(* ========================================================================= *) (* HOL basics *) (* ========================================================================= *) ARITH_RULE `(a * x + b * y + a * y) EXP 3 + (b * x) EXP 3 + (a * x + b * y + b * x) EXP 3 + (a * y) EXP 3 = (a * x + a * y + b * x) EXP 3 + (b * y) EXP 3 + (a * y + b * y + b * x) EXP 3 + (a * x) EXP 3`;; (* ========================================================================= *) (* Propositional logic *) (* ========================================================================= *) TAUT `(~input_a ==> (internal <=> T)) /\ (~input_b ==> (output <=> internal)) /\ (input_a ==> (output <=> F)) /\ (input_b ==> (output <=> F)) ==> (output <=> ~(input_a \/ input_b))`;; TAUT `(i1 /\ i2 <=> a) /\ (i1 /\ i3 <=> b) /\ (i2 /\ i3 <=> c) /\ (i1 /\ c <=> d) /\ (m /\ r <=> e) /\ (m /\ w <=> f) /\ (n /\ w <=> g) /\ (p /\ w <=> h) /\ (q /\ w <=> i) /\ (s /\ x <=> j) /\ (t /\ x <=> k) /\ (v /\ x <=> l) /\ (i1 \/ i2 <=> m) /\ (i1 \/ i3 <=> n) /\ (i1 \/ q <=> p) /\ (i2 \/ i3 <=> q) /\ (i3 \/ a <=> r) /\ (a \/ w <=> s) /\ (b \/ w <=> t) /\ (d \/ h <=> u) /\ (c \/ w <=> v) /\ (~e <=> w) /\ (~u <=> x) /\ (i \/ l <=> o1) /\ (g \/ k <=> o2) /\ (f \/ j <=> o3) ==> (o1 <=> ~i1) /\ (o2 <=> ~i2) /\ (o3 <=> ~i3)`;; (* ========================================================================= *) (* Abstractions and quantifiers *) (* ========================================================================= *) MESON[] `((?x. !y. P(x) <=> P(y)) <=> ((?x. Q(x)) <=> (!y. Q(y)))) <=> ((?x. !y. Q(x) <=> Q(y)) <=> ((?x. P(x)) <=> (!y. P(y))))`;; MESON[] `(!x y z. P x y /\ P y z ==> P x z) /\ (!x y z. Q x y /\ Q y z ==> Q x z) /\ (!x y. P x y ==> P y x) /\ (!x y. P x y \/ Q x y) ==> (!x y. P x y) \/ (!x y. Q x y)`;; let ewd1062 = MESON[] `(!x. x <= x) /\ (!x y z. x <= y /\ y <= z ==> x <= z) /\ (!x y. f(x) <= y <=> x <= g(y)) ==> (!x y. x <= y ==> f(x) <= f(y)) /\ (!x y. x <= y ==> g(x) <= g(y))`;; let ewd1062 = MESON[] `(!x. R x x) /\ (!x y z. R x y /\ R y z ==> R x z) /\ (!x y. R (f x) y <=> R x (g y)) ==> (!x y. R x y ==> R (f x) (f y)) /\ (!x y. R x y ==> R (g x) (g y))`;; MESON[] `(?!x. g(f x) = x) <=> (?!y. f(g y) = y)`;; MESON [ADD_ASSOC; ADD_SYM] `m + (n + p) = n + (m + p)`;; (* ========================================================================= *) (* Tactics and tacticals *) (* ========================================================================= *) g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; e DISCH_TAC;; b();; e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));; e(SIMP_TAC[]);; e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e DISCH_TAC;; e(ASM_REWRITE_TAC[]);; e(CONV_TAC ARITH_RULE);; let trivial = top_thm();; g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));; e(SIMP_TAC[]);; e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e DISCH_TAC;; e(ASM_REWRITE_TAC[]);; e(CONV_TAC ARITH_RULE);; let trivial = top_thm();; g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);; let trivial = top_thm();; let trivial = prove (`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`, CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);; let trivial = prove (`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`, REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN MP_TAC(SPECL [`x:real`; `--y`] REAL_LE_MUL) THEN REAL_ARITH_TAC);; let trivial = prove (`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`, MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN REAL_ARITH_TAC);; let SUM_OF_NUMBERS = prove (`!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2`, INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; let SUM_OF_SQUARES = prove (`!n. nsum(1..n) (\i. i * i) = (n * (n + 1) * (2 * n + 1)) DIV 6`, INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; let SUM_OF_CUBES = prove (`!n. nsum(1..n) (\i. i*i*i) = (n * n * (n + 1) * (n + 1)) DIV 4`, INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; (* ========================================================================= *) (* HOL's number systems *) (* ========================================================================= *) REAL_ARITH `!x y:real. (abs(x) - abs(y)) <= abs(x - y)`;; INT_ARITH `!a b a' b' D:int. (a pow 2 - D * b pow 2) * (a' pow 2 - D * b' pow 2) = (a * a' + D * b * b') pow 2 - D * (a * b' + a' * b) pow 2`;; REAL_ARITH `!x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11:real. x3 = abs(x2) - x1 /\ x4 = abs(x3) - x2 /\ x5 = abs(x4) - x3 /\ x6 = abs(x5) - x4 /\ x7 = abs(x6) - x5 /\ x8 = abs(x7) - x6 /\ x9 = abs(x8) - x7 /\ x10 = abs(x9) - x8 /\ x11 = abs(x10) - x9 ==> x1 = x10 /\ x2 = x11`;; REAL_ARITH `!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y`;; REAL_ARITH `((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2) = ((&1 / &6) * ((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 + (x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) + (&1 / &6) * ((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 + (x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4))`;; ARITH_RULE `x < 2 ==> 2 * x + 1 < 4`;; (**** Fails ARITH_RULE `~(2 * m + 1 = 2 * n)`;; ****) ARITH_RULE `x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;; (**** Fails ARITH_RULE `x <= 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;; ****) (**** Fails ARITH_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;; ****) (**** Fails REAL_ARITH `!x y:real. x = y ==> x * y = y pow 2`;; ****) prioritize_real();; REAL_RING `s = (a + b + c) / &2 ==> s * (s - b) * (s - c) + s * (s - c) * (s - a) + s * (s - a) * (s - b) - (s - a) * (s - b) * (s - c) = a * b * c`;; REAL_RING `a pow 2 = &2 /\ x pow 2 + a * x + &1 = &0 ==> x pow 4 + &1 = &0`;; REAL_RING `(a * x pow 2 + b * x + c = &0) /\ (a * y pow 2 + b * y + c = &0) /\ ~(x = y) ==> (a * x * y = c) /\ (a * (x + y) + b = &0)`;; REAL_RING `p = (&3 * a1 - a2 pow 2) / &3 /\ q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\ x = z + a2 / &3 /\ x * w = w pow 2 - p / &3 ==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=> if p = &0 then x pow 3 = q else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)`;; REAL_FIELD `&0 < x ==> &1 / x - &1 / (&1 + x) = &1 / (x * (&1 + x))`;; REAL_FIELD `s pow 2 = b pow 2 - &4 * a * c ==> (a * x pow 2 + b * x + c = &0 <=> if a = &0 then if b = &0 then if c = &0 then T else F else x = --c / b else x = (--b + s) / (&2 * a) \/ x = (--b + --s) / (&2 * a))`;; (**** This needs an external SDP solver to assist with proof needs "Examples/sos.ml";; SOS_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;; REAL_SOS `!a1 a2 a3 a4:real. &0 <= a1 /\ &0 <= a2 /\ &0 <= a3 /\ &0 <= a4 ==> a1 pow 2 + ((a1 + a2) / &2) pow 2 + ((a1 + a2 + a3) / &3) pow 2 + ((a1 + a2 + a3 + a4) / &4) pow 2 <= &4 * (a1 pow 2 + a2 pow 2 + a3 pow 2 + a4 pow 2)`;; REAL_SOS `!a b c:real. a >= &0 /\ b >= &0 /\ c >= &0 ==> &3 / &2 * (b + c) * (a + c) * (a + b) <= a * (a + c) * (a + b) + b * (b + c) * (a + b) + c * (b + c) * (a + c)`;; SOS_CONV `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;; PURE_SOS `x pow 4 + &2 * x pow 2 * z + x pow 2 - &2 * x * y * z + &2 * y pow 2 * z pow 2 + &2 * y * z pow 2 + &2 * z pow 2 - &2 * x + &2 * y * z + &1 >= &0`;; *****) needs "Examples/cooper.ml";; COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;; COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;; needs "Rqe/make.ml";; REAL_QELIM_CONV `!x. &0 <= x ==> ?y. y pow 2 = x`;; (* ========================================================================= *) (* Inductive definitions *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Bug puzzle. *) (* ------------------------------------------------------------------------- *) prioritize_real();; let move = new_definition `move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=> (?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\ bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/ (?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\ ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/ (?