(* ========================================================================= *) (* Sums of matrices over an indexing set. *) (* *) (* (c) Copyright, Andrea Gabrielli, Marco Maggesi 2016-2017 *) (* ========================================================================= *) needs "Multivariate/vectors.ml";; let () = prioritize_vector();; prioritize_real();; (* ------------------------------------------------------------------------- *) (* Matrix norm (vector norm of "flattened" form). *) (* ------------------------------------------------------------------------- *) overload_interface("norm",`matrix_norm:real^M^N->real`);; let matrix_norm = new_definition `matrix_norm (m:real^M^N) = norm(vectorize m)`;; (* ------------------------------------------------------------------------- *) (* Sums over matrices. *) (* ------------------------------------------------------------------------- *) let NEUTRAL_MATRIX_ADD = prove (`neutral(+) = mat 0:real^M^N`, REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[MATRIX_ARITH `x + y = y <=> x = mat 0:real^M^N`; MATRIX_ARITH `x + y = x <=> y = mat 0:real^M^N`]);; let MONOIDAL_MATRIX_ADD = prove (`monoidal((+):real^M^N->real^M^N->real^M^N)`, REWRITE_TAC[monoidal; NEUTRAL_MATRIX_ADD] THEN REPEAT CONJ_TAC THEN MATRIX_ARITH_TAC);; let msum = new_definition `msum s (f:A->real^M^N):real^M^N = (lambda i j. sum s (\x. f x$i$j))`;; let MSUM_COMPONENT = prove (`!s (f:A->real^M^N) i j. msum s f$i$j = sum s (\x. f x$i$j)`, REPEAT GEN_TAC THEN C SUBGOAL_THEN (CONJUNCTS_THEN CHOOSE_TAC) `(?h. 1 <= h /\ h <= dimindex(:N) /\ !z:real^M^N. z$i = z$h) /\ (?k. 1 <= k /\ k <= dimindex(:M) /\ !z:real^M. z$j = z$k)` THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ASM_SIMP_TAC[msum; LAMBDA_BETA]]);; let MSUM_ROW = prove (`!s f:A->real^M^N i. msum s f$i = vsum s (\x. f x$i)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; VSUM_COMPONENT]);; let MSUM_CLAUSES = prove (`(!f:A->real^M^N. msum {} f = mat 0) /\ (!x:A f s. FINITE s ==> msum (x INSERT s) f : real^M^N= if x IN s then msum s f else f(x) + msum s f)`, SIMP_TAC[msum; CART_EQ; LAMBDA_BETA; MATRIX_ADD_COMPONENT; SUM_CLAUSES] THEN SIMP_TAC[MAT_0_COMPONENT] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; MATRIX_ADD_COMPONENT]);; let MSUM = prove (`!f:A->real^M^N s. FINITE s ==> msum s f = iterate (+) s f`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[MSUM_CLAUSES; ITERATE_CLAUSES; MONOIDAL_MATRIX_ADD] THEN REWRITE_TAC[NEUTRAL_MATRIX_ADD]);; let MSUM_EQ_0 = prove (`!f:A->real^M^N s. (!x. x IN s ==> (f(x) = mat 0)) ==> (msum s f = mat 0)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT] THEN SIMP_TAC[SUM_EQ_0]);; let MSUM_0 = prove (`msum s (\x:A. mat 0) = mat 0:real^M^N`, SIMP_TAC[MSUM_EQ_0]);; let MSUM_LMUL = prove (`!f:A->real^M^N c s. msum s (\x. c %% f(x)) = c %% msum s f`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT; SUM_LMUL]);; let MSUM_RMUL = prove (`!c:A->real s v:real^M^N. msum s (\x. c x %% v) = (sum