u = s`; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_TAC THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`prod_topology (subtopology (mtopology m1) (t:A->bool)) (subtopology (mtopology m1) (t:A->bool))`; `\z. mdist m1 (FST z,SND z) < d ==> mdist m2 ((f:A->B) (FST z),f(SND z)) <= e / &2`; `s CROSS (s:A->bool)`] FORALL_IN_CLOSURE_OF) THEN ASM_REWRITE_TAC[CLOSURE_OF_CROSS; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[CLOSURE_OF_SUBTOPOLOGY] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s /\ s INTER t = s`] THEN ANTS_TAC THENL [ASM_SIMP_TAC[REAL_LT_IMP_LE]; ASM_MESON_TAC[REAL_ARITH `&0 < e /\ x <= e / &2 ==> x < e`]] THEN ONCE_REWRITE_TAC[GSYM REAL_NOT_LE] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ (~(&0 <= f x) ==> &0 <= g x)} = {x | x IN s /\ g x IN {y | &0 <= y}} UNION {x | x IN s /\ f x IN {y | &0 <= y}}`] THEN MATCH_MP_TAC CLOSED_IN_UNION THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN REWRITE_TAC[GSYM REAL_CLOSED_IN] THEN REWRITE_TAC[REWRITE_RULE[real_ge] REAL_CLOSED_HALFSPACE_GE] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN MATCH_MP_TAC CONTINUOUS_MAP_MDIST_ALT THEN REWRITE_TAC[CONTINUOUS_MAP_PAIRWISE; o_DEF; GSYM SUBTOPOLOGY_CROSS] THEN SIMP_TAC[CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND; ETA_AX; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology (mtopology m1) (t:A->bool)` THEN ASM_SIMP_TAC[SUBTOPOLOGY_CROSS; CONTINUOUS_MAP_FST; CONTINUOUS_MAP_SND]);; let UNIFORMLY_CONTINUOUS_MAP_EXTENDS_TO_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s. mcomplete m2 /\ uniformly_continuous_map (submetric m1 s,m2) f ==> ?g. uniformly_continuous_map (submetric m1 (mtopology m1 closure_of s),m2) g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `f:A->B`; `s:A->bool`] CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN ASM_SIMP_TAC[UNIFORMLY_IMP_CAUCHY_CONTINUOUS_MAP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:A->B` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE THEN EXISTS_TAC `mspace m1 INTER s:A->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_INTER; GSYM TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT; SUBSET_REFL] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; GSYM SUBMETRIC_RESTRICT] THEN MATCH_MP_TAC UNIFORMLY_CONTINUOUS_MAP_EQ THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[SUBMETRIC; IN_INTER]);; let UNIFORMLY_CONTINUOUS_MAP_EXTENDS_TO_INTERMEDIATE_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s t. mcomplete m2 /\ uniformly_continuous_map (submetric m1 s,m2) f /\ t SUBSET mtopology m1 closure_of s ==> ?g. uniformly_continuous_map (submetric m1 t,m2) g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `f:A->B`; `s:A->bool`] UNIFORMLY_CONTINUOUS_MAP_EXTENDS_TO_CLOSURE_OF) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[UNIFORMLY_CONTINUOUS_MAP_FROM_SUBMETRIC_MONO]);; let CAUCHY_CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE = prove (`!m1 m2 f:A->B s t. s SUBSET t /\ t SUBSET (mtopology m1) closure_of s /\ continuous_map (subtopology (mtopology m1) t,mtopology m2) f /\ cauchy_continuous_map (submetric m1 s,m2) f ==> cauchy_continuous_map (submetric m1 t,m2) f`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN SUBGOAL_THEN `submetric m1 (s:A->bool) = submetric m1 (mspace m1 INTER s)` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBMETRIC_SUBMETRIC; SUBMETRIC_MSPACE]; DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `mspace m1:A->bool` o MATCH_MP (SET_RULE `s SUBSET t ==> !u. u INTER s SUBSET u /\ u INTER s SUBSET t`)) MP_TAC) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN SPEC_TAC(`mspace m1 INTER (s:A->bool)`,`s:A->bool`)] THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `(t:A->bool) SUBSET mspace m1` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[closure_of; TOPSPACE_MTOPOLOGY]) THEN ASM SET_TAC[]; DISCH_TAC] THEN REWRITE_TAC[cauchy_continuous_map; CAUCHY_IN_SUBMETRIC] THEN X_GEN_TAC `x:num->A` THEN STRIP_TAC THEN SUBGOAL_THEN `!n. ?y. y IN s /\ mdist m1 (x n,y) < inv(&n + &1) /\ mdist m2 ((f:A->B)(x n),f y) < inv(&n + &1)` MP_TAC THENL [X_GEN_TAC `n:num` THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM MTOPOLOGY_SUBMETRIC]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [METRIC_CONTINUOUS_MAP]) THEN ASM_SIMP_TAC[SUBMETRIC; SET_RULE `s SUBSET u ==> s INTER u = s`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPECL [`(x:num->A) n`; `inv(&n + &1)`]) THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [METRIC_CLOSURE_OF]) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_MBALL] THEN DISCH_THEN(MP_TAC o SPEC `(x:num->A) n`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `min d (inv(&n + &1))`)) THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `y:num->A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cauchy_continuous_map]) THEN DISCH_THEN(MP_TAC o SPEC `y:num->A`) THEN ASM_SIMP_TAC[CAUCHY_IN_SUBMETRIC; SUBMETRIC; SET_RULE `s SUBSET u ==> s INTER u = s`] THEN ANTS_TAC THENL [UNDISCH_TAC `cauchy_in m1 (x:num->A)`; ALL_TAC] THEN ASM_REWRITE_TAC[cauchy_in; o_THM] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [continuous_map]) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_MTOPOLOGY; SET_RULE `s SUBSET t ==> t INTER s = s`] THEN DISCH_TAC THEN TRY(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN MP_TAC(SPEC `e / &4` ARCH_EVENTUALLY_INV1) THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `MAX M N` THEN ASM_REWRITE_TAC[ARITH_RULE `MAX M N <= n <=> M <= n /\ N <= n`] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`]) THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC(METRIC_ARITH `(x IN mspace m /\ x' IN mspace m /\ y IN mspace m /\ y' IN mspace m) /\ (mdist m (x,y) < e / &4 /\ mdist m (x',y') < e / &4) ==> mdist m (x,x') < e / &2 ==> mdist m (y,y') < e`); MATCH_MP_TAC(METRIC_ARITH `(x IN mspace m /\ x' IN mspace m /\ y IN mspace m /\ y' IN mspace m) /\ (mdist m (x,y) < e / &4 /\ mdist m (x',y') < e / &4) ==> mdist m (y,y') < e / &2 ==> mdist m (x,x') < e`)] THEN (CONJ_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[REAL_LT_TRANS]]));; let CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s. mcomplete m2 /\ cauchy_continuous_map (submetric m1 s,m2) f ==> ?g. cauchy_continuous_map (submetric m1 (mtopology m1 closure_of s),m2) g /\ !x. x IN s ==> g x = f x`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CONTINUOUS_CLOSURE_OF) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:A->B` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_ON_INTERMEDIATE_CLOSURE THEN EXISTS_TAC `mspace m1 INTER s:A->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_INTER; GSYM TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[GSYM CLOSURE_OF_RESTRICT; SUBSET_REFL] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY; GSYM SUBMETRIC_RESTRICT] THEN MATCH_MP_TAC CAUCHY_CONTINUOUS_MAP_EQ THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[SUBMETRIC; IN_INTER]);; let CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_INTERMEDIATE_CLOSURE_OF = prove (`!m1 m2 (f:A->B) s t. mcomplete m2 /\ cauchy_continuous_map (submetric m1 s,m2) f /\ t SUBSET mtopology m1 closure_of s ==> ?g. cauchy_continuous_map (submetric m1 t,m2) g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m1:A metric`; `m2:B metric`; `f:A->B`; `s:A->bool`] CAUCHY_CONTINUOUS_MAP_EXTENDS_TO_CLOSURE_OF) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CAUCHY_CONTINUOUS_MAP_FROM_SUBMETRIC_MONO]);; (* ------------------------------------------------------------------------- *) (* Lavrentiev extension etc. *) (* ------------------------------------------------------------------------- *) let CONVERGENT_EQ_ZERO_OSCILLATION_GEN = prove (`!top m (f:A->B) s a. mcomplete m /\ IMAGE f (topspace top INTER s) SUBSET mspace m ==> ((?l. limit (mtopology m) f l (atpointof top a within s)) <=> ~(mspace m = {}) /\ (a IN topspace top ==> !e. &0 < e ==> ?u. open_in top u /\ a IN u /\ !x y. x IN (s INTER u) DELETE a /\ y IN (s INTER u) DELETE a ==> mdist m (f x,f y) < e))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `mspace m:B->bool = {}` THENL [ASM_REWRITE_TAC[LIMIT_METRIC; NOT_IN_EMPTY]; STRIP_TAC] THEN ASM_CASES_TAC `(a:A) IN topspace top` THENL [ASM_REWRITE_TAC[]; ASM_SIMP_TAC[LIMIT_METRIC; EVENTUALLY_WITHIN_IMP; EVENTUALLY_ATPOINTOF; NOT_IN_EMPTY] THEN ASM SET_TAC[]] THEN ASM_CASES_TAC `(a:A) IN top derived_set_of s` THENL [ALL_TAC; MATCH_MP_TAC(TAUT `p /\ q ==> (p <=> q)`) THEN CONJ_TAC THENL [ASM_MESON_TAC[MEMBER_NOT_EMPTY; TOPSPACE_MTOPOLOGY; TRIVIAL_LIMIT_ATPOINTOF_WITHIN; LIMIT_TRIVIAL]; REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (RAND_CONV o RAND_CONV) [derived_set_of]) THEN ASM_REWRITE_TAC[IN_ELIM_THM; NOT_FORALL_THM; NOT_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]]] THEN EQ_TAC THENL [REWRITE_TAC[LIMIT_METRIC; EVENTUALLY_WITHIN_IMP; EVENTUALLY_ATPOINTOF] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_IMP] THEN X_GEN_TAC `l:B` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[IN_DELETE; IN_INTER] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `y:A` th) THEN MP_TAC(SPEC `x:A` th)) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(l:B) IN mspace m` THEN CONV_TAC METRIC_ARITH; DISCH_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [MCOMPLETE_FIP_SING]) THEN DISCH_THEN(MP_TAC o SPEC `{ mtopology m closure_of (IMAGE (f:A->B) ((s INTER u) DELETE a)) |u| open_in top u /\ a IN u}`) THEN ANTS_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC; CLOSED_IN_CLOSURE_OF] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_IN_IMAGE; EXISTS_IN_GSPEC] THEN CONJ_TAC THENL [X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_DERIVED_SET_OF]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:A->B) b` THEN MATCH_MP_TAC CLOSURE_OF_MINIMAL THEN REWRITE_TAC[CLOSED_IN_MCBALL; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_INTER; IN_DELETE; IN_MCBALL; CONJ_ASSOC] THEN GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_INTER; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_INTER; IN_DELETE]]; X_GEN_TAC `t:(A->bool)->bool` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[IMAGE_o] THEN MATCH_MP_TAC(SET_RULE `!g. (!s. s IN t ==> s SUBSET g s) /\ (?x. x IN INTERS t) ==> ~(INTERS (IMAGE g t) = {})`) THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_OF_SUBSET THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN RULE_ASSUM_TAC(REWRITE_RULE[OPEN_IN_CLOSED_IN_EQ]) THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_DERIVED_SET_OF]) THEN DISCH_THEN(MP_TAC o SPEC `INTERS (topspace top INSERT t):A->bool` o CONJUNCT2) THEN ASM_SIMP_TAC[OPEN_IN_INTERS; GSYM INTERS_INSERT; NOT_INSERT_EMPTY; FINITE_INSERT; FORALL_IN_INSERT; OPEN_IN_TOPSPACE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:A->B) y` THEN REWRITE_TAC[INTERS_IMAGE] THEN ASM SET_TAC[]]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:B` THEN STRIP_TAC THEN ASM_REWRITE_TAC[LIMIT_METRIC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `s = {a} ==> a IN s`)) THEN REWRITE_TAC[INTERS_GSPEC; closure_of; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `u:A->bool`) THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY; EXISTS_IN_IMAGE] THEN DISCH_THEN(MP_TAC o SPEC `mball m (b:B,e / &2)`) THEN ASM_SIMP_TAC[CENTRE_IN_MBALL; REAL_HALF; OPEN_IN_MBALL; IN_INTER] THEN REWRITE_TAC[IN_MBALL; LEFT_IMP_EXISTS_THM; IN_DELETE; IN_INTER] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[EVENTUALLY_WITHIN_IMP; EVENTUALLY_ATPOINTOF] THEN EXISTS_TAC `u:A->bool` THEN ASM_REWRITE_TAC[IN_DELETE] THEN X_GEN_TAC `y:A` THEN STRIP_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_INTER; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_REWRITE_TAC[IN_INTER; IN_DELETE] THEN MAP_EVERY UNDISCH_TAC [`mdist m (b,(f:A->B) x) < e / &2`; `(b:B) IN mspace m`; `(f:A->B) x IN mspace m`] THEN CONV_TAC METRIC_ARITH]]);; let GDELTA_IN_POINTS_OF_CONVERGENCE_WITHIN = prove (`!top top' (f:A->B) s. completely_metrizable_space top' /\ (continuous_map (subtopology top s,top') f \/ t1_space top /\ IMAGE f s SUBSET topspace top') ==> gdelta_in top {x | x IN topspace top /\ ?l. limit top' f l (atpointof top x within s)}`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_COMPLETELY_METRIZABLE_SPACE] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `IMAGE (f:A->B) (topspace top INTER s) SUBSET mspace m` ASSUME_TAC THENL [FIRST_X_ASSUM DISJ_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_MESON_TAC[CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE; TOPSPACE_SUBTOPOLOGY; TOPSPACE_MTOPOLOGY]; ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN ASM_SIMP_TAC[CONVERGENT_EQ_ZERO_OSCILLATION_GEN] THEN REWRITE_TAC[NOT_IMP]] THEN ASM_CASES_TAC `mspace m:B->bool = {}` THEN ASM_REWRITE_TAC[EMPTY_GSPEC; GDELTA_IN_EMPTY] THEN MATCH_MP_TAC(MESON[] `!s. gdelta_in top s /\ t = s ==> gdelta_in top t`) THEN FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC) THENL [EXISTS_TAC `topspace top INTER INTERS {UNIONS {u | open_in top u /\ !x y. x IN (s INTER u) /\ y IN (s INTER u) ==> mdist m ((f:A->B) x,f y) < inv(&n + &1)} | n IN (:num)}`; EXISTS_TAC `topspace top INTER INTERS {UNIONS {u | open_in top u /\ ?b. b IN topspace top /\ !x y. x IN (s INTER u) DELETE b /\ y IN (s INTER u) DELETE b ==> mdist m ((f:A->B) x,f y) < inv(&n + &1)} | n IN (:num)}`] THEN (CONJ_TAC THENL [REWRITE_TAC[gdelta_in] THEN MATCH_MP_TAC RELATIVE_TO_INC THEN MATCH_MP_TAC COUNTABLE_INTERSECTION_OF_INTERS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; NUM_COUNTABLE] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN GEN_TAC THEN MATCH_MP_TAC COUNTABLE_INTERSECTION_OF_INC THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN SIMP_TAC[IN_ELIM_THM]; ALL_TAC]) THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTER; INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN topspace top` THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (rand o rand) FORALL_POS_MONO_1_EQ o rand o snd) THEN (ANTS_TAC THENL [MESON_TAC[REAL_LT_TRANS]; DISCH_THEN(SUBST1_TAC o SYM)]) THEN REWRITE_TAC[IN_INTER; IN_DELETE; IN_ELIM_THM] THENL [EQ_TAC THENL [DISCH_TAC; MESON_TAC[]] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `(a:A) IN s` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_MAP_TO_METRIC]) THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC; IN_INTER] THEN REWRITE_TAC[IN_MBALL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:A = a` THEN ASM_SIMP_TAC[] THEN ASM_CASES_TAC `y:A = a` THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[MDIST_SYM]; EQ_TAC THENL [ASM_METIS_TAC[]; DISCH_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `b:A`] THEN STRIP_TAC THEN ASM_CASES_TAC `b:A = a` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [t1_space]) THEN DISCH_THEN(MP_TAC o SPECL [`a:A`; `b:A`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `v:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER; IN_INTER] THEN ASM SET_TAC[]]);; let LAVRENTIEV_EXTENSION_GEN = prove (`!top s top' (f:A->B). s SUBSET topspace top /\ completely_metrizable_space top' /\ continuous_map(subtopology top s,top') f ==> ?u g. gdelta_in top u /\ s SUBSET u /\ continuous_map (subtopology top (top closure_of s INTER u),top') g /\ !x. x IN s ==> g x = f x`, REPEAT STRIP_TAC THEN EXISTS_TAC `{x | x IN topspace top /\ ?l. limit top' (f:A->B) l (atpointof top x within s)}` THEN REWRITE_TAC[INTER_SUBSET; RIGHT_EXISTS_AND_THM] THEN ASM_SIMP_TAC[GDELTA_IN_POINTS_OF_CONVERGENCE_WITHIN] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_MAP_ATPOINTOF]) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN ASM_MESON_TAC[ATPOINTOF_SUBTOPOLOGY; SUBSET]; DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_EXTENSION_POINTWISE_ALT THEN ASM_SIMP_TAC[INTER_SUBSET; METRIZABLE_IMP_REGULAR_SPACE; COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE] THEN SIMP_TAC[IN_INTER; IN_ELIM_THM; IN_DIFF] THEN ASM_SIMP_TAC[SUBSET_INTER; CLOSURE_OF_SUBSET]]);; let LAVRENTIEV_EXTENSION = prove (`!top s top' (f:A->B). s SUBSET topspace top /\ (metrizable_space top \/ topspace top SUBSET top closure_of s) /\ completely_metrizable_space top' /\ continuous_map(subtopology top s,top') f ==> ?u g. gdelta_in top u /\ s SUBSET u /\ u SUBSET top closure_of s /\ continuous_map(subtopology top u,top') g /\ !x. x IN s ==> g x = f x`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `top':B topology`; `f:A->B`] LAVRENTIEV_EXTENSION_GEN) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:A->B` THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `top closure_of s INTER u:A->bool` THEN ASM_SIMP_TAC[INTER_SUBSET; SUBSET_INTER; CLOSURE_OF_SUBSET] THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [MATCH_MP_TAC GDELTA_IN_INTER THEN ASM_SIMP_TAC[CLOSED_IMP_GDELTA_IN; CLOSED_IN_CLOSURE_OF]; FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `gdelta_in top s ==> t = s ==> gdelta_in top t`)) THEN REWRITE_TAC[SET_RULE `c INTER u = u <=> u SUBSET c`] THEN ASM_MESON_TAC[SUBSET_TRANS; GDELTA_IN_SUBSET]]);; (* ------------------------------------------------------------------------- *) (* "Capped" equivalent bounded metrics and general product metrics. *) (* ------------------------------------------------------------------------- *) let capped_metric = new_definition `capped_metric d (m:A metric) = if d <= &0 then m else metric(mspace m,(\(x,y). min d (mdist m (x,y))))`;; let CAPPED_METRIC = prove (`!d m:A metric. mspace (capped_metric d m) = mspace m /\ mdist (capped_metric d m) = \(x,y). if d <= &0 then mdist m (x,y) else min d (mdist m (x,y))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `d:real <= &0` THEN ASM_REWRITE_TAC[capped_metric; PAIRED_ETA_THM; ETA_AX] THEN REWRITE_TAC[capped_metric; mspace; mdist; GSYM PAIR_EQ] THEN REWRITE_TAC[GSYM(CONJUNCT2 metric_tybij)] THEN REWRITE_TAC[is_metric_space; GSYM mspace; GSYM mdist] THEN ASM_SIMP_TAC[REAL_ARITH `~(d <= &0) ==> (&0 <= min d x <=> &0 <= x)`] THEN ASM_SIMP_TAC[MDIST_POS_LE; MDIST_0; REAL_ARITH `~(d <= &0) /\ &0 <= x ==> (min d x = &0 <=> x = &0)`] THEN CONJ_TAC THENL [MESON_TAC[MDIST_SYM]; REPEAT STRIP_TAC] THEN MATCH_MP_TAC(REAL_ARITH `~(d <= &0) /\ &0 <= y /\ &0 <= z /\ x <= y + z ==> min d x <= min d y + min d z`) THEN ASM_MESON_TAC[MDIST_POS_LE; MDIST_TRIANGLE]);; let MDIST_CAPPED = prove (`!d m x y:A. &0 < d ==> mdist(capped_metric d m) (x,y) <= d`, SIMP_TAC[CAPPED_METRIC; GSYM REAL_NOT_LT] THEN REAL_ARITH_TAC);; let MTOPOLOGY_CAPPED_METRIC = prove (`!d m:A metric. mtopology(capped_metric d m) = mtopology m`, REPEAT GEN_TAC THEN ASM_CASES_TAC `d <= &0` THENL [ASM_MESON_TAC[capped_metric]; RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LE])] THEN REWRITE_TAC[TOPOLOGY_EQ] THEN X_GEN_TAC `s:A->bool` THEN ASM_REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN ASM_CASES_TAC `(s:A->bool) SUBSET mspace m` THEN ASM_REWRITE_TAC[CAPPED_METRIC] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN s` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[SUBSET; IN_MBALL] THEN ASM_CASES_TAC `(a:A) IN mspace m` THENL [ASM_REWRITE_TAC[CAPPED_METRIC]; ASM SET_TAC[]] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min (d / &2) r` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_HALF] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let CAUCHY_IN_CAPPED_METRIC = prove (`!d (m:A metric) x. cauchy_in (capped_metric d m) x <=> cauchy_in m x`, REPEAT GEN_TAC THEN ASM_CASES_TAC `d <= &0` THENL [ASM_MESON_TAC[capped_metric]; ALL_TAC] THEN ASM_REWRITE_TAC[cauchy_in; CAPPED_METRIC; REAL_MIN_LT] THEN ASM_MESON_TAC[REAL_ARITH `~(d < min d e)`; REAL_LT_MIN; REAL_NOT_LE]);; let MCOMPLETE_CAPPED_METRIC = prove (`!d (m:A metric). mcomplete(capped_metric d m) <=> mcomplete m`, REWRITE_TAC[mcomplete; CAUCHY_IN_CAPPED_METRIC; MTOPOLOGY_CAPPED_METRIC]);; let BOUNDED_EQUIVALENT_METRIC = prove (`!m:A metric d. &0 < d ==> ?m'. mspace m' = mspace m /\ mtopology m' = mtopology m /\ !x y. mdist m' (x,y) < d`, REPEAT STRIP_TAC THEN EXISTS_TAC `capped_metric (d / &2) m:A metric` THEN ASM_REWRITE_TAC[MTOPOLOGY_CAPPED_METRIC; CAPPED_METRIC] THEN ASM_REAL_ARITH_TAC);; let SUP_METRIC_CARTESIAN_PRODUCT = prove (`!k (m:K->(A)metric) m'. metric(cartesian_product k (mspace o m), \(x,y). sup {mdist(m i) (x i,y i) | i IN k}) = m' /\ ~(k = {}) /\ (?c. !i x y. i IN k /\ x IN mspace(m i) /\ y IN mspace(m i) ==> mdist(m i) (x,y) <= c) ==> mspace m' = cartesian_product k (mspace o m) /\ mdist m' = (\(x,y). sup {mdist(m i) (x i,y i) | i IN k}) /\ !x y b. x IN cartesian_product k (mspace o m) /\ y IN cartesian_product k (mspace o m) ==> (mdist m' (x,y) <= b <=> !i. i IN k ==> mdist (m i) (x i,y i) <= b)`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ABBREV_TAC `M = \(x,y). sup {mdist(m i) (x i:A,y i) | (i:K) IN k}` THEN SUBGOAL_THEN `!x (y:K->A) b. x IN cartesian_product k (mspace o m) /\ y IN cartesian_product k (mspace o m) ==> (M(x,y) <= b <=> !i. i IN k ==> mdist (m i) (x i,y i) <= b)` ASSUME_TAC THENL [REWRITE_TAC[cartesian_product; o_DEF; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EXPAND_TAC "M" THEN REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (lhand o rand) REAL_SUP_LE_EQ o lhand o snd) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[] `m = m' ==> mspace m = mspace m' /\ mdist m = mdist m'`)) THEN REWRITE_TAC[GSYM PAIR_EQ; mspace; mdist] THEN W(MP_TAC o PART_MATCH (lhand o rand) (CONJUNCT2 metric_tybij) o lhand o lhand o snd) THEN DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE) THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN SUBST1_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[GSYM mdist]] THEN REWRITE_TAC[is_metric_space] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN EXPAND_TAC "M" THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_SUP THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; EXISTS_IN_GSPEC] THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM; o_THM]) THEN FIRST_X_ASSUM(X_CHOOSE_TAC `c:real`) THEN EXISTS_TAC `c:real` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[MDIST_POS_LE]; DISCH_TAC] THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[GSYM REAL_LE_ANTISYM] THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> SUBST1_TAC(MATCH_MP CARTESIAN_PRODUCT_EQ_MEMBERS_EQ th) THEN MP_TAC th) THEN REWRITE_TAC[cartesian_product; o_THM; IN_ELIM_THM] THEN SIMP_TAC[METRIC_ARITH `x IN mspace m /\ y IN mspace m ==> (mdist m (x,y) <= &0 <=> x = y)`]; REPEAT STRIP_TAC THEN EXPAND_TAC "M" THEN REWRITE_TAC[IN_ELIM_THM] THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(!i. i IN w ==> f i = g i) ==> {f i | i IN w} = {g i | i IN w}`) THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM; o_THM]) THEN ASM_MESON_TAC[MDIST_SYM]; MAP_EVERY X_GEN_TAC [`x:K->A`; `y:K->A`; `z:K->A`] THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN TRANS_TAC REAL_LE_TRANS `mdist (m i) ((x:K->A) i,y i) + mdist (m i) (y i,z i)` THEN CONJ_TAC THENL [MATCH_MP_TAC MDIST_TRIANGLE THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM; o_THM]) THEN ASM_SIMP_TAC[]; MATCH_MP_TAC REAL_LE_ADD2 THEN EXPAND_TAC "M" THEN REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC ELEMENT_LE_SUP THEN RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM; o_THM]) THEN ASM SET_TAC[]]]);; let (METRIZABLE_SPACE_PRODUCT_TOPOLOGY, COMPLETELY_METRIZABLE_SPACE_PRODUCT_TOPOLOGY) = (CONJ_PAIR o prove) (`(!(tops:K->A topology) k. metrizable_space (product_topology k tops) <=> topspace (product_topology k tops) = {} \/ COUNTABLE {i | i IN k /\ ~(?a. topspace(tops i) SUBSET {a})} /\ !i. i IN k ==> metrizable_space (tops i)) /\ (!