/- Copyright (c) 2020 Adam Topaz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Adam Topaz -/ import algebra.algebra.subalgebra.basic import algebra.monoid_algebra.basic /-! # Free Algebras Given a commutative semiring `R`, and a type `X`, we construct the free unital, associative `R`-algebra on `X`. ## Notation 1. `free_algebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure. 2. `free_algebra.ι R` is the function `X → free_algebra R X`. 3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an `R`-algebra morphism `free_algebra R X → A`. ## Theorems 1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`. 2. `lift_unique` states that whenever an R-algebra morphism `g : free_algebra R X → A` is given whose composition with `ι R` is `f`, then one has `g = lift R f`. 3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem. 4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift of the composition of an algebra morphism with `ι` is the algebra morphism itself. 5. `equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X)` 6. An inductive principle `induction`. ## Implementation details We construct the free algebra on `X` as a quotient of an inductive type `free_algebra.pre` by an inductively defined relation `free_algebra.rel`. Explicitly, the construction involves three steps: 1. We construct an inductive type `free_algebra.pre R X`, the terms of which should be thought of as representatives for the elements of `free_algebra R X`. It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`. 2. We construct an inductive relation `free_algebra.rel R X` on `free_algebra.pre R X`. This is the smallest relation for which the quotient is an `R`-algebra where addition resp. multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the structure map for the algebra. 3. The free algebra `free_algebra R X` is the quotient of `free_algebra.pre R X` by the relation `free_algebra.rel R X`. -/ variables (R : Type*) [comm_semiring R] variables (X : Type*) namespace free_algebra /-- This inductive type is used to express representatives of the free algebra. -/ inductive pre | of : X → pre | of_scalar : R → pre | add : pre → pre → pre | mul : pre → pre → pre namespace pre instance : inhabited (pre R X) := ⟨of_scalar 0⟩ -- Note: These instances are only used to simplify the notation. /-- Coercion from `X` to `pre R X`. Note: Used for notation only. -/ def has_coe_generator : has_coe X (pre R X) := ⟨of⟩ /-- Coercion from `R` to `pre R X`. Note: Used for notation only. -/ def has_coe_semiring : has_coe R (pre R X) := ⟨of_scalar⟩ /-- Multiplication in `pre R X` defined as `pre.mul`. Note: Used for notation only. -/ def has_mul : has_mul (pre R X) := ⟨mul⟩ /-- Addition in `pre R X` defined as `pre.add`. Note: Used for notation only. -/ def has_add : has_add (pre R X) := ⟨add⟩ /-- Zero in `pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/ def has_zero : has_zero (pre R X) := ⟨of_scalar 0⟩ /-- One in `pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/ def has_one : has_one (pre R X) := ⟨of_scalar 1⟩ /-- Scalar multiplication defined as multiplication by the image of elements from `R`. Note: Used for notation only. -/ def has_smul : has_smul R (pre R X) := ⟨λ r m, mul (of_scalar r) m⟩ end pre local attribute [instance] pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero pre.has_one pre.has_smul /-- Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function from `pre R X` to `A`. This is mainly used in the construction of `free_algebra.lift`. -/ def lift_fun {A : Type*} [semiring A] [algebra R A] (f : X → A) : pre R X → A := λ t, pre.rec_on t f (algebra_map _ _) (λ _ _, (+)) (λ _ _, (*)) /-- An inductively defined relation on `pre