s c) %% v`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT; SUM_RMUL]);; let MSUM_ADD = prove (`!f g:A->real^M^N s. FINITE s ==> (msum s (\x. f x + g x) = msum s f + msum s g)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[SUM_ADD]);; let MSUM_SUB = prove (`!f g:A->real^M^N s. FINITE s ==> (msum s (\x. f x - g x) = msum s f - msum s g)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_SUB_COMPONENT] THEN SIMP_TAC[SUM_SUB]);; let MSUM_CONST = prove (`!c:real^M^N s. FINITE s ==> (msum s (\n:A. c) = &(CARD s) %% c)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_CMUL_COMPONENT] THEN SIMP_TAC[SUM_CONST]);; let MSUM_MATRIX_RMUL = prove (`!(f:A->real^N^M) (A:real^P^N) s. FINITE s ==> msum s (\i. f(i) ** A) = msum s f ** A`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MSUM_CLAUSES; MATRIX_MUL_LZERO; MATRIX_ADD_RDISTRIB]);; let MSUM_MATRIX_LMUL = prove (`!(f:A->real^P^N) (A:real^N^M) s. FINITE s ==> msum s (\i. A ** f(i)) = A ** msum s f`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MSUM_CLAUSES; MATRIX_MUL_RZERO; MATRIX_ADD_LDISTRIB]);; let MSUM_IMAGE = prove (`!(f:A->B) (g:B->real^M^N) s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> msum (IMAGE f s) g = msum s (g o f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN REPEAT GEN_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) SUM_IMAGE o lhand o snd) THEN ASM_REWRITE_TAC[o_DEF]);; let MSUM_UNION = prove (`!f:A->real^M^N s t. FINITE s /\ FINITE t /\ DISJOINT s t ==> (msum (s UNION t) f = msum s f + msum t f)`, REWRITE_TAC[CART_EQ_FULL; MATRIX_ADD_COMPONENT; MSUM_COMPONENT] THEN SIMP_TAC[SUM_UNION]);; let MSUM_DIFF = prove (`!f:A->real^M^N s t. FINITE s /\ t SUBSET s ==> (msum (s DIFF t) f = msum s f - msum t f)`, REWRITE_TAC[CART_EQ_FULL; MATRIX_SUB_COMPONENT; MSUM_COMPONENT] THEN SIMP_TAC[SUM_DIFF]);; let MSUM_DELETE = prove (`!f:A->real^M^N s a. FINITE s /\ a IN s ==> msum (s DELETE a) f = msum s f - f a`, REWRITE_TAC[CART_EQ_FULL; MATRIX_SUB_COMPONENT; MSUM_COMPONENT] THEN SIMP_TAC[SUM_DELETE]);; let MSUM_INCL_EXCL = prove (`!s t (f:A->real^M^N). FINITE s /\ FINITE t ==> msum s f + msum t f = msum (s UNION t) f + msum (s INTER t) f`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[SUM_INCL_EXCL]);; let MSUM_NEG = prove (`!f:A->real^M^N s. msum s (\x. --f x) = --msum s f`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_NEG_COMPONENT; SUM_NEG]);; let MSUM_EQ = prove (`!f g:A->real^M^N s. (!x. x IN s ==> (f x = g x)) ==> (msum s f = msum s g)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_EQ]);; let MSUM_SUPERSET = prove (`!f:A->real^M^N u v. u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = mat 0)) ==> (msum v f = msum u f)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT] THEN SIMP_TAC[SUM_SUPERSET]);; let MSUM_SUPPORT_EXPLICIT = prove (`!f:A->real^M^N s. msum {x | x IN s /\ ~(f x = mat 0)} f = msum s f`, REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MSUM_SUPERSET THEN