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\ cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;; let reachable_RULES,reachable_INDUCT,reachable_CASES = new_inductive_definition `(!p. reachable p p) /\ (!p q r. move p q /\ reachable q r ==> reachable p r)`;; let oriented_area = new_definition `oriented_area ((ax,ay),(bx,by),(cx,cy)) = ((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;; let MOVE_INVARIANT = prove (`!p p'. move p p' ==> oriented_area p = oriented_area p'`, REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);; let REACHABLE_INVARIANT = prove (`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`, MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);; let IMPOSSIBILITY_B = prove (`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/ reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`, STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Verification of a simple concurrent program. *) (* ------------------------------------------------------------------------- *) let init = new_definition `init (x,y,pc1,pc2,sem) <=> pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;; let trans = new_definition `trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=> pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\ (x',y',pc2') = (x,y,pc2) \/ pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\ (x',y',pc1') = (x,y,pc1) \/ pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\ (y',pc2',sem') = (y,pc2,sem) \/ pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\ pc1' = pc1 /\ sem' = sem \/ pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\ (x',y',pc2') = (x,y,pc2) \/ pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\ (x',y',pc1') = (x,y,pc1)`;; let mutex = new_definition `mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;; let indinv = new_definition `indinv (x:num,y:num,pc1,pc2,sem) <=> sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;; needs "Library/rstc.ml";; let INDUCTIVE_INVARIANT = prove (`!init invariant transition P. (!s. init s ==> invariant s) /\ (!s s'. invariant s /\ transition s s' ==> invariant s') /\ (!s. invariant s ==> P s) ==> !s s':A. init s /\ RTC transition s s' ==> P s'`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`transition:A->A->bool`; `\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN MESON_TAC[]);; let MUTEX = prove (`!s s'. init s /\ RTC trans s s' ==> mutex s'`, MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN ARITH_TAC);; (* ========================================================================= *) (* Wellfounded induction *) (* ========================================================================= *) let NSQRT_2 = prove (`!p q. p * p = 2 * q * q ==> q = 0`, MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM `EVEN`) THEN REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `m:num`]) THEN ASM_REWRITE_TAC[ARITH_RULE `q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=> (2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q`] THEN ASM_MESON_TAC[LE_MULT2; MULT_EQ_0; ARITH_RULE `2 * x <= x <=> x = 0`]);; (* ========================================================================= *) (* Changing proof style *) (* ========================================================================= *) let fix ts = MAP_EVERY X_GEN_TAC ts;; let assume lab t = DISCH_THEN(fun th -> if concl th = t then LABEL_TAC lab th else failwith "assume");; let we're finished tac = tac;; let suffices_to_prove q tac = SUBGOAL_THEN q (fun th -> MP_TAC th THEN tac);; let note(lab,t) tac = SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN DISCH_THEN(fun th -> LABEL_TAC lab th);; let have t = note("",t);; let cases (lab,t) tac = SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (LABEL_TAC lab));; let consider (x,lab,t) tac = let tm = mk_exists(x,t) in SUBGOAL_THEN tm (X_CHOOSE_THEN x (LABEL_TAC lab)) THENL [tac; ALL_TAC];; let trivial = MESON_TAC[];; let algebra = CONV_TAC NUM_RING;; let arithmetic = ARITH_TAC;; let by labs tac = MAP_EVERY (fun l -> USE_THEN l MP_TAC) labs THEN tac;; let using ths tac = MAP_EVERY MP_TAC ths THEN tac;; let so constr arg tac = constr arg (FIRST_ASSUM MP_TAC THEN tac);; let NSQRT_2 = prove (`!p q. p * p = 2 * q * q ==> q = 0`, suffices_to_prove `!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0)) ==> (!q. p * p = 2 * q * q ==> q = 0)` (MATCH_ACCEPT_TAC num_WF) THEN fix [`p:num`] THEN assume("A") `!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0` THEN fix [`q:num`] THEN assume("B") `p * p = 2 * q * q` THEN so have `EVEN(p * p) <=> EVEN(2 * q * q)` (trivial) THEN so have `EVEN(p)` (using [ARITH; EVEN_MULT] trivial) THEN so consider (`m:num`,"C",`p = 2 * m`) (using [EVEN_EXISTS] trivial) THEN cases ("D",`q < p \/ p <= q`) (arithmetic) THENL [so have `q * q = 2 * m * m ==> m = 0` (by ["A"] trivial) THEN so we're finished (by ["B"; "C"] algebra); so have `p * p <= q * q` (using [LE_MULT2] trivial) THEN so have `q * q = 0` (by ["B"] arithmetic) THEN so we're finished (algebra)]);; (* ========================================================================= *) (* Recursive definitions *) (* ========================================================================= *) let fib = define `fib n = if n = 0 \/ n = 1 then 1 else fib(n - 1) + fib(n - 2)`;; let fib2 = define `(fib2 0 = 1) /\ (fib2 1 = 1) /\ (fib2 (n + 2) = fib2(n) + fib2(n + 1))`;; let halve = define `halve (2 * n) = n`;; let unknown = define `unknown n = unknown(n + 1)`;; define `!n. collatz(n) = if n <= 1 then n else if EVEN(n) then collatz(n DIV 2) else collatz(3 * n + 1)`;; let fusc_def = define `(fusc (2 * n) = if n = 0 then 0 else fusc(n)) /\ (fusc (2 * n + 1) = if n = 0 then 1 else fusc(n) + fusc(n + 1))`;; let fusc = prove (`fusc 0 = 0 /\ fusc 1 = 1 /\ fusc (2 * n) = fusc(n) /\ fusc (2 * n + 1) = fusc(n) + fusc(n + 1)`, REWRITE_TAC[fusc_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(INST [`0`,`n:num`] fusc_def) THEN ARITH_TAC);; let binom = define `(!n. binom(n,0) = 1) /\ (!k. binom(0,SUC(k)) = 0) /\ (!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;; let BINOM_LT = prove (`!n k. n < k ==> (binom(n,k) = 0)`, INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);; let BINOM_REFL = prove (`!n. binom(n,n) = 1`, INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);; let BINOM_FACT = prove (`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`, INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);; let BINOMIAL_THEOREM = prove (`!n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`, INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN MATCH_MP_TAC(ARITH_RULE `a = e /\ b = c + d ==> a + b = c + d + e`) THEN CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN REWRITE_TAC[MULT_AC]);; (* ========================================================================= *) (* Sets and functions *) (* ========================================================================= *) let SURJECTIVE_IFF_RIGHT_INVERSE = prove (`(!y. ?x. g x = y) <=> (?f. g o f = I)`, REWRITE_TAC[FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);; let INJECTIVE_IFF_LEFT_INVERSE = prove (`(!x y. f x = f y ==> x = y) <=> (?g. g o f = I)`, let lemma = MESON[] `(!x x'. f x = f x' ==> x = x') <=> (!y:B. ?u:A. !x. f x = y ==> u = x)` in REWRITE_TAC[lemma; FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);; let cantor = new_definition `cantor(x,y) = ((x + y) EXP 2 + 3 * x + y) DIV 2`;; (**** Needs external SDP solver needs "Examples/sos.ml";; let CANTOR_LEMMA = prove (`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`, REWRITE_TAC[cantor] THEN CONV_TAC SOS_RULE);; ****) let CANTOR_LEMMA_LEMMA = prove (`x + y < x' + y' ==> cantor(x,y) < cantor(x',y')`, REWRITE_TAC[ARITH_RULE `x + y < z <=> x + y + 1 <= z`] THEN DISCH_TAC THEN REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN MATCH_MP_TAC(ARITH_RULE `x + 2 <= y ==> x DIV 2 < y DIV 2`) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(x + y + 1) EXP 2 + (x + y + 1)` THEN CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(ARITH_RULE `a:num <= b /\ c <= d ==> a + c <= b + d + e`) THEN ASM_SIMP_TAC[EXP_2; LE_MULT2]);; let CANTOR_LEMMA = prove (`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`, MESON_TAC[LT_CASES; LT_REFL; CANTOR_LEMMA_LEMMA]);; let CANTOR_INJ = prove (`!w z. cantor w = cantor z ==> w = z`, REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ] THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP CANTOR_LEMMA th)) THEN ASM_REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN REWRITE_TAC[ARITH_RULE `(a + b + 2 * x) DIV 2 = (a + b) DIV 2 + x`] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; let CANTOR_THM = prove (`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`, REWRITE_TAC[INJECTIVE_IFF_LEFT_INVERSE; FUN_EQ_THM; I_DEF; o_DEF] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN MESON_TAC[]);; (* ========================================================================= *) (* Inductive datatypes *) (* ========================================================================= *) let line_INDUCT,line_RECURSION = define_type "line = Line_1 | Line_2 | Line_3 | Line_4 | Line_5 | Line_6 | Line_7";; let point_INDUCT,point_RECURSION = define_type "point = Point_1 | Point_2 | Point_3 | Point_4 | Point_5 | Point_6 | Point_7";; let fano_incidence = [1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4; 4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];; let fano_point i = mk_const("Point_"^string_of_int i,[]);; let fano_line i = mk_const("Line_"^string_of_int i,[]);; let p = `p:point` and l = `l:line` ;; let fano_clause (i,j) = mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));; parse_as_infix("ON",(11,"right"));; let ON = new_definition (mk_eq(`((ON):point->line->bool) p l`, list_mk_disj(map fano_clause fano_incidence)));; let ON_CLAUSES = prove (list_mk_conj(allpairs (fun i j -> mk_eq(mk_comb(mk_comb(`(ON)`,fano_point i),fano_line j), if mem (i,j) fano_incidence then `T` else `F`)) (1--7) (1--7)), REWRITE_TAC[ON; distinctness "line"; distinctness "point"]);; let FORALL_POINT = prove (`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\ P Point_5 /\ P Point_6 /\ P Point_7`, EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[point_INDUCT]]);; let FORALL_LINE = prove (`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\ P Line_5 /\ P Line_6 /\ P Line_7`, EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[line_INDUCT]]);; let EXISTS_POINT = prove (`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/ P Point_5 \/ P Point_6 \/ P Point_7`, MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);; let EXISTS_LINE = prove (`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/ P Line_5 \/ P Line_6 \/ P Line_7`, MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);; let FANO_TAC = GEN_REWRITE_TAC DEPTH_CONV [FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN GEN_REWRITE_TAC DEPTH_CONV (basic_rewrites() @ [ON_CLAUSES; distinctness "point"; distinctness "line"]);; let FANO_RULE tm = prove(tm,FANO_TAC);; let AXIOM_1 = FANO_RULE `!