(tops:K->A topology) k. completely_metrizable_space (product_topology k tops) <=> topspace (product_topology k tops) = {} \/ COUNTABLE {i | i IN k /\ ~(?a. topspace(tops i) SUBSET {a})} /\ !i. i IN k ==> completely_metrizable_space (tops i))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(n ==> m) /\ (t ==> n) /\ (m ==> t \/ m') /\ (n ==> t \/ n') /\ (~t ==> m /\ m' ==> c) /\ (~t ==> c ==> (m' ==> m) /\ (n' ==> n)) ==> (m <=> t \/ c /\ m') /\ (n <=> t \/ c /\ n')`) THEN REWRITE_TAC[COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE] THEN CONJ_TAC THENL [SIMP_TAC[GSYM SUBTOPOLOGY_EQ_DISCRETE_TOPOLOGY_EMPTY] THEN REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_DISCRETE_TOPOLOGY]; GEN_REWRITE_TAC I [CONJ_ASSOC]] THEN CONJ_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC TOPOLOGICAL_PROPERTY_OF_PRODUCT_COMPONENT THEN REWRITE_TAC[HOMEOMORPHIC_COMPLETELY_METRIZABLE_SPACE; HOMEOMORPHIC_METRIZABLE_SPACE] THEN ASM_SIMP_TAC[METRIZABLE_SPACE_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_CLOSED_IN THEN ASM_REWRITE_TAC[CLOSED_IN_CARTESIAN_PRODUCT] THEN DISJ2_TAC THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE) THEN DISCH_THEN(MP_TAC o MATCH_MP METRIZABLE_IMP_T1_SPACE) THEN REWRITE_TAC[T1_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; RIGHT_IMP_FORALL_THM; IMP_IMP] THEN STRIP_TAC THENL [ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE [TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; o_DEF; IN_ELIM_THM]) THEN ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN ABBREV_TAC `l = {i:K | i IN k /\ ~(?a:A. topspace(tops i) SUBSET {a})}` THEN SUBGOAL_THEN `!i:K. ?p q:A. i IN l ==> p IN topspace(tops i) /\ q IN topspace(tops i) /\ ~(p = q)` MP_TAC THENL [EXPAND_TAC "l" THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:K->A`; `b:K->A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN ABBREV_TAC `p:K->A = \i. if i IN l then a i else z i` THEN ABBREV_TAC `q:K->K->A = \i j. if j = i then b i else p j` THEN SUBGOAL_THEN `p IN topspace(product_topology k (tops:K->A topology)) /\ (!i:K. i IN l ==> q i IN topspace(product_topology k (tops:K->A topology)))` STRIP_ASSUME_TAC THENL [UNDISCH_TAC `(z:K->A) IN cartesian_product k (\x. topspace(tops x))` THEN MAP_EVERY EXPAND_TAC ["q"; "p"] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; o_THM] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!u:(K->A)->bool. open_in (product_topology k tops) u /\ p IN u ==> FINITE {i:K | i IN l /\ ~(q i IN u)}` ASSUME_TAC THENL [X_GEN_TAC `u:(K->A)->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[OPEN_IN_PRODUCT_TOPOLOGY_ALT] THEN DISCH_THEN(MP_TAC o SPEC `p:K->A`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:K->A->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN MATCH_MP_TAC(TAUT `(l ==> k) /\ (k /\ l ==> p ==> q) ==> l /\ ~q ==> k /\ ~p`) THEN CONJ_TAC THENL [ASM SET_TAC[]; REPEAT STRIP_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN EXPAND_TAC "q" THEN UNDISCH_TAC `(p:K->A) IN cartesian_product k v` THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [metrizable_space]) THEN DISCH_THEN(X_CHOOSE_TAC `m:(K->A)metric`) THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `UNIONS {{i | i IN l /\ ~((q:K->K->A) i IN mball m (p,inv(&n + &1)))} | n IN (:num)}` THEN CONJ_TAC THENL [MATCH_MP_TAC COUNTABLE_UNIONS THEN REWRITE_TAC[SIMPLE_IMAGE] THEN SIMP_TAC[COUNTABLE_IMAGE; NUM_COUNTABLE; FORALL_IN_IMAGE] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC FINITE_IMP_COUNTABLE THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[OPEN_IN_MBALL] THEN MATCH_MP_TAC CENTRE_IN_MBALL THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN ASM_MESON_TAC[TOPSPACE_MTOPOLOGY]; REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN MP_TAC(snd(EQ_IMP_RULE(ISPEC `mdist (m:(K->A)metric) (p,q(i:K))` ARCH_EVENTUALLY_INV1))) THEN ANTS_TAC THENL [MATCH_MP_TAC MDIST_POS_LT THEN REPEAT (CONJ_TAC THENL [ASM_MESON_TAC[TOPSPACE_MTOPOLOGY]; ALL_TAC]) THEN DISCH_THEN(MP_TAC o C AP_THM `i:K`) THEN MAP_EVERY EXPAND_TAC ["q"; "p"] THEN REWRITE_TAC[] THEN ASM_SIMP_TAC[]; DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS_SEQUENTIALLY) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_REWRITE_TAC[IN_MBALL] THEN REAL_ARITH_TAC]]; ALL_TAC] THEN DISCH_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `k:K->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; COUNTABLE_EMPTY] THEN REWRITE_TAC[PRODUCT_TOPOLOGY_EMPTY_DISCRETE; METRIZABLE_SPACE_DISCRETE_TOPOLOGY; COMPLETELY_METRIZABLE_SPACE_DISCRETE_TOPOLOGY]; ALL_TAC] THEN REWRITE_TAC[metrizable_space; completely_metrizable_space] THEN GEN_REWRITE_TAC (BINOP_CONV o LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; AND_FORALL_THM] THEN X_GEN_TAC `m:K->A metric` THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN ASM_CASES_TAC `!i. i IN k ==> mtopology(m i) = (tops:K->A topology) i` THEN ASM_SIMP_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN MATCH_MP_TAC(MESON[] `!m. P m /\ (Q ==> C m) ==> (?m. P m) /\ (Q ==> ?m. C m /\ P m)`) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COUNTABLE_AS_INJECTIVE_IMAGE_SUBSET]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; INJECTIVE_ON_LEFT_INVERSE] THEN MAP_EVERY X_GEN_TAC [`nk:num->K`; `c:num->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `kn:K->num`)) THEN MP_TAC(ISPECL [`k:K->bool`; `\i. capped_metric (inv(&(kn i) + &1)) ((m:K->A metric) i)`] SUP_METRIC_CARTESIAN_PRODUCT) THEN REWRITE_TAC[o_DEF; CONJUNCT1(SPEC_ALL CAPPED_METRIC)] THEN MATCH_MP_TAC(MESON[] `Q /\ (!m. P m ==> R m) ==> (!m. a = m /\ Q ==> P m) ==> ?m. R m`) THEN CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN EXISTS_TAC `&1:real` THEN REWRITE_TAC[CAPPED_METRIC; GSYM REAL_NOT_LT] THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN REWRITE_TAC[REAL_NOT_LT; REAL_MIN_LE] THEN REPEAT STRIP_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC REAL_INV_LE_1 THEN REAL_ARITH_TAC; X_GEN_TAC `M:(K->A)metric`] THEN SUBGOAL_THEN `cartesian_product k (\i. mspace (m i)) = topspace(product_topology k (tops:K->A topology))` SUBST1_TAC THENL [REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; CARTESIAN_PRODUCT_EQ] THEN ASM_SIMP_TAC[GSYM TOPSPACE_MTOPOLOGY; o_THM]; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SYM) ASSUME_TAC)] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[MTOPOLOGY_BASE; product_topology] THEN REWRITE_TAC[GSYM TOPSPACE_PRODUCT_TOPOLOGY_ALT] THEN REWRITE_TAC[PRODUCT_TOPOLOGY_BASE_ALT] THEN MATCH_MP_TAC TOPOLOGY_BASES_EQ THEN REWRITE_TAC[SET_RULE `GSPEC P x <=> x IN GSPEC P`] THEN REWRITE_TAC[EXISTS_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; GSYM CONJ_ASSOC; IN_MBALL] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`z:K->A`; `r:real`] THEN STRIP_TAC THEN X_GEN_TAC `x:K->A` THEN STRIP_TAC THEN SUBGOAL_THEN `(!i. i IN k ==> (z:K->A) i IN topspace(tops i)) /\ (!i. i IN k ==> (x:K->A) i IN topspace(tops i))` STRIP_ASSUME_TAC THENL [MAP_EVERY UNDISCH_TAC [`(z:K->A) IN mspace M`; `(x:K->A) IN mspace M`] THEN ASM_SIMP_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; o_DEF] THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?R. &0 < R /\ mdist M (z:K->A,x) < R /\ R < r` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[REAL_LT_BETWEEN; REAL_LET_TRANS; MDIST_POS_LE]; ALL_TAC] THEN EXISTS_TAC `\i. if R <= inv(&(kn i) + &1) then mball (m i) (z i,R) else topspace((tops:K->A topology) i)` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MP_TAC(ASSUME `&0 < R`) THEN DISCH_THEN(MP_TAC o SPEC `&1:real` o MATCH_MP REAL_ARCH) THEN DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE (nk:num->K) (c INTER (0..n))` THEN SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; MESON[] `~((if p then x else y) = y) <=> p /\ ~(x = y)`] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `{i | i IN k /\ P i} = IMAGE nk c ==> (!i. i IN k /\ Q i ==> P i) /\ (!n. n IN c ==> Q(nk n) ==> n IN s) ==> !i. i IN k /\ Q i ==> i IN IMAGE nk (c INTER s)`)) THEN CONJ_TAC THENL [X_GEN_TAC `i:K` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(SET_RULE `!x. b SUBSET u /\ x IN b ==> P /\ ~(b = u) ==> ~(?a. u SUBSET {a})`) THEN EXISTS_TAC `(z:K->A) i` THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_MBALL]; MATCH_MP_TAC CENTRE_IN_MBALL] THEN ASM_MESON_TAC[TOPSPACE_MTOPOLOGY]; X_GEN_TAC `m:num` THEN ASM_SIMP_TAC[IN_NUMSEG; LE_0] THEN DISCH_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_LE; REAL_NOT_LE] THEN DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `inv x < y <=> &1 / x < y`] THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `&1 < n * r ==> r * n < r * m ==> &1 < r * m`)) THEN ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_OF_NUM_ADD; REAL_OF_NUM_LT] THEN ASM_ARITH_TAC]; ASM_MESON_TAC[OPEN_IN_MBALL; OPEN_IN_TOPSPACE]; SUBGOAL_THEN `(x:K->A) IN cartesian_product k (topspace o tops)` MP_TAC THENL [ASM_MESON_TAC[TOPSPACE_PRODUCT_TOPOLOGY]; ALL_TAC] THEN REWRITE_TAC[cartesian_product; o_DEF; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[IN_MBALL] THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[TOPSPACE_MTOPOLOGY]; ALL_TAC]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`z:K->A`; `x:K->A`; `mdist M (z:K->A,x)`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[REAL_LE_REFL]] THEN DISCH_THEN(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[CAPPED_METRIC] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:K->A` THEN DISCH_THEN(LABEL_TAC "*") THEN SUBGOAL_THEN `(y:K->A) IN mspace M` ASSUME_TAC THENL [ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY] THEN REMOVE_THEN "*" MP_TAC THEN REWRITE_TAC[cartesian_product] THEN REWRITE_TAC[IN_ELIM_THM; o_THM] THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_MBALL] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> P /\ x IN s /\ Q ==> x IN t`) THEN ASM_SIMP_TAC[GSYM TOPSPACE_MTOPOLOGY; SUBSET_REFL]; ALL_TAC] THEN ASM_REWRITE_TAC[IN_MBALL] THEN TRANS_TAC REAL_LET_TRANS `R:real` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`z:K->A`; `y:K->A`; `R:real`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[CAPPED_METRIC; REAL_ARITH `x <= &0 <=> ~(&0 < x)`] THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN REWRITE_TAC[REAL_MIN_LE] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH `(a <= b ==> c <= d) ==> b <= a \/ c <= d`) THEN DISCH_TAC THEN REMOVE_THEN "*" MP_TAC THEN ASM_REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `i:K` o CONJUNCT2) THEN ASM_REWRITE_TAC[IN_MBALL] THEN REAL_ARITH_TAC]; X_GEN_TAC `u:K->A->bool` THEN STRIP_TAC THEN X_GEN_TAC `z:K->A` THEN DISCH_TAC THEN SUBGOAL_THEN `(z:K->A) IN mspace M` ASSUME_TAC THENL [UNDISCH_TAC `(z:K->A) IN cartesian_product k u` THEN ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN REWRITE_TAC[IN_ELIM_THM; o_THM] THEN ASM_MESON_TAC[OPEN_IN_SUBSET; SUBSET]; EXISTS_TAC `z:K->A` THEN ASM_SIMP_TAC[MDIST_REFL; CONJ_ASSOC]] THEN SUBGOAL_THEN `!i. ?r. i IN k ==> &0 < r /\ mball (m i) ((z:K->A) i,r) SUBSET u i` MP_TAC THENL [X_GEN_TAC `i:K` THEN REWRITE_TAC[RIGHT_EXISTS_IMP_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `open_in(mtopology(m i)) ((u:K->A->bool) i)` MP_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[OPEN_IN_MTOPOLOGY]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN UNDISCH_TAC `(z:K->A) IN cartesian_product k u` THEN ASM_SIMP_TAC[cartesian_product; IN_ELIM_THM]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `r:K->real` THEN DISCH_TAC THEN SUBGOAL_THEN `?a:K. a IN k` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `inf (IMAGE (\i. min (r i) (inv(&(kn i) + &1))) (a INSERT {i | i IN k /\ ~(u i = topspace ((tops:K->A topology) i))})) / &2` THEN ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_INSERT; NOT_INSERT_EMPTY; REAL_HALF; FINITE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN REWRITE_TAC[REAL_LT_MIN; REAL_LT_INV_EQ] THEN REWRITE_TAC[REAL_ARITH `&0 < &n + &1`] THEN ASM_SIMP_TAC[FORALL_IN_INSERT; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; IN_MBALL] THEN X_GEN_TAC `x:K->A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC o CONJUNCT2) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`z:K->A`; `x:K->A`]) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN SUBGOAL_THEN `(x:K->A) IN topspace(product_topology k tops)` MP_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY]] THEN REWRITE_TAC[cartesian_product; o_THM; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[REAL_ARITH `x <= y / &2 <=> &2 * x <= y`] THEN ASM_SIMP_TAC[REAL_LE_INF_FINITE; FINITE_INSERT; NOT_INSERT_EMPTY; REAL_HALF; FINITE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN REWRITE_TAC[FORALL_IN_INSERT] THEN DISCH_THEN(MP_TAC o SPEC `i:K` o CONJUNCT2) THEN ASM_CASES_TAC `(u:K->A->bool) i = topspace(tops i)` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[CAPPED_METRIC; REAL_ARITH `x <= &0 <=> ~(&0 < x)`] THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH `&2 * min a b <= min c a ==> &0 < a /\ &0 < c ==> b < c`)) THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:K`)) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[IN_MBALL] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[TOPSPACE_MTOPOLOGY]] THEN UNDISCH_TAC `(z:K->A) IN mspace M` THEN ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN REWRITE_TAC[IN_ELIM_THM; o_DEF] THEN ASM_MESON_TAC[TOPSPACE_MTOPOLOGY]]; DISCH_TAC THEN REWRITE_TAC[mcomplete] THEN DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `x:num->K->A` THEN ASM_REWRITE_TAC[cauchy_in] THEN STRIP_TAC THEN ASM_REWRITE_TAC[LIMIT_COMPONENTWISE] THEN SUBGOAL_THEN `!i. ?y. i IN k ==> limit (tops i) (\n. (x:num->K->A) n i) y sequentially` MP_TAC THENL [X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "*" (MP_TAC o SPEC `i:K`) THEN ASM_SIMP_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[cauchy_in; GSYM TOPSPACE_MTOPOLOGY] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product; IN_ELIM_THM; o_DEF]) THEN ASM_MESON_TAC[]; X_GEN_TAC `e:real` THEN DISCH_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `min e (inv(&(kn(i:K)) + &1)) / &2`) THEN REWRITE_TAC[REAL_HALF; REAL_LT_MIN; REAL_LT_INV_EQ] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[CAPPED_METRIC; REAL_ARITH `x <= &0 <=> ~(&0 < x)`] THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN MATCH_MP_TAC(REAL_ARITH `&0 < d /\ &0 < e ==> min d x <= min e d / &2 ==> x < e`) THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`]; REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `y:K->A` THEN DISCH_TAC THEN EXISTS_TAC `RESTRICTION k (y:K->A)` THEN ASM_REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; EVENTUALLY_TRUE] THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* A perfect set in common cases must have cardinality >= c. *) (* ------------------------------------------------------------------------- *) let CARD_GE_PERFECT_SET = prove (`!top s:A->bool. (completely_metrizable_space top \/ locally_compact_space top /\ hausdorff_space top) /\ top derived_set_of s = s /\ ~(s = {}) ==> (:real) <=_c s`, REWRITE_TAC[TAUT `(p \/ q) /\ r ==> s <=> (p ==> r ==> s) /\ (q /\ r ==> s)`] THEN REWRITE_TAC[FORALL_AND_THM; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM FORALL_MCOMPLETE_TOPOLOGY] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `(:num->bool)` THEN SIMP_TAC[CARD_EQ_REAL; CARD_EQ_IMP_LE] THEN SUBGOAL_THEN `(s:A->bool) SUBSET mspace m` ASSUME_TAC THENL [ASM_MESON_TAC[DERIVED_SET_OF_SUBSET_TOPSPACE; TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN SUBGOAL_THEN `!x e. x IN s /\ &0 < e ==> ?y z d. y IN s /\ z IN s /\ &0 < d /\ d < e / &2 /\ mcball m (y,d) SUBSET mcball m (x,e) /\ mcball m (z,d) SUBSET mcball m (x,e) /\ DISJOINT (mcball m (y:A,d)) (mcball m (z,d))` MP_TAC THENL [REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m:A metric`; `s:A->bool`] DERIVED_SET_OF_INFINITE_MBALL) THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `e / &4`)) THEN ASM_REWRITE_TAC[INFINITE; REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN DISCH_THEN(MP_TAC o SPEC `x:A` o MATCH_MP (MESON[FINITE_RULES; FINITE_SUBSET] `~FINITE s ==> !a b c. ~(s SUBSET {a,b,c})`)) THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `(!b c. ~(s SUBSET {a,b,c})) ==> ?b c. b IN s /\ c IN s /\ ~(c = a) /\ ~(b = a) /\ ~(b = c)`)) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:A` THEN REWRITE_TAC[IN_INTER] THEN STRIP_TAC THEN EXISTS_TAC `mdist m (l:A,r) / &3` THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_MBALL])) THEN UNDISCH_TAC `~(l:A = r)` THEN REWRITE_TAC[DISJOINT; SUBSET; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN ASM_SIMP_TAC[IN_MCBALL] THEN UNDISCH_TAC `(x:A) IN mspace m` THEN POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC METRIC_ARITH; ALL_TAC] THEN REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `y:A` THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC METRIC_ARITH] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `e:real` o MATCH_MP (REAL_ARITH `x <= y / &3 ==> !e. y < e / &2 ==> x < e / &6`)) THEN (ANTS_TAC THENL [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC METRIC_ARITH; ALL_TAC]) THENL [UNDISCH_TAC `mdist m (x:A,l) < e / &4`; UNDISCH_TAC `mdist m (x:A,r) < e / &4`] THEN MAP_EVERY UNDISCH_TAC [`(x:A) IN mspace m`; `(y:A) IN mspace m`; `(l:A) IN mspace m`; `(r:A) IN mspace m`] THEN CONV_TAC METRIC_ARITH; REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`l:A->real->A`; `r:A->real->A`; `d:A->real->real`] THEN DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN SUBGOAL_THEN `!b. ?xe. xe 0 = (a:A,&1) /\ !n. xe(SUC n) = (if b(n) then r else l) (FST(xe n)) (SND(xe n)), d (FST(xe n)) (SND(xe n))` MP_TAC THENL [GEN_TAC THEN W(ACCEPT_TAC o prove_recursive_functions_exist num_RECURSION o snd o dest_exists o snd); REWRITE_TAC[EXISTS_PAIR_FUN_THM; PAIR_EQ] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; FORALL_AND_THM]] THEN MAP_EVERY X_GEN_TAC [`x:(num->bool)->num->A`; `r:(num->bool)->num->real`] THEN STRIP_TAC THEN SUBGOAL_THEN `mcomplete (submetric m s:A metric)` MP_TAC THENL [MATCH_MP_TAC CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE THEN ASM_REWRITE_TAC[CLOSED_IN_CONTAINS_DERIVED_SET; TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[]; REWRITE_TAC[MCOMPLETE_NEST_SING]] THEN DISCH_THEN(MP_TAC o MATCH_MP MONO_FORALL o GEN `b:num->bool` o SPEC `\n. mcball (submetric m s) ((x:(num->bool)->num->A) b n,r b n)`) THEN REWRITE_TAC[SKOLEM_THM] THEN SUBGOAL_THEN `(!b n. (x:(num->bool)->num->A) b n IN s) /\ (!b n. &0 < (r:(num->bool)->num->real) b n)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_LT_01] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(!b n. (x:(num->bool)->num->A) b n IN mspace m)` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ANTS_TAC THENL [X_GEN_TAC `b:num->bool` THEN REWRITE_TAC[CLOSED_IN_MCBALL] THEN ASM_REWRITE_TAC[MCBALL_EQ_EMPTY; SUBMETRIC; IN_INTER] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> ~(x < &0)`] THEN CONJ_TAC THENL [MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN REPEAT(CONJ_TAC THENL [SET_TAC[]; ALL_TAC]) THEN ASM_REWRITE_TAC[MCBALL_SUBMETRIC_EQ] THEN ASM SET_TAC[]; X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`inv(&2)`; `e:real`] REAL_ARCH_POW_INV) THEN ASM_REWRITE_TAC[REAL_POW_INV] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN EXISTS_TAC `(x:(num->bool)->num->A) b n` THEN MATCH_MP_TAC MCBALL_SUBSET_CONCENTRIC THEN TRANS_TAC REAL_LE_TRANS `inv(&2 pow n)` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[real_pow] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_INV_MUL] THEN GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH `d < e / &2 ==> e <= i ==> d <= inv(&2) * i`) THEN ASM_SIMP_TAC[]]; REWRITE_TAC[SKOLEM_THM; le_c; IN_UNIV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:(num->bool)->A` THEN SIMP_TAC[SUBMETRIC; IN_INTER; FORALL_AND_THM] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`b:num->bool`; `c:num->bool`] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[FUN_EQ_THM; NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; TAUT `~(p <=> q) <=> p <=> ~q`] THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE (BINDER_CONV o LAND_CONV) [INTERS_GSPEC]) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `c:num->bool` th) THEN MP_TAC(SPEC `b:num->bool` th)) THEN ASM_REWRITE_TAC[TAUT `p ==> ~q <=> ~(p /\ q)`] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `s = {a} /\ t = {a} ==> a IN s INTER t`)) THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM; AND_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `SUC n`) THEN ASM_REWRITE_TAC[COND_SWAP] THEN SUBGOAL_THEN `(x:(num->bool)->num->A) b n = x c n /\ (r:(num->bool)->num->real) b n = r c n` (CONJUNCTS_THEN SUBST1_TAC) THENL [UNDISCH_TAC `!m:num. m < n ==> (b m <=> c m)` THEN SPEC_TAC(`n:num`,`p:num`) THEN INDUCT_TAC THEN ASM_SIMP_TAC[LT_SUC_LE; LE_REFL; LT_IMP_LE]; COND_CASES_TAC THEN ASM_REWRITE_TAC[MCBALL_SUBMETRIC_EQ; IN_INTER] THEN ASM SET_TAC[]]]; SUBGOAL_THEN `!top:A topology. locally_compact_space top /\ hausdorff_space top /\ top derived_set_of topspace top = topspace top /\ ~(topspace top = {}) ==> (:real) <=_c topspace top` ASSUME_TAC THENL [REPEAT STRIP_TAC; MAP_EVERY X_GEN_TAC [`top:A topology`; `s:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `subtopology top (s:A->bool)`) THEN SUBGOAL_THEN `(s:A->bool) SUBSET topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[DERIVED_SET_OF_SUBSET_TOPSPACE]; ALL_TAC] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_SUBTOPOLOGY; DERIVED_SET_OF_SUBTOPOLOGY; SET_RULE `s INTER s = s`; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LOCALLY_COMPACT_SPACE_CLOSED_SUBSET THEN ASM_REWRITE_TAC[CLOSED_IN_CONTAINS_DERIVED_SET; SUBSET_REFL]] THEN TRANS_TAC CARD_LE_TRANS `(:num->bool)` THEN SIMP_TAC[CARD_EQ_REAL; CARD_EQ_IMP_LE] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `z:A`) THEN FIRST_ASSUM(MP_TAC o SPEC `z:A` o REWRITE_RULE[locally_compact_space]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `~(u:A->bool = {})` ASSUME_TAC THENL [ASM SET_TAC[]; REPEAT(FIRST_X_ASSUM(K ALL_TAC o check (free_in `z:A`) o concl))] THEN SUBGOAL_THEN `!c. closed_in top c /\ c SUBSET k /\ ~(top interior_of c = {}) ==> ?d e. closed_in top d /\ d SUBSET k /\ ~(top interior_of d = {}) /\ closed_in top e /\ e SUBSET k /\ ~(top interior_of e = {}) /\ DISJOINT d e /\ d SUBSET c /\ e SUBSET (c:A->bool)` MP_TAC THENL [REPEAT STRIP_TAC THEN UNDISCH_TAC `~(top interior_of c:A->bool = {})` THEN ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(z:A) IN topspace top` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; INTERIOR_OF_SUBSET_TOPSPACE]; ALL_TAC] THEN MP_TAC(ISPECL [`top:A topology`; `topspace top:A->bool`] DERIVED_SET_OF_INFINITE_OPEN_IN) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o AP_TERM `\s. (z:A) IN s`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `top interior_of c:A->bool`) THEN ASM_SIMP_TAC[OPEN_IN_INTERIOR_OF; INTERIOR_OF_SUBSET_TOPSPACE; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[INFINITE; FINITE_SING; FINITE_SUBSET] `INFINITE s ==> !a. ~(s SUBSET {a})`)) THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `(!a. ~(s SUBSET {a})) ==> ?a b. a IN s /\ b IN s /\ ~(a = b)`)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN topspace top /\ y IN topspace top` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; INTERIOR_OF_SUBSET_TOPSPACE]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`] o REWRITE_RULE[hausdorff_space]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `w:A->bool`] THEN STRIP_TAC THEN MP_TAC(ISPEC `top:A topology` LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE) THEN ASM_REWRITE_TAC[GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN] THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(fun th -> MP_TAC(SPECL [`top interior_of c INTER w:A->bool`; `y:A`] th) THEN MP_TAC(SPECL [`top interior_of c INTER v:A->bool`; `x:A`] th)) THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_INTER; OPEN_IN_INTERIOR_OF] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET_INTER] THEN MAP_EVERY X_GEN_TAC [`m:A->bool`; `d:A->bool`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`n:A->bool`; `e:A->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`d:A->bool`; `e:A->bool`] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r /\ s /\ t <=> (q /\ s) /\ p /\ r /\ t`] THEN CONJ_TAC THENL [CONJ_TAC THENL [EXISTS_TAC `x:A`; EXISTS_TAC `y:A`] THEN REWRITE_TAC[interior_of; IN_ELIM_THM] THEN ASM_MESON_TAC[]; MP_TAC(ISPECL [`top:A topology`; `c:A->bool`] INTERIOR_OF_SUBSET) THEN ASM