SET_TAC[]);; let MSUM_SUPPORT = prove (`!f s. msum (support (+) f s) f = msum s f`, SIMP_TAC[support; NEUTRAL_MATRIX_ADD; MSUM_SUPPORT_EXPLICIT]);; let MSUM_UNIV = prove (`!f:A->real^M^N s. support (+) f (:A) SUBSET s ==> msum s f = msum (:A) f`, REWRITE_TAC[support; NEUTRAL_MATRIX_ADD] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM MSUM_SUPPORT_EXPLICIT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let MSUM_EQ_SUPERSET = prove (`!(f:A->real^M^N) s t. FINITE t /\ t SUBSET s /\ (!x. x IN t ==> (f x = g x)) /\ (!x. x IN s /\ ~(x IN t) ==> f(x) = mat 0) ==> msum s f = msum t g`, MESON_TAC[MSUM_SUPERSET; MSUM_EQ]);; let MSUM_UNION_RZERO = prove (`!f:A->real^M^N u v. (!x. x IN v /\ ~(x IN u) ==> (f(x) = mat 0)) ==> (msum (u UNION v) f = msum u f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_SUPERSET THEN ASM SET_TAC[]);; let MSUM_UNION_LZERO = prove (`!f:A->real^M^N u v. (!x. x IN u /\ ~(x IN v) ==> (f(x) = mat 0)) ==> (msum (u UNION v) f = msum v f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_SUPERSET THEN ASM SET_TAC[]);; let MSUM_RESTRICT = prove (`!f:A->real^M^N s. msum s (\x. if x IN s then f(x) else mat 0) = msum s f`, REPEAT GEN_TAC THEN MATCH_MP_TAC MSUM_EQ THEN SIMP_TAC[]);; let MSUM_RESTRICT_SET = prove (`!P s f:A->real^M^N. msum {x | x IN s /\ P x} f = msum s (\x. if P x then f x else mat 0)`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MAT_0_COMPONENT; COND_COMPONENT] THEN SIMP_TAC[SUM_RESTRICT_SET; COND_COMPONENT]);; let MSUM_CASES = prove (`!s P f g. FINITE s ==> msum s (\x:A. if P x then (f x):real^M^N else g x) = msum {x | x IN s /\ P x} f + msum {x | x IN s /\ ~P x} g`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT; COND_COMPONENT] THEN SIMP_TAC[SUM_CASES]);; let MSUM_SING = prove (`!f:A->real^M^N x. msum {x} f = f(x)`, SIMP_TAC[MSUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; MATRIX_ADD_RID]);; let VECTORIZE_MSUM = prove (`!s f:A->real^M^N. vectorize (msum s f) = vsum s (\x. vectorize (f x))`, SIMP_TAC[CART_EQ; VECTORIZE_COMPONENT; DIMINDEX_FINITE_PROD; VSUM_COMPONENT; MSUM_COMPONENT]);; let MSUM_NORM = prove (`!s f:A->real^M^N. FINITE s ==> norm(msum s f) <= sum s (\x. norm(f x))`, REWRITE_TAC[matrix_norm; VECTORIZE_MSUM] THEN SIMP_TAC[VSUM_NORM]);; let MSUM_NORM_LE = prove (`!s f:A->real^M^N g. FINITE s /\ (!x. x IN s ==> norm(f x) <= g(x)) ==> norm(msum s f) <= sum s g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum s (\x:A. norm(f x:real^M^N))` THEN ASM_SIMP_TAC[MSUM_NORM; SUM_LE]);; let MSUM_NORM_TRIANGLE = prove (`!s f:A->real^M^N b. FINITE s /\ sum s (\a. norm(f a)) <= b ==> norm(msum s f) <= b`, MESON_TAC[MSUM_NORM; REAL_LE_TRANS]);; let MSUM_NORM_BOUND = prove (`!s f:A->real^M^N b. FINITE s /\ (!x. x IN s ==> norm(f(x)) <= b) ==> norm(msum s f) <= &(CARD s) * b`, SIMP_TAC[GSYM SUM_CONST; MSUM_NORM_LE]);; let MSUM_CLAUSES_NUMSEG = prove (`(!m. msum(m..0) f = if m = 0 then f(0) else mat 0:real^M^N) /\ (!m n. msum(m..SUC n) f = if m <= SUC n then msum(m..n) f + f(SUC n) else msum(m..n) f)`, REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[MSUM_SING; MSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MATRIX_ADD_AC]);; let MSUM_CLAUSES_RIGHT = prove (`!f m n. 0 < n /\ m <= n ==> msum(m..n) f = msum(m..n-1) f + (f n):real^M^N`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[LT_REFL; MSUM_CLAUSES_NUMSEG; SUC_SUB1]);; let MSUM_CMUL_NUMSEG = prove (`!f c m n. msum (m..n) (\x. c %% f x) = c %% msum (m..n) f:real^M^N`, SIMP_TAC[MSUM_LMUL; FINITE_NUMSEG]);; let MSUM_EQ_NUMSEG = prove (`!f g m n. (!x. m <= x /\ x <= n ==> (f x = g x:real^M^N)) ==> (msum(m .. n) f = msum(m .. n) g)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MSUM_EQ THEN ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG]);; let MSUM_IMAGE_GEN = prove (`!f:A->B (g:A->real^M^N) s. FINITE s ==> (msum s g = msum (IMAGE f s) (\y. msum {x | x IN s /\ (f(x) = y)} g))`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_IMAGE_GEN]);; let MSUM_GROUP = prove (`!f:A->B (g:A->real^M^N) s t. FINITE s /\ IMAGE f s SUBSET t ==> msum t (\y. msum {x | x IN s /\ f(x) = y} g) = msum s g`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_GROUP]);; let MSUM_GROUP_RELATION = prove (`!R:A->B->bool (g:A->real^M^N) s t. FINITE s /\ (!x. x IN s ==> ?!y. y IN t /\ R x y) ==> msum t (\y. msum {x | x IN s /\ R x y} g) = msum s g`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_GROUP_RELATION]);; let MSUM_VMUL = prove (`!f v:real^M^N s. (sum s f) %% v = msum s (\x:A. f(x) %% v)`, REWRITE_TAC[MSUM_RMUL]);; let MSUM_DELTA = prove (`!s a. msum s (\x:A. if x = a then b else mat 0:real^M^N) = if a IN s then b else mat 0`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; COND_COMPONENT] THEN SIMP_TAC[MAT_0_COMPONENT; SUM_DELTA]);; let MSUM_ADD_NUMSEG = prove (`!f g m n. msum(m..n) (\i. f i + g i) = msum(m..n) f + msum(m..n) g:real^M^N`, SIMP_TAC[MSUM_ADD; FINITE_NUMSEG]);; let MSUM_SUB_NUMSEG = prove (`!f g m n. msum(m..n) (\i. f i - g i) = msum(m..n) f - msum(m..n) g:real^M^N`, SIMP_TAC[MSUM_SUB; FINITE_NUMSEG]);; let MSUM_ADD_SPLIT = prove (`!f m n p. m <= n + 1 ==> msum(m..n + p) f = msum(m..n) f + msum(n + 1..n + p) f:real^M^N`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[SUM_ADD_SPLIT]);; let MSUM_MSUM_PRODUCT = prove (`!s:A->bool t:A->B->bool x. FINITE s /\ (!i. i IN s ==> FINITE(t i)) ==> msum s (\i. msum (t i) (x i)) = msum {i,j | i IN s /\ j IN t i} (\(i,j). x i j):real^M^N`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; COND_COMPONENT] THEN SIMP_TAC[SUM_SUM_PRODUCT] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);; let MSUM_IMAGE_NONZERO = prove (`!d:B->real^M^N i:A->B s. FINITE s /\ (!x y. x IN s /\ y IN s /\ ~(x = y) /\ i x = i y ==> d(i x) = mat 0) ==> msum (IMAGE i s) d = msum s (d o i):real^M^N`, GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[IMAGE_CLAUSES; MSUM_CLAUSES; FINITE_IMAGE] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `msum