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\ !l'. p ON l' /\ p' ON l' ==> l' = l`;; let AXIOM_2 = FANO_RULE `!l l'. ?p. p ON l /\ p ON l'`;; let AXIOM_3 = FANO_RULE `?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ ~(?l. p ON l /\ p' ON l /\ p'' ON l)`;; let AXIOM_4 = FANO_RULE `!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ p ON l /\ p' ON l /\ p'' ON l`;; (* ========================================================================= *) (* Semantics of programming languages *) (* ========================================================================= *) let string_INDUCT,string_RECURSION = define_type "string = String (int list)";; let expression_INDUCT,expression_RECURSION = define_type "expression = Literal num | Variable string | Plus expression expression | Times expression expression";; let command_INDUCT,command_RECURSION = define_type "command = Assign string expression | Sequence command command | If expression command command | While expression command";; parse_as_infix(";;",(18,"right"));; parse_as_infix(":=",(20,"right"));; override_interface(";;",`Sequence`);; override_interface(":=",`Assign`);; overload_interface("+",`Plus`);; overload_interface("*",`Times`);; let value = define `(value (Literal n) s = n) /\ (value (Variable x) s = s(x)) /\ (value (e1 + e2) s = value e1 s + value e2 s) /\ (value (e1 * e2) s = value e1 s * value e2 s)`;; let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition `(!x e s s'. s'(x) = value e s /\ (!y. ~(y = x) ==> s'(y) = s(y)) ==> sem (x := e) s s') /\ (!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s'' ==> sem(c1 ;; c2) s s'') /\ (!e c1 c2 s s'. ~(value e s = 0) /\ sem(c1) s s' ==> sem(If e c1 c2) s s') /\ (!e c1 c2 s s'. value e s = 0 /\ sem(c2) s s' ==> sem(If e c1 c2) s s') /\ (!e c s. value e s = 0 ==> sem(While e c) s s) /\ (!e c s s' s''. ~(value e s = 0) /\ sem(c) s s' /\ sem(While e c) s' s'' ==> sem(While e c) s s'')`;; (**** Fails define `sem(While e c) s s' <=> if value e s = 0 then (s' = s) else ?s''. sem c s s'' /\ sem(While e c) s'' s'`;; ****) let DETERMINISM = prove (`!c s s' s''. sem c s s' /\ sem c s s'' ==> (s' = s'')`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC sem_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN REWRITE_TAC[distinctness "command"; injectivity "command"] THEN REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);; let wlp = new_definition `wlp c q s <=> !s'. sem c s s' ==> q s'`;; let terminates = new_definition `terminates c s <=> ?s'. sem c s s'`;; let wp = new_definition `wp c q s <=> terminates c s /\ wlp c q s`;; let WP_TOTAL = prove (`!c. (wp c EMPTY = EMPTY)`, REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; EMPTY] THEN MESON_TAC[]);; let WP_MONOTONIC = prove (`q SUBSET r ==> wp c q SUBSET wp c r`, REWRITE_TAC[SUBSET; IN; wp; wlp; terminates] THEN MESON_TAC[]);; let WP_DISJUNCTIVE = prove (`(wp c p) UNION (wp c q) = wp c (p UNION q)`, REWRITE_TAC[FUN_EQ_THM; IN; wp; wlp; IN_ELIM_THM; UNION; terminates] THEN MESON_TAC[DETERMINISM]);; let WP_SEQ = prove (`!c1 c2 q. wp (c1 ;; c2) = wp c1 o wp c2`, REWRITE_TAC[wp; wlp; terminates; FUN_EQ_THM; o_THM] THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sem_CASES] THEN REWRITE_TAC[injectivity "command"; distinctness "command"] THEN MESON_TAC[DETERMINISM]);; let correct = new_definition `correct p c q <=> p SUBSET (wp c q)`;; let CORRECT_PRESTRENGTH = prove (`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`, REWRITE_TAC[correct; SUBSET_TRANS]);; let CORRECT_POSTWEAK = prove (`!p c q q'. correct p c q' /\ q' SUBSET q ==> correct p c q`, REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);; let CORRECT_SEQ = prove (`!p q r c1 c2. correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; c2) q`, REWRITE_TAC[correct; WP_SEQ; o_THM] THEN MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);; (* ------------------------------------------------------------------------- *) (* Need a fresh HOL session here; now doing shallow embedding. *) (* ------------------------------------------------------------------------- *) let assign = new_definition `Assign (f:S->S) (q:S->bool) = q o f`;; parse_as_infix(";;",(18,"right"));; let sequence = new_definition `(c1:(S->bool)->(S->bool)) ;; (c2:(S->bool)->(S->bool)) = c1 o c2`;; let if_def = new_definition `If e (c:(S->bool)->(S->bool)) q = {s | if e s then c q s else q s}`;; let ite_def = new_definition `Ite e (c1:(S->bool)->(S->bool)) c2 q = {s | if e s then c1 q s else c2 q s}`;; let while_RULES,while_INDUCT,while_CASES = new_inductive_definition `!q s. If e (c ;; while e c) q s ==> while e c q s`;; let while_def = new_definition `While e c q = {s | !w. (!s:S. (if e(s) then c w s else q s) ==> w s) ==> w s}`;; let monotonic = new_definition `monotonic c <=> !q q'. q SUBSET q' ==> (c q) SUBSET (c q')`;; let MONOTONIC_ASSIGN = prove (`monotonic (Assign f)`, SIMP_TAC[monotonic; assign; SUBSET; o_THM; IN]);; let MONOTONIC_IF = prove (`monotonic c ==> monotonic (If e c)`, REWRITE_TAC[monotonic; if_def] THEN SET_TAC[]);; let MONOTONIC_ITE = prove (`monotonic c1 /\ monotonic c2 ==> monotonic (Ite e c1 c2)`, REWRITE_TAC[monotonic; ite_def] THEN SET_TAC[]);; let MONOTONIC_SEQ = prove (`monotonic c1 /\ monotonic c2 ==> monotonic (c1 ;; c2)`, REWRITE_TAC[monotonic; sequence; o_THM] THEN SET_TAC[]);; let MONOTONIC_WHILE = prove (`monotonic c ==> monotonic(While e c)`, REWRITE_TAC[monotonic; while_def] THEN SET_TAC[]);; let WHILE_THM = prove (`!e c q:S->bool. monotonic c ==> (!s. If e (c ;; While e c) q s ==> While e c q s) /\ (!w'. (!s. If e (c ;; (\q. w')) q s ==> w' s) ==> (!a. While e c q a ==> w' a)) /\ (!s. While e c q s <=> If e (c ;; While e c) q s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN (MP_TAC o GEN_ALL o DISCH_ALL o derive_nonschematic_inductive_relations) `!s:S. (if e s then c w s else q s) ==> w s` THEN REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM; IMP_IMP] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[FUN_EQ_THM; while_def; IN_ELIM_THM] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[monotonic] THEN SET_TAC[]);; let WHILE_FIX = prove (`!e c. monotonic c ==> (While e c = If e (c ;; While e c))`, REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[WHILE_THM]);; let correct = new_definition `correct p c q <=> p SUBSET (c q)`;; let CORRECT_PRESTRENGTH = prove (`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`, REWRITE_TAC[correct; SUBSET_TRANS]);; let CORRECT_POSTWEAK = prove (`!p c q q'. monotonic c /\ correct p c q' /\ q' SUBSET q ==> correct p c q`, REWRITE_TAC[correct; monotonic] THEN SET_TAC[]);; let CORRECT_ASSIGN = prove (`!p f q. (p SUBSET (q o f)) ==> correct p (Assign f) q`, REWRITE_TAC[correct; assign]);; let CORRECT_SEQ = prove (`!p q r c1 c2. monotonic c1 /\ correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; c2) q`, REWRITE_TAC[correct; sequence; monotonic; o_THM] THEN SET_TAC[]);; let CORRECT_ITE = prove (`!p e c1 c2 q. correct (p INTER e) c1 q /\ correct (p INTER (UNIV DIFF e)) c2 q ==> correct p (Ite e c1 c2) q`, REWRITE_TAC[correct; ite_def] THEN SET_TAC[]);; let CORRECT_IF = prove (`!p e c q. correct (p INTER e) c q /\ p INTER (UNIV DIFF e) SUBSET q ==> correct p (If e c) q`, REWRITE_TAC[correct; if_def] THEN SET_TAC[]);; let CORRECT_WHILE = prove (`!(<<) p c q e invariant. monotonic c /\ WF(<<) /\ p SUBSET invariant /\ (UNIV DIFF e) INTER invariant SUBSET q /\ (!X:S. correct (invariant INTER e INTER (\s. X = s)) c (invariant INTER (\s. s << X))) ==> correct p (While e c) q`, REWRITE_TAC[correct; SUBSET; IN_INTER; IN_UNIV; IN_DIFF; IN] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!s:S. invariant s ==> While e c q s` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP WHILE_FIX th]) THEN REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM] THEN COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:S`; `s:S`]) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monotonic]) THEN REWRITE_TAC[SUBSET; IN; RIGHT_IMP_FORALL_THM] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[INTER; IN_ELIM_THM; IN]);; let assert_def = new_definition `assert (p:S->bool) (q:S->bool) = q`;; let variant_def = new_definition `variant ((<<):S->S->bool) (q:S->bool) = q`;; let CORRECT_SEQ_VC = prove (`!p q r c1 c2. monotonic c1 /\ correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; assert r ;; c2) q`, REWRITE_TAC[correct; sequence; monotonic; assert_def; o_THM] THEN SET_TAC[]);; let CORRECT_WHILE_VC = prove (`!