SET_TAC[]]; ALL_TAC] THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`l:(A->bool)->A->bool`; `r:(A->bool)->A->bool`] THEN DISCH_TAC THEN SUBGOAL_THEN `!b. ?d:num->A->bool. d 0 = k /\ (!n. d(SUC n) = (if b(n) then r else l) (d n))` MP_TAC THENL [GEN_TAC THEN W(ACCEPT_TAC o prove_recursive_functions_exist num_RECURSION o snd o dest_exists o snd); REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; FORALL_AND_THM]] THEN X_GEN_TAC `d:(num->bool)->num->A->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `!b n. closed_in top (d b n) /\ d b n SUBSET k /\ ~(top interior_of ((d:(num->bool)->num->A->bool) b n) = {})` MP_TAC THENL [GEN_TAC THEN INDUCT_TAC THENL [ASM_SIMP_TAC[SUBSET_REFL; COMPACT_IN_IMP_CLOSED_IN] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~(u = {}) ==> u SUBSET i ==> ~(i = {})`)) THEN ASM_SIMP_TAC[INTERIOR_OF_MAXIMAL_EQ]; ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[]]; REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC] THEN SUBGOAL_THEN `!b. ~(INTERS {(d:(num->bool)->num->A->bool) b n | n IN (:num)} = {})` MP_TAC THENL [X_GEN_TAC `b:num->bool` THEN MATCH_MP_TAC COMPACT_SPACE_IMP_NEST THEN EXISTS_TAC `subtopology top (k:A->bool)` THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET_TOPSPACE; COMPACT_SPACE_SUBTOPOLOGY] THEN CONJ_TAC THENL [ASM_MESON_TAC[INTERIOR_OF_EMPTY]; ALL_TAC] THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN REPEAT(CONJ_TAC THENL [SET_TAC[]; ALL_TAC]) THEN ASM_SIMP_TAC[] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; SKOLEM_THM; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `x:(num->bool)->A` THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN DISCH_TAC THEN REWRITE_TAC[le_c; IN_UNIV] THEN EXISTS_TAC `x:(num->bool)->A` THEN CONJ_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; SUBSET]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`b:num->bool`; `c:num->bool`] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[FUN_EQ_THM; NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; TAUT `~(p <=> q) <=> p <=> ~q`] THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `DISJOINT ((d:(num->bool)->num->A->bool) b (SUC n)) (d c (SUC n))` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_SIMP_TAC[COND_SWAP] THEN SUBGOAL_THEN `(d:(num->bool)->num->A->bool) b n = d c n` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[DISJOINT_SYM]] THEN UNDISCH_TAC `!m:num. m < n ==> (b m <=> c m)` THEN SPEC_TAC(`n:num`,`p:num`) THEN INDUCT_TAC THEN ASM_SIMP_TAC[LT_SUC_LE; LE_REFL; LT_IMP_LE]]);; (* ------------------------------------------------------------------------- *) (* Euclidean space and n-spheres, as subtopologies of infinite product R^N. *) (* ------------------------------------------------------------------------- *) let euclidean_space = new_definition `euclidean_space n = subtopology (product_topology (:num) (\i. euclideanreal)) {x | !i. ~(i IN 1..n) ==> x i = &0}`;; let TOPSPACE_EUCLIDEAN_SPACE = prove (`!n. topspace(euclidean_space n) = {x | !i. ~(i IN 1..n) ==> x i = &0}`, REWRITE_TAC[euclidean_space; TOPSPACE_SUBTOPOLOGY; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_DEF; TOPSPACE_EUCLIDEANREAL; CARTESIAN_PRODUCT_UNIV] THEN REWRITE_TAC[INTER_UNIV]);; let NONEMPTY_EUCLIDEAN_SPACE = prove (`!n. ~(topspace(euclidean_space n) = {})`, GEN_TAC THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SPACE] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN EXISTS_TAC `(\i. &0):num->real` THEN REWRITE_TAC[]);; let SUBSET_EUCLIDEAN_SPACE = prove (`!m n. topspace(euclidean_space m) SUBSET topspace(euclidean_space n) <=> m <= n`, REPEAT GEN_TAC THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SPACE; SUBSET; IN_ELIM_THM; IN_NUMSEG] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[LE_TRANS]] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_LE] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `(\i. if i = m then &1 else &0):num->real`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `m:num`) THEN REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_ARITH_TAC]);; let CLOSED_IN_EUCLIDEAN_SPACE = prove (`!n. closed_in (product_topology (:num) (\i. euclideanreal)) (topspace(euclidean_space n))`, GEN_TAC THEN SUBGOAL_THEN `topspace(euclidean_space n) = INTERS {{x | x IN topspace(product_topology (:num) (\i. euclideanreal)) /\ x i IN {&0}} | ~(i IN 1..n)}` SUBST1_TAC THENL [REWRITE_TAC[TOPSPACE_EUCLIDEAN_SPACE; INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; CARTESIAN_PRODUCT_UNIV] THEN SET_TAC[]; MATCH_MP_TAC CLOSED_IN_INTERS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[SET_RULE `~({f x | P x} = {}) <=> ?x. P x`; IN_NUMSEG] THEN REPEAT STRIP_TAC THENL [EXISTS_TAC `0` THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC CLOSED_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV] THEN REWRITE_TAC[GSYM REAL_CLOSED_IN; REAL_CLOSED_SING]]);; let COMPLETELY_METRIZABLE_EUCLIDEAN_SPACE = prove (`!n. completely_metrizable_space(euclidean_space n)`, GEN_TAC THEN REWRITE_TAC[euclidean_space] THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_CLOSED_IN THEN REWRITE_TAC[GSYM TOPSPACE_EUCLIDEAN_SPACE; CLOSED_IN_EUCLIDEAN_SPACE] THEN REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_EUCLIDEANREAL] THEN REWRITE_TAC[COUNTABLE_SUBSET_NUM]);; let METRIZABLE_EUCLIDEAN_SPACE = prove (`!n. metrizable_space(euclidean_space n)`, SIMP_TAC[COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE; COMPLETELY_METRIZABLE_EUCLIDEAN_SPACE]);; let CONTINUOUS_MAP_COMPONENTWISE_EUCLIDEAN_SPACE = prove (`!top (f:A->num->real) n. continuous_map (top,euclidean_space n) (\x i. if 1 <= i /\ i <= n then f x i else &0) <=> !i. 1 <= i /\ i <= n ==> continuous_map(top,euclideanreal) (\x. f x i)`, REWRITE_TAC[euclidean_space; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_NUMSEG] THEN REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `1 <= i /\ i <= n` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST]);; let CONTINUOUS_MAP_EUCLIDEAN_SPACE_ADD = prove (`!f g:A->num->real. continuous_map(top,euclidean_space n) f /\ continuous_map(top,euclidean_space n) g ==> continuous_map(top,euclidean_space n) (\x i. f x i + g x i)`, REWRITE_TAC[euclidean_space; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; REAL_ADD_LID] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN SIMP_TAC[CONTINUOUS_MAP_REAL_ADD; EXTENSIONAL_UNIV]);; let CONTINUOUS_MAP_EUCLIDEAN_SPACE_SUB = prove (`!f g:A->num->real. continuous_map(top,euclidean_space n) f /\ continuous_map(top,euclidean_space n) g ==> continuous_map(top,euclidean_space n) (\x i. f x i - g x i)`, REWRITE_TAC[euclidean_space; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; REAL_SUB_RZERO] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN SIMP_TAC[CONTINUOUS_MAP_REAL_SUB; EXTENSIONAL_UNIV]);; let HOMEOMORPHIC_EUCLIDEAN_SPACE_PRODUCT_TOPOLOGY = prove (`!n. euclidean_space n homeomorphic_space product_topology (1..n) (\i. euclideanreal)`, GEN_TAC THEN REWRITE_TAC[homeomorphic_space; homeomorphic_maps] THEN EXISTS_TAC `\f:num->real. RESTRICTION (1..n) f` THEN EXISTS_TAC `\(f:num->real) i. if i IN 1..n then f i else &0` THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SPACE; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[cartesian_product; o_THM; TOPSPACE_EUCLIDEANREAL] THEN REWRITE_TAC[IN_ELIM_THM; EXTENSION; euclidean_space] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV]; REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV] THEN CONJ_TAC THENL [MESON_TAC[IN; EXTENSIONAL_UNIV; IN_UNIV]; ALL_TAC] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i IN 1..n` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION]; REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN SIMP_TAC[RESTRICTION] THEN ASM_MESON_TAC[]; REWRITE_TAC[EXTENSIONAL; FUN_EQ_THM; IN_UNIV; IN_ELIM_THM] THEN REWRITE_TAC[RESTRICTION] THEN MESON_TAC[]]);; let CONTRACTIBLE_EUCLIDEAN_SPACE = prove (`!n. contractible_space(euclidean_space n)`, GEN_TAC THEN MP_TAC(SPEC `n:num` HOMEOMORPHIC_EUCLIDEAN_SPACE_PRODUCT_TOPOLOGY) THEN DISCH_THEN(SUBST1_TAC o MATCH_MP HOMEOMORPHIC_SPACE_CONTRACTIBILITY) THEN REWRITE_TAC[CONTRACTIBLE_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[CONTRACTIBLE_SPACE_EUCLIDEANREAL]);; let PATH_CONNECTED_EUCLIDEAN_SPACE = prove (`!n. path_connected_space(euclidean_space n)`, SIMP_TAC[CONTRACTIBLE_IMP_PATH_CONNECTED_SPACE; CONTRACTIBLE_EUCLIDEAN_SPACE]);; let CONNECTED_EUCLIDEAN_SPACE = prove (`!n. connected_space(euclidean_space n)`, SIMP_TAC[PATH_CONNECTED_EUCLIDEAN_SPACE; PATH_CONNECTED_IMP_CONNECTED_SPACE]);; let LOCALLY_COMPACT_EUCLIDEAN_SPACE = prove (`!n. locally_compact_space(euclidean_space n)`, X_GEN_TAC `n:num` THEN MP_TAC(SPEC `n:num` HOMEOMORPHIC_EUCLIDEAN_SPACE_PRODUCT_TOPOLOGY) THEN DISCH_THEN(SUBST1_TAC o MATCH_MP HOMEOMORPHIC_LOCALLY_COMPACT_SPACE) THEN REWRITE_TAC[LOCALLY_COMPACT_SPACE_PRODUCT_TOPOLOGY] THEN DISJ2_TAC THEN REWRITE_TAC[LOCALLY_COMPACT_SPACE_EUCLIDEANREAL] THEN SIMP_TAC[FINITE_NUMSEG; FINITE_RESTRICT]);; let LOCALLY_PATH_CONNECTED_EUCLIDEAN_SPACE = prove (`!n. locally_path_connected_space(euclidean_space n)`, X_GEN_TAC `n:num` THEN MP_TAC(SPEC `n:num` HOMEOMORPHIC_EUCLIDEAN_SPACE_PRODUCT_TOPOLOGY) THEN DISCH_THEN(SUBST1_TAC o MATCH_MP HOMEOMORPHIC_LOCALLY_PATH_CONNECTED_SPACE) THEN REWRITE_TAC[LOCALLY_PATH_CONNECTED_SPACE_PRODUCT_TOPOLOGY] THEN DISJ2_TAC THEN REWRITE_TAC[LOCALLY_PATH_CONNECTED_SPACE_EUCLIDEANREAL] THEN SIMP_TAC[FINITE_NUMSEG; FINITE_RESTRICT]);; let LOCALLY_CONNECTED_EUCLIDEAN_SPACE = prove (`!n. locally_connected_space(euclidean_space n)`, SIMP_TAC[LOCALLY_PATH_CONNECTED_EUCLIDEAN_SPACE; LOCALLY_PATH_CONNECTED_IMP_LOCALLY_CONNECTED_SPACE]);; let HAUSDORFF_EUCLIDEAN_SPACE = prove (`!n. hausdorff_space (euclidean_space n)`, GEN_TAC THEN REWRITE_TAC[euclidean_space] THEN MATCH_MP_TAC HAUSDORFF_SPACE_SUBTOPOLOGY THEN REWRITE_TAC[HAUSDORFF_SPACE_PRODUCT_TOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL]);; let COMPACT_EUCLIDEAN_SPACE = prove (`!n. compact_space(euclidean_space n) <=> n = 0`, X_GEN_TAC `n:num` THEN MP_TAC(SPEC `n:num` HOMEOMORPHIC_EUCLIDEAN_SPACE_PRODUCT_TOPOLOGY) THEN DISCH_THEN(SUBST1_TAC o MATCH_MP HOMEOMORPHIC_COMPACT_SPACE) THEN REWRITE_TAC[COMPACT_SPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[NOT_COMPACT_SPACE_EUCLIDEANREAL] THEN REWRITE_TAC[o_DEF; TOPSPACE_EUCLIDEANREAL; UNIV_NOT_EMPTY] THEN REWRITE_TAC[GSYM NOT_EXISTS_THM; MEMBER_NOT_EMPTY] THEN REWRITE_TAC[NUMSEG_EMPTY] THEN ARITH_TAC);; let nsphere = new_definition `nsphere n = subtopology (euclidean_space (n + 1)) { x | sum(1..n+1) (\i. x i pow 2) = &1 }`;; let NSPHERE = prove (`!n. nsphere n = subtopology (product_topology (:num) (\i. euclideanreal)) {x | sum(1..n+1) (\i. x i pow 2) = &1 /\ !i. ~(i IN 1..n+1) ==> x i = &0}`, REWRITE_TAC[nsphere; euclidean_space; SUBTOPOLOGY_SUBTOPOLOGY] THEN GEN_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let NONEMPTY_NSPHERE = prove (`!n. ~(topspace(nsphere n) = {})`, GEN_TAC THEN REWRITE_TAC[nsphere; GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `(\n. if n = 1 then &1 else &0):num->real` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEAN_SPACE] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM] THEN CONJ_TAC THENL [GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC; ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SUM_DELTA] THEN REWRITE_TAC[IN_NUMSEG; ARITH_RULE `1 <= 1 /\ 1 <= n + 1`]]);; let SUBTOPOLOGY_NSPHERE_EQUATOR = prove (`!n. subtopology (nsphere (n + 1)) {x | x(n+2) = &0} = nsphere n`, GEN_TAC THEN REWRITE_TAC[NSPHERE; SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:num->real` THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN REWRITE_TAC[ARITH_RULE `(n + 1) + 1 = SUC(n + 1)`; SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[ARITH_RULE `1 <= SUC n`; NUMSEG_CLAUSES] THEN REWRITE_TAC[ARITH_RULE `SUC(n + 1) = n + 2`; IN_INSERT; IN_NUMSEG] THEN ASM_CASES_TAC `(x:num->real)(n + 2) = &0` THENL [ALL_TAC; ASM_MESON_TAC[ARITH_RULE `~(n + 2 <= n + 1)`]] THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_ADD_RID] THEN ASM_MESON_TAC[]);; let CONTINUOUS_MAP_NSPHERE_REFLECTION = prove (`!n k. continuous_map (nsphere n,nsphere n) (\x i. if i = k then --x i else x i)`, REPEAT GEN_TAC THEN REWRITE_TAC[NSPHERE; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN CONJ_TAC THENL [X_GEN_TAC `i:num` THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN ASM_CASES_TAC `i:num = k` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_NEG; CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV]; ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN REWRITE_TAC[REAL_NEG_EQ_0; REAL_ARITH `(--x:real) pow 2 = x pow 2`] THEN SIMP_TAC[COND_ID; TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM]]);; let CONTRACTIBLE_SPACE_UPPER_HEMISPHERE = prove (`!n k. k IN 1..n+1 ==> contractible_space(subtopology (nsphere n) {x | x k >= &0})`, REPEAT STRIP_TAC THEN ABBREV_TAC `p:num->real = \i. if i = k then &1 else &0` THEN REWRITE_TAC[contractible_space] THEN EXISTS_TAC `p:num->real` THEN SUBGOAL_THEN `p IN topspace(nsphere n)` ASSUME_TAC THENL [EXPAND_TAC "p" THEN REWRITE_TAC[NSPHERE; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[IN_INTER; TOPSPACE_PRODUCT_TOPOLOGY; IN_ELIM_THM; o_DEF] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; CARTESIAN_PRODUCT_UNIV; IN_UNIV] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[COND_RAND; COND_RATOR] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[SUM_DELTA]; ALL_TAC] THEN SIMP_TAC[HOMOTOPIC_WITH] THEN EXISTS_TAC `(\x i. x i / sqrt(sum(1..n+1) (\j. x j pow 2))) o (\(t,q) i. (&1 - t) * q i + t * p i)` THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE; UNDISCH_TAC `p IN topspace(nsphere n)` THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; NSPHERE; o_THM] THEN REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_LID; REAL_MUL_LZERO; REAL_SUB_RZERO; REAL_ADD_LID; REAL_ADD_RID; IN_INTER; IN_ELIM_THM] THEN SIMP_TAC[SQRT_1; REAL_DIV_1; ETA_AX]] THEN EXISTS_TAC `subtopology (euclidean_space (n + 1)) {x | x k >= &0 /\ ~(!i. i IN 1..n+1 ==> x i = &0)}` THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; euclidean_space] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `i:num` THEN REWRITE_TAC[LAMBDA_PAIR] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_ADD THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL THEN REWRITE_TAC[CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND] THEN SIMP_TAC[GSYM SUBTOPOLOGY_CROSS; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_FST] THEN REPEAT CONJ_TAC THEN DISJ2_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN SIMP_TAC[CONTINUOUS_MAP_REAL_SUB; CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_ID] THEN REWRITE_TAC[NSPHERE] THEN MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY THEN SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY; NSPHERE; FORALL_PAIR_THM; TOPSPACE_PROD_TOPOLOGY; IN_CROSS; IN_INTER; IN_ELIM_THM] THEN EXPAND_TAC "p" THEN SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_LID; REAL_ENTIRE] THEN ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL; IN_INTER; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`t:real`; `x:num->real`] THEN REWRITE_TAC[IN_REAL_INTERVAL; IN_ELIM_THM] THEN STRIP_TAC THEN REWRITE_TAC[real_ge] THEN CONJ_TAC THENL [EXPAND_TAC "p" THEN REWRITE_TAC[REAL_MUL_RID] THEN MATCH_MP_TAC REAL_LE_ADD THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REAL_ARITH_TAC; ASM_CASES_TAC `t = &0` THENL [ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_MUL_LID; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_ADD_RID] THEN DISCH_TAC THEN UNDISCH_TAC `x IN topspace(nsphere n)` THEN ASM_SIMP_TAC[NSPHERE; TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SUM_0] THEN CONV_TAC REAL_RAT_REDUCE_CONV; DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "p" THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ &0 <= t /\ ~(t = &0) ==> ~(x + t * &1 = &0)`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REAL_ARITH_TAC]]; ALL_TAC; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[IN_INTER; IN_ELIM_THM; real_ge] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_DIV THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SQRT_POS_LE THEN MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN REWRITE_TAC[REAL_LE_POW_2]] THEN REWRITE_TAC[NSPHERE; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN X_GEN_TAC `i:num` THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_DIV THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_SQRT THEN MATCH_MP_TAC CONTINUOUS_MAP_SUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_POW THEN REPEAT(MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY) THEN SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV]; REWRITE_TAC[SQRT_EQ_0; TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM]]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY] THEN SIMP_TAC[IN_INTER; IN_ELIM_THM; real_ge; IN_NUMSEG] THEN REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_POW_MUL; SUM_RMUL] THEN REWRITE_TAC[REAL_POW_INV; GSYM real_div] THEN SIMP_TAC[SQRT_POW_2; SUM_POS_LE_NUMSEG; REAL_LE_POW_2] THEN REWRITE_TAC[REAL_DIV_EQ_1]] THEN REWRITE_TAC[IMP_CONJ; CONTRAPOS_THM] THEN GEN_TAC THEN REPLICATE_TAC 3 DISCH_TAC THEN REWRITE_TAC[IN_NUMSEG] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] SUM_POS_EQ_0_NUMSEG)) THEN SIMP_TAC[REAL_POW_EQ_0; REAL_LE_POW_2; ARITH]);; let CONTRACTIBLE_SPACE_LOWER_HEMISPHERE = prove (`!n k. k IN 1..n+1 ==> contractible_space(subtopology (nsphere n) {x | x k <= &0})`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONTRACTIBLE_SPACE_UPPER_HEMISPHERE) THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HOMEOMORPHIC_SPACE_CONTRACTIBILITY THEN REWRITE_TAC[homeomorphic_space] THEN REPEAT(EXISTS_TAC `\(x:num->real) i. if i = k then --(x i) else x i`) THEN REWRITE_TAC[homeomorphic_maps; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN SIMP_TAC[CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_NSPHERE_REFLECTION] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; REAL_NEG_NEG; TOPSPACE_SUBTOPOLOGY; IN_INTER] THEN REWRITE_TAC[FUN_EQ_THM] THEN REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let NULLHOMOTOPIC_NONSURJECTIVE_SPHERE_MAP = prove (`!p f. continuous_map(nsphere p,nsphere p) f /\ ~(IMAGE f (topspace(nsphere p)) = topspace(nsphere p)) ==> ?a. homotopic_with (\x. T) (nsphere p,nsphere p) f (\x. a)`, SIMP_TAC[IMP_CONJ; CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE; SET_RULE `s SUBSET t ==> (~(s = t) <=> ?a. a IN t /\ ~(a IN s))`] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_THEN(X_CHOOSE_THEN `a:num->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\i. --(a i)):num->real` THEN SIMP_TAC[HOMOTOPIC_WITH] THEN EXISTS_TAC `(\x i. x i / sqrt(sum(1..p+1) (\j. x j pow 2))) o (\(t,x) i. (&1 - t) * f(x:num->real) i - t * a i)` THEN REWRITE_TAC[o_THM; REAL_ARITH `(&1 - &1) * x - &1 * a = --a /\ (&1 - &0) * x - &0 * a = x`] THEN MP_TAC(ASSUME `a IN topspace(nsphere p)`) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN REWRITE_TAC[NSPHERE; TOPSPACE_SUBTOPOLOGY; SUBSET] THEN REWRITE_TAC[GSYM NSPHERE; IN_ELIM_THM; IN_INTER; FORALL_IN_IMAGE] THEN SIMP_TAC[REAL_ARITH `(--x:real) pow 2 = x pow 2`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(STRIP_ASSUME_TAC o CONJUNCT2) THEN REWRITE_TAC[SQRT_1; REAL_DIV_1; ETA_AX] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology (euclidean_space(p + 1)) (UNIV DELETE (\i. &0))` THEN REWRITE_TAC[euclidean_space; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE_UNIV] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `i:num` THEN REWRITE_TAC[LAMBDA_PAIR] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MUL THEN REWRITE_TAC[CONTINUOUS_MAP_OF_FST; CONTINUOUS_MAP_OF_SND] THEN SIMP_TAC[GSYM SUBTOPOLOGY_CROSS; nsphere; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_FST] THEN REPEAT CONJ_TAC THEN DISJ2_TAC THEN SIMP_TAC[CONTINUOUS_MAP_REAL_SUB; CONTINUOUS_MAP_REAL_CONST; CONTINUOUS_MAP_ID; CONTINUOUS_MAP_FROM_SUBTOPOLOGY] THEN REWRITE_TAC[GSYM nsphere] THEN SUBGOAL_THEN `(\x:num->real. f x i) = (\y:num->real. y i) o f` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `nsphere p` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[NSPHERE; CONTINUOUS_MAP_FROM_SUBTOPOLOGY; CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV]; FIRST_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [NSPHERE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY; FORALL_PAIR_THM; IN_CROSS; TOPSPACE_PROD_TOPOLOGY] THEN ASM_SIMP_TAC[IN_ELIM_THM; IN_INTER] THEN REPEAT STRIP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; IN_CROSS] THEN MAP_EVERY X_GEN_TAC [`t:real`; `b:num->real`] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REWRITE_TAC[IN_UNIV; IN_REAL_INTERVAL; IN_DELETE] THEN STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; REAL_SUB_0] THEN GEN_REWRITE_TAC RAND_CONV [GSYM FUN_EQ_THM] THEN MATCH_MP_TAC(MESON[] `(a = b ==> t = &1 / &2) /\ (t = &1 / &2 ==> ~(a = b)) ==> ~(a = b)`) THEN CONJ_TAC THENL [DISCH_THEN(MP_TAC o AP_TERM `\x. sum(1..p+1) (\i. x i pow 2)`) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [NSPHERE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY; FORALL_PAIR_THM; IN_CROSS; TOPSPACE_PROD_TOPOLOGY] THEN ASM_SIMP_TAC[IN_ELIM_THM; IN_INTER; REAL_POW_MUL; SUM_LMUL] THEN DISCH_TAC THEN CONV_TAC REAL_RING; DISCH_THEN SUBST1_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[FUN_EQ_THM; REAL_ARITH `&1 / &2 * x = &1 / &2 * y <=> x = y`] THEN GEN_REWRITE_TAC RAND_CONV [GSYM FUN_EQ_THM] THEN REWRITE_TAC[ETA_AX] THEN ASM SET_TAC[]]; REWRITE_TAC[NSPHERE; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE; IN_UNIV] THEN REWRITE_TAC[EXTENSIONAL_UNIV; IN; SUBSET] THEN X_GEN_TAC `k:num` THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_DIV THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN REPEAT(MATCH_MP_TAC CONTINUOUS_MAP_FROM_SUBTOPOLOGY) THEN SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV] THEN MATCH_MP_TAC CONTINUOUS_MAP_SQRT THEN MATCH_MP_TAC CONTINUOUS_MAP_SUM THEN SIMP_TAC[CONTINUOUS_MAP_REAL_POW; CONTINUOUS_MAP_PRODUCT_PROJECTION; IN_UNIV; FINITE_NUMSEG]; ALL_TAC]; ALL_TAC] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; TOPSPACE_SUBTOPOLOGY; IN_INTER; IN_ELIM_THM; IN_DELETE; IN_UNIV; real_div; REAL_POW_MUL; REAL_MUL_LZERO; SUM_RMUL; REAL_POW_INV; SQRT_POW_2; SUM_POS_LE_NUMSEG; REAL_LE_POW_2; SQRT_EQ_0] THEN X_GEN_TAC `x:num->real` THEN STRIP_TAC THEN REWRITE_TAC[GSYM real_div ] THEN TRY(MATCH_MP_TAC REAL_DIV_REFL) THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] SUM_POS_EQ_0_NUMSEG)) THEN REWRITE_TAC[REAL_LE_POW_2; GSYM IN_NUMSEG; REAL_POW_EQ_0] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [FUN_EQ_THM]) THEN ASM_MESON_TAC[IN]]);; (* ------------------------------------------------------------------------- *) (* Contractions. *) (* ------------------------------------------------------------------------- *) let CONTRACTION_IMP_UNIQUE_FIXPOINT = prove (`!m (f:A->A) k x y. k < &1 /\ (!x. x IN mspace m ==> f x IN mspace m) /\ (!x y. x IN mspace m /\ y IN mspace m ==> mdist m (f x, f y) <= k * mdist m (x,y)) /\ x IN mspace m /\ y IN mspace m /\ f x = x /\ f y = y ==> x = y`, INTRO_TAC "!m f k x y; k f le x y xeq yeq" THEN ASM_CASES_TAC `x:A = y` THENL [POP_ASSUM ACCEPT_TAC; ALL_TAC] THEN REMOVE_THEN "le" (MP_TAC o SPECL[`x:A`;`y:A`]) THEN ASM_REWRITE_TAC[] THEN CUT_TAC `&0 < (&1 - k) * mdist m (x:A,y:A)` THENL [REAL_ARITH_TAC; MATCH_MP_TAC REAL_LT_MUL THEN ASM_SIMP_TAC[MDIST_POS_LT] THEN ASM_REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Banach Fixed-Point Theorem (aka, Contraction Mapping Principle). *) (* ------------------------------------------------------------------------- *) let BANACH_FIXPOINT_THM = prove (`!m f:A->A k. ~(mspace m = {}) /\ mcomplete m /\ (!x. x IN mspace m ==> f x IN mspace m) /\ k < &1 /\ (!x y. x IN mspace m /\ y IN mspace m ==> mdist m (f x, f y) <= k * mdist m (x,y)) ==> (?!x. x IN mspace m /\ f x = x)`, INTRO_TAC "!m f k; ne compl 4 k1 contr" THEN REMOVE_THEN "ne" MP_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN INTRO_TAC "@a. aINm" THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTRACTION_IMP_UNIQUE_FIXPOINT THEN ASM_MESON_TAC[]] THEN ASM_CASES_TAC `!x:A. x IN mspace m ==> f x:A = f a` THENL [ASM_MESON_TAC[]; POP_ASSUM (LABEL_TAC "nonsing")] THEN CLAIM_TAC "kpos" `&0 < k` THENL [MATCH_MP_TAC (ISPECL [`m:A metric`; `m:A metric`; `f:A->A`] LIPSCHITZ_COEFFICIENT_POS) THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN CLAIM_TAC "fINm" `!n:num. (ITER n f (a:A)) IN mspace m` THENL [LABEL_INDUCT_TAC THEN ASM_SIMP_TAC[ITER]; ALL_TAC] THEN ASM_CASES_TAC `f a = a:A` THENL [ASM_MESON_TAC[]; POP_ASSUM (LABEL_TAC "aneq")] THEN CUT_TAC `cauchy_in (m:A metric) (\n. ITER n f (a:A))` THENL [DISCH_THEN (fun cauchy -> HYP_TAC "compl : @l. lim" (C MATCH_MP cauchy o REWRITE_RULE[mcomplete])) THEN EXISTS_TAC `l:A` THEN CONJ_TAC THENL [ASM_MESON_TAC [LIMIT_IN_MSPACE]; ALL_TAC] THEN MATCH_MP_TAC (ISPECL [`sequentially`; `m:A metric`; `(\n. ITER n f a:A)`] LIMIT_METRIC_UNIQUE) THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN MATCH_MP_TAC LIMIT_SEQUENTIALLY_OFFSET_REV THEN EXISTS_TAC `1` THEN REWRITE_TAC[GSYM ADD1] THEN SUBGOAL_THEN `(\i. ITER (SUC i) f (a:A)) = f o (\i. ITER i f a)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; ITER]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_MAP_LIMIT THEN EXISTS_TAC `mtopology (m:A metric)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_IMP_CONTINUOUS_MAP THEN ASM_REWRITE_TAC[lipschitz_continuous_map; SUBSET; FORALL_IN_IMAGE] THEN EXISTS_TAC `k:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN CLAIM_TAC "k1'" `&0 < &1 - k` THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[cauchy_in] THEN INTRO_TAC "!e; e" THEN CLAIM_TAC "@N. N" `?N. k pow N < ((&1 - k) * e) / mdist m (a:A,f a)` THENL [MATCH_MP_TAC REAL_ARCH_POW_INV THEN ASM_SIMP_TAC[REAL_LT_DIV; MDIST_POS_LT; REAL_LT_MUL]; EXISTS_TAC `N:num`] THEN MATCH_MP_TAC WLOG_LT THEN ASM_SIMP_TAC[MDIST_REFL] THEN CONJ_TAC THENL [HYP MESON_TAC "fINm" [MDIST_SYM]; ALL_TAC] THEN INTRO_TAC "!n n'; lt; le le'" THEN TRANS_TAC REAL_LET_TRANS `sum (n..n'-1) (\i. mdist m (ITER i f a:A, ITER (SUC i) f a))` THEN CONJ_TAC THENL [REMOVE_THEN "lt" MP_TAC THEN SPEC_TAC (`n':num`,`n':num`) THEN LABEL_INDUCT_TAC THENL [REWRITE_TAC[LT]; REWRITE_TAC[LT_SUC_LE]] THEN INTRO_TAC "nle" THEN HYP_TAC "nle : nlt | neq" (REWRITE_RULE[LE_LT]) THENL [ALL_TAC; POP_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[ITER; ARITH_RULE `SUC n'' - 1 = n''`; SUM_SING_NUMSEG; REAL_LE_REFL]] THEN USE_THEN "nlt" (HYP_TAC "ind_n'" o C MATCH_MP) THEN REWRITE_TAC[ITER] THEN TRANS_TAC REAL_LE_TRANS `mdist m (ITER n f a:A,ITER n'' f a) + mdist m (ITER n'' f a,f (ITER n'' f a))` THEN ASM_SIMP_TAC[MDIST_TRIANGLE] THEN SUBGOAL_THEN `SUC n'' - 1 = SUC (n'' - 1)` SUBST1_TAC THENL [ASM_ARITH_TAC; ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG]] THEN SUBGOAL_THEN `SUC (n'' - 1) = n''` SUBST1_TAC THENL [ASM_ARITH_TAC; ASM_SIMP_TAC[LT_IMP_LE; REAL_LE_RADD]] THEN REMOVE_THEN "ind_n'" (ACCEPT_TAC o REWRITE_RULE[ITER]); ALL_TAC] THEN TRANS_TAC REAL_LET_TRANS `sum (n..n'-1) (\i. mdist m (a:A, f a) * k pow i)` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE_NUMSEG THEN CUT_TAC `!i. mdist m (ITER i f a,ITER (SUC i) f a) <= mdist m (a:A,f a) * k pow i` THENL [SIMP_TAC[ITER]; ALL_TAC] THEN LABEL_INDUCT_TAC THENL [REWRITE_TAC[ITER; real_pow; REAL_MUL_RID; REAL_LE_REFL]; HYP_TAC "ind_i" (REWRITE_RULE[ITER]) THEN TRANS_TAC REAL_LE_TRANS `k * mdist m (ITER i f a:A, f (ITER i f a))` THEN ASM_SIMP_TAC[real_pow; REAL_LE_LMUL_EQ; ITER; REAL_ARITH `!x. x * k * k pow i = k * x * k pow i`]]; ALL_TAC] THEN REWRITE_TAC[SUM_LMUL; SUM_GP] THEN HYP SIMP_TAC "lt" [ARITH_RULE `n < n' ==> ~(n' - 1 < n)`] THEN HYP SIMP_TAC "k1" [REAL_ARITH `k < &1 ==> ~(k = &1)`] THEN USE_THEN "lt" (SUBST1_TAC o MATCH_MP (ARITH_RULE `n < n' ==> SUC (n' - 1) = n'`)) THEN SUBGOAL_THEN `k pow n - k pow n' = k pow n * (&1 - k pow (n' - n))` SUBST1_TAC THENL [REWRITE_TAC[REAL_SUB_LDISTRIB; REAL_MUL_RID; GSYM REAL_POW_ADD] THEN HYP SIMP_TAC "lt" [ARITH_RULE `n < n' ==> n + n' - n = n':num`]; (SUBST1_TAC o REAL_ARITH) `mdist m (a:A,f a) * (k pow n * (&1 - k pow (n' - n))) / (&1 - k) = ((k pow n * (&1 - k pow (n' - n))) / (&1 - k)) * mdist m (a,f a)`] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; MDIST_POS_LT; REAL_LT_LDIV_EQ] THEN TRANS_TAC REAL_LET_TRANS `k pow n` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN REWRITE_TAC[GSYM REAL_POW_ADD; REAL_ARITH `k pow n - k pow n * (&1 - k pow (n' - n)) = k pow n * k pow (n' - n)`] THEN HYP SIMP_TAC "lt" [ARITH_RULE `n < n' ==> n + n' - n = n':num`] THEN HYP SIMP_TAC "kpos" [REAL_POW_LE; REAL_LT_IMP_LE]; TRANS_TAC REAL_LET_TRANS `k pow N` THEN ASM_SIMP_TAC[REAL_POW_MONO_INV; REAL_LT_IMP_LE; REAL_ARITH `e / mdist m (a:A,f a) * (&1 - k) = ((&1 - k) * e) / mdist m (a,f a)`]]);; (* ------------------------------------------------------------------------- *) (* Metric space of bounded functions. *) (* ------------------------------------------------------------------------- *) let funspace = new_definition `funspace s m = metric ({f:A->B | (!x. x IN s ==> f x IN mspace m) /\ f IN EXTENSIONAL s /\ mbounded m (IMAGE f s)}, (\(f,g). if s = {} then &0 else sup {mdist m (f x,g x) | x | x IN s}))`;; let FUNSPACE = (REWRITE_RULE[GSYM FORALL_AND_THM] o prove) (`!s m. mspace (funspace s m) = {f:A->B | (!x. x IN s ==> f x IN mspace m) /\ f IN EXTENSIONAL s /\ mbounded m (IMAGE f s)} /\ (!f g. mdist (funspace s m) (f,g) = if s = {} then &0 else sup {mdist m (f x,g x) | x | x IN s})`, REPEAT GEN_TAC THEN MAP_EVERY LABEL_ABBREV_TAC [`fspace = {f:A->B | (!x. x IN s ==> f x IN mspace m) /\ f IN EXTENSIONAL s /\ mbounded m (IMAGE f s)}`; `fdist = \(f,g). if s = {} then &0 else sup {mdist m (f x:B,g x) | x | x:A IN s}`] THEN CUT_TAC `mspace (funspace s m) = fspace:(A->B)->bool /\ mdist (funspace s m:(A->B)metric) = fdist` THENL [EXPAND_TAC "fdist" THEN DISCH_THEN (fun th -> REWRITE_TAC[th]); ASM_REWRITE_TAC[funspace] THEN MATCH_MP_TAC METRIC] THEN ASM_CASES_TAC `s:A->bool = {}` THENL [POP_ASSUM SUBST_ALL_TAC THEN MAP_EVERY EXPAND_TAC ["fspace"; "fdist"] THEN SIMP_TAC[is_metric_space; NOT_IN_EMPTY; IN_EXTENSIONAL; IMAGE_CLAUSES; MBOUNDED_EMPTY; IN_ELIM_THM; REAL_LE_REFL; REAL_ADD_LID; FUN_EQ_THM]; POP_ASSUM (LABEL_TAC "nempty")] THEN REMOVE_THEN "nempty" (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN LABEL_TAC "nempty" th) THEN CLAIM_TAC "wd ext bound" `(!f x:A. f IN fspace /\ x IN s ==> f x:B IN mspace m) /\ (!f. f IN fspace ==> f IN EXTENSIONAL s) /\ (!f. f IN fspace ==> (?c b. c IN mspace m /\ (!x. x IN s ==> mdist m (c,f x) <= b)))` THENL [EXPAND_TAC "fspace" THEN ASM_SIMP_TAC[IN_ELIM_THM; MBOUNDED; IMAGE_EQ_EMPTY] THEN SET_TAC[]; ALL_TAC] THEN CLAIM_TAC "bound2" `!f g:A->B. f IN fspace /\ g IN fspace ==> (?b. !x. x IN s ==> mdist m (f x,g x) <= b)` THENL [REMOVE_THEN "fspace" (SUBST_ALL_TAC o GSYM) THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN CUT_TAC `mbounded m (IMAGE (f:A->B) s UNION IMAGE g s)` THENL [REWRITE_TAC[MBOUNDED_ALT; SUBSET; IN_UNION] THEN STRIP_TAC THEN EXISTS_TAC `b:real` THEN ASM SET_TAC []; ASM_REWRITE_TAC[MBOUNDED_UNION]]; ALL_TAC] THEN HYP_TAC "nempty -> @a. a" (REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[is_metric_space] THEN CONJ_TAC THENL [INTRO_TAC "![f] [g]; f g" THEN EXPAND_TAC "fdist" THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_SUP THEN CLAIM_TAC "@b. b" `?b. !x:A. x IN s ==> mdist m (f x:B,g x) <= b` THENL [HYP SIMP_TAC "bound2 f g" []; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`b:real`; `mdist m (f(a:A):B,g a)`] THEN REWRITE_TAC[IN_ELIM_THM] THEN HYP SIMP_TAC "wd f g a" [MDIST_POS_LE] THEN HYP MESON_TAC "a b" []; ALL_TAC] THEN CONJ_TAC THENL [INTRO_TAC "![f] [g]; f g" THEN EXPAND_TAC "fdist" THEN REWRITE_TAC[] THEN EQ_TAC THENL [INTRO_TAC "sup0" THEN MATCH_MP_TAC (SPEC `s:A->bool` EXTENSIONAL_EQ) THEN HYP SIMP_TAC "f g ext" [] THEN INTRO_TAC "!x; x" THEN REFUTE_THEN (LABEL_TAC "neq") THEN CUT_TAC `&0 < mdist m (f (x:A):B, g x) /\ mdist m (f x, g x) <= sup {mdist m (f x,g x) | x IN s}` THENL [HYP REWRITE_TAC "sup0" [] THEN REAL_ARITH_TAC; ALL_TAC] THEN HYP SIMP_TAC "wd f g x neq" [MDIST_POS_LT] THEN MATCH_MP_TAC REAL_LE_SUP THEN CLAIM_TAC "@B. B" `?b. !x:A. x IN s ==> mdist m (f x:B,g x) <= b` THENL [HYP SIMP_TAC "bound2 f g" []; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`B:real`; `mdist m (f (x:A):B,g x)`] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; REAL_LE_REFL] THEN HYP MESON_TAC "B x" []; DISCH_THEN (SUBST1_TAC o GSYM) THEN SUBGOAL_THEN `{mdist m (f x:B,f x) | x:A IN s} = {&0}` (fun th -> REWRITE_TAC[th; SUP_SING]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNIV; IN_INSERT] THEN HYP MESON_TAC "wd f a" [MDIST_REFL]]; ALL_TAC] THEN CONJ_TAC THENL [INTRO_TAC "![f] [g]; f g" THEN EXPAND_TAC "fdist" THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN HYP MESON_TAC "wd f g" [MDIST_SYM]; ALL_TAC] THEN INTRO_TAC "![f] [g] [h]; f g h" THEN EXPAND_TAC "fdist" THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_SUP_LE THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNIV] THEN HYP MESON_TAC "a" []; ALL_TAC] THEN FIX_TAC "[d]" THEN REWRITE_TAC [IN_ELIM_THM; IN_UNIV] THEN INTRO_TAC "@x. x d" THEN POP_ASSUM SUBST1_TAC THEN CUT_TAC `mdist m (f (x:A):B,h x) <= mdist m (f x,g x) + mdist m (g x, h x) /\ mdist m (f x, g x) <= fdist (f,g) /\ mdist m (g x, h x) <= fdist (g,h)` THEN EXPAND_TAC "fdist" THEN REWRITE_TAC[] THENL [REAL_ARITH_TAC; ALL_TAC] THEN HYP SIMP_TAC "wd f g h x" [MDIST_TRIANGLE] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_SUP THENL [CLAIM_TAC "@B. B" `?b. !x:A. x IN s ==> mdist m (f x:B,g x) <= b` THENL [HYP SIMP_TAC "bound2 f g" []; MAP_EVERY EXISTS_TAC [`B:real`; `mdist m (f(x:A):B,g x)`]] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; REAL_LE_REFL] THEN HYP MESON_TAC "B x" []; CLAIM_TAC "@B. B" `?b. !x:A. x IN s ==> mdist m (g x:B,h x) <= b` THENL [HYP SIMP_TAC "bound2 g h" []; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`B:real`; `mdist m (g(x:A):B,h x)`] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; REAL_LE_REFL] THEN HYP MESON_TAC "B x" []]);; let FUNSPACE_IMP_WELLDEFINED = prove (`!s m f:A->B x. f IN mspace (funspace s m) /\ x IN s ==> f x IN mspace m`, SIMP_TAC[FUNSPACE; IN_ELIM_THM]);; let FUNSPACE_IMP_EXTENSIONAL = prove (`!s m f:A->B. f IN mspace (funspace s m) ==> f IN EXTENSIONAL s`, SIMP_TAC[FUNSPACE; IN_ELIM_THM]);; let FUNSPACE_IMP_BOUNDED_IMAGE = prove (`!s m f:A->B. f IN mspace (funspace s m) ==> mbounded m (IMAGE f s)`, SIMP_TAC[FUNSPACE; IN_ELIM_THM]);; let FUNSPACE_IMP_BOUNDED = prove (`!s m f:A->B. f IN mspace (funspace s m) ==> s = {} \/ (?c b. !x. x IN s ==> mdist m (c,f x) <= b)`, REPEAT GEN_TAC THEN REWRITE_TAC[FUNSPACE; MBOUNDED; IMAGE_EQ_EMPTY; IN_ELIM_THM] THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let FUNSPACE_IMP_BOUNDED2 = prove (`!s m f g:A->B. f IN mspace (funspace s m) /\ g IN mspace (funspace s m) ==> (?b. !x. x IN s ==> mdist m (f x,g x) <= b)`, REWRITE_TAC[FUNSPACE; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN CUT_TAC `mbounded m (IMAGE (f:A->B) s UNION IMAGE g s)` THENL [REWRITE_TAC[MBOUNDED_ALT; SUBSET; IN_UNION] THEN STRIP_TAC THEN EXISTS_TAC `b:real` THEN ASM SET_TAC []; ASM_REWRITE_TAC[MBOUNDED_UNION]]);; let FUNSPACE_MDIST_LE = prove (`!s m f g:A->B a. ~(s = {}) /\ f IN mspace (funspace s m) /\ g IN mspace (funspace s m) ==> (mdist (funspace s m) (f,g) <= a <=> !x. x IN s ==> mdist m (f x, g x) <= a)`, INTRO_TAC "! *; ne f g" THEN HYP (DESTRUCT_TAC "@b. b" o MATCH_MP FUNSPACE_IMP_BOUNDED2 o CONJ_LIST) "f g" [] THEN ASM_REWRITE_TAC[FUNSPACE] THEN MP_TAC (ISPECL [`{mdist m (f x:B,g x) | x:A IN s}`; `a:real`] REAL_SUP_LE_EQ) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_ELIM_THM]] THEN MESON_TAC[]);; let MCOMPLETE_FUNSPACE = prove (`!s:A->bool m:B metric. mcomplete m ==> mcomplete (funspace s m)`, REWRITE_TAC[mcomplete] THEN INTRO_TAC "!s m; cpl; ![f]; cy" THEN ASM_CASES_TAC `s:A->bool = {}` THENL [POP_ASSUM SUBST_ALL_TAC THEN EXISTS_TAC `\x:A. ARB:B` THEN REMOVE_THEN "cy" MP_TAC THEN SIMP_TAC[cauchy_in; LIMIT_METRIC_SEQUENTIALLY; FUNSPACE; NOT_IN_EMPTY; IN_ELIM_THM; IN_EXTENSIONAL; IMAGE_CLAUSES; MBOUNDED_EMPTY]; POP_ASSUM (LABEL_TAC "nempty")] THEN LABEL_ABBREV_TAC `g (x:A) = if x IN s then @y. limit (mtopology m) (\n:num. f n x) y sequentially else ARB:B` THEN EXISTS_TAC `g:A->B` THEN USE_THEN "cy" MP_TAC THEN HYP REWRITE_TAC "nempty" [cauchy_in; FUNSPACE; IN_ELIM_THM; FORALL_AND_THM] THEN INTRO_TAC "(fwd fext fbd) cy'" THEN ASM_REWRITE_TAC[LIMIT_METRIC_SEQUENTIALLY; FUNSPACE; IN_ELIM_THM] THEN CLAIM_TAC "gext" `g:A->B IN EXTENSIONAL s` THENL [REMOVE_THEN "g" (fun th -> SIMP_TAC[IN_EXTENSIONAL; GSYM th]); HYP REWRITE_TAC "gext" []] THEN CLAIM_TAC "bd2" `!n n'. ?b. !x:A. x IN s ==> mdist m (f (n:num) x:B, f n' x) <= b` THENL [REPEAT GEN_TAC THEN MATCH_MP_TAC FUNSPACE_IMP_BOUNDED2 THEN ASM_REWRITE_TAC[FUNSPACE; IN_ELIM_THM; ETA_AX]; ALL_TAC] THEN CLAIM_TAC "sup" `!n n':num x0:A. x0 IN s ==> mdist m (f n x0:B,f n' x0) <= sup {mdist m (f n x,f n' x) | x IN s}` THENL [INTRO_TAC "!n n' x0; x0" THEN MATCH_MP_TAC REAL_LE_SUP THEN REMOVE_THEN "bd2" (DESTRUCT_TAC "@b. b" o SPECL[`n:num`;`n':num`]) THEN MAP_EVERY EXISTS_TAC [`b:real`; `mdist m (f (n:num) (x0:A):B, f n' x0)`] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [HYP MESON_TAC "x0" []; REWRITE_TAC[REAL_LE_REFL]] THEN INTRO_TAC "![d]; @y. y d" THEN REMOVE_THEN "d" SUBST1_TAC THEN HYP SIMP_TAC "b y" []; ALL_TAC] THEN CLAIM_TAC "pcy" `!x:A. x IN s ==> cauchy_in m (\n. f n x:B)` THENL [INTRO_TAC "!x; x" THEN REWRITE_TAC[cauchy_in] THEN HYP SIMP_TAC "fwd x" [] THEN INTRO_TAC "!e; e" THEN USE_THEN "e" (HYP_TAC "cy': @N.N" o C MATCH_MP) THEN EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN DISCH_THEN (HYP_TAC "N" o C MATCH_MP) THEN TRANS_TAC REAL_LET_TRANS `sup {mdist m (f (n:num) x:B,f n' x) | x:A IN s}` THEN HYP REWRITE_TAC "N" [] THEN HYP SIMP_TAC "sup x" []; ALL_TAC] THEN CLAIM_TAC "glim" `!x:A. x IN s ==> limit (mtopology m) (\n. f n x:B) (g x) sequentially` THENL [INTRO_TAC "!x; x" THEN REMOVE_THEN "g" (fun th -> ASM_REWRITE_TAC[GSYM th]) THEN SELECT_ELIM_TAC THEN HYP SIMP_TAC "cpl pcy x" []; ALL_TAC] THEN CLAIM_TAC "gwd" `!x:A. x IN s ==> g x:B IN mspace m` THENL [INTRO_TAC "!x; x" THEN MATCH_MP_TAC (ISPECL[`sequentially`] LIMIT_IN_MSPACE) THEN EXISTS_TAC `\n:num. f n (x:A):B` THEN HYP SIMP_TAC "glim x" []; HYP REWRITE_TAC "gwd" []] THEN CLAIM_TAC "unif" `!e. &0 < e ==> ?N:num. !x:A n. x IN s /\ N <= n ==> mdist m (f n x:B, g x) < e` THENL [INTRO_TAC "!e; e" THEN REMOVE_THEN "cy'" (MP_TAC o SPEC `e / &2`) THEN HYP REWRITE_TAC "e" [REAL_HALF] THEN INTRO_TAC "@N. N" THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!x n; x n" THEN USE_THEN "x" (HYP_TAC "glim" o C MATCH_MP) THEN HYP_TAC "glim: gx glim" (REWRITE_RULE[LIMIT_METRIC_SEQUENTIALLY]) THEN REMOVE_THEN "glim" (MP_TAC o SPEC `e / &2`) THEN HYP REWRITE_TAC "e" [REAL_HALF] THEN HYP SIMP_TAC "fwd x" [] THEN INTRO_TAC "@N'. N'" THEN TRANS_TAC REAL_LET_TRANS `mdist m (f n (x:A):B, f (MAX N N') x) + mdist m (f (MAX N N') x, g x)` THEN HYP SIMP_TAC "fwd x gwd" [MDIST_TRIANGLE] THEN TRANS_TAC REAL_LTE_TRANS `e / &2 + e / &2` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LT_ADD2; REWRITE_TAC[REAL_HALF; REAL_LE_REFL]] THEN CONJ_TAC THENL [ALL_TAC; REMOVE_THEN "N'" MATCH_MP_TAC THEN ARITH_TAC] THEN TRANS_TAC REAL_LET_TRANS `sup {mdist m (f n x:B,f (MAX N N') x) | x:A IN s}` THEN HYP SIMP_TAC "N n" [ARITH_RULE `N <= MAX N N'`] THEN HYP SIMP_TAC "sup x" []; ALL_TAC] THEN CONJ_TAC THENL [HYP_TAC "cy': @N. N" (C MATCH_MP REAL_LT_01) THEN USE_THEN "fbd" (MP_TAC o REWRITE_RULE[MBOUNDED] o SPEC `N:num`) THEN HYP REWRITE_TAC "nempty" [mbounded; IMAGE_EQ_EMPTY] THEN INTRO_TAC "Nwd (@c b. c Nbd)" THEN MAP_EVERY EXISTS_TAC [`c:B`; `b + &1`] THEN REWRITE_TAC[SUBSET; IN_IMAGE; IN_MCBALL] THEN INTRO_TAC "![y]; (@x. y x)" THEN REMOVE_THEN "y" SUBST1_TAC THEN HYP SIMP_TAC "x gwd c" [] THEN TRANS_TAC REAL_LE_TRANS `mdist m (c:B, f (N:num) (x:A)) + mdist m (f N x, g x)` THEN HYP SIMP_TAC "c fwd gwd x" [MDIST_TRIANGLE] THEN MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL [REMOVE_THEN "Nbd" MATCH_MP_TAC THEN REWRITE_TAC[IN_IMAGE] THEN HYP MESON_TAC "x" []; REFUTE_THEN (LABEL_TAC "contra" o REWRITE_RULE[REAL_NOT_LE])] THEN CLAIM_TAC "@a. a1 a2" `?a. &1 < a /\ a < mdist m (f (N:num) (x:A), g x:B)` THENL [EXISTS_TAC `(&1 + mdist m (f (N:num) (x:A), g x:B)) / &2` THEN REMOVE_THEN "contra" MP_TAC THEN REAL_ARITH_TAC; USE_THEN "x" (HYP_TAC "glim" o C MATCH_MP)] THEN REMOVE_THEN "glim" (MP_TAC o REWRITE_RULE[LIMIT_METRIC_SEQUENTIALLY]) THEN HYP SIMP_TAC "gwd x" [] THEN DISCH_THEN (MP_TAC o SPEC `a - &1`) THEN ANTS_TAC THENL [REMOVE_THEN "a1" MP_TAC THEN REAL_ARITH_TAC; ALL_TAC] THEN HYP SIMP_TAC "fwd x" [] THEN INTRO_TAC "@N'. N'" THEN CUT_TAC `mdist m (f (N:num) (x:A), g x:B) < a` THENL [REMOVE_THEN "a2" MP_TAC THEN REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC REAL_LET_TRANS `mdist m (f N (x:A),f (MAX N N') x:B) + mdist m (f (MAX N N') x,g x)` THEN HYP SIMP_TAC "fwd gwd x" [MDIST_TRIANGLE] THEN SUBST1_TAC (REAL_ARITH `a = &1 + (a - &1)`) THEN MATCH_MP_TAC REAL_LT_ADD2 THEN CONJ_TAC THENL [ALL_TAC; REMOVE_THEN "N'" MATCH_MP_TAC THEN ARITH_TAC] THEN TRANS_TAC REAL_LET_TRANS `sup {mdist m (f N x:B,f (MAX N N') x) | x:A IN s}` THEN CONJ_TAC THENL [HYP SIMP_TAC "sup x" []; REMOVE_THEN "N" MATCH_MP_TAC THEN ARITH_TAC]; ALL_TAC] THEN INTRO_TAC "!e; e" THEN REMOVE_THEN "unif" (MP_TAC o SPEC `e / &2`) THEN HYP REWRITE_TAC "e" [REAL_HALF] THEN INTRO_TAC "@N. N" THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN TRANS_TAC REAL_LET_TRANS `e / &2` THEN CONJ_TAC THENL [ALL_TAC; REMOVE_THEN "e" MP_TAC THEN REAL_ARITH_TAC] THEN MATCH_MP_TAC REAL_SUP_LE THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [HYP SET_TAC "nempty" []; HYP MESON_TAC "N n" [REAL_LT_IMP_LE]]);; (* ------------------------------------------------------------------------- *) (* Metric space of continuous bounded functions. *) (* ------------------------------------------------------------------------- *) let cfunspace = new_definition `cfunspace top m = submetric (funspace (topspace top) m) {f:A->B | continuous_map (top,mtopology m) f}`;; let CFUNSPACE = (REWRITE_RULE[GSYM FORALL_AND_THM] o prove) (`(!top m. mspace (cfunspace top m) = {f:A->B | (!x. x IN topspace top ==> f x IN mspace m) /\ f IN EXTENSIONAL (topspace top) /\ mbounded m (IMAGE f (topspace top)) /\ continuous_map (top,mtopology m) f}) /\ (!f g:A->B. mdist (cfunspace top m) (f,g) = if topspace top = {} then &0 else sup {mdist m (f x,g x) | x IN topspace top})`, REWRITE_TAC[cfunspace; SUBMETRIC; FUNSPACE] THEN SET_TAC[]);; let CFUNSPACE_SUBSET_FUNSPACE = prove (`!top:A topology m:B metric. mspace (cfunspace top m) SUBSET mspace (funspace (topspace top) m)`, SIMP_TAC[SUBSET; FUNSPACE; CFUNSPACE; IN_ELIM_THM]);; let MDIST_CFUNSPACE_EQ_MDIST_FUNSPACE = prove (`!top m f g:A->B. mdist (cfunspace top m) (f,g) = mdist (funspace (topspace top) m) (f,g)`, REWRITE_TAC[FUNSPACE; CFUNSPACE]);; let CFUNSPACE_MDIST_LE = prove (`!top m f g:A->B a. ~(topspace top = {}) /\ f IN mspace (cfunspace top m) /\ g IN mspace (cfunspace top m) ==> (mdist (cfunspace top m) (f,g) <= a <=> !x. x IN topspace top ==> mdist m (f x, g x) <= a)`, INTRO_TAC "! *; ne f g" THEN REWRITE_TAC[MDIST_CFUNSPACE_EQ_MDIST_FUNSPACE] THEN MATCH_MP_TAC FUNSPACE_MDIST_LE THEN ASM_SIMP_TAC[REWRITE_RULE[SUBSET] CFUNSPACE_SUBSET_FUNSPACE]);; let CFUNSPACE_IMP_BOUNDED2 = prove (`!top m f g:A->B. f IN mspace (cfunspace top m) /\ g IN mspace (cfunspace top m) ==> (?b. !x. x IN topspace top ==> mdist m (f x,g x) <= b)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FUNSPACE_IMP_BOUNDED2 THEN ASM SET_TAC [CFUNSPACE_SUBSET_FUNSPACE]);; let CFUNSPACE_MDIST_LT = prove (`!top m f g:A->B a x. compact_in top (topspace top) /\ f IN mspace (cfunspace top m) /\ g IN mspace (cfunspace top m) /\ mdist (cfunspace top m) (f, g) < a /\ x IN topspace top ==> mdist m (f x, g x) < a`, REPEAT GEN_TAC THEN ASM_CASES_TAC `topspace (top:A topology) = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN INTRO_TAC "cpt f g lt x" THEN REMOVE_THEN "lt" MP_TAC THEN ASM_REWRITE_TAC[CFUNSPACE] THEN INTRO_TAC "lt" THEN TRANS_TAC REAL_LET_TRANS `sup {mdist m (f x:B,g x) | x:A IN topspace top}` THEN HYP SIMP_TAC "lt" [] THEN MATCH_MP_TAC REAL_LE_SUP THEN HYP (DESTRUCT_TAC "@b. b" o MATCH_MP CFUNSPACE_IMP_BOUNDED2 o CONJ_LIST) "f g" [] THEN MAP_EVERY EXISTS_TAC [`b:real`; `mdist m (f (x:A):B,g x)`] THEN REWRITE_TAC[IN_ELIM_THM; REAL_LE_REFL] THEN HYP MESON_TAC "x b" []);; let MDIST_CFUNSPACE_LE = prove (`!top m B f g. &0 <= B /\ (!x:A. x IN topspace top ==> mdist m (f x:B, g x) <= B) ==> mdist (cfunspace top m) (f,g) <= B`, INTRO_TAC "!top m B f g; Bpos bound" THEN REWRITE_TAC[CFUNSPACE] THEN COND_CASES_TAC THEN HYP REWRITE_TAC "Bpos" [] THEN MATCH_MP_TAC REAL_SUP_LE THEN CONJ_TAC THENL [POP_ASSUM MP_TAC THEN SET_TAC[]; REWRITE_TAC[IN_ELIM_THM] THEN HYP MESON_TAC "bound" []]);; let MDIST_CFUNSPACE_IMP_MDIST_LE = prove (`!top m f g:A->B a x. f IN mspace (cfunspace top m) /\ g IN mspace (cfunspace top m) /\ mdist (cfunspace top m) (f,g) <= a /\ x IN topspace top ==> mdist m (f x,g x) <= a`, MESON_TAC[MEMBER_NOT_EMPTY; CFUNSPACE_MDIST_LE]);; let COMPACT_IN_MSPACE_CFUNSPACE = prove (`!top m. compact_in top (topspace top) ==> mspace (cfunspace top m) = {f | (!x:A. x IN topspace top ==> f x:B IN mspace m) /\ f IN EXTENSIONAL (topspace top) /\ continuous_map (top,mtopology m) f}`, REWRITE_TAC[CFUNSPACE; EXTENSION; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN INTRO_TAC "wd ext cont" THEN MATCH_MP_TAC COMPACT_IN_IMP_MBOUNDED THEN MATCH_MP_TAC (ISPEC `top:A topology` IMAGE_COMPACT_IN) THEN ASM_REWRITE_TAC[]);; let MCOMPLETE_CFUNSPACE = prove (`!top:A topology m:B metric. mcomplete m ==> mcomplete (cfunspace top m)`, INTRO_TAC "!top m; cpl" THEN REWRITE_TAC[cfunspace] THEN MATCH_MP_TAC SEQUENTIALLY_CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE THEN ASM_SIMP_TAC[MCOMPLETE_FUNSPACE] THEN REWRITE_TAC[IN_ELIM_THM; LIMIT_METRIC_SEQUENTIALLY] THEN INTRO_TAC "![f] [g]; fcont g lim" THEN ASM_CASES_TAC `topspace top = {}:A->bool` THENL [ASM_REWRITE_TAC[continuous_map; NOT_IN_EMPTY; EMPTY_GSPEC; OPEN_IN_EMPTY]; POP_ASSUM (LABEL_TAC "nempty")] THEN REWRITE_TAC[CONTINUOUS_MAP_TO_METRIC; IN_MBALL] THEN INTRO_TAC "!x; x; ![e]; e" THEN CLAIM_TAC "e3pos" `&0 < e / &3` THENL [REMOVE_THEN "e" MP_TAC THEN REAL_ARITH_TAC; USE_THEN "e3pos" (HYP_TAC "lim: @N. N" o C MATCH_MP)] THEN HYP_TAC "N: f lt" (C MATCH_MP (SPEC `N:num` LE_REFL)) THEN HYP_TAC "fcont" (REWRITE_RULE[CONTINUOUS_MAP_TO_METRIC]) THEN USE_THEN "x" (HYP_TAC "fcont" o C MATCH_MP) THEN USE_THEN "e3pos" (HYP_TAC "fcont" o C MATCH_MP) THEN HYP_TAC "fcont: @u. u x' inc" (SPEC `N:num`) THEN EXISTS_TAC `u:A->bool` THEN HYP REWRITE_TAC "u x'" [] THEN INTRO_TAC "!y; y'" THEN CLAIM_TAC "uinc" `!x:A. x IN u ==> x IN topspace top` THENL [REMOVE_THEN "u" (MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]; ALL_TAC] THEN HYP_TAC "g -> gwd gext gbd" (REWRITE_RULE[FUNSPACE; IN_ELIM_THM]) THEN HYP_TAC "f -> fwd fext fbd" (REWRITE_RULE[FUNSPACE; IN_ELIM_THM]) THEN CLAIM_TAC "y" `y:A IN topspace top` THENL [HYP SIMP_TAC "uinc y'" [OPEN_IN_SUBSET]; HYP SIMP_TAC "gwd x y" []] THEN CLAIM_TAC "sup" `!x0:A. x0 IN topspace top ==> mdist m (f (N:num) x0:B,g x0) <= e / &3` THENL [INTRO_TAC "!x0; x0" THEN TRANS_TAC REAL_LE_TRANS `sup {mdist m (f (N:num) x,g x:B) | x:A IN topspace top}` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_SUP THEN HYP (DESTRUCT_TAC "@b. b" o MATCH_MP FUNSPACE_IMP_BOUNDED2 o CONJ_LIST) "f g" [] THEN MAP_EVERY EXISTS_TAC [`b:real`; `mdist m (f (N:num) (x0:A), g x0:B)`] THEN REWRITE_TAC[IN_ELIM_THM; REAL_LE_REFL] THEN CONJ_TAC THENL [HYP SET_TAC "x0" []; HYP MESON_TAC "b" []]; REMOVE_THEN "lt" MP_TAC THEN HYP REWRITE_TAC "nempty" [FUNSPACE] THEN MATCH_ACCEPT_TAC REAL_LT_IMP_LE]; ALL_TAC] THEN TRANS_TAC REAL_LET_TRANS `mdist m (g (x:A):B, f (N:num) x) + mdist m (f N x, g y)` THEN HYP SIMP_TAC "gwd fwd x y" [MDIST_TRIANGLE] THEN SUBST1_TAC (ARITH_RULE `e = e / &3 + (e / &3 + e / &3)`) THEN MATCH_MP_TAC REAL_LET_ADD2 THEN HYP SIMP_TAC "gwd fwd x sup" [MDIST_SYM] THEN TRANS_TAC REAL_LET_TRANS `mdist m (f (N:num) (x:A):B, f N y) + mdist m (f N y, g y)` THEN HYP SIMP_TAC "fwd gwd x y" [MDIST_TRIANGLE] THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN HYP SIMP_TAC "gwd fwd y sup" [] THEN REMOVE_THEN "inc" MP_TAC THEN HYP SIMP_TAC "fwd x y' uinc" [IN_MBALL]);; (* ------------------------------------------------------------------------- *) (* Existence of completion for any metric space M as a subspace of M->R. *) (* ------------------------------------------------------------------------- *) let METRIC_COMPLETION_EXPLICIT = prove (`!m:A metric. ?s f:A->A->real. s SUBSET mspace(funspace (mspace m) real_euclidean_metric) /\ mcomplete(submetric (funspace (mspace m) real_euclidean_metric) s) /\ IMAGE f (mspace m) SUBSET s /\ mtopology(funspace (mspace m) real_euclidean_metric) closure_of IMAGE f (mspace m) = s /\ !x y. x IN mspace m /\ y IN mspace m ==> mdist (funspace (mspace m) real_euclidean_metric) (f x,f y) = mdist m (x,y)`, GEN_TAC THEN ABBREV_TAC `m' = funspace (mspace m:A->bool) real_euclidean_metric` THEN ASM_CASES_TAC `mspace m:A->bool = {}` THENL [EXISTS_TAC `{}:(A->real)->bool` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; IMAGE_CLAUSES; CLOSURE_OF_EMPTY; EMPTY_SUBSET; INTER_EMPTY; mcomplete; CAUCHY_IN_SUBMETRIC]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY])] THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN ABBREV_TAC `f:A->A->real = \x. RESTRICTION (mspace m) (\u. mdist m (x,u) - mdist m (a,u))` THEN EXISTS_TAC `mtopology(funspace (mspace m) real_euclidean_metric) closure_of IMAGE (f:A->A->real) (mspace m)` THEN EXISTS_TAC `f:A->A->real` THEN EXPAND_TAC "m'" THEN SUBGOAL_THEN `IMAGE (f:A->A->real) (mspace m) SUBSET mspace m'` ASSUME_TAC THENL [EXPAND_TAC "m'" THEN REWRITE_TAC[SUBSET; FUNSPACE] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM; EXTENSIONAL] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV; mbounded; mcball] THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN EXPAND_TAC "f" THEN SIMP_TAC[RESTRICTION; SUBSET; FORALL_IN_IMAGE] THEN MAP_EVERY EXISTS_TAC [`&0:real`; `mdist m (a:A,b)`] THEN REWRITE_TAC[IN_ELIM_THM; REAL_SUB_RZERO] THEN MAP_EVERY UNDISCH_TAC [`(a:A) IN mspace m`; `(b:A) IN mspace m`] THEN CONV_TAC METRIC_ARITH; ALL_TAC] THEN REWRITE_TAC[SUBMETRIC] THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE]; MATCH_MP_TAC CLOSED_IN_MCOMPLETE_IMP_MCOMPLETE THEN REWRITE_TAC[CLOSED_IN_CLOSURE_OF] THEN EXPAND_TAC "m'" THEN MATCH_MP_TAC MCOMPLETE_FUNSPACE THEN REWRITE_TAC[MCOMPLETE_REAL_EUCLIDEAN_METRIC]; MATCH_MP_TAC CLOSURE_OF_SUBSET THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN EXPAND_TAC "m'" THEN REWRITE_TAC[FUNSPACE] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[NOT_IN_EMPTY]; ALL_TAC] THEN MATCH_MP_TAC SUP_UNIQUE THEN SIMP_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `b:real` THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC] THEN EXPAND_TAC "f" THEN REWRITE_TAC[RESTRICTION] THEN EQ_TAC THENL [DISCH_THEN(fun th -> MP_TAC(SPEC `x:A` th)) THEN EXPAND_TAC "f" THEN ASM_SIMP_TAC[MDIST_REFL; MDIST_SYM] THEN REAL_ARITH_TAC; MAP_EVERY UNDISCH_TAC [`(x:A) IN mspace m`; `(y:A) IN mspace m`] THEN CONV_TAC METRIC_ARITH]]);; let METRIC_COMPLETION = prove (`!m:A metric. ?m' f:A->A->real. mcomplete m' /\ IMAGE f (mspace m) SUBSET mspace m' /\ (mtopology m') closure_of (IMAGE f (mspace m)) = mspace m' /\ !x y. x IN mspace m /\ y IN mspace m ==> mdist m' (f x,f y) = mdist m (x,y)`, GEN_TAC THEN MATCH_MP_TAC(MESON[] `(?s f. P (submetric (funspace (mspace m) real_euclidean_metric) s) f) ==> ?n f. P n f`) THEN MP_TAC(SPEC `m:A metric` METRIC_COMPLETION_EXPLICIT) THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REWRITE_TAC[SUBMETRIC; SUBSET_INTER] THEN REWRITE_TAC[MTOPOLOGY_SUBMETRIC; CLOSURE_OF_SUBTOPOLOGY] THEN SIMP_TAC[SET_RULE `t SUBSET s ==> s INTER t = t`] THEN SET_TAC[]);; let METRIZABLE_SPACE_COMPLETION = prove (`!top:A topology. metrizable_space top ==> ?top' (f:A->A->real). completely_metrizable_space top' /\ embedding_map(top,top') f /\ top' closure_of (IMAGE f (topspace top)) = topspace top'`, REWRITE_TAC[FORALL_METRIZABLE_SPACE; RIGHT_EXISTS_AND_THM] THEN X_GEN_TAC `m:A metric` THEN REWRITE_TAC[EXISTS_COMPLETELY_METRIZABLE_SPACE; RIGHT_AND_EXISTS_THM] THEN MP_TAC(ISPEC `m:A metric` METRIC_COMPLETION) THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN MESON_TAC[ISOMETRY_IMP_EMBEDDING_MAP]);; (* ------------------------------------------------------------------------- *) (* The Baire Category Theorem *) (* ------------------------------------------------------------------------- *) let METRIC_BAIRE_CATEGORY = prove (`!m:A metric g. mcomplete m /\ COUNTABLE g /\ (!t. t IN g ==> open_in (mtopology m) t /\ mtopology m closure_of t = mspace m) ==> mtopology m closure_of INTERS g = mspace m`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN INTRO_TAC "!m; m" THEN REWRITE_TAC[FORALL_COUNTABLE_AS_IMAGE; NOT_IN_EMPTY; CLOSURE_OF_UNIV; INTERS_0; TOPSPACE_MTOPOLOGY; FORALL_IN_IMAGE; IN_UNIV; FORALL_AND_THM] THEN INTRO_TAC "![u]; u_open u_dense" THEN REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[DENSE_INTERSECTS_OPEN] THEN INTRO_TAC "![w]; w_open w_ne" THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN CLAIM_TAC "@x0. x0" `?x0:A. x0 IN u 0 INTER w` THENL [REWRITE_TAC[MEMBER_NOT_EMPTY] THEN ASM_MESON_TAC[DENSE_INTERSECTS_OPEN; TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN CLAIM_TAC "@r0. r0pos r0lt1 sub" `?r. &0 < r /\ r < &1 /\ mcball m (x0:A,r) SUBSET u 0 INTER w` THENL [SUBGOAL_THEN `open_in (mtopology m) (u 0 INTER w:A->bool)` MP_TAC THENL [HYP SIMP_TAC "u_open w_open" [OPEN_IN_INTER]; ALL_TAC] THEN REWRITE_TAC[OPEN_IN_MTOPOLOGY] THEN INTRO_TAC "u0w hp" THEN REMOVE_THEN "hp" (MP_TAC o SPEC `x0:A`) THEN ANTS_TAC THENL [HYP REWRITE_TAC "x0" []; ALL_TAC] THEN INTRO_TAC "@r. rpos ball" THEN EXISTS_TAC `min r (&1) / &2` THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `mball m (x0:A,r)` THEN HYP REWRITE_TAC "ball" [] THEN MATCH_MP_TAC MCBALL_SUBSET_MBALL_CONCENTRIC THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN (DESTRUCT_TAC "@b. b0 b1" o prove_general_recursive_function_exists) `?b:num->(A#real). b 0 = (x0:A,r0) /\ (!n. b (SUC n) = @(x,r). &0 < r /\ r < SND (b n) / &2 /\ x IN mspace m /\ mcball m (x,r) SUBSET mball m (b n) INTER u n)` THEN CLAIM_TAC "rmk" `!n. (\ (x:A,r). &0 < r /\ r < SND (b n) / &2 /\ x IN mspace m /\ mcball m (x,r) SUBSET mball m (b n) INTER u n) (b (SUC n))` THENL [LABEL_INDUCT_TAC THENL [REMOVE_THEN "b1" (fun b1 -> REWRITE_TAC[b1]) THEN MATCH_MP_TAC CHOICE_PAIRED_THM THEN REMOVE_THEN "b0" (fun b0 -> REWRITE_TAC[b0]) THEN MAP_EVERY EXISTS_TAC [`x0:A`; `r0 / &4`] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [CUT_TAC `u 0:A->bool SUBSET mspace m` THENL [HYP SET_TAC "x0" []; HYP SIMP_TAC "u_open" [GSYM TOPSPACE_MTOPOLOGY; OPEN_IN_SUBSET]]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `mball m (x0:A,r0)` THEN CONJ_TAC THENL [MATCH_MP_TAC MCBALL_SUBSET_MBALL_CONCENTRIC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[SUBSET_INTER; SUBSET_REFL] THEN TRANS_TAC SUBSET_TRANS `mcball m (x0:A,r0)` THEN REWRITE_TAC [MBALL_SUBSET_MCBALL] THEN HYP SET_TAC "sub" []]; ALL_TAC] THEN USE_THEN "b1" (fun b1 -> GEN_REWRITE_TAC RAND_CONV [b1]) THEN MATCH_MP_TAC CHOICE_PAIRED_THM THEN REWRITE_TAC[] THEN HYP_TAC "ind_n: rpos rlt x subn" (REWRITE_RULE[LAMBDA_PAIR]) THEN USE_THEN "u_dense" (MP_TAC o SPEC `SUC n` o REWRITE_RULE[GSYM TOPSPACE_MTOPOLOGY]) THEN REWRITE_TAC[DENSE_INTERSECTS_OPEN] THEN DISCH_THEN (MP_TAC o SPEC `mball m (b (SUC n):A#real)`) THEN (DESTRUCT_TAC "@x1 r1. bsuc" o MESON[PAIR]) `?x1:A r1:real. b (SUC n) = x1,r1` THEN HYP REWRITE_TAC "bsuc" [] THEN REMOVE_THEN "bsuc" (fun th -> RULE_ASSUM_TAC (REWRITE_RULE[th]) THEN LABEL_TAC "bsuc" th) THEN ANTS_TAC THENL [HYP REWRITE_TAC "x" [OPEN_IN_MBALL; MBALL_EQ_EMPTY; DE_MORGAN_THM] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN INTRO_TAC "@z. hp" THEN EXISTS_TAC `z:A` THEN SUBGOAL_THEN `open_in (mtopology m) (mball m (x1:A,r1) INTER u (SUC n))` (DESTRUCT_TAC "hp1 hp2" o REWRITE_RULE[OPEN_IN_MTOPOLOGY_MCBALL]) THENL [HYP SIMP_TAC "u_open" [OPEN_IN_INTER; OPEN_IN_MBALL]; ALL_TAC] THEN CLAIM_TAC "z" `z:A IN mspace m` THENL [CUT_TAC `u (SUC n):A->bool SUBSET mspace m` THENL [HYP SET_TAC "hp" []; HYP SIMP_TAC "u_open" [GSYM TOPSPACE_MTOPOLOGY; OPEN_IN_SUBSET]]; HYP REWRITE_TAC "z" []] THEN REMOVE_THEN "hp2" (MP_TAC o SPEC `z:A`) THEN ANTS_TAC THENL [HYP SET_TAC "hp" []; ALL_TAC] THEN INTRO_TAC "@r. rpos ball" THEN EXISTS_TAC `min r (r1 / &4)` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `mcball m (z:A,r)` THEN HYP SIMP_TAC "ball" [MCBALL_SUBSET_CONCENTRIC; REAL_MIN_MIN]; ALL_TAC] THEN CLAIM_TAC "@x r. b" `?x r. !n:num. b n = x n:A, r n:real` THENL [MAP_EVERY EXISTS_TAC [`FST o (b:num->A#real)`; `SND o (b:num->A#real)`] THEN REWRITE_TAC[o_DEF]; ALL_TAC] THEN REMOVE_THEN "b" (fun b -> RULE_ASSUM_TAC (REWRITE_RULE[b]) THEN LABEL_TAC "b" b) THEN HYP_TAC "b0: x_0 r_0" (REWRITE_RULE[PAIR_EQ]) THEN REMOVE_THEN "x_0" (SUBST_ALL_TAC o GSYM) THEN REMOVE_THEN "r_0" (SUBST_ALL_TAC o GSYM) THEN HYP_TAC "rmk: r1pos r1lt x1 ball" (REWRITE_RULE[FORALL_AND_THM]) THEN CLAIM_TAC "x" `!n:num. x n:A IN mspace m` THENL [LABEL_INDUCT_TAC THENL [CUT_TAC `u 0:A->bool SUBSET mspace m` THENL [HYP SET_TAC "x0" []; HYP SIMP_TAC "u_open" [GSYM TOPSPACE_MTOPOLOGY; OPEN_IN_SUBSET]]; HYP REWRITE_TAC "x1" []]; ALL_TAC] THEN CLAIM_TAC "rpos" `!n:num. &0 < r n` THENL [LABEL_INDUCT_TAC THENL [HYP REWRITE_TAC "r0pos" []; HYP REWRITE_TAC "r1pos" []]; ALL_TAC] THEN CLAIM_TAC "rmono" `!p q:num. p <= q ==> r q <= r p` THENL [MATCH_MP_TAC LE_INDUCT THEN REWRITE_TAC[REAL_LE_REFL] THEN INTRO_TAC "!p q; pq rpq" THEN REMOVE_THEN "r1lt" (MP_TAC o SPEC `q:num`) THEN REMOVE_THEN "rpos" (MP_TAC o SPEC `q:num`) THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN CLAIM_TAC "rlt" `!n:num. r n < inv (&2 pow n)` THENL [LABEL_INDUCT_TAC THENL [CONV_TAC (RAND_CONV REAL_RAT_REDUCE_CONV) THEN HYP REWRITE_TAC "r0lt1" []; TRANS_TAC REAL_LTE_TRANS `r (n:num) / &2` THEN HYP REWRITE_TAC "r1lt" [real_pow] THEN REMOVE_THEN "ind_n" MP_TAC THEN REMOVE_THEN "rpos" (MP_TAC o SPEC `n:num`) THEN CONV_TAC REAL_FIELD]; ALL_TAC] THEN CLAIM_TAC "nested" `!p q:num. p <= q ==> mball m (x q:A, r q) SUBSET mball m (x p, r p)` THENL [MATCH_MP_TAC LE_INDUCT THEN REWRITE_TAC[SUBSET_REFL] THEN INTRO_TAC "!p q; pq sub" THEN TRANS_TAC SUBSET_TRANS `mball m (x (q:num):A,r q)` THEN HYP REWRITE_TAC "sub" [] THEN TRANS_TAC SUBSET_TRANS `mcball m (x (SUC q):A,r(SUC q))` THEN REWRITE_TAC[MBALL_SUBSET_MCBALL] THEN HYP SET_TAC "ball" []; ALL_TAC] THEN CLAIM_TAC "in_ball" `!p q:num. p <= q ==> x q:A IN mball m (x p, r p)` THENL [INTRO_TAC "!p q; le" THEN CUT_TAC `x (q:num):A IN mball m (x q, r q)` THENL [HYP SET_TAC "nested le" []; HYP SIMP_TAC "x rpos" [CENTRE_IN_MBALL_EQ]]; ALL_TAC] THEN CLAIM_TAC "@l. l" `?l:A. limit (mtopology m) x l sequentially` THENL [HYP_TAC "m" (REWRITE_RULE[mcomplete]) THEN REMOVE_THEN "m" MATCH_MP_TAC THEN HYP REWRITE_TAC "x" [cauchy_in] THEN INTRO_TAC "!e; epos" THEN CLAIM_TAC "@N. N" `?N. inv(&2 pow N) < e` THENL [REWRITE_TAC[REAL_INV_POW] THEN MATCH_MP_TAC REAL_ARCH_POW_INV THEN HYP REWRITE_TAC "epos" [] THEN REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `N:num` THEN MATCH_MP_TAC WLOG_LE THEN CONJ_TAC THENL [HYP SIMP_TAC "x" [MDIST_SYM] THEN MESON_TAC[]; ALL_TAC] THEN INTRO_TAC "!n n'; le; n n'" THEN TRANS_TAC REAL_LT_TRANS `inv (&2 pow N)` THEN HYP REWRITE_TAC "N" [] THEN TRANS_TAC REAL_LT_TRANS `r (N:num):real` THEN HYP REWRITE_TAC "rlt" [] THEN CUT_TAC `x (n':num):A IN mball m (x n, r n)` THENL [HYP REWRITE_TAC "x" [IN_MBALL] THEN INTRO_TAC "hp" THEN TRANS_TAC REAL_LTE_TRANS `r (n:num):real` THEN HYP SIMP_TAC "n rmono hp" []; HYP SIMP_TAC "in_ball le" []]; ALL_TAC] THEN EXISTS_TAC `l:A` THEN CLAIM_TAC "in_mcball" `!n:num. l:A IN mcball m (x n, r n)` THENL [GEN_TAC THEN (MATCH_MP_TAC o ISPECL [`sequentially`; `mtopology (m:A metric)`]) LIMIT_IN_CLOSED_IN THEN EXISTS_TAC `x:num->A` THEN HYP REWRITE_TAC "l" [TRIVIAL_LIMIT_SEQUENTIALLY; CLOSED_IN_MCBALL] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `n:num` THEN INTRO_TAC "![p]; p" THEN CUT_TAC `x (p:num):A IN mball m (x n, r n)` THENL [SET_TAC[MBALL_SUBSET_MCBALL]; HYP SIMP_TAC "in_ball p" []]; ALL_TAC] THEN REWRITE_TAC[IN_INTER] THEN CONJ_TAC THENL [REWRITE_TAC[IN_INTERS; FORALL_IN_IMAGE; IN_UNIV] THEN LABEL_INDUCT_TAC THENL [HYP SET_TAC "in_mcball sub " []; HYP SET_TAC "in_mcball ball " []]; HYP SET_TAC "sub in_mcball" []]);; let METRIC_BAIRE_CATEGORY_ALT = prove (`!m g:(A->bool)->bool. mcomplete m /\ COUNTABLE g /\ (!t. t IN g ==> closed_in (mtopology m) t /\ mtopology m interior_of t = {}) ==> mtopology m interior_of (UNIONS g) = {}`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m:A metric`; `IMAGE (\u:A->bool. mspace m DIFF u) g`] METRIC_BAIRE_CATEGORY) THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_MSPACE] THEN REWRITE_TAC[CLOSURE_OF_COMPLEMENT; GSYM TOPSPACE_MTOPOLOGY] THEN ASM_SIMP_TAC[DIFF_EMPTY] THEN REWRITE_TAC[CLOSURE_OF_INTERIOR_OF] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u /\ s' = s ==> u DIFF s' = u ==> s = {}`) THEN REWRITE_TAC[INTERIOR_OF_SUBSET_TOPSPACE] THEN AP_TERM_TAC THEN REWRITE_TAC[DIFF_INTERS; SET_RULE `{f y | y IN IMAGE g s} = {f(g x) | x IN s}`] THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> {f x | x IN s} = s`) THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SET_TAC[]);; let BAIRE_CATEGORY_ALT = prove (`!top g:(A->bool)->bool. (completely_metrizable_space top \/ locally_compact_space top /\ (hausdorff_space top \/ regular_space top)) /\ COUNTABLE g /\ (!t. t IN g ==> closed_in top t /\ top interior_of t = {}) ==> top interior_of (UNIONS g) = {}`, REWRITE_TAC[TAUT `(p \/ q) /\ r ==> s <=> (p ==> r ==> s) /\ (q /\ r ==> s)`] THEN REWRITE_TAC[FORALL_AND_THM; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[GSYM FORALL_MCOMPLETE_TOPOLOGY] THEN SIMP_TAC[METRIC_BAIRE_CATEGORY_ALT] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (TAUT `(p \/ q) ==> (p ==> q) ==> q`)) THEN ANTS_TAC THENL [ASM_MESON_TAC[LOCALLY_COMPACT_HAUSDORFF_IMP_REGULAR_SPACE]; DISCH_TAC] THEN ASM_CASES_TAC `g:(A->bool)->bool = {}` THEN ASM_REWRITE_TAC[UNIONS_0; INTERIOR_OF_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] COUNTABLE_AS_IMAGE)) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:num->A->bool` THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FORALL_IN_IMAGE]) THEN REWRITE_TAC[IN_UNIV; FORALL_AND_THM] THEN STRIP_TAC THEN REWRITE_TAC[interior_of; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN X_GEN_TAC `z:A` THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `top:A topology` LOCALLY_COMPACT_SPACE_NEIGHBOURHOOD_BASE_CLOSED_IN) THEN ASM_REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN FIRST_ASSUM(MP_TAC o SPEC `z:A` o REWRITE_RULE[SUBSET] o MATCH_MP OPEN_IN_SUBSET) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPECL [`u:A->bool`; `z:A`]) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `k:A->bool`] THEN STRIP_TAC THEN SUBGOAL_THEN `?c:num->A->bool. (!n. c n SUBSET k /\ closed_in top (c n) /\ ~(top interior_of c n = {}) /\ DISJOINT (c n) (t n)) /\ (!n. c (SUC n) SUBSET c n)` MP_TAC THENL [MATCH_MP_TAC DEPENDENT_CHOICE THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPEC `v DIFF (t:num->A->bool) 0`) THEN ASM_SIMP_TAC[OPEN_IN_DIFF] THEN DISCH_THEN(MP_TAC o MATCH_MP MONO_EXISTS) THEN ANTS_TAC THENL [REWRITE_TAC[SET_RULE `(?x. x IN s DIFF t) <=> ~(s SUBSET t)`] THEN DISCH_TAC THEN SUBGOAL_THEN `top interior_of (t:num->A->bool) 0 = {}` MP_TAC THENL [ASM_REWRITE_TAC[]; REWRITE_TAC[interior_of]] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `n:A->bool`; `c:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `c:A->bool` THEN ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC; ASM SET_TAC[]] THEN EXISTS_TAC `x:A` THEN REWRITE_TAC[interior_of; IN_ELIM_THM] THEN ASM_MESON_TAC[]]; MAP_EVERY X_GEN_TAC [`n:num`; `c:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPEC `top interior_of c DIFF (t:num->A->bool) (SUC n)`) THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_INTERIOR_OF] THEN DISCH_THEN(MP_TAC o MATCH_MP MONO_EXISTS) THEN ANTS_TAC THENL [REWRITE_TAC[SET_RULE `(?x. x IN s DIFF t) <=> ~(s SUBSET t)`] THEN DISCH_TAC THEN SUBGOAL_THEN `top interior_of t(SUC n):A->bool = {}` MP_TAC THENL [ASM_REWRITE_TAC[]; REWRITE_TAC[interior_of]] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN ASM_MESON_TAC[OPEN_IN_INTERIOR_OF; MEMBER_NOT_EMPTY]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `n:A->bool`; `d:A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `d:A->bool` THEN ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN REPEAT CONJ_TAC THENL [MP_TAC(ISPECL[`top:A topology`; `c:A->bool`] INTERIOR_OF_SUBSET) THEN ASM SET_TAC[]; EXISTS_TAC `x:A` THEN REWRITE_TAC[interior_of; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ASM SET_TAC[]; MP_TAC(ISPECL[`top:A topology`; `c:A->bool`] INTERIOR_OF_SUBSET) THEN ASM SET_TAC[]]]]; REWRITE_TAC[NOT_EXISTS_THM; FORALL_AND_THM]] THEN X_GEN_TAC `c:num->A->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (k:A->bool)`; `c:num->A->bool`] COMPACT_SPACE_IMP_NEST) THEN ASM_SIMP_TAC[COMPACT_SPACE_SUBTOPOLOGY; CLOSED_IN_SUBSET_TOPSPACE] THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[INTERIOR_OF_SUBSET; CLOSED_IN_SUBSET; MEMBER_NOT_EMPTY; SUBSET]; MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM SET_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[UNIONS_IMAGE; IN_UNIV]) THEN REWRITE_TAC[INTERS_GSPEC] THEN ASM SET_TAC[]]);; let BAIRE_CATEGORY = prove (`!top g:(A->bool)->bool. (completely_metrizable_space top \/ locally_compact_space top /\ (hausdorff_space top \/ regular_space top)) /\ COUNTABLE g /\ (!t. t IN g ==> open_in top t /\ top closure_of t = topspace top) ==> top closure_of INTERS g = topspace top`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_CASES_TAC `g:(A->bool)->bool = {}` THENL [ONCE_REWRITE_TAC[CLOSURE_OF_RESTRICT] THEN ASM_SIMP_TAC[INTERS_0; INTER_UNIV; CLOSURE_OF_TOPSPACE]; ALL_TAC] THEN MP_TAC(ISPECL [`top:A topology`; `IMAGE (\u:A->bool. topspace top DIFF u) g`] BAIRE_CATEGORY_ALT) THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE] THEN ASM_SIMP_TAC[INTERIOR_OF_COMPLEMENT; DIFF_EQ_EMPTY] THEN REWRITE_TAC[INTERIOR_OF_CLOSURE_OF] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u /\ s' = s ==> u DIFF s' = {} ==> s = u`) THEN REWRITE_TAC[CLOSURE_OF_SUBSET_TOPSPACE] THEN AP_TERM_TAC THEN REWRITE_TAC[DIFF_UNIONS; SET_RULE `{f y | y IN IMAGE g s} = {f(g x) | x IN s}`] THEN MATCH_MP_TAC(SET_RULE `t SUBSET u /\ s = t ==> u INTER s = t`) THEN CONJ_TAC THENL [ASM_MESON_TAC[INTERS_SUBSET; OPEN_IN_SUBSET]; ALL_TAC] THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> {f x | x IN s} = s`) THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:A->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Sierpinski-Hausdorff type results about countable closed unions. *) (* ------------------------------------------------------------------------- *) let LOCALLY_CONNECTED_NOT_COUNTABLE_CLOSED_UNION = prove (`!top u:(A->bool)->bool. ~(topspace top = {}) /\ connected_space top /\ locally_connected_space top /\ (completely_metrizable_space top \/ locally_compact_space top /\ hausdorff_space top) /\ COUNTABLE u /\ pairwise DISJOINT u /\ (!c. c IN u ==> closed_in top c /\ ~(c = {})) /\ UNIONS u = topspace top ==> u = {topspace top}`, let lemma = prove (`UNIONS (IMAGE f s UNION IMAGE g s) = UNIONS (IMAGE (\x. f x UNION g x) s)`, REWRITE_TAC[UNIONS_UNION; UNIONS_IMAGE] THEN SET_TAC[]) in REWRITE_TAC[REAL_CLOSED_IN] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ABBREV_TAC `v = IMAGE (\c:A->bool. top frontier_of c) u` THEN ABBREV_TAC `b:A->bool = UNIONS v` THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN SUBGOAL_THEN `(b:A->bool) SUBSET topspace top` ASSUME_TAC THENL [EXPAND_TAC "b" THEN REWRITE_TAC[UNIONS_SUBSET] THEN EXPAND_TAC "v" THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; FRONTIER_OF_SUBSET_TOPSPACE]; ALL_TAC] THEN MP_TAC(ISPECL [`subtopology top (b:A->bool)`; `v:(A->bool)->bool`] BAIRE_CATEGORY_ALT) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "v" THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; NOT_IMP] THEN CONJ_TAC THENL [ALL_TAC; MP_TAC(ISPEC `subtopology top (b:A->bool)` INTERIOR_OF_TOPSPACE) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[TOPSPACE_MTOPOLOGY; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_THEN SUBST1_TAC THEN EXPAND_TAC "b" THEN EXPAND_TAC "v" THEN MATCH_MP_TAC(SET_RULE `(!s. s IN u /\ s SUBSET UNIONS u /\ f s = {} ==> s = {}) /\ ~(UNIONS u = {}) ==> ~(UNIONS(IMAGE f u) = {})`) THEN ASM_SIMP_TAC[IMP_CONJ; FRONTIER_OF_EQ_EMPTY; GSYM TOPSPACE_MTOPOLOGY] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN X_GEN_TAC `s:A->bool` THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_SPACE_CLOPEN_IN]) THEN DISCH_THEN(MP_TAC o SPEC `s:A->bool`) THEN ASM_CASES_TAC `s:A->bool = {}` THEN ASM_SIMP_TAC[] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `~(u = {a}) ==> a IN u ==> ?b. b IN u /\ ~(b = a)`)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN DISCH_THEN(MP_TAC o SPECL [`topspace top:A->bool`; `t:A->bool`]) THEN ASM SET_TAC[]] THEN SUBGOAL_THEN `closed_in top (b:A->bool)` ASSUME_TAC THENL [SUBGOAL_THEN `b = topspace top DIFF UNIONS (IMAGE (\c:A->bool. top interior_of c) u)` SUBST1_TAC THENL [MAP_EVERY EXPAND_TAC ["b"; "v"] THEN MATCH_MP_TAC(SET_RULE `s UNION t = u /\ DISJOINT s t ==> s = u DIFF t`) THEN CONJ_TAC THENL [REWRITE_TAC[GSYM UNIONS_UNION; lemma] THEN ONCE_REWRITE_TAC[UNION_COMM] THEN REWRITE_TAC[INTERIOR_OF_UNION_FRONTIER_OF] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> IMAGE f s = s`) THEN ASM_SIMP_TAC[CLOSURE_OF_EQ]; REWRITE_TAC[SET_RULE `DISJOINT (UNIONS s) (UNIONS t) <=> !x. x IN s ==> !y. y IN t ==> DISJOINT x y`] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `s:A->bool = t` THENL [ASM_REWRITE_TAC[frontier_of] THEN SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise])] THEN DISCH_THEN(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`]) THEN ASM_SIMP_TAC[frontier_of; CLOSURE_OF_CLOSED_IN] THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`] INTERIOR_OF_SUBSET) THEN SET_TAC[]]; MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_IMAGE; OPEN_IN_INTERIOR_OF]]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[COMPLETELY_METRIZABLE_SPACE_CLOSED_IN; LOCALLY_COMPACT_SPACE_CLOSED_SUBSET; HAUSDORFF_SPACE_SUBTOPOLOGY]; ALL_TAC] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN REWRITE_TAC[CLOSED_IN_FRONTIER_OF; FRONTIER_OF_SUBSET_TOPSPACE] THEN ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; interior_of; IN_ELIM_THM; NOT_IN_EMPTY] THEN X_GEN_TAC `a:A` THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC; IN_INTER] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(a:A) IN top frontier_of s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(a:A) IN s` ASSUME_TAC THENL [UNDISCH_TAC `(a:A) IN top frontier_of s` THEN REWRITE_TAC[frontier_of; IN_DIFF] THEN ASM_SIMP_TAC[CLOSURE_OF_CLOSED_IN]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally_connected_space]) THEN DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [NEIGHBOURHOOD_BASE_OF]) THEN DISCH_THEN(MP_TAC o SPECL [`u:A->bool`; `a:A`]) THEN REWRITE_TAC[GSYM TOPSPACE_MTOPOLOGY; SUBTOPOLOGY_TOPSPACE] THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`w:A->bool`; `c:A->bool`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `w:A->bool`] FRONTIER_OF_OPEN_IN_STRADDLE_INTER) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN STRIP_TAC THEN SUBGOAL_THEN `?t:A->bool. t IN u /\ ~(t = s) /\ ~(w INTER t = {})` STRIP_ASSUME_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`] o GEN_REWRITE_RULE