s ((d:B->real^M^N) o (i:A->B)) = msum (IMAGE i s) d` SUBST1_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[MATRIX_ARITH `a = x + a <=> x = mat 0:real^M^N`] THEN ASM_MESON_TAC[IN_IMAGE]);; let MSUM_UNION_NONZERO = prove (`!f:A->real^M^N s t. FINITE s /\ FINITE t /\ (!x. x IN s INTER t ==> f(x) = mat 0) ==> msum (s UNION t) f = msum s f + msum t f`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT; MAT_0_COMPONENT] THEN SIMP_TAC[SUM_UNION_NONZERO]);; let MSUM_UNIONS_NONZERO = prove (`!f:A->real^M^N s. FINITE s /\ (!t. t IN s ==> FINITE t) /\ (!t1 t2 x. t1 IN s /\ t2 IN s /\ ~(t1 = t2) /\ x IN t1 /\ x IN t2 ==> f x = mat 0) ==> msum (UNIONS s) f = msum s (\t. msum t f)`, GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; UNIONS_INSERT; MSUM_CLAUSES; IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `s:(A->bool)->bool`] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[MSUM_CLAUSES] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST_ALL_TAC o SYM)] THEN STRIP_TAC THEN MATCH_MP_TAC MSUM_UNION_NONZERO THEN ASM_SIMP_TAC[FINITE_UNIONS; IN_INTER; IN_UNIONS] THEN ASM_MESON_TAC[]);; let MSUM_CLAUSES_LEFT = prove (`!f m n. m <= n ==> msum(m..n) f = f m + msum(m + 1..n) f:real^M^N`, SIMP_TAC[msum; CART_EQ; LAMBDA_BETA; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[VEC_COMPONENT; SUM_CLAUSES_LEFT]);; let MSUM_DIFFS = prove (`!m n. msum(m..n) (\k. f(k) - f(k + 1)) = if m <= n then f(m) - f(n + 1) else mat 0:real^M^N`, GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[MSUM_CLAUSES_NUMSEG; LE] THEN ASM_CASES_TAC `m = SUC n` THEN ASM_REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; MATRIX_ADD_LID] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM ADD1] THEN MATRIX_ARITH_TAC);; let MSUM_DIFFS_ALT = prove (`!m n. msum(m..n) (\k. f(k + 1) - f(k)) = if m <= n then f(n + 1) - f(m) else mat 0:real^M^N`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MATRIX_NEG_SUB] THEN SIMP_TAC[MSUM_NEG; MSUM_DIFFS] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MATRIX_NEG_SUB; MATRIX_NEG_0]);; let MSUM_DELETE_CASES = prove (`!x f:A->real^M^N s. FINITE s ==> msum(s DELETE x) f = if x IN s then msum s f - f x else msum s f`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[SET_RULE `~(x:A IN s) ==> s DELETE x = s`] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MATCH_MP (SET_RULE `x:A IN s ==> s = x INSERT (s DELETE x)`) th]) THEN ASM_SIMP_TAC[MSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN MATRIX_ARITH_TAC);; let MSUM_EQ_GENERAL = prove (`!s:A->bool t:B->bool (f:A->real^M^N) g h. (!y. y IN t ==> ?!x. x IN s /\ h x = y) /\ (!x. x IN s ==> h x IN t /\ g(h x) = f x) ==> msum s f = msum t g`, SIMP_TAC[msum; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN EXISTS_TAC `h:A->B` THEN ASM_MESON_TAC[]);; let MSUM_EQ_GENERAL_INVERSES = prove (`!s t (f:A->real^M^N) (g:B->real^M^N) h k. (!y. y IN t ==> k y IN s /\ h (k y) = y) /\ (!