(<<) p c q e invariant. monotonic c /\ WF(<<) /\ p SUBSET invariant /\ (UNIV DIFF e) INTER invariant SUBSET q /\ (!X:S. correct (invariant INTER e INTER (\s. X = s)) c (invariant INTER (\s. s << X))) ==> correct p (While e (assert invariant ;; variant(<<) ;; c)) q`, REPEAT STRIP_TAC THEN REWRITE_TAC[sequence; variant_def; assert_def; o_DEF; ETA_AX] THEN ASM_MESON_TAC[CORRECT_WHILE]);; let MONOTONIC_ASSERT = prove (`monotonic (assert p)`, REWRITE_TAC[assert_def; monotonic]);; let MONOTONIC_VARIANT = prove (`monotonic (variant p)`, REWRITE_TAC[variant_def; monotonic]);; let MONO_TAC = REPEAT(MATCH_MP_TAC MONOTONIC_WHILE ORELSE (MAP_FIRST MATCH_MP_TAC [MONOTONIC_SEQ; MONOTONIC_IF; MONOTONIC_ITE] THEN CONJ_TAC)) THEN MAP_FIRST MATCH_ACCEPT_TAC [MONOTONIC_ASSIGN; MONOTONIC_ASSERT; MONOTONIC_VARIANT];; let VC_TAC = FIRST [MATCH_MP_TAC CORRECT_SEQ_VC THEN CONJ_TAC THENL [MONO_TAC; CONJ_TAC]; MATCH_MP_TAC CORRECT_ITE THEN CONJ_TAC; MATCH_MP_TAC CORRECT_IF THEN CONJ_TAC; MATCH_MP_TAC CORRECT_WHILE_VC THEN REPEAT CONJ_TAC THENL [MONO_TAC; TRY(MATCH_ACCEPT_TAC WF_MEASURE); ALL_TAC; ALL_TAC; REWRITE_TAC[FORALL_PAIR_THM; MEASURE] THEN REPEAT GEN_TAC]; MATCH_MP_TAC CORRECT_ASSIGN];; needs "Library/prime.ml";; (* ------------------------------------------------------------------------- *) (* x = m, y = n; *) (* while (!(x == 0 || y == 0)) *) (* { if (x < y) y = y - x; *) (* else x = x - y; *) (* } *) (* if (x == 0) x = y; *) (* ------------------------------------------------------------------------- *) g `correct (\(m,n,x,y). T) (Assign (\(m,n,x,y). m,n,m,n) ;; // x,y := m,n assert (\(m,n,x,y). x = m /\ y = n) ;; While (\(m,n,x,y). ~(x = 0 \/ y = 0)) (assert (\(m,n,x,y). gcd(x,y) = gcd(m,n)) ;; variant(MEASURE(\(m,n,x,y). x + y)) ;; Ite (\(m,n,x,y). x < y) (Assign (\(m,n,x,y). m,n,x,y - x)) (Assign (\(m,n,x,y). m,n,x - y,y))) ;; assert (\(m,n,x,y). (x = 0 \/ y = 0) /\ gcd(x,y) = gcd(m,n)) ;; If (\(m,n,x,y). x = 0) (Assign (\(m,n,x,y). (m,n,y,y)))) (\(m,n,x,y). gcd(m,n) = x)`;; e(REPEAT VC_TAC);; b();; e(REPEAT VC_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:num`; `y:num`] THEN REWRITE_TAC[IN; INTER; UNIV; DIFF; o_DEF; IN_ELIM_THM; PAIR_EQ] THEN CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[]);; e(SIMP_TAC[GCD_SUB; LT_IMP_LE]);; e ARITH_TAC;; e(SIMP_TAC[GCD_SUB; NOT_LT] THEN ARITH_TAC);; e(MESON_TAC[GCD_0]);; e(MESON_TAC[GCD_0; GCD_SYM]);; parse_as_infix("refines",(12,"right"));; let refines = new_definition `c2 refines c1 <=> !q. c1(q) SUBSET c2(q)`;; let REFINES_REFL = prove (`!c. c refines c`, REWRITE_TAC[refines; SUBSET_REFL]);; let REFINES_TRANS = prove (`!c1 c2 c3. c3 refines c2 /\ c2 refines c1 ==> c3 refines c1`, REWRITE_TAC[refines] THEN MESON_TAC[SUBSET_TRANS]);; let REFINES_CORRECT = prove (`correct p c1 q /\ c2 refines c1 ==> correct p c2 q`, REWRITE_TAC[correct; refines] THEN MESON_TAC[SUBSET_TRANS]);; let REFINES_WHILE = prove (`c' refines c ==> While e c' refines While e c`, REWRITE_TAC[refines; while_def; SUBSET; IN_ELIM_THM; IN] THEN MESON_TAC[]);; let specification = new_definition `specification(p,q) r = if q SUBSET r then p else {}`;; let REFINES_SPECIFICATION = prove (`c refines specification(p,q) ==> correct p c q`, REWRITE_TAC[specification; correct; refines] THEN MESON_TAC[SUBSET_REFL; SUBSET_EMPTY]);; (* ========================================================================= *) (* Number theory *) (* ========================================================================= *) needs "Library/prime.ml";; needs "Library/pocklington.ml";; needs "Library/binomial.ml";; prioritize_num();; let FERMAT_PRIME_CONV n = let tm = subst [mk_small_numeral n,`x:num`] `prime(2 EXP (2 EXP x) + 1)` in (RAND_CONV NUM_REDUCE_CONV THENC PRIME_CONV) tm;; FERMAT_PRIME_CONV 0;; FERMAT_PRIME_CONV 1;; FERMAT_PRIME_CONV 2;; FERMAT_PRIME_CONV 3;; FERMAT_PRIME_CONV 4;; FERMAT_PRIME_CONV 5;; FERMAT_PRIME_CONV 6;; FERMAT_PRIME_CONV 7;; FERMAT_PRIME_CONV 8;; let CONG_TRIVIAL = prove (`!x y. n divides x /\ n divides y ==> (x == y) (mod n)`, MESON_TAC[CONG_0; CONG_SYM; CONG_TRANS]);; let LITTLE_CHECK_CONV tm = EQT_ELIM((RATOR_CONV(LAND_CONV NUM_EXP_CONV) THENC CONG_CONV) tm);; LITTLE_CHECK_CONV `(9 EXP 8 == 9) (mod 3)`;; LITTLE_CHECK_CONV `(9 EXP 3 == 9) (mod 3)`;; LITTLE_CHECK_CONV `(10 EXP 7 == 10) (mod 7)`;; LITTLE_CHECK_CONV `(2 EXP 7 == 2) (mod 7)`;; LITTLE_CHECK_CONV `(777 EXP 13 == 777) (mod 13)`;; let DIVIDES_FACT_PRIME = prove (`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`, GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL [ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1]; ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL; ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);; let DIVIDES_BINOM_PRIME = prove (`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`, REPEAT STRIP_TAC THEN MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n`; `n:num`] BINOM_FACT)) THEN ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);; let DIVIDES_NSUM = prove (`!m n. (!i. m <= i /\ i <= n ==> p divides f(i)) ==> p divides nsum(m..n) f`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ASM_MESON_TAC[LE; LE_TRANS; DIVIDES_0; DIVIDES_ADD; LE_REFL]);; let FLT_LEMMA = prove (`!p a b. prime p ==> ((a + b) EXP p == a EXP p + b EXP p) (mod p)`, REPEAT STRIP_TAC THEN REWRITE_TAC[BINOMIAL_THEOREM] THEN SUBGOAL_THEN `1 <= p /\ 0 < p` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; ARITH; NSUM_CLAUSES_RIGHT] THEN REWRITE_TAC[SUB_0; SUB_REFL; EXP; binom; BINOM_REFL; MULT_CLAUSES] THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a + b = (b + 0) + a`] THEN REPEAT(MATCH_MP_TAC CONG_ADD THEN REWRITE_TAC[CONG_REFL]) THEN REWRITE_TAC[CONG_0] THEN MATCH_MP_TAC DIVIDES_NSUM THEN ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_BINOM_PRIME; ARITH_RULE `0 < p /\ 1 <= i /\ i <= p - 1 ==> 0 < i /\ i < p`]);; let FERMAT_LITTLE = prove (`!p a. prime p ==> (a EXP p == a) (mod p)`, GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THENL [ASM_MESON_TAC[EXP_EQ_0; CONG_REFL; PRIME_0]; ASM_MESON_TAC[ADD1; FLT_LEMMA; EXP_ONE; CONG_ADD; CONG_TRANS; CONG_REFL]]);; let FERMAT_LITTLE_COPRIME = prove (`!p a. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `~(p = 0) ==> SUC(p - 1) = p`] THEN ASM_SIMP_TAC[FERMAT_LITTLE; MULT_CLAUSES]);; let FERMAT_LITTLE_VARIANT = prove (`!p a. prime p ==> (a EXP (1 + m * (p - 1)) == a) (mod p)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME_STRONG) THENL [ASM_MESON_TAC[CONG_TRIVIAL; ADD_AC; ADD1; DIVIDES_REXP_SUC]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a = a * 1`] THEN REWRITE_TAC[EXP_ADD; EXP_1] THEN MATCH_MP_TAC CONG_MULT THEN REWRITE_TAC[GSYM EXP_EXP; CONG_REFL] THEN ASM_MESON_TAC[COPRIME_SYM; COPRIME_EXP; PHI_PRIME; FERMAT_LITTLE_COPRIME]);; let RSA = prove (`prime p /\ prime q /\ ~(p = q) /\ (d * e == 1) (mod ((p - 1) * (q - 1))) /\ plaintext < p * q /\ (ciphertext = (plaintext EXP e) MOD (p * q)) ==> (plaintext = (ciphertext EXP d) MOD (p * q))`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MOD_EXP_MOD; MULT_EQ_0; PRIME_IMP_NZ; EXP_EXP] THEN SUBGOAL_THEN `(plaintext == plaintext EXP (e * d)) (mod (p * q))` MP_TAC THENL [ALL_TAC; ASM_SIMP_TAC[CONG; MULT_EQ_0; PRIME_IMP_NZ; MOD_LT]] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [CONG_TO_1]) THENL [ASM_MESON_TAC[MULT_EQ_1; ARITH_RULE `p - 1 = 1 <=> p = 2`]; ALL_TAC] THEN MATCH_MP_TAC CONG_CHINESE THEN ASM_SIMP_TAC[DISTINCT_PRIME_COPRIME] THEN ASM_MESON_TAC[FERMAT_LITTLE_VARIANT; MULT_AC; CONG_SYM]);; (* ========================================================================= *) (* Real analysis *) (* ========================================================================= *) needs "Library/analysis.ml";; needs "Library/transc.ml";; let cheb = define `(!x. cheb 0 x = &1) /\ (!x. cheb 1 x = x) /\ (!n x. cheb (n + 2) x = &2 * x * cheb (n + 1) x - cheb n x)`;; let CHEB_INDUCT = prove (`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`, GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN ASM_SIMP_TAC[ARITH]);; let CHEB_COS = prove (`!n x. cheb n (cos x) = cos(&n * x)`, MATCH_MP_TAC CHEB_INDUCT THEN REWRITE_TAC[cheb; REAL_MUL_LZERO; REAL_MUL_LID; COS_0] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_MUL_LID; REAL_ADD_RDISTRIB] THEN REWRITE_TAC[COS_ADD; COS_DOUBLE; SIN_DOUBLE] THEN MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);; let CHEB_RIPPLE = prove (`!x. abs(x) <= &1 ==> abs(cheb n x) <= &1`, REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN MESON_TAC[CHEB_COS; ACS_COS; COS_BOUNDS]);; let NUM_ADD2_CONV = let add_tm = `(+):num->num->num` and two_tm = `2` in fun tm -> let m = mk_numeral(dest_numeral tm -/ Int 2) in let tm' = mk_comb(mk_comb(add_tm,m),two_tm) in SYM(NUM_ADD_CONV tm');; let CHEB_CONV = let [pth0;pth1;pth2] = CONJUNCTS cheb in let rec conv tm = (GEN_REWRITE_CONV I [pth0; pth1] ORELSEC (LAND_CONV NUM_ADD2_CONV THENC GEN_REWRITE_CONV I [pth2] THENC COMB2_CONV (funpow 3 RAND_CONV ((LAND_CONV NUM_ADD_CONV) THENC conv)) conv THENC REAL_POLY_CONV)) tm in conv;; CHEB_CONV `cheb 8 x`;; let CHEB_2N1 = prove (`!n x. ((x - &1) * (cheb (2 * n + 1) x - &1) = (cheb (n + 1) x - cheb n x) pow 2) /\ (&2 * (x pow 2 - &1) * (cheb (2 * n + 2) x - &1) = (cheb (n + 2) x - cheb n x) pow 2)`, ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC CHEB_INDUCT THEN REWRITE_TAC[ARITH; cheb; CHEB_2; CHEB_3] THEN REPEAT(CHANGED_TAC (REWRITE_TAC[GSYM ADD_ASSOC; LEFT_ADD_DISTRIB; ARITH] THEN REWRITE_TAC[ARITH_RULE `n + 5 = (n + 3) + 2`; ARITH_RULE `n + 4 = (n + 2) + 2`; ARITH_RULE `n + 3 = (n + 1) + 2`; cheb])) THEN CONV_TAC REAL_RING);; let IVT_LEMMA1 = prove (`!f. (!x. f contl x) ==> !x y. f(x) <= &0 /\ &0 <= f(y) ==> ?x. f(x) = &0`, ASM_MESON_TAC[IVT; IVT2; REAL_LE_TOTAL]);; let IVT_LEMMA2 = prove (`!f. (!x. f contl x) /\ (?x. f(x) <= x) /\ (?y. y <= f(y)) ==> ?x. f(x) = x`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. f x - x` IVT_LEMMA1) THEN ASM_SIMP_TAC[CONT_SUB; CONT_X] THEN SIMP_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD; REAL_SUB_0; REAL_ADD_LID] THEN ASM_MESON_TAC[]);; let SARKOVSKII_TRIVIAL = prove (`!f:real->real. (!x. f contl x) /\ (?x. f(f(f(x))) = x) ==> ?x. f(x) = x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC (MESON[] `P x \/ P (f x) \/ P (f(f x)) ==> ?x:real. P x`) THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN REAL_ARITH_TAC);; (* ========================================================================= *) (* Embedding of logics *) (* ========================================================================= *) let string_INDUCT,string_RECURSION = define_type "string = String num";; parse_as_infix("&&",(16,"right"));; parse_as_infix("||",(15,"right"));; parse_as_infix("-->",(14,"right"));; parse_as_infix("<->",(13,"right"));; parse_as_prefix "Not";; parse_as_prefix "Box";; parse_as_prefix "Diamond";; let form_INDUCT,form_RECURSION = define_type "form = False | True | Atom string | Not form | && form form | || form form | --> form form | <-> form form | Box form | Diamond form";; let holds = define `(holds (W,R) V False w <=> F) /\ (holds (W,R) V True w <=> T) /\ (holds (W,R) V (Atom a) w <=> V a w) /\ (holds (W,R) V (Not p) w <=> ~(holds (W,R) V p w)) /\ (holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\ (holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\ (holds (W,R) V (p --> q) w <=> holds (W,R) V p w ==> holds (W,R) V q w) /\ (holds (W,R) V (p <-> q) w <=> holds (W,R) V p w <=> holds (W,R) V q w) /\ (holds (W,R) V (Box p) w <=> !w'. w' IN W /\ R w w' ==> holds (W,R) V p w') /\ (holds (W,R) V (Diamond p) w <=> ?w'. w' IN W /\ R w w' /\ holds (W,R) V p w')`;; let holds_in = new_definition `holds_in (W,R) p = !V w. w IN W ==> holds (W,R) V p w`;; parse_as_infix("|=",(11,"right"));; let valid = new_definition `L |= p <=> !f. L f ==> holds_in f p`;; let S4 = new_definition `S4(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\ (!x. x IN W ==> R x x) /\ (!x y z. R x y /\ R y z ==> R x z)`;; let LTL = new_definition `LTL(W,R) <=> (W = UNIV) /\ !x y:num. R x y <=> x <= y`;; let GL = new_definition `GL(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\ WF(\x y. R y x) /\ (!x y z:num. R x y /\ R y z ==> R x z)`;; let MODAL_TAC = REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];; let MODAL_RULE tm = prove(tm,MODAL_TAC);; let TAUT_1 = MODAL_RULE `L |= Box True`;; let TAUT_2 = MODAL_RULE `L |= Box(A --> B) --> Box A --> Box B`;; let TAUT_3 = MODAL_RULE `L |= Diamond(A --> B) --> Box A --> Diamond B`;; let TAUT_4 = MODAL_RULE `L |= Box(A --> B) --> Diamond A --> Diamond B`;; let TAUT_5 = MODAL_RULE `L |= Box(A && B) --> Box A && Box B`;; let TAUT_6 = MODAL_RULE `L |= Diamond(A || B) --> Diamond A || Diamond B`;; let HOLDS_FORALL_LEMMA = prove (`!W R P. (!A V. P(holds (W,R) V A)) <=> (!p:W->bool. P p)`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC; SIMP_TAC[]] THEN POP_ASSUM(MP_TAC o SPECL [`Atom a`; `\a:string. (p:W->bool)`]) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN REWRITE_TAC[holds] THEN REWRITE_TAC[ETA_AX]);; let MODAL_SCHEMA_TAC = REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> REWRITE_TAC[th]);; let MODAL_REFL = prove (`!W R. (!w:W. w IN W ==> R w w) <=> !A. holds_in (W,R) (Box A --> A)`, MODAL_SCHEMA_TAC THEN MESON_TAC[]);; let MODAL_TRANS = prove (`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\ R w w' /\ R w' w'' ==> R w w'') <=> (!A. holds_in (W,R) (Box A --> Box(Box A)))`, MODAL_SCHEMA_TAC THEN MESON_TAC[]);; let MODAL_SERIAL = prove (`!W R. (!w:W. w IN W ==> ?w'. w' IN W /\ R w w') <=> (!A. holds_in (W,R) (Box A --> Diamond A))`, MODAL_SCHEMA_TAC THEN MESON_TAC[]);; let MODAL_SYM = prove (`!W R. (!w w':W. w IN W /\ w' IN W /\ R w w' ==> R w' w) <=> (!A. holds_in (W,R) (A --> Box(Diamond A)))`, MODAL_SCHEMA_TAC THEN EQ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v = w`; `w:W`]) THEN ASM_MESON_TAC[]);; let MODAL_WFTRANS = prove (`!W R. (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ WF(\x y. x IN W /\ y IN W /\ R y x) <=> (!A. holds_in (W,R) (Box(Box A --> A) --> Box A))`, MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN EQ_TAC THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL [REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC; X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]); X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN MATCH_MP_TAC MONO_FORALL] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Need a fresh HOL session here: doing shallow embedding. *) (* ------------------------------------------------------------------------- *) parse_as_prefix "Not";; parse_as_infix("&&",(16,"right"));; parse_as_infix("||",(15,"right"));; parse_as_infix("-->",(14,"right"));; parse_as_infix("<->",(13,"right"));; let false_def = define `False = \t:num. F`;; let true_def = define `True = \t:num. T`;; let not_def = define `Not p = \t:num. ~(p t)`;; let and_def = define `p && q = \t:num. p t /\ q t`;; let or_def = define `p || q = \t:num. p t \/ q t`;; let imp_def = define `p --> q = \t:num. p t ==> q t`;; let iff_def = define `p <-> q = \t:num. p t <=> q t`;; let forever = define `forever p = \t:num. !t'. t <= t' ==> p t'`;; let sometime = define `sometime p = \t:num. ?t'. t <= t' /\ p t'`;; let next = define `next p = \t:num. p(t + 1)`;; parse_as_infix("until",(17,"right"));; let until = define `p until q = \t:num. ?t'. t <= t' /\ (!t''. t <= t'' /\ t'' < t' ==> p t'') /\ q t'`;; (* ========================================================================= *) (* HOL as a functional programming language *) (* ========================================================================= *) type ite = False | True | Atomic of int | Ite of ite*ite*ite;; let rec norm e = match e with Ite(False,y,z) -> norm z | Ite(True,y,z) -> norm y | Ite(Atomic i,y,z) -> Ite(Atomic i,norm y,norm z) | Ite(Ite(u,v,w),y,z) -> norm(Ite(u,Ite(v,y,z),Ite(w,y,z))) | _ -> e;; let ite_INDUCT,ite_RECURSION = define_type "ite = False | True | Atomic num | Ite ite ite ite";; let eth = prove_general_recursive_function_exists `?norm. (norm False = False) /\ (norm True = True) /\ (!i. norm (Atomic i) = Atomic i) /\ (!y z. norm (Ite False y z) = norm z) /\ (!y z. norm (Ite True y z) = norm y) /\ (!i y z. norm (Ite (Atomic i) y z) = Ite (Atomic i) (norm y) (norm z)) /\ (!u v w y z. norm (Ite (Ite u v w) y z) = norm (Ite u (Ite v y z) (Ite w y z)))`;; let sizeof = define `(sizeof False = 1) /\ (sizeof True = 1) /\ (sizeof(Atomic i) = 1) /\ (sizeof(Ite x y z) = sizeof x * (1 + sizeof y + sizeof z))`;; let eth' = let th = prove (hd(hyp eth), EXISTS_TAC `MEASURE sizeof` THEN REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE; sizeof] THEN ARITH_TAC) in PROVE_HYP th eth;; let norm = new_specification ["norm"] eth';; let SIZEOF_INDUCT = REWRITE_RULE[WF_IND; MEASURE] (ISPEC`sizeof` WF_MEASURE);; let SIZEOF_NZ = prove (`!e. ~(sizeof e = 0)`, MATCH_MP_TAC ite_INDUCT THEN SIMP_TAC[sizeof; ADD_EQ_0; MULT_EQ_0; ARITH]);; let ITE_INDUCT = prove (`!P. P False /\ P True /\ (!i. P(Atomic i)) /\ (!y z. P z ==> P(Ite False y z)) /\ (!y z. P y ==> P(Ite True y z)) /\ (!i y z. P y /\ P z ==> P (Ite (Atomic i) y z)) /\ (!u v w x y z. P(Ite u (Ite v y z) (Ite w y z)) ==> P(Ite (Ite u v w) y z)) ==> !e. P e`, GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SIZEOF_INDUCT THEN MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ite_INDUCT THEN POP_ASSUM_LIST (fun ths -> REPEAT STRIP_TAC THEN FIRST(mapfilter MATCH_MP_TAC ths)) THEN REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[sizeof] THEN TRY ARITH_TAC THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN REWRITE_TAC[MULT_AC; ADD_AC; LT_ADD_LCANCEL] THEN REWRITE_TAC[ADD_ASSOC; LT_ADD_RCANCEL] THEN MATCH_MP_TAC(ARITH_RULE `~(b = 0) /\ ~(c = 0) ==> a < (b + a) + c`) THEN REWRITE_TAC[MULT_EQ_0; SIZEOF_NZ]);; let normalized = define `(normalized False <=> T) /\ (normalized True <=> T) /\ (normalized(Atomic a) <=> T) /\ (normalized(Ite False x y) <=> F) /\ (normalized(Ite True x y) <=> F) /\ (normalized(Ite (Atomic a) x y) <=> normalized x /\ normalized y) /\ (normalized(Ite (Ite u v w) x y) <=> F)`;; let NORMALIZED_NORM = prove (`!e. normalized(norm e)`, MATCH_MP_TAC ITE_INDUCT THEN REWRITE_TAC[norm; normalized]);; let NORMALIZED_INDUCT = prove (`P False /\ P True /\ (!i. P (Atomic i)) /\ (!i x y. P x /\ P y ==> P (Ite (Atomic i) x y)) ==> !e. normalized e ==> P e`, STRIP_TAC THEN MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[normalized] THEN MATCH_MP_TAC ite_INDUCT THEN ASM_MESON_TAC[normalized]);; let holds = define `(holds v False <=> F) /\ (holds v True <=> T) /\ (holds v (Atomic i) <=> v(i)) /\ (holds v (Ite b x y) <=> if holds v b then holds v x else holds v y)`;; let HOLDS_NORM = prove (`!e v. holds v (norm e) <=> holds v e`, MATCH_MP_TAC ITE_INDUCT THEN SIMP_TAC[holds; norm] THEN REPEAT STRIP_TAC THEN CONV_TAC TAUT);; let taut = define `(taut (t,f) False <=> F) /\ (taut (t,f) True <=> T) /\ (taut (t,f) (Atomic i) <=> MEM i t) /\ (taut (t,f) (Ite (Atomic i) x y) <=> if MEM i t then taut (t,f) x else if MEM i f then taut (t,f) y else taut (CONS i t,f) x /\ taut (t,CONS i f) y)`;; let tautology = define `tautology e = taut([],[]) (norm e)`;; let NORMALIZED_TAUT = prove (`!e. normalized e ==> !f t. (!a. ~(MEM a t /\ MEM a f)) ==> (taut (t,f) e <=> !v. (!a. MEM a t ==> v(a)) /\ (!a. MEM a f ==> ~v(a)) ==> holds v e)`, MATCH_MP_TAC NORMALIZED_INDUCT THEN REWRITE_TAC[holds; taut] THEN REWRITE_TAC[NOT_FORALL_THM] THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN EXISTS_TAC `\a:num. MEM a t` THEN ASM_MESON_TAC[]; REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; DISCH_THEN MATCH_MP_TAC] THEN ASM_MESON_TAC[]; REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[])] THEN ASM_SIMP_TAC[MEM; RIGHT_OR_DISTRIB; LEFT_OR_DISTRIB; MESON[] `(!a. ~(MEM a t /\ a = i)) <=> ~(MEM i t)`; MESON[] `(!a. ~(a = i /\ MEM a f)) <=> ~(MEM i f)`] THEN ASM_REWRITE_TAC[AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[]);; let TAUTOLOGY = prove (`!e. tautology e <=> !v. holds v e`, MESON_TAC[tautology; HOLDS_NORM; NORMALIZED_TAUT; MEM; NORMALIZED_NORM]);; let HOLDS_BACK = prove (`!v. (F <=> holds v False) /\ (T <=> holds v True) /\ (!i. v i <=> holds v (Atomic i)) /\ (!p. ~holds v p <=> holds v (Ite p False True)) /\ (!p q. (holds v p /\ holds v q) <=> holds v (Ite p q False)) /\ (!p q. (holds v p \/ holds v q) <=> holds v (Ite p True q)) /\ (!p q. (holds v p <=> holds v q) <=> holds v (Ite p q (Ite q False True))) /\ (!p q. holds v p ==> holds v q <=> holds v (Ite p q True))`, REWRITE_TAC[holds] THEN CONV_TAC TAUT);; let COND_CONV = GEN_REWRITE_CONV I [COND_CLAUSES];; let AND_CONV = GEN_REWRITE_CONV I [TAUT `(F /\ a <=> F) /\ (T /\ a <=> a)`];; let OR_CONV = GEN_REWRITE_CONV I [TAUT `(F \/ a <=> a) /\ (T \/ a <=> T)`];; let rec COMPUTE_DEPTH_CONV conv tm = if is_cond tm then (RATOR_CONV(LAND_CONV(COMPUTE_DEPTH_CONV conv)) THENC COND_CONV THENC COMPUTE_DEPTH_CONV conv) tm else if is_conj tm then (LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC AND_CONV THENC COMPUTE_DEPTH_CONV conv) tm else if is_disj tm then (LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC OR_CONV THENC COMPUTE_DEPTH_CONV conv) tm else (SUB_CONV (COMPUTE_DEPTH_CONV conv) THENC TRY_CONV(conv THENC COMPUTE_DEPTH_CONV conv)) tm;; g `!v. v 1 \/ v 2 \/ v 3 \/ v 4 \/ v 5 \/ v 6 \/ ~v 1 \/ ~v 2 \/ ~v 3 \/ ~v 4 \/ ~v 5 \/ ~v 6`;; e(MP_TAC HOLDS_BACK THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN SPEC_TAC(`v:num->bool`,`v:num->bool`) THEN REWRITE_TAC[GSYM TAUTOLOGY; tautology]);; time e (GEN_REWRITE_TAC COMPUTE_DEPTH_CONV [norm; taut; MEM; ARITH_EQ]);; ignore(b()); time e (REWRITE_TAC[norm; taut; MEM; ARITH_EQ]);; (* ========================================================================= *) (* Vectors *) (* ========================================================================= *) needs "Multivariate/vectors.ml";; needs "Examples/solovay.ml";; g `orthogonal (A - B) (C - B) ==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`;; e SOLOVAY_VECTOR_TAC;; e(CONV_TAC REAL_RING);; g`!x y:real^N. x dot y <= norm x * norm y`;; e SOLOVAY_VECTOR_TAC;; (**** Needs external SDP solver needs "Examples/sos.ml";; e(CONV_TAC REAL_SOS);; let EXAMPLE_0 = prove (`!a x y:real^N. (y - x) dot (a - y) >= &0 ==> norm(y - a) <= norm(x - a)`, SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);; ****) needs "Rqe/make.ml";; let EXAMPLE_10 = prove (`!x:real^N y. x dot y > &0 ==> ?u. &0 < u /\ !v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`, SOLOVAY_VECTOR_TAC THEN W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN CONV_TAC REAL_QELIM_CONV);; let FORALL_3 = prove (`(!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`, MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> (i = 1) \/ (i = 2) \/ (i = 3)`]);; let SUM_3 = prove (`!t. sum(1..3) t = t(1) + t(2) + t(3)`, REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);; let VECTOR_3 = prove (`(vector [x;y;z] :real^3)$1 = x /\ (vector [x;y;z] :real^3)$2 = y /\ (vector [x;y;z] :real^3)$3 = z`, SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; LENGTH; ARITH] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; EL; HD; TL]);; let DOT_VECTOR = prove (`(vector [x1;y1;z1] :real^3) dot (vector [x2;y2;z2]) = x1 * x2 + y1 * y2 + z1 * z2`, REWRITE_TAC[dot; DIMINDEX_3; SUM_3; VECTOR_3]);; let VECTOR_ZERO = prove (`(vector [x;y;z] :real^3 = vec 0) <=> x = &0 /\ y = &0 /\ z = &0`, SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; ARITH]);; let ORTHOGONAL_VECTOR = prove (`orthogonal (vector [x1;y1;z1] :real^3) (vector [x2;y2;z2]) = (x1 * x2 + y1 * y2 + z1 * z2 = &0)`, REWRITE_TAC[orthogonal; DOT_VECTOR]);; parse_as_infix("cross",(20,"right"));; let cross = new_definition `(a:real^3) cross (b:real^3) = vector [a$2 * b$3 - a$3 * b$2; a$3 * b$1 - a$1 * b$3; a$1 * b$2 - a$2 * b$1] :real^3`;; let VEC3_TAC = SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3; vector_add; vec; dot; cross; orthogonal; basis; ARITH] THEN CONV_TAC REAL_RING;; let VEC3_RULE tm = prove(tm,VEC3_TAC);; let ORTHOGONAL_CROSS = VEC3_RULE `!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\ orthogonal x (x cross y) /\ orthogonal y (x cross y)`;; let LEMMA_0 = VEC3_RULE `~(basis 1 :real^3 = vec 0) /\ ~(basis 2 :real^3 = vec 0) /\ ~(basis 3 :real^3 = vec 0)`;; let LEMMA_1 = VEC3_RULE `!u v. u dot (u cross v) = &0`;; let LEMMA_2 = VEC3_RULE `!u v. v dot (u cross v) = &0`;; let LEMMA_3 = VEC3_RULE `!u:real^3. vec 0 dot u = &0`;; let LEMMA_4 = VEC3_RULE `!u:real^3. u dot vec 0 = &0`;; let LEMMA_5 = VEC3_RULE `!x. x cross x = vec 0`;; let LEMMA_6 = VEC3_RULE `!u. ~(u = vec 0) ==> ~(u cross basis 1 = vec 0) \/ ~(u cross basis 2 = vec 0) \/ ~(u cross basis 3 = vec 0)`;; let LEMMA_7 = VEC3_RULE `!u v w. (u cross v = vec 0) ==> (u dot (v cross w) = &0)`;; let NORMAL_EXISTS = prove (`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`u:real^3 = vec 0`; `v:real^3 = vec 0`; `u cross v = vec 0`] THEN ASM_REWRITE_TAC[orthogonal] THEN ASM_MESON_TAC[LEMMA_0; LEMMA_1; LEMMA_2; LEMMA_3; LEMMA_4; LEMMA_5; LEMMA_6; LEMMA_7]);; (* ========================================================================= *) (* Custom tactics *) (* ========================================================================= *) let points = [((0, -1), (0, -1), (2, 0)); ((0, -1), (0, 0), (2, 0)); ((0, -1), (0, 1), (2, 0)); ((0, -1), (2, 0), (0, -1)); ((0, -1), (2, 0), (0, 0)); ((0, -1), (2, 0), (0, 1)); ((0, 0), (0, -1), (2, 0)); ((0, 0), (0, 0), (2, 0)); ((0, 0), (0, 1), (2, 0)); ((0, 0), (2, 0), (-2, 0)); ((0, 0), (2, 0), (0, -1)); ((0, 0), (2, 0), (0, 0)); ((0, 0), (2, 0), (0, 1)); ((0, 0), (2, 0), (2, 0)); ((0, 1), (0, -1), (2, 0)); ((0, 1), (0, 0), (2, 0)); ((0, 1), (0, 1), (2, 0)); ((0, 1), (2, 0), (0, -1)); ((0, 1), (2, 0), (0, 0)); ((0, 1), (2, 0), (0, 1)); ((2, 0), (-2, 0), (0, 0)); ((2, 0), (0, -1), (0, -1)); ((2, 0), (0, -1), (0, 0)); ((2, 0), (0, -1), (0, 1)); ((2, 0), (0, 0), (-2, 0)); ((2, 0), (0, 0), (0, -1)); ((2, 0), (0, 0), (0, 0)); ((2, 0), (0, 0), (0, 1)); ((2, 0), (0, 0), (2, 0)); ((2, 0), (0, 1), (0, -1)); ((2, 0), (0, 1), (0, 0)); ((2, 0), (0, 1), (0, 1)); ((2, 0), (2, 0), (0, 0))];; let ortho = let mult (x1,y1) (x2,y2) = (x1 * x2 + 2 * y1 * y2,x1 * y2 + y1 * x2) and add (x1,y1) (x2,y2) = (x1 + x2,y1 + y2) in let dot (x1,y1,z1) (x2,y2,z2) = end_itlist add [mult x1 x2; mult y1 y2; mult z1 z2] in fun (v1,v2) -> dot v1 v2 = (0,0);; let opairs = filter ortho (allpairs (fun a b -> a,b) points points);; let otrips = filter (fun (a,b,c) -> ortho(a,b) && ortho(a,c)) (allpairs (fun a (b,c) -> a,b,c) points opairs);; let hol_of_value = let tm0 = `&0` and tm1 = `&2` and tm2 = `-- &2` and tm3 = `sqrt(&2)` and tm4 = `--sqrt(&2)` in function 0,0 -> tm0 | 2,0 -> tm1 | -2,0 -> tm2 | 0,1 -> tm3 | 0,-1 -> tm4;; let hol_of_point = let ptm = `vector:(real)list->real^3` in fun (x,y,z) -> mk_comb(ptm,mk_flist(map hol_of_value [x;y;z]));; let SQRT_2_POW = prove (`sqrt(&2) pow 2 = &2`, SIMP_TAC[SQRT_POW_2; REAL_POS]);; let PROVE_NONTRIVIAL = let ptm = `~(x :real^3 = vec 0)` and xtm = `x:real^3` in fun x -> prove(vsubst [hol_of_point x,xtm] ptm, GEN_REWRITE_TAC RAND_CONV [VECTOR_ZERO] THEN MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);; let PROVE_ORTHOGONAL = let ptm = `orthogonal:real^3->real^3->bool` in fun (x,y) -> prove(list_mk_comb(ptm,[hol_of_point x;hol_of_point y]), ONCE_REWRITE_TAC[ORTHOGONAL_VECTOR] THEN MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);; let ppoint = let p = `P:real^3->bool` in fun v -> mk_comb(p,hol_of_point v);; let DEDUCE_POINT_TAC pts = FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC (map hol_of_point pts) THEN ASM_REWRITE_TAC[];; let rec KOCHEN_SPECKER_TAC set_0 set_1 = if intersect set_0 set_1 <> [] then let p = ppoint(hd(intersect set_0 set_1)) in let th1 = ASSUME(mk_neg p) and th2 = ASSUME p in ACCEPT_TAC(EQ_MP (EQF_INTRO th1) th2) else let prf_1 = filter (fun (a,b) -> mem a set_0) opairs and prf_0 = filter (fun (a,b,c) -> mem a set_1 && mem b set_1) otrips in let new_1 = map snd prf_1 and new_0 = map (fun (a,b,c) -> c) prf_0 in let set_0' = union new_0 set_0 and set_1' = union new_1 set_1 in let del_0 = subtract set_0' set_0 and del_1 = subtract set_1' set_1 in if del_0 <> [] || del_1 <> [] then let prv_0 x = let a,b,_ = find (fun (a,b,c) -> c = x) prf_0 in DEDUCE_POINT_TAC [a;b] and prv_1 x = let a,_ = find (fun (a,c) -> c = x) prf_1 in DEDUCE_POINT_TAC [a] in let newuns = list_mk_conj (map ppoint del_1 @ map (mk_neg o ppoint) del_0) and tacs = map prv_1 del_1 @ map prv_0 del_0 in SUBGOAL_THEN newuns STRIP_ASSUME_TAC THENL [REPEAT CONJ_TAC THENL tacs; ALL_TAC] THEN KOCHEN_SPECKER_TAC set_0' set_1' else let v = find (fun i -> not(mem i set_0) && not(mem i set_1)) points in ASM_CASES_TAC (ppoint v) THENL [KOCHEN_SPECKER_TAC set_0 (v::set_1); KOCHEN_SPECKER_TAC (v::set_0) set_1];; let KOCHEN_SPECKER_LEMMA = prove (`!P. (!x y:real^3. ~(x = vec 0) /\ ~(y = vec 0) /\ orthogonal x y /\ ~(P x) ==> P y) /\ (!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\ orthogonal x y /\ orthogonal x z /\ orthogonal y z /\ P x /\ P y ==> ~(P z)) ==> F`, REPEAT STRIP_TAC THEN MAP_EVERY (ASSUME_TAC o PROVE_NONTRIVIAL) points THEN MAP_EVERY (ASSUME_TAC o PROVE_ORTHOGONAL) opairs THEN KOCHEN_SPECKER_TAC [] []);; let NONTRIVIAL_CROSS = prove (`!x y. orthogonal x y /\ ~(x = vec 0) /\ ~(y = vec 0) ==> ~(x cross y = vec 0)`, REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC);; let KOCHEN_SPECKER_PARADOX = prove (`~(?spin:real^3->num. !x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\ orthogonal x y /\ orthogonal x z /\ orthogonal y z ==> (spin x = 0) /\ (spin y = 1) /\ (spin z = 1) \/ (spin x = 1) /\ (spin y = 0) /\ (spin z = 1) \/ (spin x = 1) /\ (spin y = 1) /\ (spin z = 0))`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x:real^3. spin(x) = 1` KOCHEN_SPECKER_LEMMA) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`; NONTRIVIAL_CROSS; ORTHOGONAL_CROSS]);; (* ========================================================================= *) (* Defining new types *) (* ========================================================================= *) let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir") (MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);; parse_as_infix("||",(11,"right"));; parse_as_infix("_|_",(11,"right"));; let perpdir = new_definition `x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;; let pardir = new_definition `x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;; let DIRECTION_CLAUSES = prove (`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\ ((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`, MESON_TAC[direction_tybij]);; let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove) (`(!x. x || x) /\ (!x y. x || y <=> y || x) /\ (!x y z. x || y /\ y || z ==> x || z)`, REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; let DIRECTION_AXIOM_1 = prove (`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\ !l'. p _|_ l' /\ p' _|_ l' ==> l' || l`, REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; let DIRECTION_AXIOM_2 = prove (`!l l'. ?p. p _|_ l /\ p _|_ l'`, REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);; let DIRECTION_AXIOM_3 = prove (`?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ ~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`, REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0]) [`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN VEC3_TAC);; let CROSS_0 = VEC3_RULE `x cross vec 0 = vec 0 /\ vec 0 cross x = vec 0`;; let DIRECTION_AXIOM_4_WEAK = prove (`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`, REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\ ~((l cross basis 1) cross (l cross basis 2) = vec 0) \/ orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\ ~((l cross basis 1) cross (l cross basis 3) = vec 0) \/ orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\ ~((l cross basis 2) cross (l cross basis 3) = vec 0)` MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);; let ORTHOGONAL_COMBINE = prove (`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b) ==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`, REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; let DIRECTION_AXIOM_4 = prove (`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ p _|_ l /\ p' _|_ l /\ p'' _|_ l`, MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);; let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;; let PERPDIR_WELLDEF = prove (`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`, REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; let perpl,perpl_th = lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS) "perpl" PERPDIR_WELLDEF;; let line_lift_thm = lift_theorem line_tybij (PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];; let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;; let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;; let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;; let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;; let point_tybij = new_type_definition "point" ("mk_point","dest_point") (prove(`?x:line. T`,REWRITE_TAC[]));; parse_as_infix("on",(11,"right"));; let on = new_definition `p on l <=> perpl (dest_point p) l`;; let POINT_CLAUSES = prove (`((p = p') <=> (dest_point p = dest_point p')) /\ ((!p. P (dest_point p)) <=> (!l. P l)) /\ ((?p. P (dest_point p)) <=> (?l. P l))`, MESON_TAC[point_tybij]);; let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;; let AXIOM_1 = prove (`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\ !l'. p on l' /\ p' on l' ==> (l' = l)`, POINT_TAC LINE_AXIOM_1);; let AXIOM_2 = prove (`!l l'. ?p. p on l /\ p on l'`, POINT_TAC LINE_AXIOM_2);; let AXIOM_3 = prove (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ ~(?l. p on l /\ p' on l /\ p'' on l)`, POINT_TAC LINE_AXIOM_3);; let AXIOM_4 = prove (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ p on l /\ p' on l /\ p'' on l`, POINT_TAC LINE_AXIOM_4);; (* ========================================================================= *) (* Custom inference rules *) (* ========================================================================= *) let near_ring_axioms = `(!x. 0 + x = x) /\ (!x. neg x + x = 0) /\ (!x y z. (x + y) + z = x + y + z) /\ (!x y z. (x * y) * z = x * y * z) /\ (!x y z. (x + y) * z = (x * z) + (y * z))`;; (**** Works eventually but takes a very long time MESON[] `(!x. 0 + x = x) /\ (!x. neg x + x = 0) /\ (!x y z. (x + y) + z = x + y + z) /\ (!x y z. (x * y) * z = x * y * z) /\ (!x y z. (x + y) * z = (x * z) + (y * z)) ==> !a. 0 * a = 0`;; ****) let is_realvar w x = is_var x && not(mem x w);; let rec real_strip w tm = if mem tm w then tm,[] else let l,r = dest_comb tm in let f,args = real_strip w l in f,args@[r];; let weight lis (f,n) (g,m) = let i = index f lis and j = index g lis in i > j || i = j && n > m;; let rec lexord ord l1 l2 = match (l1,l2) with (h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2 else h1 = h2 && lexord ord t1 t2 | _ -> false;; let rec lpo_gt w s t = if is_realvar w t then not(s = t) && mem t (frees s) else if is_realvar w s || is_abs s || is_abs t then false else let f,fargs = real_strip w s and g,gargs = real_strip w t in exists (fun si -> lpo_ge w si t) fargs || forall (lpo_gt w s) gargs && (f = g && lexord (lpo_gt w) fargs gargs || weight w (f,length fargs) (g,length gargs)) and lpo_ge w s t = (s = t) || lpo_gt w s t;; let rec istriv w env x t = if is_realvar w t then t = x || defined env t && istriv w env x (apply env t) else if is_const t then false else let f,args = strip_comb t in exists (istriv w env x) args && failwith "cyclic";; let rec unify w env tp = match tp with ((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) -> if defined env x then unify w env (apply env x,t) else if istriv w env x t then env else (x|->t) env | (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g) | (s,t) -> if s = t then env else failwith "unify: not unifiable";; let fullunify w (s,t) = let env = unify w