I [pairwise]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPECL [`top:A topology`; `c:A->bool`; `t:A->bool`] CONNECTED_IN_INTER_FRONTIER_OF) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `top frontier_of (s:A->bool) SUBSET s /\ top frontier_of (t:A->bool) SUBSET t` STRIP_ASSUME_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_SIMP_TAC[FRONTIER_OF_SUBSET_CLOSED_IN]);; let REAL_SIERPINSKI_LEMMA = prove (`!a b u. a <= b /\ COUNTABLE u /\ pairwise DISJOINT u /\ (!c. c IN u ==> real_closed c /\ ~(c = {})) /\ UNIONS u = real_interval[a,b] ==> u = {real_interval[a,b]}`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `subtopology euclideanreal (real_interval[a,b])` LOCALLY_CONNECTED_NOT_COUNTABLE_CLOSED_UNION) THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_INTERVAL_NE_EMPTY; REAL_POS] THEN ASM_SIMP_TAC[CONNECTED_SPACE_SUBTOPOLOGY; CONNECTED_IN_EUCLIDEANREAL_INTERVAL; LOCALLY_CONNECTED_REAL_INTERVAL] THEN CONJ_TAC THENL [DISJ1_TAC THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_CLOSED_IN THEN REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_EUCLIDEANREAL] THEN REWRITE_TAC[GSYM REAL_CLOSED_IN; REAL_CLOSED_REAL_INTERVAL]; REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_IN_SUBSET_TOPSPACE THEN ASM_SIMP_TAC[GSYM REAL_CLOSED_IN] THEN ASM SET_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Size bounds on connected or path-connected spaces. *) (* ------------------------------------------------------------------------- *) let CONNECTED_SPACE_IMP_CARD_GE_ALT = prove (`!top s:A->bool. connected_space top /\ completely_regular_space top /\ closed_in top s /\ ~(s = {}) /\ ~(s = topspace top) ==> (:real) <=_c topspace top`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SUBGOAL_THEN `?a:A. a IN topspace top /\ ~(a IN s)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN TRANS_TAC CARD_LE_TRANS `real_interval[&0,&1]` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN MATCH_MP_TAC CARD_EQ_REAL_SUBSET THEN MAP_EVERY EXISTS_TAC [`&0:real`; `&1:real`] THEN ASM_SIMP_TAC[IN_REAL_INTERVAL; REAL_LT_01; REAL_LT_IMP_LE]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [completely_regular_space]) THEN DISCH_THEN(MP_TAC o SPECL [`s:A->bool`; `a:A`]) THEN ASM_REWRITE_TAC[LE_C; IN_DIFF; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN X_GEN_TAC `t:real` THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN FIRST_ASSUM (MP_TAC o SPEC `topspace top:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_REWRITE_TAC[CONNECTED_IN_TOPSPACE] THEN REWRITE_TAC[CONNECTED_IN_EUCLIDEANREAL; is_realinterval] THEN REWRITE_TAC[IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`&0:real`; `&1:real`] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]);; let CONNECTED_SPACE_IMP_CARD_GE_GEN = prove (`!top s t:A->bool. connected_space top /\ normal_space top /\ closed_in top s /\ closed_in top t /\ ~(s = {}) /\ ~(t = {}) /\ DISJOINT s t ==> (:real) <=_c topspace top`, REPEAT STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `real_interval[&0,&1]` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN MATCH_MP_TAC CARD_EQ_REAL_SUBSET THEN MAP_EVERY EXISTS_TAC [`&0:real`; `&1:real`] THEN ASM_SIMP_TAC[IN_REAL_INTERVAL; REAL_LT_01; REAL_LT_IMP_LE]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORMAL_SPACE_EQ_URYSOHN]) THEN DISCH_THEN(MP_TAC o SPECL [`s:A->bool`; `t:A->bool`]) THEN ASM_REWRITE_TAC[LE_C; CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN X_GEN_TAC `t:real` THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN FIRST_ASSUM (MP_TAC o SPEC `topspace top:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONNECTED_IN_CONTINUOUS_MAP_IMAGE)) THEN ASM_REWRITE_TAC[CONNECTED_IN_TOPSPACE] THEN REWRITE_TAC[CONNECTED_IN_EUCLIDEANREAL; is_realinterval] THEN REWRITE_TAC[IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`&0:real`; `&1:real`] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN ASM SET_TAC[]);; let CONNECTED_SPACE_IMP_CARD_GE = prove (`!top:A topology. connected_space top /\ normal_space top /\ (t1_space top \/ hausdorff_space top) /\ ~(?a. topspace top SUBSET {a}) ==> (:real) <=_c topspace top`, GEN_TAC THEN REWRITE_TAC[T1_OR_HAUSDORFF_SPACE] THEN STRIP_TAC THEN MATCH_MP_TAC CONNECTED_SPACE_IMP_CARD_GE_ALT THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `~(?a. s SUBSET {a}) ==> ?a b. a IN s /\ b IN s /\ ~(a = b)`)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN EXISTS_TAC `{a:A}` THEN ASM_SIMP_TAC[NORMAL_IMP_COMPLETELY_REGULAR_SPACE_GEN] THEN CONJ_TAC THENL [ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING]; ASM SET_TAC[]]);; let CONNECTED_SPACE_IMP_INFINITE_GEN = prove (`!top:A topology. connected_space top /\ t1_space top /\ ~(?a. topspace top SUBSET {a}) ==> INFINITE(topspace top)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC INFINITE_PERFECT_SET_GEN THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC CONNECTED_IN_IMP_PERFECT_GEN THEN ASM_REWRITE_TAC[CONNECTED_IN_TOPSPACE] THEN ASM SET_TAC[]);; let CONNECTED_SPACE_IMP_INFINITE = prove (`!top:A topology. connected_space top /\ hausdorff_space top /\ ~(?a. topspace top SUBSET {a}) ==> INFINITE(topspace top)`, MESON_TAC[CONNECTED_SPACE_IMP_INFINITE_GEN; HAUSDORFF_IMP_T1_SPACE]);; let CONNECTED_SPACE_IMP_INFINITE_ALT = prove (`!top s:A->bool. connected_space top /\ regular_space top /\ closed_in top s /\ ~(s = {}) /\ ~(s = topspace top) ==> INFINITE(topspace top)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SUBGOAL_THEN `?a:A. a IN topspace top /\ ~(a IN s)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?u. (!n. DISJOINT (u n) s /\ (a:A) IN u n /\ open_in top (u n)) /\ (!n. u(SUC n) PSUBSET u n)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC DEPENDENT_CHOICE THEN CONJ_TAC THENL [EXISTS_TAC `topspace top DIFF s:A->bool` THEN ASM_SIMP_TAC[IN_DIFF; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`n:num`; `v:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM NEIGHBOURHOOD_BASE_OF_CLOSED_IN]) THEN REWRITE_TAC[NEIGHBOURHOOD_BASE_OF] THEN DISCH_THEN(MP_TAC o SPECL [`v:A->bool`; `a:A`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:A->bool` THEN DISCH_THEN(X_CHOOSE_THEN `c:A->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `c:A->bool = u` THENL [FIRST_X_ASSUM SUBST_ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:A->bool` o GEN_REWRITE_RULE I [CONNECTED_SPACE_CLOPEN_IN]) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; SUBGOAL_THEN `!n. ?x:A. x IN u n /\ ~(x IN u(SUC n))` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[SKOLEM_THM]] THEN REWRITE_TAC[INFINITE_CARD_LE; le_c; IN_UNIV; FORALL_AND_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->A` THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; OPEN_IN_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC WLOG_LT THEN SUBGOAL_THEN `!m n. m < n ==> ~((f:num->A) m IN u n)` MP_TAC THENL [X_GEN_TAC `m:num`; ASM SET_TAC[]] THEN REWRITE_TAC[GSYM LE_SUC_LT] THEN SUBGOAL_THEN `!m n. m <= n ==> (u:num->A->bool) n SUBSET u m` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM SET_TAC[]]);; let PATH_CONNECTED_SPACE_IMP_CARD_GE = prove (`!top:A topology. path_connected_space top /\ hausdorff_space top /\ ~(?a. topspace top SUBSET {a}) ==> (:real) <=_c topspace top`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `~(?a. s SUBSET {a}) ==> ?a b. a IN s /\ b IN s /\ ~(a = b)`)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`] o REWRITE_RULE[path_connected_space]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:real->A` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CARD_LE_SUBSET o MATCH_MP PATH_IMAGE_SUBSET_TOPSPACE) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_TRANS) THEN MP_TAC(ISPEC `subtopology (top:A topology) (IMAGE g (topspace (subtopology euclideanreal (real_interval [&0,&1]))))` CONNECTED_SPACE_IMP_CARD_GE) THEN FIRST_ASSUM(MP_TAC o MATCH_MP PATH_IMAGE_SUBSET_TOPSPACE) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEANREAL; INTER_UNIV] THEN SIMP_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`] THEN DISCH_TAC THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[CONNECTED_SPACE_SUBTOPOLOGY; CONNECTED_IN_PATH_IMAGE] THEN CONJ_TAC THENL [MATCH_MP_TAC COMPACT_HAUSDORFF_OR_REGULAR_IMP_NORMAL_SPACE THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[COMPACT_IN_PATH_IMAGE; COMPACT_SPACE_SUBTOPOLOGY]; MP_TAC ENDS_IN_UNIT_REAL_INTERVAL THEN ASM SET_TAC[]]);; let CONNECTED_SPACE_IMP_UNCOUNTABLE = prove (`!top:A topology. connected_space top /\ regular_space top /\ hausdorff_space top /\ ~(?a. topspace top SUBSET {a}) ==> ~COUNTABLE(topspace top)`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `top:A topology` CONNECTED_SPACE_IMP_CARD_GE) THEN ASM_SIMP_TAC[NOT_IMP; CARD_NOT_LE; COUNTABLE_IMP_CARD_LT_REAL] THEN MATCH_MP_TAC REGULAR_LINDELOF_IMP_NORMAL_SPACE THEN ASM_SIMP_TAC[COUNTABLE_IMP_LINDELOF_SPACE]);; let PATH_CONNECTED_SPACE_IMP_UNCOUNTABLE = prove (`!top:A topology. path_connected_space top /\ t1_space top /\ ~(?a. topspace top SUBSET {a}) ==> ~COUNTABLE(topspace top)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `~(?a. s SUBSET {a}) ==> ?a b. a IN s /\ b IN s /\ ~(a = b)`)) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`] o REWRITE_RULE[path_connected_space]) THEN ASM_REWRITE_TAC[NOT_EXISTS_THM; path_in] THEN X_GEN_TAC `g:real->A` THEN STRIP_TAC THEN MP_TAC(ISPECL [`&0:real`; `&1:real`; `{{x | x IN topspace(subtopology euclideanreal (real_interval[&0,&1])) /\ (g:real->A) x IN {a}} | a IN topspace top} DELETE {}`] REAL_SIERPINSKI_LEMMA) THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; COUNTABLE_DELETE] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; IN_DELETE] THEN REWRITE_TAC[REAL_POS; NOT_IMP] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PAIRWISE_MONO) (SET_RULE `s DELETE a SUBSET s`)) THEN REWRITE_TAC[PAIRWISE_IMAGE] THEN REWRITE_TAC[pairwise] THEN SET_TAC[]; X_GEN_TAC `x:A` THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_CLOSED_IN] THEN MATCH_MP_TAC CLOSED_IN_TRANS_FULL THEN EXISTS_TAC `real_interval[&0,&1]` THEN REWRITE_TAC[GSYM REAL_CLOSED_IN; REAL_CLOSED_REAL_INTERVAL] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CLOSED_IN_CONTINUOUS_MAP_PREIMAGE)) THEN ASM_MESON_TAC[T1_SPACE_CLOSED_IN_SING]; FIRST_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN REWRITE_TAC[UNIONS_IMAGE; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REWRITE_TAC[UNIONS_DELETE_EMPTY; UNIONS_IMAGE] THEN ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `!a b. a IN s /\ b IN s /\ ~(f a = z) /\ ~(f b = z) /\ ~(f a = f b) ==> ~(IMAGE f s DELETE z = {c})`) THEN MAP_EVERY EXISTS_TAC [`a:A`; `b:A`] THEN ASM_REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN MATCH_MP_TAC(SET_RULE `(p /\ q ==> r) /\ p /\ q ==> p /\ q /\ r`) THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY]] THEN CONJ_TAC THENL [EXISTS_TAC `&0:real`; EXISTS_TAC `&1:real`] THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_POS]]);; (* ------------------------------------------------------------------------- *) (* The Tychonoff embedding. *) (* ------------------------------------------------------------------------- *) let COMPLETELY_REGULAR_SPACE_CUBE_EMBEDDING_EXPLICIT = prove (`!top:A topology. completely_regular_space top /\ hausdorff_space top ==> embedding_map (top, product_topology (mspace (submetric (cfunspace top real_euclidean_metric) {f | IMAGE f (topspace top) SUBSET real_interval [&0,&1]})) (\f. subtopology euclideanreal (real_interval [&0,&1]))) (\x. RESTRICTION (mspace (submetric (cfunspace top real_euclidean_metric) {f | IMAGE f (topspace top) SUBSET real_interval [&0,&1]})) (\f. f x))`, REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`k = mspace(submetric (cfunspace top real_euclidean_metric) {f | IMAGE f (topspace top:A->bool) SUBSET real_interval[&0,&1]})`; `e = \x. RESTRICTION k (\f:A->real. f x)`] THEN SUBGOAL_THEN `!x y. x IN topspace top /\ y IN topspace top ==> ((e:A->(A->real)->real) x = e y <=> x = y)` ASSUME_TAC THENL [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN EXPAND_TAC "e" THEN REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [completely_regular_space]) THEN DISCH_THEN(MP_TAC o SPECL [`{x:A}`; `y:A`]) THEN ASM_SIMP_TAC[IN_DIFF; IN_SING; CLOSED_IN_HAUSDORFF_SING] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; FORALL_UNWIND_THM2] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->real`THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o C AP_THM `RESTRICTION(topspace top) (f:A->real)`) THEN ASM_REWRITE_TAC[RESTRICTION] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN EXPAND_TAC "k" THEN REWRITE_TAC[SUBMETRIC] THEN SIMP_TAC[CFUNSPACE; IN_ELIM_THM; IN_INTER; RESTRICTION_IN_EXTENSIONAL] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN SIMP_TAC[IMAGE_RESTRICTION; RESTRICTION_CONTINUOUS_MAP; SUBSET_REFL] THEN ASM_REWRITE_TAC[MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN REWRITE_TAC[MBOUNDED_REAL_EUCLIDEAN_METRIC; real_bounded] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[real_abs]; FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM INJECTIVE_ON_ALT])] THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE] THEN DISCH_THEN(X_CHOOSE_TAC `e':((A->real)->real)->A`) THEN REWRITE_TAC[embedding_map; HOMEOMORPHIC_MAP_MAPS] THEN EXISTS_TAC `e':((A->real)->real)->A` THEN ASM_REWRITE_TAC[homeomorphic_maps; TOPSPACE_SUBTOPOLOGY] THEN ASM_SIMP_TAC[IN_INTER; IMP_CONJ_ALT; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE; SUBSET; FORALL_IN_IMAGE] THEN EXPAND_TAC "e" THEN REWRITE_TAC[RESTRICTION_IN_EXTENSIONAL] THEN X_GEN_TAC `f:A->real` THEN SIMP_TAC[RESTRICTION] THEN EXPAND_TAC "k" THEN REWRITE_TAC[SUBMETRIC; CFUNSPACE; IN_ELIM_THM] THEN SIMP_TAC[IN_ELIM_THM; CONTINUOUS_MAP_IN_SUBTOPOLOGY; ETA_AX; IN_INTER; MTOPOLOGY_REAL_EUCLIDEAN_METRIC]; ALL_TAC] THEN REWRITE_TAC[CONTINUOUS_MAP_ATPOINTOF; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[IN_INTER; IMP_CONJ_ALT; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:A` THEN ASM_SIMP_TAC[] THEN REPEAT DISCH_TAC THEN ASM_REWRITE_TAC[LIMIT_ATPOINTOF] THEN DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `u:A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`topspace top DIFF u:A->bool`; `x:A`] o GEN_REWRITE_RULE I [completely_regular_space]) THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE; IN_DIFF] THEN DISCH_THEN(X_CHOOSE_THEN `g:A->real` STRIP_ASSUME_TAC) THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; EXISTS_IN_GSPEC] THEN EXISTS_TAC `cartesian_product (k:(A->real)->bool) (\f. if f = RESTRICTION (topspace top) g then real_interval[&0,&1] DELETE &1 else real_interval[&0,&1])` THEN REWRITE_TAC[OPEN_IN_CARTESIAN_PRODUCT_GEN] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REPEAT(CONJ_TAC ORELSE DISJ2_TAC) THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{RESTRICTION (topspace top) (g:A->real)}` THEN REWRITE_TAC[FINITE_SING; SUBSET; IN_ELIM_THM; IN_SING] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN TRY(MATCH_MP_TAC OPEN_IN_HAUSDORFF_DELETE) THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL] THEN MESON_TAC[OPEN_IN_TOPSPACE; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY]; ASM_SIMP_TAC[IN_INTER; FUN_IN_IMAGE] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [TOPSPACE_PRODUCT_TOPOLOGY]) THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; o_THM; TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[IN_DELETE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `y = &0 ==> x = y ==> ~(x = &1)`)) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN EXPAND_TAC "e" THEN REWRITE_TAC[RESTRICTION] THEN ASM_REWRITE_TAC[]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_DELETE; IN_INTER; IMP_CONJ] THEN X_GEN_TAC `y:A` THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `RESTRICTION (topspace top) (g:A->real)`)) THEN REWRITE_TAC[] THEN EXPAND_TAC "e" THEN REWRITE_TAC[] THEN SIMP_TAC[RESTRICTION] THEN ASM_REWRITE_TAC[IN_DELETE] THEN ANTS_TAC THENL [EXPAND_TAC "k"; ASM_MESON_TAC[]] THEN REWRITE_TAC[SUBMETRIC; CFUNSPACE; IN_ELIM_THM; IN_INTER] THEN REWRITE_TAC[RESTRICTION_IN_EXTENSIONAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN SIMP_TAC[RESTRICTION_CONTINUOUS_MAP; SUBSET_REFL] THEN ASM_SIMP_TAC[IMAGE_RESTRICTION; SUBSET_REFL] THEN ASM_REWRITE_TAC[REAL_EUCLIDEAN_METRIC; MTOPOLOGY_REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN MATCH_MP_TAC MBOUNDED_SUBSET THEN EXISTS_TAC `real_interval[&0,&1]` THEN ASM_REWRITE_TAC[MBOUNDED_REAL_EUCLIDEAN_METRIC; REAL_BOUNDED_REAL_INTERVAL]]);; let COMPLETELY_REGULAR_SPACE_CUBE_EMBEDDING = prove (`!top:A topology. completely_regular_space top /\ hausdorff_space top ==> ?k:((A->real)->bool) e. embedding_map (top, product_topology k (\f. subtopology euclideanreal (real_interval[&0,&1]))) e`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP COMPLETELY_REGULAR_SPACE_CUBE_EMBEDDING_EXPLICIT) THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Urysohn and Tietze analogs for completely regular spaces if (one) set is *) (* assumed compact instead of closed. Note that Hausdorffness is *not* *) (* required: inside one proof we factor through the Kolmogorov quotient. *) (* ------------------------------------------------------------------------- *) let URYSOHN_COMPLETELY_REGULAR_CLOSED_COMPACT = prove (`!top s (t:A->bool) a b. a <= b /\ completely_regular_space top /\ closed_in top s /\ compact_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[a,b])) f /\ (!x. x IN t ==> f x = a) /\ (!x. x IN s ==> f x = b)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?f. continuous_map (top,subtopology euclideanreal (real_interval[&0,&1])) f /\ (!x. x IN t ==> f x = &0) /\ (!x:A. x IN s ==> f x = &1)` MP_TAC THENL [ALL_TAC; REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_REAL_INTERVAL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:A->real` THEN STRIP_TAC THEN EXISTS_TAC `\x. a + (b - a) * (f:A->real) x` THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_MAP_REAL_ADD; CONTINUOUS_MAP_REAL_LMUL; CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_LE_ADDR] THEN REWRITE_TAC[REAL_ARITH `a + (b - a) * y <= b <=> &0 <= (b - a) * (&1 - y)`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_SUB_LE]] THEN ASM_CASES_TAC `t:A->bool = {}` THENL [EXISTS_TAC `(\x. &1):A->real` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_CONST; NOT_IN_EMPTY] THEN REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; IN_REAL_INTERVAL] THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN SUBGOAL_THEN `!a. a IN t ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[&0,&1])) f /\ f a = &0 /\ !x. x IN s ==> (f:A->real) x = &1` MP_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[completely_regular_space]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]; GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM]] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:A->A->real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [compact_in]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `{{x | x IN topspace top /\ (g:A->A->real) a x IN {t | t < &1 / &2}} | a IN t}`)) THEN REWRITE_TAC[SIMPLE_IMAGE; EXISTS_FINITE_SUBSET_IMAGE; FORALL_IN_IMAGE] THEN ANTS_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `a:A` THEN DISCH_TAC THEN MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN REWRITE_TAC[GSYM REAL_OPEN_IN] THEN RULE_ASSUM_TAC(REWRITE_RULE[CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN ASM_SIMP_TAC[REAL_OPEN_HALFSPACE_LT; ETA_AX]; MATCH_MP_TAC(SET_RULE `(!a. a IN s ==> a IN f a) ==> s SUBSET UNIONS(IMAGE f s)`) THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM SET_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `k:A->bool` MP_TAC)] THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_0; SUBSET_EMPTY] THEN STRIP_TAC THEN EXISTS_TAC `\x. &2 * max (&0) (inf {(g:A->A->real) a x | a IN k} - &1 / &2)` THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[REAL_ARITH `&2 * max (&0) (x - &1 / &2) = &0 <=> x <= &1 / &2`; REAL_ARITH `&2 * max (&0) (x - &1 / &2) = &1 <=> x = &1`] THEN RULE_ASSUM_TAC(REWRITE_RULE[CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REWRITE_TAC[REAL_ARITH `&0 <= &2 * max (&0) a`; REAL_ARITH `&2 * max (&0) (x - &1 / &2) <= &1 <=> x <= &1`] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_MAP_REAL_LMUL THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_MAX THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_SUB THEN REWRITE_TAC[CONTINUOUS_MAP_CONST; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN MATCH_MP_TAC CONTINUOUS_MAP_INF THEN REWRITE_TAC[ETA_AX] THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [X_GEN_TAC `x:A` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_INF_LE THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `&0` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN RULE_ASSUM_TAC(REWRITE_RULE[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL]) THEN ASM SET_TAC[]; DISCH_TAC] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THENL [MATCH_MP_TAC REAL_INF_LE THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `&0`; REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; CLOSED_IN_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_INF THEN ASM_REWRITE_TAC[SIMPLE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE]] THEN RULE_ASSUM_TAC(REWRITE_RULE[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL; UNIONS_IMAGE; IN_ELIM_THM]) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[REAL_LT_IMP_LE; REAL_LE_REFL]);; let URYSOHN_COMPLETELY_REGULAR_COMPACT_CLOSED = prove (`!top s (t:A->bool) a b. a <= b /\ completely_regular_space top /\ compact_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,subtopology euclideanreal (real_interval[a,b])) f /\ (!x. x IN t ==> f x = a) /\ (!x. x IN s ==> f x = b)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `t:A->bool`; `s:A->bool`;`--b:real`; `--a:real`] URYSOHN_COMPLETELY_REGULAR_CLOSED_COMPACT) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; REAL_LE_NEG2] THEN ONCE_REWRITE_TAC[DISJOINT_SYM] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN REWRITE_TAC[REAL_ARITH `--b <= x /\ x <= --a <=> a <= --x /\ --x <= b`] THEN REWRITE_TAC[REAL_ARITH `x:real = --a <=> --x = a`] THEN DISCH_THEN(X_CHOOSE_THEN `f:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x. --((f:A->real) x)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_REAL_NEG_EQ]);; let URYSOHN_COMPLETELY_REGULAR_COMPACT_CLOSED_ALT = prove (`!top s (t:A->bool) a b. completely_regular_space top /\ compact_in top s /\ closed_in top t /\ DISJOINT s t ==> ?f. continuous_map (top,euclideanreal) f /\ (!x. x IN t ==> f x = a) /\ (!x. x IN s ==> f x = b)`, REPEAT STRIP_TAC THEN DISJ_CASES_TAC(REAL_ARITH `a <= b \/ b <= a`) THENL [MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `t:A->bool`; `a:real`; `b:real`] URYSOHN_COMPLETELY_REGULAR_COMPACT_CLOSED); MP_TAC(ISPECL [`top:A topology`; `t:A->bool`; `s:A->bool`; `b:real`; `a:real`] URYSOHN_COMPLETELY_REGULAR_CLOSED_COMPACT)] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[DISJOINT_SYM] THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN MESON_TAC[]);; let TIETZE_EXTENSION_COMPLETELY_REGULAR = prove (`!top (f:A->real) s t. completely_regular_space top /\ compact_in top s /\ is_realinterval t /\ ~(t = {}) /\ continuous_map (subtopology top s,euclideanreal) f /\ (!x. x IN s ==> f x IN t) ==> ?g. continuous_map (top,euclideanreal) g /\ (!x. x IN topspace top ==> g x IN t) /\ (!x. x IN s ==> g x = f x)`, let lemma = prove (`!top (f:A->real) s t. completely_regular_space top /\ hausdorff_space top /\ compact_in top s /\ is_realinterval t /\ ~(t = {}) /\ continuous_map (subtopology top s,euclideanreal) f /\ (!x. x IN s ==> f x IN t) ==> ?g. continuous_map (top,euclideanreal) g /\ (!x. x IN topspace top ==> g x IN t) /\ (!x. x IN s ==> g x = f x)`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `top:A topology` COMPLETELY_REGULAR_SPACE_CUBE_EMBEDDING) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:((A->real)->bool)`; `e:A->(A->real)->real`] THEN