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x) ==> msum s f = msum t g`, SIMP_TAC[msum; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN MAP_EVERY EXISTS_TAC [`h:A->B`; `k:B->A`] THEN ASM_MESON_TAC[]);; let MSUM_OFFSET = prove (`!p f m n. msum(m + p..n + p) f = msum(m..n) (\i. f (i + p)):real^M^N`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_OFFSET]);; let MSUM_OFFSET_0 = prove (`!f m n. m <= n ==> msum(m..n) f = msum(0..n - m) (\i. f (i + m)):real^M^N`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN SIMP_TAC[SUM_OFFSET_0]);; let MSUM_TRIV_NUMSEG = prove (`!f m n. n < m ==> msum(m..n) f = mat 0:real^M^N`, SIMP_TAC[GSYM NUMSEG_EMPTY; MSUM_CLAUSES]);; let MSUM_CONST_NUMSEG = prove (`!c m n. msum(m..n) (\n. c) = &((n + 1) - m) %% c:real^M^N`, SIMP_TAC[MSUM_CONST; FINITE_NUMSEG; CARD_NUMSEG]);; let MSUM_SUC = prove (`!f m n. msum (SUC n..SUC m) f = msum (n..m) (f o SUC):real^M^N`, REPEAT GEN_TAC THEN SUBGOAL_THEN `SUC n..SUC m = IMAGE SUC (n..m)` SUBST1_TAC THENL [REWRITE_TAC [ADD1; NUMSEG_OFFSET_IMAGE] THEN REWRITE_TAC [ONE; ADD_SUC; ADD_0; ETA_AX]; SIMP_TAC [MSUM_IMAGE; FINITE_NUMSEG; SUC_INJ]]);; let MSUM_BIJECTION = prove (`!f:A->real^M^N p s:A->bool. (!x. x IN s ==> p(x) IN s) /\ (!y. y IN s ==> ?!x. x IN s /\ p(x) = y) ==> msum s f = msum s (f o p)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MSUM_EQ_GENERAL THEN EXISTS_TAC `p:A->A` THEN ASM_REWRITE_TAC[o_THM]);; let MSUM_PARTIAL_SUC = prove (`!f g:num->real^M^N m n. msum (m..n) (\k. f(k) %% (g(k + 1) - g(k))) = if m <= n then f(n + 1) %% g(n + 1) - f(m) %% g(m) - msum (m..n) (\k. (f(k + 1) - f(k)) %% g(k + 1)) else mat 0`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[MSUM_TRIV_NUMSEG; GSYM NOT_LE] THEN ASM_REWRITE_TAC[MSUM_CLAUSES_NUMSEG] THENL [COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH] THENL [MATRIX_ARITH_TAC; ASM_ARITH_TAC]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE]) THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN ASM_SIMP_TAC[GSYM NOT_LT; MSUM_TRIV_NUMSEG; ARITH_RULE `n < SUC n`] THEN ASM_SIMP_TAC[GSYM ADD1; ADD_CLAUSES] THEN MATRIX_ARITH_TAC);; let MSUM_PARTIAL_PRE = prove (`!f g:num->real^M^N m n. msum (m..n) (\k. f(k) %% (g(k) - g(k - 1))) = if m <= n then f(n + 1) %% g(n) - f(m) %% g(m - 1) - msum (m..n) (\k. (f(k + 1) - f(k)) %% g(k)) else mat 0`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:num->real`; `\k. (g:num->real^M^N)(k - 1)`; `m:num`; `n:num`] MSUM_PARTIAL_SUC) THEN REWRITE_TAC[ADD_SUB] THEN DISCH_THEN SUBST1_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[]);; let MSUM_COMBINE_L = prove (`!f m n p. 0 < n /\ m <= n /\ n <= p + 1 ==> msum(m..n - 1) f + msum(n..p) f = msum(m..p) f:real^M^N`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[SUM_COMBINE_L]);; let MSUM_COMBINE_R = prove (`!f m n p. m <= n + 1 /\ n <= p ==> msum(m..n) f + msum(n + 1..p) f = msum(m..p) f:real^M^N`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[SUM_COMBINE_R]);; let MSUM_INJECTION = prove (`!f:A->real^M^N