undefined (s,t) in let th = map (fun (x,t) -> (t,x)) (graph env) in let rec subs t = let t' = vsubst th t in if t' = t then t else subs t' in map (fun (t,x) -> (subs t,x)) th;; let rec listcases fn rfn lis acc = match lis with [] -> acc | h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @ listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;; let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);; let rec overlaps w th tm rfn = let l,r = dest_eq(concl th) in if not (is_comb tm) then [] else let f,args = strip_comb tm in listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args (try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);; let crit1 w eq1 eq2 = let l1,r1 = dest_eq(concl eq1) and l2,r2 = dest_eq(concl eq2) in overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));; let fixvariables s th = let fvs = subtract (frees(concl th)) (freesl(hyp th)) in let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v)) fvs (1--length fvs) in INST (zip gvs fvs) th;; let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;; let critical_pairs w tha thb = let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;; let normalize_and_orient w eqs th = let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in let s',t' = dest_eq(concl th') in if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th' else failwith "Can't orient equation";; let status(eqs,crs) eqs0 = if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else (print_string(string_of_int(length eqs)^" equations and "^ string_of_int(length crs)^" pending critical pairs"); print_newline());; let left_reducible eqs eq = can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs)) (concl eq);; let rec complete w (eqs,crits) = match crits with (eq::ocrits) -> let trip = try let eq' = normalize_and_orient w eqs eq in let s',t' = dest_eq(concl eq') in if s' = t' then (eqs,ocrits) else let crits',eqs' = partition(left_reducible [eq']) eqs in let eqs'' = eq'::eqs' in eqs'', ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' [] with Failure _ -> if exists (can (normalize_and_orient w eqs)) ocrits then (eqs,ocrits@[eq]) else failwith "complete: no orientable equations" in status trip eqs; complete w trip | [] -> eqs;; let complete_equations wts eqs = let eqs' = map (normalize_and_orient wts []) eqs in complete wts ([],eqs');; complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] [SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];; complete_equations [`c:A`; `f:A->A`] (map SPEC_ALL (CONJUNCTS (ASSUME `((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));; let eqs = map SPEC_ALL (CONJUNCTS (ASSUME `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\ (!x y z. (x * y) * z = x * y * z)`)) in map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);; let COMPLETE_TAC w th = let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in let eqs' = complete_equations w eqs in MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';; g `(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\ (!x y z. (x * y) * z = x * y * z) ==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;; e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));; e(ASM_REWRITE_TAC[]);; g `(!x. 0 + x = x) /\ (!x. neg x + x = 0) /\ (!x y z. (x + y) + z = x + y + z) /\ (!x y z. (x * y) * z = x * y * z) /\ (!x y z. (x + y) * z = (x * z) + (y * z)) ==> (neg 0 * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) = a + b)`;; e (DISCH_THEN(COMPLETE_TAC [`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));; e(ASM_REWRITE_TAC[]);; (**** Could have done this instead e (DISCH_THEN(COMPLETE_TAC [`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));; ****) (* ========================================================================= *) (* Linking external tools *) (* ========================================================================= *) let maximas e = let filename = Filename.temp_file "maxima" ".out" in let s = "echo 'linel:10000; display2d:false;" ^ e ^ ";' | maxima | grep '^(%o3)' | sed -e 's/^(%o3) //' >" ^ filename in if Sys.command s <> 0 then failwith "maxima" else let fd = Pervasives.open_in filename in let data = input_line fd in close_in fd; Sys.remove filename; data;; prioritize_real();; let maxima_ops = ["+",`(+)`; "-",`(-)`; "*",`( * )`; "/",`(/)`; "^",`(pow)`];; let maxima_funs = ["sin",`sin`; "cos",`cos`];; let mk_uneg = curry mk_comb `(--)`;; let dest_uneg = let ntm = `(--)` in fun tm -> let op,t = dest_comb tm in if op = ntm then t else failwith "dest_uneg";; let mk_pow = let f = mk_binop `(pow)` in fun x y -> f x (rand y);; let mk_realvar = let real_ty = `:real` in fun x -> mk_var(x,real_ty);; let rec string_of_hol tm = if is_ratconst tm then "("^string_of_num(rat_of_term tm)^")" else if is_numeral tm then string_of_num(dest_numeral tm) else if is_var tm then fst(dest_var tm) else if can dest_uneg tm then "-(" ^ string_of_hol(rand tm) ^ ")" else let lop,r = dest_comb tm in try let op,l = dest_comb lop in "("^string_of_hol l^" "^ rev_assoc op maxima_ops^" "^string_of_hol r^")" with Failure _ -> rev_assoc lop maxima_funs ^ "(" ^ string_of_hol r ^ ")";; string_of_hol `(x + sin(-- &2 * x)) pow 2 - cos(x - &22 / &7)`;; let lexe s = map (function Resword s -> s | Ident s -> s) (lex(explode s));; let parse_bracketed prs inp = match prs inp with ast,")"::rst -> ast,rst | _ -> failwith "Closing bracket expected";; let rec parse_ginfix op opup sof prs inp = match prs inp with e1,hop::rst when hop = op -> parse_ginfix op opup (opup sof e1) prs rst | e1,rest -> sof e1,rest;; let parse_general_infix op = let opcon = if op = "^" then mk_pow else mk_binop (assoc op maxima_ops) in let constr = if op <> "^" && snd(get_infix_status op) = "right" then fun f e1 e2 -> f(opcon e1 e2) else fun f e1 e2 -> opcon(f e1) e2 in parse_ginfix op constr (fun x -> x);; let rec parse_atomic_expression inp = match inp with [] -> failwith "expression expected" | "(" :: rest -> parse_bracketed parse_expression rest | s :: rest when forall isnum (explode s) -> term_of_rat(num_of_string s),rest | s :: "(" :: rest when forall isalnum (explode s) -> let e,rst = parse_bracketed parse_expression rest in mk_comb(assoc s maxima_funs,e),rst | s :: rest when forall isalnum (explode s) -> mk_realvar s,rest and parse_exp inp = parse_general_infix "^" parse_atomic_expression inp and parse_neg inp = match inp with | "-" :: rest -> let e,rst = parse_neg rest in mk_uneg e,rst | _ -> parse_exp inp and parse_expression inp = itlist parse_general_infix (map fst maxima_ops) parse_neg inp;; let hol_of_string = fst o parse_expression o lexe;; hol_of_string "sin(x) - cos(-(- - 1 + x))";; let FACTOR_CONV tm = let s = "factor("^string_of_hol tm^")" in let tm' = hol_of_string(maximas s) in REAL_RING(mk_eq(tm,tm'));; FACTOR_CONV `&1234567890`;; FACTOR_CONV `x pow 6 - &1`;; FACTOR_CONV `r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x`;; let ANTIDERIV_CONV tm = let x,bod = dest_abs tm in let s = "integrate("^string_of_hol bod^","^fst(dest_var x)^")" in let tm' = mk_abs(x,hol_of_string(maximas s)) in let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) (SPEC x (DIFF_CONV tm')) in let th2 = REAL_RING(mk_eq(lhand(concl th1),bod)) in GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);; ANTIDERIV_CONV `\x. (x + &5) pow 2 + &77 * x`;; ANTIDERIV_CONV `\x. sin(x) + x pow 11`;; (**** This one fails ANTIDERIV_CONV `\x. sin(x) pow 3`;; ****) let SIN_N_CLAUSES = prove (`(sin(&(NUMERAL(BIT0 n)) * x) = &2 * sin(&(NUMERAL n) * x) * cos(&(NUMERAL n) * x)) /\ (sin(&(NUMERAL(BIT1 n)) * x) = sin(&(NUMERAL(BIT0 n)) * x) * cos(x) + sin(x) * cos(&(NUMERAL(BIT0 n)) * x)) /\ (cos(&(NUMERAL(BIT0 n)) * x) = cos(&(NUMERAL n) * x) pow 2 - sin(&(NUMERAL n) * x) pow 2) /\ (cos(&(NUMERAL(BIT1 n)) * x) = cos(&(NUMERAL(BIT0 n)) * x) * cos(x) - sin(x) * sin(&(NUMERAL(BIT0 n)) * x))`, REWRITE_TAC[REAL_MUL_2; REAL_POW_2] THEN REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN REWRITE_TAC[REAL_ADD_RDISTRIB; SIN_ADD; COS_ADD; REAL_MUL_LID] THEN CONV_TAC REAL_RING);; let TRIG_IDENT_TAC x = REWRITE_TAC[SIN_N_CLAUSES; SIN_ADD; COS_ADD] THEN REWRITE_TAC[REAL_MUL_LZERO; SIN_0; COS_0; REAL_MUL_RZERO] THEN MP_TAC(SPEC x SIN_CIRCLE) THEN CONV_TAC REAL_RING;; let ANTIDERIV_CONV tm = let x,bod = dest_abs tm in let s = "expand(integrate("^string_of_hol bod^","^fst(dest_var x)^"))" in let tm' = mk_abs(x,hol_of_string(maximas s)) in let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) (SPEC x (DIFF_CONV tm')) in let th2 = prove(mk_eq(lhand(concl th1),bod),TRIG_IDENT_TAC x) in GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);; time ANTIDERIV_CONV `\x. sin(x) pow 3`;; time ANTIDERIV_CONV `\x. sin(x) * sin(x) pow 5 * cos(x) pow 4 + cos(x)`;; let FCT1_WEAK = prove (`(!x. (f diffl f'(x)) x) ==> !x. &0 <= x ==> defint(&0,x) f' (f x - f(&0))`, MESON_TAC[FTC1]);; let INTEGRAL_CONV tm = let th1 = MATCH_MP FCT1_WEAK (ANTIDERIV_CONV tm) in (CONV_RULE REAL_RAT_REDUCE_CONV o REWRITE_RULE[SIN_0; COS_0; REAL_MUL_LZERO; REAL_MUL_RZERO] o CONV_RULE REAL_RAT_REDUCE_CONV o BETA_RULE) th1;; INTEGRAL_CONV `\x. sin(x) pow 13`;;