REWRITE_TAC[embedding_map; HOMEOMORPHIC_MAP_MAPS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e':((A->real)->real)->A` THEN ABBREV_TAC `cube:((A->real)->real)topology = product_topology k (\f. subtopology euclideanreal (real_interval [&0,&1]))` THEN REWRITE_TAC[homeomorphic_maps] THEN STRIP_TAC THEN MP_TAC(ISPECL [`cube:((A->real)->real)topology`; `(f:A->real) o (e':((A->real)->real)->A)`; `IMAGE (e:A->(A->real)->real) s`; `t:real->bool`] TIETZE_EXTENSION_REALINTERVAL) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [MATCH_MP_TAC COMPACT_HAUSDORFF_OR_REGULAR_IMP_NORMAL_SPACE THEN EXPAND_TAC "cube" THEN REWRITE_TAC[COMPACT_SPACE_PRODUCT_TOPOLOGY; HAUSDORFF_SPACE_PRODUCT_TOPOLOGY] THEN SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL] THEN SIMP_TAC[COMPACT_IN_EUCLIDEANREAL_INTERVAL; COMPACT_SPACE_SUBTOPOLOGY]; MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN THEN CONJ_TAC THENL [EXPAND_TAC "cube" THEN SIMP_TAC[HAUSDORFF_SPACE_PRODUCT_TOPOLOGY; HAUSDORFF_SPACE_SUBTOPOLOGY; HAUSDORFF_SPACE_EUCLIDEANREAL]; MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `top:A topology` THEN ASM_MESON_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY]]; MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology top (s:A->bool)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO)) THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; IMAGE_SUBSET]; REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f(g x) = x) ==> IMAGE f (u INTER IMAGE g s) SUBSET s`) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]]; FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN ASM SET_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `g:((A->real)->real)->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(g:((A->real)->real)->real) o (e:A->(A->real)->real)` THEN CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; CONTINUOUS_MAP_COMPOSE]; REWRITE_TAC[o_THM] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP COMPACT_IN_SUBSET_TOPSPACE) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE)) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]]]) in REPEAT STRIP_TAC THEN ABBREV_TAC `q:A->bool = IMAGE (kolmogorov_quotient top) (topspace top)` THEN MP_TAC(ISPECL [`top:A topology`; `euclideanreal`; `f:A->real`; `s:A->bool`] KOLMOGOROV_QUOTIENT_LIFT_EXISTS) THEN SIMP_TAC[HAUSDORFF_IMP_T0_SPACE; HAUSDORFF_SPACE_EUCLIDEANREAL] THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:A->real` THEN STRIP_TAC THEN MP_TAC(ISPECL [`subtopology top (q:A->bool)`; `g:A->real`; `IMAGE (kolmogorov_quotient top) (s:A->bool)`; `t:real->bool`] lemma) THEN ASM_SIMP_TAC[COMPLETELY_REGULAR_SPACE_SUBTOPOLOGY; FORALL_IN_IMAGE] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY] THEN EXPAND_TAC "q" THEN REWRITE_TAC[IN_INTER; IMP_CONJ_ALT; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[COMPACT_IN_SUBSET_TOPSPACE; SET_RULE `s SUBSET u ==> IMAGE f u INTER IMAGE f s = IMAGE f s`] THEN SIMP_TAC[KOLMOGOROV_QUOTIENT_IN_TOPSPACE] THEN REWRITE_TAC[IMP_IMP] THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `top:A topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[CONTINUOUS_MAP_KOLMOGOROV_QUOTIENT]; MATCH_MP_TAC REGULAR_T0_IMP_HAUSDORFF_SPACE THEN ASM_SIMP_TAC[REGULAR_SPACE_SUBTOPOLOGY; COMPLETELY_REGULAR_IMP_REGULAR_SPACE] THEN EXPAND_TAC "q" THEN REWRITE_TAC[T0_SPACE_KOLMOGOROV_QUOTIENT]]; DISCH_THEN(X_CHOOSE_THEN `h:A->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(h:A->real) o kolmogorov_quotient top` THEN ASM_REWRITE_TAC[o_THM] THEN MATCH_MP_TAC CONTINUOUS_MAP_COMPOSE THEN EXISTS_TAC `subtopology top (q:A->bool)` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[CONTINUOUS_MAP_KOLMOGOROV_QUOTIENT]]);; (* ------------------------------------------------------------------------- *) (* Embedding in products and hence more about completely metrizable spaces. *) (* ------------------------------------------------------------------------- *) let GDELTA_HOMEOMORPHIC_SPACE_CLOSED_IN_PRODUCT = prove (`!top (s:K->A->bool) k. metrizable_space top /\ (!i. i IN k ==> open_in top(s i)) ==> ?t. closed_in (prod_topology top (product_topology k (\i. euclideanreal))) t /\ subtopology top (INTERS {s i | i IN k}) homeomorphic_space subtopology (prod_topology top (product_topology k (\i. euclideanreal))) t`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_METRIZABLE_SPACE] THEN MAP_EVERY X_GEN_TAC [`m:A metric`; `s:K->A->bool`; `k:K->bool`] THEN DISCH_TAC THEN ASM_CASES_TAC `k:K->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY; SET_RULE `{f x |x| F} = {}`] THEN REWRITE_TAC[INTERS_0; SUBTOPOLOGY_UNIV; PRODUCT_TOPOLOGY_EMPTY_DISCRETE] THEN EXISTS_TAC `(mspace m:A->bool) CROSS {(\x. ARB):K->real}` THEN REWRITE_TAC[CLOSED_IN_CROSS; CLOSED_IN_MSPACE] THEN REWRITE_TAC[CLOSED_IN_DISCRETE_TOPOLOGY; SUBSET_REFL] THEN REWRITE_TAC[SUBTOPOLOGY_CROSS; SUBTOPOLOGY_MSPACE] THEN MATCH_MP_TAC(CONJUNCT1 HOMEOMORPHIC_SPACE_PROD_TOPOLOGY_SING) THEN REWRITE_TAC[TOPSPACE_DISCRETE_TOPOLOGY; IN_SING]; ALL_TAC] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!i. i IN k ==> (s:K->A->bool) i SUBSET mspace m` ASSUME_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN SUBGOAL_THEN `INTERS {(s:K->A->bool) i | i IN k} SUBSET mspace m` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ABBREV_TAC `d:K->A->real = \i. if ~(i IN k) \/ s i = mspace m then \a. &1 else \a. inf {mdist m (a,x) |x| x IN mspace m DIFF s i}` THEN SUBGOAL_THEN `!i. continuous_map (subtopology (mtopology m) (s i),euclideanreal) ((d:K->A->real) i)` ASSUME_TAC THENL [X_GEN_TAC `i:K` THEN EXPAND_TAC "d" THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[CONTINUOUS_MAP_REAL_CONST] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; IMP_CONJ; GSYM TOPSPACE_MTOPOLOGY; SET_RULE `s SUBSET u ==> (~(s = u) <=> ~(u DIFF s = {}))`] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM MTOPOLOGY_SUBMETRIC; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN MATCH_MP_TAC LIPSCHITZ_CONTINUOUS_IMP_CONTINUOUS_MAP THEN REWRITE_TAC[lipschitz_continuous_map; REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[SUBSET_UNIV; SUBMETRIC] THEN EXISTS_TAC `&1:real` THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[IN_INTER; REAL_MUL_LID] THEN STRIP_TAC THEN EXPAND_TAC "d" THEN REWRITE_TAC[REAL_ARITH `abs(x - y) <= d <=> x - d <= y /\ y - d <= x`] THEN CONJ_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) REAL_LE_INF_EQ o snd) THEN ASM_SIMP_TAC[SIMPLE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE; IN_DIFF] THEN (ANTS_TAC THENL [ASM_MESON_TAC[MDIST_POS_LE]; DISCH_THEN SUBST1_TAC]) THEN X_GEN_TAC `z:A` THEN STRIP_TAC THEN REWRITE_TAC[REAL_LE_SUB_RADD] THENL [TRANS_TAC REAL_LE_TRANS `mdist m (y:A,z)`; TRANS_TAC REAL_LE_TRANS `mdist m (x:A,z)`] THEN (CONJ_TAC THENL [MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [EXISTS_TAC `&0`; ASM SET_TAC[]] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IN_DIFF; MDIST_POS_LE]; MAP_EVERY UNDISCH_TAC [`(x:A) IN mspace m`; `(y:A) IN mspace m`; `(z:A) IN mspace m`] THEN CONV_TAC METRIC_ARITH]); ALL_TAC] THEN SUBGOAL_THEN `!i x. x IN s i ==> &0 < (d:K->A->real) i x` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN EXPAND_TAC "d" THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LT_01] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET; IMP_CONJ; GSYM TOPSPACE_MTOPOLOGY; SET_RULE `s SUBSET u ==> (~(s = u) <=> ~(u DIFF s = {}))`] THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`m:A metric`; `(s:K->A->bool) i`] OPEN_IN_MTOPOLOGY) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_MBALL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real` THEN STRIP_TAC THEN TRANS_TAC REAL_LTE_TRANS `r:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INF THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; GSYM REAL_NOT_LT] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[]) THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN ASM SET_TAC[]; ALL_TAC] THEN ABBREV_TAC `f = \x. x,RESTRICTION k (\i. inv((d:K->A->real) i x))` THEN EXISTS_TAC `IMAGE (f:A->A#(K->real)) (INTERS {s(i:K) | i IN k})` THEN CONJ_TAC THENL [ALL_TAC; MP_TAC(snd(EQ_IMP_RULE(ISPECL [`subtopology (mtopology m) (INTERS {(s:K->A->bool) i | i IN k})`; `product_topology (k:K->bool) (\i. euclideanreal)`; `\x. RESTRICTION k (\i. inv((d:K->A->real) i x))`] EMBEDDING_MAP_GRAPH))) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[CONTINUOUS_MAP_COMPONENTWISE; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[RESTRICTION_IN_EXTENSIONAL] THEN X_GEN_TAC `i:K` THEN SIMP_TAC[RESTRICTION] THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_MAP_REAL_INV THEN CONJ_TAC THENL [REWRITE_TAC[ETA_AX] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_MAP_FROM_SUBTOPOLOGY_MONO) o SPEC `i:K`) THEN ASM SET_TAC[]; REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; IN_INTER; INTERS_GSPEC] THEN ASM_SIMP_TAC[IN_ELIM_THM; REAL_LT_IMP_NZ]]; DISCH_THEN(MP_TAC o MATCH_MP EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[PROD_TOPOLOGY_SUBTOPOLOGY; SUBTOPOLOGY_SUBTOPOLOGY] THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x IN t) ==> t INTER IMAGE f s = IMAGE f s`) THEN SIMP_TAC[TOPSPACE_PRODUCT_TOPOLOGY; o_DEF; TOPSPACE_EUCLIDEANREAL] THEN EXPAND_TAC "f" THEN SIMP_TAC[IN_CROSS] THEN REWRITE_TAC[RESTRICTION_IN_CARTESIAN_PRODUCT; IN_UNIV]]] THEN REWRITE_TAC[GSYM CLOSURE_OF_SUBSET_EQ] THEN CONJ_TAC THENL [EXPAND_TAC "f" THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[TOPSPACE_PROD_TOPOLOGY; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_DEF; TOPSPACE_EUCLIDEANREAL; IN_CROSS] THEN REWRITE_TAC[RESTRICTION_IN_CARTESIAN_PRODUCT; IN_UNIV] THEN ASM_REWRITE_TAC[GSYM SUBSET; TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[closure_of] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM; TOPSPACE_PROD_TOPOLOGY] THEN MAP_EVERY X_GEN_TAC [`x:A`; `ds:K->real`] THEN REWRITE_TAC[IN_CROSS; TOPSPACE_MTOPOLOGY; TOPSPACE_PRODUCT_TOPOLOGY] THEN REWRITE_TAC[o_THM; TOPSPACE_EUCLIDEANREAL; IN_UNIV; cartesian_product] THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o GENL [`u:A->bool`; `v:(K->real)->bool`] o SPEC `(u:A->bool) CROSS (v:(K->real)->bool)`) THEN REWRITE_TAC[IN_CROSS; OPEN_IN_CROSS; SET_RULE `(x IN s /\ y IN t) /\ (s = {} \/ t = {} \/ R s t) <=> x IN s /\ y IN t /\ R s t`] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN DISCH_TAC THEN SUBGOAL_THEN `x IN INTERS {(s:K->A->bool) i | i IN k}` ASSUME_TAC THENL [REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~p ==> F`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`mball m (x:A,inv(abs(ds(i:K)) + &1))`; `{z | z IN topspace(product_topology k (\i. euclideanreal)) /\ (z:K->real) i IN real_interval(ds i - &1,ds i + &1)}`]) THEN REWRITE_TAC[IN_ELIM_THM; NOT_IMP] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CENTRE_IN_MBALL THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN REAL_ARITH_TAC; ASM_REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; TOPSPACE_EUCLIDEANREAL; o_DEF; cartesian_product; IN_ELIM_THM; IN_UNIV]; REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC; REWRITE_TAC[OPEN_IN_MBALL]; MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[GSYM REAL_OPEN_IN; REAL_OPEN_REAL_INTERVAL]; ALL_TAC] THEN EXPAND_TAC "f" THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[NOT_EXISTS_THM; IN_CROSS; IN_ELIM_THM] THEN X_GEN_TAC `y:A` THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `i:K`) ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN ASM_REWRITE_TAC[RESTRICTION] THEN DISCH_TAC THEN ASM_REWRITE_TAC[IN_MBALL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[REAL_NOT_LT] THEN TRANS_TAC REAL_LE_TRANS `(d:K->A->real) i y` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_LINV THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]) THEN REAL_ARITH_TAC; EXPAND_TAC "d" THEN REWRITE_TAC[] THEN COND_CASES_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[]] THEN MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [EXISTS_TAC `&0` THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; IN_DIFF; MDIST_POS_LE]; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[IN_DIFF] THEN ASM_MESON_TAC[MDIST_SYM]]]; REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "f" THEN REWRITE_TAC[PAIR_EQ] THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `i:K` THEN REWRITE_TAC[RESTRICTION] THEN COND_CASES_TAC THENL [ALL_TAC; RULE_ASSUM_TAC(REWRITE_RULE[EXTENSIONAL]) THEN ASM SET_TAC[]] THEN REWRITE_TAC[REAL_ARITH `x = y <=> ~(&0 < abs(x - y))`] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_MAP_REAL_INV) o SPEC `i:K`) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY; REAL_LT_IMP_NZ; IN_INTER] THEN ABBREV_TAC `e = abs (ds i - inv((d:K->A->real) i x))` THEN REWRITE_TAC[continuous_map] THEN DISCH_THEN(MP_TAC o SPEC `real_interval(inv((d:K->A->real) i x) - e / &2,inv(d i x) + e / &2)` o CONJUNCT2) THEN REWRITE_TAC[GSYM REAL_OPEN_IN; REAL_OPEN_REAL_INTERVAL] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; TOPSPACE_MTOPOLOGY] THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `{z | z IN topspace(product_topology k (\i:K. euclideanreal)) /\ z i IN real_interval(ds i - e / &2,ds i + e / &2)}`]) THEN ASM_REWRITE_TAC[IN_ELIM_THM; NOT_IMP] THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s = u INTER t ==> x IN s ==> x IN u`)) THEN REWRITE_TAC[IN_REAL_INTERVAL; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM SET_TAC[]; ASM_REAL_ARITH_TAC]; REWRITE_TAC[TOPSPACE_PRODUCT_TOPOLOGY; cartesian_product] THEN ASM_REWRITE_TAC[o_THM; TOPSPACE_EUCLIDEANREAL; IN_UNIV; IN_ELIM_THM]; REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC OPEN_IN_CONTINUOUS_MAP_PREIMAGE THEN EXISTS_TAC `euclideanreal` THEN ASM_SIMP_TAC[CONTINUOUS_MAP_PRODUCT_PROJECTION] THEN REWRITE_TAC[GSYM REAL_OPEN_IN; REAL_OPEN_REAL_INTERVAL]; ALL_TAC] THEN EXPAND_TAC "f" THEN REWRITE_TAC[IN_CROSS; IN_ELIM_THM] THEN ASM_REWRITE_TAC[RESTRICTION; NOT_EXISTS_THM] THEN X_GEN_TAC `y:A` THEN GEN_REWRITE_TAC RAND_CONV [CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `t = u INTER s i ==> i IN k /\ ~(y IN t) ==> y IN INTERS {s i | i IN k} /\ y IN u ==> F`)) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN EXPAND_TAC "e" THEN REAL_ARITH_TAC]);; let OPEN_HOMEOMORPHIC_SPACE_CLOSED_IN_PRODUCT = prove (`!top (s:A->bool). metrizable_space top /\ open_in top s ==> ?t. closed_in (prod_topology top euclideanreal) t /\ subtopology top s homeomorphic_space subtopology (prod_topology top euclideanreal) t`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `(\x. s):1->A->bool`; `{one}`] GDELTA_HOMEOMORPHIC_SPACE_CLOSED_IN_PRODUCT) THEN ASM_REWRITE_TAC[SET_RULE `INTERS {s |i| i IN {a}} = s`] THEN DISCH_THEN(X_CHOOSE_THEN `t:A#(1->real)->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `prod_topology (top:A topology) (product_topology {one} (\i. euclideanreal)) homeomorphic_space prod_topology top euclideanreal` MP_TAC THENL [MATCH_MP_TAC HOMEOMORPHIC_SPACE_PROD_TOPOLOGY THEN REWRITE_TAC[HOMEOMORPHIC_SPACE_SINGLETON_PRODUCT; HOMEOMORPHIC_SPACE_REFL]; REWRITE_TAC[HOMEOMORPHIC_SPACE; LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `f:A#(1->real)->A#real` THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (f:A#(1->real)->A#real) t` THEN CONJ_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_MAP_CLOSEDNESS_EQ]; ALL_TAC] THEN REWRITE_TAC[GSYM HOMEOMORPHIC_SPACE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] HOMEOMORPHIC_SPACE_TRANS)) THEN REWRITE_TAC[HOMEOMORPHIC_SPACE] THEN EXISTS_TAC `f:A#(1->real)->A#real` THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_SUBTOPOLOGIES THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN ASM SET_TAC[]);; let COMPLETELY_METRIZABLE_SPACE_GDELTA_IN_ALT = prove (`!top s:A->bool. completely_metrizable_space top /\ (COUNTABLE INTERSECTION_OF open_in top) s ==> completely_metrizable_space (subtopology top s)`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_INTERSECTION_OF] THEN X_GEN_TAC `top:A topology` THEN DISCH_TAC THEN X_GEN_TAC `u:(A->bool)->bool` THEN REPEAT DISCH_TAC THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `(\x:A->bool. x)`; `u:(A->bool)->bool`] GDELTA_HOMEOMORPHIC_SPACE_CLOSED_IN_PRODUCT) THEN ASM_SIMP_TAC[COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE; IN_GSPEC] THEN DISCH_THEN(X_CHOOSE_THEN `c:A#((A->bool)->real)->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP HOMEOMORPHIC_COMPLETELY_METRIZABLE_SPACE) THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_CLOSED_IN THEN ASM_REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_PROD_TOPOLOGY] THEN REWRITE_TAC[COMPLETELY_METRIZABLE_SPACE_EUCLIDEANREAL; COMPLETELY_METRIZABLE_SPACE_PRODUCT_TOPOLOGY] THEN ASM_SIMP_TAC[COUNTABLE_RESTRICT]);; let COMPLETELY_METRIZABLE_SPACE_GDELTA_IN = prove (`!top s:A->bool. completely_metrizable_space top /\ gdelta_in top s ==> completely_metrizable_space (subtopology top s)`, SIMP_TAC[GDELTA_IN_ALT; COMPLETELY_METRIZABLE_SPACE_GDELTA_IN_ALT]);; let COMPLETELY_METRIZABLE_SPACE_OPEN_IN = prove (`!top s:A->bool. completely_metrizable_space top /\ open_in top s ==> completely_metrizable_space (subtopology top s)`, SIMP_TAC[COMPLETELY_METRIZABLE_SPACE_GDELTA_IN; OPEN_IMP_GDELTA_IN]);; let LOCALLY_COMPACT_IMP_COMPLETELY_METRIZABLE_SPACE = prove (`!top:A topology. metrizable_space top /\ locally_compact_space top ==> completely_metrizable_space top`, REWRITE_TAC[IMP_CONJ; FORALL_METRIZABLE_SPACE] THEN X_GEN_TAC `m:A metric` THEN DISCH_TAC THEN MP_TAC(ISPEC `m:A metric` METRIC_COMPLETION) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`m':(A->real)metric`; `f:A->A->real`] THEN STRIP_TAC THEN SUBGOAL_THEN `mtopology m homeomorphic_space subtopology (mtopology m') (IMAGE (f:A->A->real) (mspace m))` ASSUME_TAC THENL [MP_TAC(ISPECL [`m:A metric`; `m':(A->real)metric`; `f:A->A->real`] ISOMETRY_IMP_EMBEDDING_MAP) THEN ASM_SIMP_TAC[SUBSET_REFL] THEN DISCH_THEN(MP_TAC o MATCH_MP EMBEDDING_MAP_IMP_HOMEOMORPHIC_SPACE) THEN REWRITE_TAC[TOPSPACE_MTOPOLOGY]; ALL_TAC] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP HOMEOMORPHIC_COMPLETELY_METRIZABLE_SPACE) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_LOCALLY_COMPACT_SPACE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] LOCALLY_COMPACT_SUBSPACE_OPEN_IN_CLOSURE_OF))) THEN ASM_REWRITE_TAC[HAUSDORFF_SPACE_MTOPOLOGY; SUBTOPOLOGY_MSPACE] THEN ASM_REWRITE_TAC[TOPSPACE_MTOPOLOGY] THEN DISCH_TAC THEN MATCH_MP_TAC COMPLETELY_METRIZABLE_SPACE_OPEN_IN THEN ASM_SIMP_TAC[COMPLETELY_METRIZABLE_SPACE_MTOPOLOGY]);; let COMPLETELY_METRIZABLE_SPACE_IMP_GDELTA_IN = prove (`!top s:A->bool. metrizable_space top /\ s SUBSET topspace top /\ completely_metrizable_space (subtopology top s) ==> gdelta_in top s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `subtopology top s:A topology`; `\x:A. x`] LAVRENTIEV_EXTENSION) THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_ID; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:A->bool`; `f:A->A`] THEN STRIP_TAC THEN SUBGOAL_THEN `s:A->bool = u` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN FIRST_ASSUM(MP_TAC o MATCH_MP CONTINUOUS_MAP_IMAGE_SUBSET_TOPSPACE) THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; GDELTA_IN_SUBSET] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN u ==> f x = x) ==> IMAGE f u SUBSET s ==> u SUBSET s`) THEN MP_TAC(ISPECL [`subtopology top u:A topology`; `subtopology top u:A topology`; `f:A->A`; `\x:A. x`] FORALL_IN_CLOSURE_OF_EQ) THEN ASM_SIMP_TAC[CLOSURE_OF_SUBTOPOLOGY; CONTINUOUS_MAP_ID; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_SIMP_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY; METRIZABLE_IMP_HAUSDORFF_SPACE] THEN UNDISCH_TAC `continuous_map (subtopology top u,subtopology top s) (f:A->A)` THEN SIMP_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY] THEN ASM SET_TAC[]);; let COMPLETELY_METRIZABLE_SPACE_EQ_GDELTA_IN = prove (`!top s:A->bool. completely_metrizable_space top /\ s SUBSET topspace top ==> (completely_metrizable_space (subtopology top s) <=> gdelta_in top s)`, MESON_TAC[COMPLETELY_METRIZABLE_SPACE_GDELTA_IN; COMPLETELY_METRIZABLE_SPACE_IMP_GDELTA_IN; COMPLETELY_METRIZABLE_IMP_METRIZABLE_SPACE]);; let GDELTA_IN_EQ_COMPLETELY_METRIZABLE_SPACE = prove (`!top s:A->bool. completely_metrizable_space top ==> (gdelta_in top s <=> s SUBSET topspace top /\ completely_metrizable_space (subtopology top s))`, MESON_TAC[GDELTA_IN_ALT; COMPLETELY_METRIZABLE_SPACE_EQ_GDELTA_IN]);; (* ------------------------------------------------------------------------- *) (* Basic definition of the small inductive dimension relation ind t <= n. *) (* We plan to prove most of the theorems in R^n so this is as good a *) (* definition as any other, but the present stuff works in any top space. *) (* ------------------------------------------------------------------------- *) parse_as_infix("dimension_le",(12,"right"));; let DIMENSION_LE_RULES,DIMENSION_LE_INDUCT,DIMENSION_LE_CASES = new_inductive_definition `!top n. -- &1 <= n /\ (!v a. open_in top v /\ a IN v ==> ?u. a IN u /\ u SUBSET v /\ open_in top u /\ subtopology top (top frontier_of u) dimension_le (n - &1)) ==> (top:A topology) dimension_le (n:int)`;; let DIMENSION_LE_NEIGHBOURHOOD_BASE = prove (`!(top:A topology) n. top dimension_le n <=> -- &1 <= n /\ neighbourhood_base_of (\u. open_in top u /\ (subtopology top (top frontier_of u)) dimension_le (n - &1)) top`, REPEAT GEN_TAC THEN SIMP_TAC[OPEN_NEIGHBOURHOOD_BASE_OF] THEN GEN_REWRITE_TAC LAND_CONV [DIMENSION_LE_CASES] THEN MESON_TAC[]);; let DIMENSION_LE_BOUND = prove (`!top:(A)topology n. top dimension_le n ==> -- &1 <= n`, MATCH_MP_TAC DIMENSION_LE_INDUCT THEN SIMP_TAC[]);; let DIMENSION_LE_MONO = prove (`!top:(A)topology m n. top dimension_le m /\ m <= n ==> top dimension_le n`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC DIMENSION_LE_INDUCT THEN MAP_EVERY X_GEN_TAC [`top:(A)topology`; `m:int`] THEN STRIP_TAC THEN X_GEN_TAC `n:int` THEN DISCH_TAC THEN GEN_REWRITE_TAC I [DIMENSION_LE_CASES] THEN CONJ_TAC THENL [ASM_MESON_TAC[INT_LE_TRANS]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`v:A->bool`; `a:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`v:A->bool`; `a:A`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_INT_ARITH_TAC);; let DIMENSION_LE_EQ_EMPTY = prove (`!top:(A)topology. top dimension_le (-- &1) <=> topspace top = {}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[DIMENSION_LE_CASES] THEN CONV_TAC INT_REDUCE_CONV THEN SUBGOAL_THEN `!top:A topology. ~(top dimension_le --(&2))` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIMENSION_LE_BOUND) THEN INT_ARITH_TAC; EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `topspace top:A->bool`) THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN SET_TAC[]; REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]]);; let DIMENSION_LE_0_NEIGHBOURHOOD_BASE_OF_CLOPEN = prove (`!top:A topology. top dimension_le &0 <=> neighbourhood_base_of (\u. closed_in top u /\ open_in top u) top`, GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [DIMENSION_LE_NEIGHBOURHOOD_BASE] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[DIMENSION_LE_EQ_EMPTY; TOPSPACE_SUBTOPOLOGY] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN SIMP_TAC[FRONTIER_OF_SUBSET_TOPSPACE; SET_RULE `s SUBSET u ==> u INTER s = s`] THEN MESON_TAC[FRONTIER_OF_EQ_EMPTY; OPEN_IN_SUBSET]);; let DIMENSION_LE_SUBTOPOLOGY = prove (`!top n s:A->bool. top dimension_le n ==> (subtopology top s) dimension_le n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC DIMENSION_LE_INDUCT THEN MAP_EVERY X_GEN_TAC [`top:A topology`; `n:int`] THEN STRIP_TAC THEN X_GEN_TAC `s:A->bool` THEN GEN_REWRITE_TAC I [DIMENSION_LE_CASES] THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`u':A->bool`; `a:A`] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [OPEN_IN_SUBTOPOLOGY] THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:A->bool` THEN DISCH_TAC THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN_INTER] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:A->bool`; `a:A`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `s INTER v:A->bool` THEN ASM_REWRITE_TAC[IN_INTER] THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN ASM_MESON_TAC[INTER_COMM]; FIRST_X_ASSUM(MP_TAC o SPEC `subtopology top s frontier_of (s INTER v):A->bool`) THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET u /\ s SUBSET t ==> t INTER s = u INTER s`) THEN REWRITE_TAC[FRONTIER_OF_SUBSET_SUBTOPOLOGY] THEN REWRITE_TAC[FRONTIER_OF_CLOSURES; CLOSURE_OF_SUBTOPOLOGY] THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; INTER_ASSOC] THEN MATCH_MP_TAC(SET_RULE `t SUBSET u /\ v SUBSET w ==> s INTER t INTER s INTER v SUBSET u INTER w`) THEN CONJ_TAC THEN MATCH_MP_TAC CLOSURE_OF_MONO THEN SET_TAC[]]);; let DIMENSION_LE_SUBTOPOLOGIES = prove (`!top n s t:A->bool. s SUBSET t /\ subtopology top t dimension_le n ==> (subtopology top s) dimension_le n`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o ISPEC `s:A->bool` o MATCH_MP DIMENSION_LE_SUBTOPOLOGY) THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN ASM_SIMP_TAC[SET_RULE `s SUBSET t ==> t INTER s = s`]);; let DIMENSION_LE_EQ_SUBTOPOLOGY = prove (`!top s:A->bool n. (subtopology top s) dimension_le n <=> -- &1 <= n /\ !v a. open_in top v /\ a IN v /\ a IN s ==> ?u. a IN u /\ u SUBSET v /\ open_in top u /\ subtopology top ((subtopology top s frontier_of (s INTER u))) dimension_le (n - &1)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [DIMENSION_LE_CASES] THEN REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY; OPEN_IN_SUBTOPOLOGY] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[MESON[] `(!v a t. (P t /\ Q v t) /\ R a v t ==> S a v t) <=> (!t a v. Q v t ==> P t /\ R a v t ==> S a v t)`] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `v:A->bool` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:A` THEN REWRITE_TAC[IN_INTER] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p ==> q <=> p ==> r)`) THEN STRIP_TAC THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ (r /\ s) /\ t <=> s /\ p /\ q /\ r /\ t`] THEN ASM_REWRITE_TAC[UNWIND_THM2; IN_INTER] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u INTER v:A->bool` THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_INTER] THEN (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN ASM_SIMP_TAC[SET_RULE `u SUBSET v ==> u INTER v = u`; SET_RULE `u INTER s SUBSET v INTER s ==> s INTER u INTER v = s INTER u`] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN ASM_SIMP_TAC[FRONTIER_OF_SUBSET_SUBTOPOLOGY; SET_RULE `v SUBSET u ==> u INTER v = v`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]);; let HOMEOMORPHIC_SPACE_DIMENSION_LE = prove (`!