p:A->A s. FINITE s /\ (!x. x IN s ==> p x IN s) /\ (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y) ==> msum s (f o p) = msum s f`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUM_INJECTION) THEN REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; o_DEF] THEN SIMP_TAC[]);; let MSUM_SWAP = prove (`!f:A->B->real^M^N s t. FINITE s /\ FINITE t ==> msum s (\i. msum t (f i)) = msum t (\j. msum s (\i. f i j))`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhs o rand) SUM_SWAP o lhs o snd) THEN ASM_REWRITE_TAC[]);; let MSUM_SWAP_NUMSEG = prove (`!a b c d f. msum (a..b) (\i. msum (c..d) (f i)) = msum (c..d) (\j. msum (a..b) (\i. f i j)):real^M^N`, REPEAT GEN_TAC THEN MATCH_MP_TAC MSUM_SWAP THEN REWRITE_TAC[FINITE_NUMSEG]);; let MSUM_ADD_GEN = prove (`!f g:A->real^M^N s. FINITE {x | x IN s /\ ~(f x = mat 0)} /\ FINITE {x | x IN s /\ ~(g x = mat 0)} ==> msum s (\x. f x + g x) = msum s f + msum s g`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT] THEN SIMP_TAC[CART_EQ; msum; LAMBDA_BETA; MATRIX_ADD_COMPONENT] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC SUM_ADD_GEN THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[MAT_0_COMPONENT]);; let MSUM_CASES_1 = prove (`!s a:A. FINITE s /\ a IN s ==> msum s (\x. if x = a then y else f(x)) = msum s f + (y - f a):real^M^N`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MSUM_CASES] THEN ASM_SIMP_TAC[GSYM DELETE; MSUM_DELETE] THEN ASM_SIMP_TAC[SET_RULE `a:A IN s ==> {x | x IN s /\ x = a} = {a}`] THEN REWRITE_TAC[MSUM_SING] THEN MATRIX_ARITH_TAC);; let MSUM_SING_NUMSEG = prove (`msum(n..n) f = f n:real^M^N`, REWRITE_TAC[NUMSEG_SING; MSUM_SING]);; let MSUM_1 = prove (`msum(1..1) f = f(1):real^M^N`, REWRITE_TAC[MSUM_SING_NUMSEG]);; let MSUM_2 = prove (`!t. msum(1..2) t = t(1) + t(2):real^M^N`, REWRITE_TAC[num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);; let MSUM_3 = prove (`!t. msum(1..3) t = t(1) + t(2) + t(3):real^M^N`, REWRITE_TAC[num_CONV `3`; num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; MATRIX_ADD_ASSOC]);; let MSUM_4 = prove (`!t. msum(1..4) t = t(1) + t(2) + t(3) + t(4):real^M^N`, SIMP_TAC[num_CONV `4`; num_CONV `3`; num_CONV `2`; MSUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[MSUM_SING_NUMSEG; ARITH; MATRIX_ADD_ASSOC]);; let MSUM_PAIR = prove (`!f:num->real^M^N m n. msum(2*m..2*n+1) f = msum(m..n) (\i. f(2*i) + f(2*i+1))`, REWRITE_TAC[CART_EQ_FULL; MSUM_COMPONENT; MATRIX_ADD_COMPONENT; SUM_PAIR]);; let MSUM_PAIR_0 = prove (`!f:num->real^M^N n. msum(0..2*n+1) f = msum(0..n) (\i. f(2*i) + f(2*i+1))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:num->real^M^N`; `0`; `n:num`] MSUM_PAIR) THEN ASM_REWRITE_TAC[ARITH]);; let MSUM_REFLECT = prove (`!x m n. msum(m..n) x = if n < m then mat 0 else msum(0..n-m) (\i. x(n - i)):real^M^N`, REPEAT GEN_TAC THEN SIMP_TAC[MSUM; FINITE_NUMSEG] THEN GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_MATRIX_ADD] THEN REWRITE_TAC[NEUTRAL_MATRIX_ADD]);;