(top:A topology) (top':B topology) n. top homeomorphic_space top' ==> (top dimension_le n <=> top' dimension_le n)`, let lemma = prove (`!n (top:A topology) (top':B topology). top homeomorphic_space top' /\ top dimension_le (&n - &1) ==> top' dimension_le (&n - &1)`, INDUCT_TAC THENL [CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[DIMENSION_LE_EQ_EMPTY] THEN MESON_TAC[HOMEOMORPHIC_EMPTY_SPACE]; REWRITE_TAC[GSYM INT_OF_NUM_SUC; INT_ARITH `(x + y) - y:int = x`]] THEN MAP_EVERY X_GEN_TAC [`top:A topology`; `top':B topology`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[DIMENSION_LE_CASES] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic_space]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`v:B->bool`; `b:B`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`IMAGE (g:B->A) v`; `(g:B->A) b`]) THEN ANTS_TAC THENL [ASM_MESON_TAC[HOMEOMORPHIC_MAPS_MAP; HOMEOMORPHIC_IMP_OPEN_MAP; open_map; FUN_IN_IMAGE]; DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `IMAGE (f:A->B) u` THEN REPEAT CONJ_TAC THENL [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphic_maps; continuous_map]) THEN ASM SET_TAC[]; REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET)) THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphic_maps; continuous_map]) THEN ASM SET_TAC[]; ASM_MESON_TAC[HOMEOMORPHIC_MAPS_MAP; HOMEOMORPHIC_MAP_OPENNESS_EQ]; FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `subtopology top (top frontier_of u:A->bool)` THEN ASM_REWRITE_TAC[homeomorphic_space] THEN MAP_EVERY EXISTS_TAC [`f:A->B`; `g:B->A`] THEN MATCH_MP_TAC HOMEOMORPHIC_MAPS_SUBTOPOLOGIES THEN ASM_SIMP_TAC[FRONTIER_OF_SUBSET_TOPSPACE; SET_RULE `s SUBSET t ==> t INTER s = s`] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC HOMEOMORPHIC_MAP_FRONTIER_OF THEN ASM_MESON_TAC[OPEN_IN_SUBSET; HOMEOMORPHIC_MAPS_MAP]]) in REPEAT STRIP_TAC THEN ASM_CASES_TAC `-- &1:int <= n` THENL [ALL_TAC; ASM_MESON_TAC[DIMENSION_LE_BOUND]] THEN SUBST1_TAC(INT_ARITH `n:int = (n + &1) - &1`) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH `--x:int <= y ==> &0 <= y + x`)) THEN REWRITE_TAC[GSYM INT_OF_NUM_EXISTS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN DISCH_THEN SUBST1_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] lemma) THEN ASM_MESON_TAC[HOMEOMORPHIC_SPACE_SYM]);; let DIMENSION_LE_RETRACTION_MAP_IMAGE = prove (`!top top' n (r:A->B). retraction_map(top,top') r /\ top dimension_le n ==> top' dimension_le n`, GEN_REWRITE_TAC I [MESON[] `(!x y z. P x y z) <=> (!z x y. P x y z)`] THEN GEN_TAC THEN MATCH_MP_TAC HEREDITARY_IMP_RETRACTIVE_PROPERTY THEN REWRITE_TAC[DIMENSION_LE_SUBTOPOLOGY; HOMEOMORPHIC_SPACE_DIMENSION_LE]);; let DIMENSION_LE_DISCRETE_TOPOLOGY = prove (`!u:A->bool. (discrete_topology u) dimension_le &0`, GEN_TAC THEN ONCE_REWRITE_TAC[DIMENSION_LE_CASES] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[OPEN_IN_DISCRETE_TOPOLOGY; DISCRETE_TOPOLOGY_FRONTIER_OF] THEN REWRITE_TAC[DIMENSION_LE_EQ_EMPTY; TOPSPACE_SUBTOPOLOGY; INTER_EMPTY] THEN SET_TAC[]);; let ZERO_DIMENSIONAL_IMP_COMPLETELY_REGULAR_SPACE = prove (`!top:A topology. top dimension_le &0 ==> completely_regular_space top`, GEN_TAC THEN REWRITE_TAC[DIMENSION_LE_0_NEIGHBOURHOOD_BASE_OF_CLOPEN] THEN SIMP_TAC[OPEN_NEIGHBOURHOOD_BASE_OF] THEN DISCH_TAC THEN REWRITE_TAC[completely_regular_space; IN_DIFF] THEN MAP_EVERY X_GEN_TAC [`c:A->bool`; `a:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`topspace top DIFF c:A->bool`; `a:A`]) THEN ASM_SIMP_TAC[IN_DIFF; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. if x IN u then &0 else &1):A->real` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[CONTINUOUS_MAP_IN_SUBTOPOLOGY; SUBSET; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ENDS_IN_UNIT_REAL_INTERVAL]] THEN REWRITE_TAC[continuous_map; TOPSPACE_EUCLIDEANREAL; IN_UNIV] THEN X_GEN_TAC `r:real->bool` THEN DISCH_TAC THEN REWRITE_TAC[TAUT `(if p then a else b) IN r <=> p /\ a IN r \/ ~p /\ b IN r`] THEN MAP_EVERY ASM_CASES_TAC [`(&0:real) IN r`; `(&1:real) IN r`] THEN ASM_REWRITE_TAC[EMPTY_GSPEC; OPEN_IN_EMPTY; OPEN_IN_TOPSPACE; IN_GSPEC; TAUT `p \/ ~p`] THEN ASM_REWRITE_TAC[GSYM DIFF; GSYM INTER] THEN ASM_SIMP_TAC[OPEN_IN_TOPSPACE; OPEN_IN_INTER; OPEN_IN_DIFF]);; let ZERO_DIMENSIONAL_IMP_REGULAR_SPACE = prove (`!top:A topology. top dimension_le &0 ==> regular_space top`, MESON_TAC[COMPLETELY_REGULAR_IMP_REGULAR_SPACE; ZERO_DIMENSIONAL_IMP_COMPLETELY_REGULAR_SPACE]);; (* ------------------------------------------------------------------------- *) (* Theorems from Kuratowski's "Remark on an Invariance Theorem", Fundamenta *) (* Mathematicae vol 37 (1950), pp. 251-252. The idea is that in suitable *) (* spaces, to show "number of components of the complement" (without *) (* distinguishing orders of infinity) is a homeomorphic invariant, it *) (* suffices to show it for closed subsets. Kuratowski states the main result *) (* for a "locally connected continuum", and seems clearly to be implicitly *) (* assuming that means metrizable. We call out the general topological *) (* hypotheses more explicitly, which do not however include connectedness. *) (* ------------------------------------------------------------------------- *) let SEPARATION_BY_CLOSED_INTERMEDIATES_COUNT = prove (`!(top:A topology) s n. hereditarily normal_space top /\ (?u. u HAS_SIZE n /\ pairwise (separated_in top) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace top DIFF s) ==> ?c. closed_in top c /\ c SUBSET s /\ !d. closed_in top d /\ c SUBSET d /\ d SUBSET s ==> ?u. u HAS_SIZE n /\ pairwise (separated_in top) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace top DIFF d`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `u:(A->bool)->bool` STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:(A->bool)->bool` o GEN_REWRITE_RULE I [HEREDITARILY_NORMAL_SEPARATION_PAIRWISE]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; ASM SET_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->(A->bool)` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `topspace top DIFF UNIONS (IMAGE (f:(A->bool)->(A->bool)) u)` THEN ASM_SIMP_TAC[CLOSED_IN_DIFF; CLOSED_IN_TOPSPACE; OPEN_IN_UNIONS; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `c:A->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\s. (f:(A->bool)->(A->bool)) s DIFF c) u` THEN REWRITE_TAC[PAIRWISE_IMAGE; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[pairwise; SEPARATED_IN_OPEN_SETS; OPEN_IN_DIFF] THEN MATCH_MP_TAC(TAUT `d /\ c /\ b /\ (c ==> a) ==> a /\ b /\ c /\ d`) THEN REPEAT CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[UNIONS_IMAGE; OPEN_IN_CLOSED_IN_EQ]) THEN REWRITE_TAC[UNIONS_IMAGE] THEN ASM SET_TAC[]; ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN REWRITE_TAC[] THEN ASM SET_TAC[]; STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN ASM SET_TAC[]]);; let SEPARATION_BY_CLOSED_INTERMEDIATES_GEN = prove (`!(top:A topology) s. hereditarily normal_space top /\ ~connected_in top (topspace top DIFF s) ==> ?c. closed_in top c /\ c SUBSET s /\ !d. closed_in top d /\ c SUBSET d /\ d SUBSET s ==> ~connected_in top (topspace top DIFF d)`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `2`] SEPARATION_BY_CLOSED_INTERMEDIATES_COUNT) THEN REWRITE_TAC[MESON[HAS_SIZE_CONV `s HAS_SIZE 2`] `(?s. s HAS_SIZE 2 /\ P s) <=> (?a b. ~(a = b) /\ P{a,b})`] THEN REWRITE_TAC[PAIRWISE_INSERT; UNIONS_2; FORALL_IN_INSERT; NOT_IN_EMPTY; IMP_CONJ; NOT_IN_EMPTY; PAIRWISE_EMPTY] THEN REWRITE_TAC[MESON[SEPARATED_IN_SYM] `~(a = b) /\ (~(b = a) ==> separated_in top a b /\ separated_in top b a) /\ Q <=> ~(a = b) /\ separated_in top a b /\ Q`] THEN REWRITE_TAC[MESON[SEPARATED_IN_REFL] `~(a = b) /\ separated_in top a b /\ (~(a = {}) /\ ~(b = {})) /\ a UNION b = s <=> a UNION b = s /\ ~(a = {}) /\ ~(b = {}) /\ separated_in top a b`] THEN REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED; IMP_IMP; SUBSET_DIFF] THEN SIMP_TAC[]);; let SEPARATION_BY_CLOSED_INTERMEDIATES_EQ_COUNT = prove (`!(top:A topology) s n. locally_connected_space top /\ hereditarily normal_space top ==> ((?u. u HAS_SIZE n /\ pairwise (separated_in top) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace top DIFF s) <=> (?c. closed_in top c /\ c SUBSET s /\ !d. closed_in top d /\ c SUBSET d /\ d SUBSET s ==> ?u. u HAS_SIZE n /\ pairwise (separated_in top) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace top DIFF d))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MATCH_MP_TAC(ONCE_REWRITE_RULE [IMP_CONJ] SEPARATION_BY_CLOSED_INTERMEDIATES_COUNT) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[HAS_SIZE_0; UNWIND_THM2; NOT_IN_EMPTY; UNIONS_0] THEN REWRITE_TAC[PAIRWISE_EMPTY] THEN SET_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN STRIP_TAC THEN X_GEN_TAC `c:A->bool` THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(LABEL_TAC "*") THEN ABBREV_TAC `u = {d:A->bool | d IN connected_components_of (subtopology top (topspace top DIFF c)) /\ ~(d DIFF s = {})}` THEN SUBGOAL_THEN `!t:A->bool. t IN u ==> open_in top t` ASSUME_TAC THENL [EXPAND_TAC "u" THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `d:A->bool` THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] OPEN_IN_CONNECTED_COMPONENTS_OF_LOCALLY_CONNECTED_SPACE) o CONJUNCT1) THEN ASM_SIMP_TAC[OPEN_IN_OPEN_SUBTOPOLOGY; OPEN_IN_DIFF; OPEN_IN_TOPSPACE] THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN MATCH_MP_TAC LOCALLY_CONNECTED_SPACE_OPEN_SUBSET THEN ASM_SIMP_TAC[OPEN_IN_DIFF; OPEN_IN_TOPSPACE]; ALL_TAC] THEN SUBGOAL_THEN `!t:A->bool. t IN u ==> ~(t = {})` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `pairwise DISJOINT (u:(A->bool)->bool)` ASSUME_TAC THENL [EXPAND_TAC "u" THEN MP_TAC(ISPEC `subtopology top (topspace top DIFF c):A topology` PAIRWISE_DISJOINT_CONNECTED_COMPONENTS_OF) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] PAIRWISE_MONO) THEN REWRITE_TAC[SUBSET_RESTRICT]; ALL_TAC] THEN SUBGOAL_THEN `FINITE(u:(A->bool)->bool) /\ CARD u < n` STRIP_ASSUME_TAC THENL [ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN REWRITE_TAC[NOT_LT] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CHOOSE_SUBSET_STRONG) THEN DISCH_THEN(X_CHOOSE_THEN `v:(A->bool)->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?t:A->bool. t IN v` STRIP_ASSUME_TAC THENL [REWRITE_TAC[MEMBER_NOT_EMPTY] THEN ASM_MESON_TAC[HAS_SIZE_0; HAS_SIZE]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(topspace top DIFF s DIFF UNIONS (v DELETE t)) INSERT IMAGE (\d:A->bool. d DIFF s) (v DELETE t)`) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `d /\ c /\ b /\ (b /\ c ==> a) ==> a /\ b /\ c /\ d`) THEN REPEAT CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[UNIONS_IMAGE; OPEN_IN_CLOSED_IN_EQ]) THEN REWRITE_TAC[UNIONS_IMAGE; UNIONS_INSERT] THEN ASM SET_TAC[]; REWRITE_TAC[FORALL_IN_INSERT; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN SUBGOAL_THEN `?a:A. a IN t /\ ~(a IN s)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[IN_DIFF] THEN CONJ_TAC THENL [MP_TAC(ISPEC `subtopology top (topspace top DIFF c:A->bool)` CONNECTED_COMPONENTS_OF_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(SPECL [`v:(A->bool)->bool`; `{t:A->bool}`] DIFF_UNIONS_PAIRWISE_DISJOINT) THEN ASM_REWRITE_TAC[SING_SUBSET; SET_RULE `s DIFF {a} = s DELETE a`] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN REWRITE_TAC[pairwise] THEN ASM SET_TAC[]; MATCH_MP_TAC PAIRWISE_IMP THEN EXISTS_TAC `separated_in (subtopology top (topspace top DIFF s):A topology)` THEN CONJ_TAC THENL [ALL_TAC; SIMP_TAC[SEPARATED_IN_SUBTOPOLOGY]] THEN MATCH_MP_TAC PAIRWISE_IMP THEN EXISTS_TAC `DISJOINT:(A->bool)->(A->bool)->bool` THEN CONJ_TAC THENL [REWRITE_TAC[PAIRWISE_INSERT; PAIRWISE_IMAGE] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; pairwise] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM SET_TAC[]; MATCH_MP_TAC(MESON[] `!P. (!x y. P x /\ P y ==> (R x y <=> Q x y)) /\ (!x. x IN s ==> P x) ==> !x y. x IN s /\ y IN s /\ Q x y /\ ~(x = y) ==> R x y`) THEN EXISTS_TAC `open_in (subtopology top (topspace top DIFF s):A topology)` THEN REWRITE_TAC[SEPARATED_IN_OPEN_SETS; FORALL_IN_INSERT] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN CONJ_TAC THENL [REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ; TOPSPACE_SUBTOPOLOGY] THEN SIMP_TAC[SET_RULE `s INTER (s DIFF t) = s DIFF t`; SUBSET_DIFF] THEN REWRITE_TAC[SET_RULE `s DIFF (s DIFF t) = s INTER t`] THEN SUBGOAL_THEN `closed_in (subtopology top (topspace top DIFF c)) (UNIONS(v DELETE (t:A->bool)))` MP_TAC THENL [MATCH_MP_TAC CLOSED_IN_UNIONS THEN CONJ_TAC THENL [ASM_MESON_TAC[FINITE_DELETE; HAS_SIZE]; ALL_TAC] THEN X_GEN_TAC `t':A->bool` THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_IN_CONNECTED_COMPONENTS_OF THEN ASM SET_TAC[]; REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]; X_GEN_TAC `t':A->bool` THEN DISCH_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN EXISTS_TAC `t':A->bool` THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]]]; STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE `~(n = 0) ==> n = SUC(n - 1)`)) THEN REWRITE_TAC[HAS_SIZE_CLAUSES] THEN MATCH_MP_TAC(MESON[] `P s /\ Q a s ==> (?b t. P t /\ Q b t /\ a INSERT s = b INSERT t)`) THEN CONJ_TAC THENL [MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM SET_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[CARD_DELETE; HAS_SIZE; FINITE_DELETE]]; REWRITE_TAC[SET_RULE `~(y IN IMAGE f s) <=> !x. x IN s ==> ~(f x = y)`] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `DISJOINT s t /\ ~(s = {}) ==> ~(s = t)`) THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC SEPARATED_IN_IMP_DISJOINT THEN EXISTS_TAC `top:A topology` THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]]]; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `topspace top DIFF UNIONS u:A->bool`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CLOSED_IN_DIFF THEN ASM_SIMP_TAC[OPEN_IN_UNIONS; CLOSED_IN_TOPSPACE]; ASM_SIMP_TAC[CLOSED_IN_SUBSET; SET_RULE `c SUBSET u DIFF s <=> c SUBSET u /\ s INTER c = {}`] THEN REWRITE_TAC[INTER_UNIONS; EMPTY_UNIONS; FORALL_IN_GSPEC] THEN EXPAND_TAC "u" THEN REWRITE_TAC[IN_ELIM_THM; IMP_CONJ] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONNECTED_COMPONENTS_OF_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]; EXPAND_TAC "u" THEN REWRITE_TAC[UNIONS_GSPEC] THEN MP_TAC(ISPEC `subtopology top (topspace top DIFF c):A topology` UNIONS_CONNECTED_COMPONENTS_OF) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY] THEN ASM SET_TAC[]; ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`; UNIONS_SUBSET; OPEN_IN_SUBSET] THEN DISCH_THEN(X_CHOOSE_THEN `v:(A->bool)->bool` STRIP_ASSUME_TAC)] THEN SUBGOAL_THEN `(v:(A->bool)->bool) <=_c (u:(A->bool)->bool)` MP_TAC THENL [ALL_TAC; RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[CARD_LE_CARD; NOT_LE]] THEN MATCH_MP_TAC CARD_LE_RELATIONAL_FULL THEN EXISTS_TAC `\(u:A->bool) v. ~DISJOINT u v` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `c1:A->bool`; `c2:A->bool`] THEN STRIP_TAC THEN ASM_CASES_TAC `c1:A->bool = c2` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `connected_in top (t:A->bool)` MP_TAC THENL [UNDISCH_TAC `(t:A->bool) IN u` THEN EXPAND_TAC "u" THEN REWRITE_TAC[IN_ELIM_THM; IMP_CONJ_ALT] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP CONNECTED_IN_CONNECTED_COMPONENTS_OF) THEN SIMP_TAC[CONNECTED_IN_SUBTOPOLOGY]; REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED_SUBSET]] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`c1:A->bool`; `UNIONS(v DELETE (c1:A->bool))`] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[SEPARATED_IN_UNIONS; FINITE_DELETE] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[separated_in]);; let SEPARATION_BY_CLOSED_INTERMEDIATES_EQ_GEN = prove (`!(top:A topology) s. locally_connected_space top /\ hereditarily normal_space top ==> (~connected_in top (topspace top DIFF s) <=> ?c. closed_in top c /\ c SUBSET s /\ !d. closed_in top d /\ c SUBSET d /\ d SUBSET s ==> ~connected_in top (topspace top DIFF d))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`top:A topology`; `s:A->bool`; `2`] SEPARATION_BY_CLOSED_INTERMEDIATES_EQ_COUNT) THEN REWRITE_TAC[MESON[HAS_SIZE_CONV `s HAS_SIZE 2`] `(?s. s HAS_SIZE 2 /\ P s) <=> (?a b. ~(a = b) /\ P{a,b})`] THEN REWRITE_TAC[PAIRWISE_INSERT; UNIONS_2; FORALL_IN_INSERT; NOT_IN_EMPTY; IMP_CONJ; NOT_IN_EMPTY; PAIRWISE_EMPTY] THEN REWRITE_TAC[MESON[SEPARATED_IN_SYM] `~(a = b) /\ (~(b = a) ==> separated_in top a b /\ separated_in top b a) /\ Q <=> ~(a = b) /\ separated_in top a b /\ Q`] THEN REWRITE_TAC[MESON[SEPARATED_IN_REFL] `~(a = b) /\ separated_in top a b /\ (~(a = {}) /\ ~(b = {})) /\ a UNION b = s <=> a UNION b = s /\ ~(a = {}) /\ ~(b = {}) /\ separated_in top a b`] THEN REWRITE_TAC[CONNECTED_IN_EQ_NOT_SEPARATED; IMP_IMP; SUBSET_DIFF] THEN SIMP_TAC[]);; let KURATOWSKI_COMPONENT_NUMBER_INVARIANCE = prove (`!top:A topology. compact_space top /\ hausdorff_space top /\ locally_connected_space top /\ hereditarily normal_space top ==> ((!s t n. closed_in top s /\ closed_in top t /\ (subtopology top s) homeomorphic_space (subtopology top t) ==> (connected_components_of (subtopology top (topspace top DIFF s)) HAS_SIZE n <=> connected_components_of (subtopology top (topspace top DIFF t)) HAS_SIZE n)) <=> (!s t n. (subtopology top s) homeomorphic_space (subtopology top t) ==> (connected_components_of (subtopology top (topspace top DIFF s)) HAS_SIZE n <=> connected_components_of (subtopology top (topspace top DIFF t)) HAS_SIZE n)))`, let lemma = prove (`!(R:A->A->bool) (f:A->B->bool). (!s t. R s t ==> R t s) ==> ((!s t n. R s t ==> (f s HAS_SIZE n <=> f t HAS_SIZE n)) <=> (!n s t. R s t ==> 1..n <=_c f s ==> 1..n <=_c f t))`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `!s t n. R s t ==> (1..n <=_c (f:A->B->bool) s <=> 1..n <=_c f t)` THEN CONJ_TAC THENL [POP_ASSUM(K ALL_TAC); ASM_MESON_TAC[]] THEN REWRITE_TAC[HAS_SIZE; NUMSEG_CARD_LE] THEN EQ_TAC THENL [MESON_TAC[]; REWRITE_TAC[ARITH_RULE `a = n <=> n <= a /\ ~(n + 1 <= a)`] THEN MESON_TAC[]]) and lemur = prove (`pairwise (separated_in (subtopology top (topspace top DIFF s))) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace(subtopology top (topspace top DIFF s)) <=> pairwise (separated_in top) u /\ (!t. t IN u ==> ~(t = {})) /\ UNIONS u = topspace top DIFF s`, REWRITE_TAC[pairwise; SEPARATED_IN_SUBTOPOLOGY; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]) in REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN W(MP_TAC o PART_MATCH (lhand o rand) lemma o lhand o snd) THEN ANTS_TAC THENL [MESON_TAC[HOMEOMORPHIC_SPACE_SYM]; DISCH_THEN SUBST1_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) lemma o rand o snd) THEN ANTS_TAC THENL [MESON_TAC[HOMEOMORPHIC_SPACE_SYM]; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[CARD_LE_CONNECTED_COMPONENTS_ALT] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[lemur] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s DIFF s INTER t`] THEN MP_TAC(SET_RULE `topspace top INTER (s:A->bool) SUBSET topspace top /\ topspace top INTER (t:A->bool) SUBSET topspace top`) THEN SPEC_TAC(`topspace top INTER (t:A->bool)`,`t:A->bool`) THEN SPEC_TAC(`topspace top INTER (s:A->bool)`,`s:A->bool`) THEN REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) SEPARATION_BY_CLOSED_INTERMEDIATES_EQ_COUNT o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) SEPARATION_BY_CLOSED_INTERMEDIATES_EQ_COUNT o rand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic_space]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; HOMEOMORPHIC_MAPS_MAP] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET] THEN MAP_EVERY X_GEN_TAC [`f:A->A`; `g:A->A`] THEN STRIP_TAC THEN X_GEN_TAC `c:A->bool` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(LABEL_TAC "*") THEN EXISTS_TAC `IMAGE (f:A->A) c` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `subtopology top (s:A->bool)` THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; CLOSED_IN_COMPACT_SPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN ASM_REWRITE_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_SUBTOPOLOGY]) THEN ASM SET_TAC[]; X_GEN_TAC `d':A->bool` THEN STRIP_TAC] THEN ABBREV_TAC `d = IMAGE (g:A->A) d'` THEN SUBGOAL_THEN `closed_in top (d:A->bool)` ASSUME_TAC THENL [MATCH_MP_TAC COMPACT_IN_IMP_CLOSED_IN THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "d" THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `subtopology top (t:A->bool)` THEN ASM_SIMP_TAC[COMPACT_IN_SUBTOPOLOGY; CLOSED_IN_COMPACT_SPACE] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(c:A->bool) SUBSET d /\ d SUBSET s` STRIP_ASSUME_TAC THENL [EXPAND_TAC "d" THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_SUBTOPOLOGY]) THEN ASM SET_TAC[]; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `d:A->bool`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[homeomorphic_space] THEN MAP_EVERY EXISTS_TAC [`f:A->A`; `g:A->A`] THEN SUBGOAL_THEN `subtopology top d:A topology = subtopology (subtopology top s) d /\ subtopology top d':A topology = subtopology (subtopology top t) d'` (CONJUNCTS_THEN SUBST1_TAC) THENL [REWRITE_TAC[SUBTOPOLOGY_SUBTOPOLOGY] THEN CONJ_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]; MATCH_MP_TAC HOMEOMORPHIC_MAPS_SUBTOPOLOGIES] THEN ASM_REWRITE_TAC[HOMEOMORPHIC_MAPS_MAP] THEN ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET] THEN RULE_ASSUM_TAC(REWRITE_RULE[HOMEOMORPHIC_EQ_EVERYTHING_MAP; CONTINUOUS_MAP_IN_SUBTOPOLOGY]) THEN RULE_ASSUM_TAC(REWRITE_RULE[TOPSPACE_SUBTOPOLOGY]) THEN ASM SET_TAC[]);;