R X` used to force the initial algebra structure on the associated quotient. -/ inductive rel : (pre R X) → (pre R X) → Prop -- force `of_scalar` to be a central semiring morphism | add_scalar {r s : R} : rel ↑(r + s) (↑r + ↑s) | mul_scalar {r s : R} : rel ↑(r * s) (↑r * ↑s) | central_scalar {r : R} {a : pre R X} : rel (r * a) (a * r) -- commutative additive semigroup | add_assoc {a b c : pre R X} : rel (a + b + c) (a + (b + c)) | add_comm {a b : pre R X} : rel (a + b) (b + a) | zero_add {a : pre R X} : rel (0 + a) a -- multiplicative monoid | mul_assoc {a b c : pre R X} : rel (a * b * c) (a * (b * c)) | one_mul {a : pre R X} : rel (1 * a) a | mul_one {a : pre R X} : rel (a * 1) a -- distributivity | left_distrib {a b c : pre R X} : rel (a * (b + c)) (a * b + a * c) | right_distrib {a b c : pre R X} : rel ((a + b) * c) (a * c + b * c) -- other relations needed for semiring | zero_mul {a : pre R X} : rel (0 * a) 0 | mul_zero {a : pre R X} : rel (a * 0) 0 -- compatibility | add_compat_left {a b c : pre R X} : rel a b → rel (a + c) (b + c) | add_compat_right {a b c : pre R X} : rel a b → rel (c + a) (c + b) | mul_compat_left {a b c : pre R X} : rel a b → rel (a * c) (b * c) | mul_compat_right {a b c : pre R X} : rel a b → rel (c * a) (c * b) end free_algebra /-- The free algebra for the type `X` over the commutative semiring `R`. -/ def free_algebra := quot (free_algebra.rel R X) namespace free_algebra local attribute [instance] pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero pre.has_one pre.has_smul instance : semiring (free_algebra R X) := { add := quot.map₂ (+) (λ _ _ _, rel.add_compat_right) (λ _ _ _, rel.add_compat_left), add_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.add_assoc }, zero := quot.mk _ 0, zero_add := by { rintro ⟨⟩, exact quot.sound rel.zero_add }, add_zero := begin rintros ⟨⟩, change quot.mk _ _ = _, rw [quot.sound rel.add_comm, quot.sound rel.zero_add], end, add_comm := by { rintros ⟨⟩ ⟨⟩, exact quot.sound rel.add_comm }, mul := quot.map₂ (*) (λ _ _ _, rel.mul_compat_right) (λ _ _ _, rel.mul_compat_left), mul_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.mul_assoc }, one := quot.mk _ 1, one_mul := by { rintros ⟨⟩, exact quot.sound rel.one_mul }, mul_one := by { rintros ⟨⟩, exact quot.sound rel.mul_one }, left_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.left_distrib }, right_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.right_distrib }, zero_mul := by { rintros ⟨⟩, exact quot.sound rel.zero_mul }, mul_zero := by { rintros ⟨⟩, exact quot.sound rel.mul_zero } } instance : inhabited (free_algebra R X) := ⟨0⟩ instance : has_smul R (free_algebra R X) := { smul := λ r, quot.map ((*) ↑r) (λ a b, rel.mul_compat_right) } instance : algebra R (free_algebra R X) := { to_fun := λ r, quot.mk _ r, map_one' := rfl, map_mul' := λ _ _, quot.sound rel.mul_scalar, map_zero' := rfl, map_add' := λ _ _, quot.sound rel.add_scalar, commutes' := λ _, by { rintros ⟨⟩, exact quot.sound rel.central_scalar }, smul_def' := λ _ _, rfl } instance {S : Type*} [comm_ring S] : ring (free_algebra S X) := algebra.semiring_to_ring S variables {X} /-- The canonical function `X → free_algebra R X`. -/ def ι : X → free_algebra R X := λ m, quot.mk _ m @[simp] lemma quot_mk_eq_ι (m : X) : quot.mk (free_algebra.rel R X) m = ι R m := rfl variables {A : Type*} [semiring A] [algebra R A] /-- Internal definition used to define `lift` -/ private def lift_aux (f : X → A) : (free_algebra R X →ₐ[R] A) := { to_fun := λ a, quot.lift_on a (lift_fun _ _ f) $ λ a b h, begin induction h, { exact (algebra_map R A).map_add h_r h_s, }, { exact (algebra_map R A).map_mul h_r h_s }, { apply algebra.commutes }, { change _ + _ + _ = _ + (_ + _), rw add_assoc }, { change _ + _ = _ + _, rw add_comm, }, { change (algebra_map _ _ _) + lift_fun R X f _ = lift_fun R X f _, simp, }, { change _ * _ * _ = _ * (_ * _), rw mul_assoc }, { change (algebra_map _ _ _) * lift_fun R X f _ = lift_fun R X f _, simp, }, { change lift_fun R X f _ * (algebra_map _ _ _) = lift_fun R X f _, simp, }, { change _ * (_ + _) = _ * _ + _ * _, rw left_distrib, }, { change (_ + _) * _ = _ * _ + _ * _, rw right_distrib, }, { change (algebra_map _ _ _) * _ = algebra_map _ _ _, simp }, { change _ * (algebra_map _ _ _) = algebra_map _ _ _, simp }, repeat { change lift_fun R X f _ + lift_fun R X f _ = _, rw h_ih, refl, }, repeat { change lift_fun R X f _ * lift_fun R X f _ = _, rw h_ih, refl, }, end, map_one' := by { change algebra_map _ _ _ = _, simp }, map_mul' := by { rintros ⟨⟩ ⟨⟩, refl }, map_zero' := by { change algebra_map _ _ _ = _, simp }, map_add' := by { rintros ⟨⟩ ⟨⟩, refl }, commutes' := by tauto } /-- Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift of `f` to a morphism of `R`-algebras `free_algebra R X → A`. -/ def lift : (X → A) ≃ (free_algebra R X →ₐ[R] A) := { to_fun := lift_aux R, inv_fun := λ F, F ∘ (ι R), left_inv := λ f, by {ext, refl}, right_inv := λ F, by { ext x, rcases x, induction x, case pre.of : { change ((F : free_algebra R X → A) ∘ (ι R)) _ = _, refl }, case pre.of_scalar : { change algebra_map _ _ x = F (algebra_map _ _ x), rw alg_hom.commutes F x, }, case pre.add : a b ha hb { change lift_aux R (F ∘ ι R) (quot.mk _ _ + quot.mk _ _) = F (quot.mk _ _ + quot.mk _ _), rw [alg_hom.map_add, alg_hom.map_add, ha, hb], }, case pre.mul : a b ha hb { change lift_aux R (F ∘ ι R) (quot.mk _ _ * quot.mk _ _) = F (quot.mk _ _ * quot.mk _ _), rw [alg_hom.map_mul, alg_hom.map_mul, ha, hb], }, }, } @[simp] lemma lift_aux_eq (f : X → A) : lift_aux R f = lift R f := rfl @[simp] lemma lift_symm_apply (F : free_algebra R X →ₐ[R] A) : (lift R).symm F = F ∘ (ι R) := rfl variables {R X} @[simp] theorem ι_comp_lift (f : X → A) : (lift R f : free_algebra R X → A) ∘ (ι R) = f := by {ext, refl} @[simp] theorem lift_ι_apply (f : X → A) (x) : lift R f (ι R x) = f x := rfl @[simp] theorem lift_unique (f : X → A) (g : free_algebra R X →ₐ[R] A) : (g : free_algebra R X → A) ∘ (ι R) = f ↔ g = lift R f := (lift R).symm_apply_eq /-! At this stage we set the basic definitions as `@[irreducible]`, so from this point onwards one should only use the universal properties of the free algebra, and consider the actual implementation as a quotient of an inductive type as completely hidden. Of course, one still has the option to locally make these definitions `semireducible` if so desired, and Lean is still willing in some circumstances to do unification based on the underlying definition. -/ attribute [irreducible] ι lift -- Marking `free_algebra` irreducible makes `ring` instances inaccessible on quotients. -- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241 -- For now, we avoid this by not marking it irreducible. @[simp] theorem lift_comp_ι (g : free_algebra R X →ₐ[R] A) : lift R ((g : free_algebra R X → A) ∘ (ι R)) = g := by { rw ←lift_symm_apply, exact (lift R).apply_symm_apply g } /-- See note [partially-applied ext lemmas]. -/ @[ext] theorem hom_ext {f g : free_algebra R X →ₐ[R] A} (w : ((f : free_algebra R X → A) ∘ (ι R)) = ((g : free_algebra R X → A) ∘ (ι R))) : f = g := begin rw [←lift_symm_apply, ←lift_symm_apply] at w, exact (lift R).symm.injective w, end /-- The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`. This would be useful when constructing linear maps out of a free algebra, for example. -/ noncomputable def equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X) := alg_equiv.of_alg_hom (lift R (λ x, (monoid_algebra.of R (free_monoid X)) (free_monoid.of x))) ((monoid_algebra.lift R (free_monoid X) (free_algebra R X)) (free_monoid.lift (ι R))) begin apply monoid_algebra.alg_hom_ext, intro x, apply free_monoid.rec_on x, { simp, refl, }, { intros x y ih, simp at ih, simp [ih], } end (by { ext, simp, }) instance [nontrivial R] : nontrivial (free_algebra R X) := equiv_monoid_algebra_free_monoid.surjective.nontrivial section /-- The left-inverse of `algebra_map`. -/ def algebra_map_inv : free_algebra R X →ₐ[R] R := lift R (0 : X → R) lemma algebra_map_left_inverse : function.left_inverse algebra_map_inv (algebra_map R $ free_algebra R X) := λ x, by simp [algebra_map_inv] @[simp] lemma algebra_map_inj (x y : R) : algebra_map R (free_algebra R X) x = algebra_map R (free_algebra R X) y ↔ x = y := algebra_map_left_inverse.injective.eq_iff @[simp] lemma algebra_map_eq_zero_iff (x : R) : algebra_map R (free_algebra R X) x = 0 ↔ x = 0 := map_eq_zero_iff (algebra_map _ _) algebra_map_left_inverse.injective @[simp] lemma algebra_map_eq_one_iff (x : R) : algebra_map R (free_algebra R X) x = 1 ↔ x = 1 := map_eq_one_iff (algebra_map _ _) algebra_map_left_inverse.injective -- this proof is copied from the approach in `free_abelian_group.of_injective` lemma ι_injective [nontrivial R] : function.injective (ι R : X → free_algebra R X) := λ x y hoxy, classical.by_contradiction $ assume hxy : x ≠ y, let f : free_algebra R X →ₐ[R] R := lift R (λ z, by classical; exact if x = z then (1 : R) else 0) in have hfx1 : f (ι R x) = 1, from (lift_ι_apply _ _).trans $ if_pos rfl, have hfy1 : f (ι R y) = 1, from hoxy ▸ hfx1, have hfy0 : f (ι R y) = 0, from (lift_ι_apply _ _).trans $ if_neg hxy, one_ne_zero $ hfy1.symm.trans hfy0 @[simp] lemma ι_inj [nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y := ι_injective.eq_iff @[simp] lemma ι_ne_algebra_map [nontrivial R] (x : X) (r : R) : ι R x ≠ algebra_map R _ r := λ h, let f0 : free_algebra R X →ₐ[R] R := lift R 0 in let f1 : free_algebra R X →ₐ[R] R := lift R 1 in have hf0 : f0 (ι R x) = 0, from lift_ι_apply _ _, have hf1 : f1 (ι R x) = 1, from lift_ι_apply _ _, begin rw [h, f0.commutes, algebra.id.map_eq_self] at hf0, rw [h, f1.commutes, algebra.id.map_eq_self] at hf1, exact zero_ne_one (hf0.symm.trans hf1), end @[simp] lemma ι_ne_zero [nontrivial R] (x : X) : ι R x ≠ 0 := ι_ne_algebra_map x 0 @[simp] lemma ι_ne_one [nontrivial R] (x : X) : ι R x ≠ 1 := ι_ne_algebra_map x 1 end end free_algebra /- There is something weird in the above namespace that breaks the typeclass resolution of `has_coe_to_sort` below. Closing it and reopening it fixes it... -/ namespace free_algebra /-- An induction principle for the free algebra. If `C` holds for the `algebra_map` of `r : R` into `free_algebra R X`, the `ι` of `x : X`, and is preserved under addition and muliplication, then it holds for all of `free_algebra R X`. -/ @[elab_as_eliminator] lemma induction {C : free_algebra R X → Prop} (h_grade0 : ∀ r, C (algebra_map R (free_algebra R X) r)) (h_grade1 : ∀ x, C (ι R x)) (h_mul : ∀ a b, C a → C b → C (a * b)) (h_add : ∀ a b, C a → C b → C (a + b)) (a : free_algebra R X) : C a := begin -- the arguments are enough to construct a subalgebra, and a mapping into it from X let s : subalgebra R (free_algebra R X) := { carrier := C, mul_mem' := h_mul, add_mem' := h_add, algebra_map_mem' := h_grade0, }, let of : X → s := subtype.coind (ι R) h_grade1, -- the mapping through the subalgebra is the identity have of_id : alg_hom.id R (free_algebra R X) = s.val.comp (lift R of), { ext, simp [of, subtype.coind], }, -- finding a proof is finding an element of the subalgebra convert subtype.prop (lift R of a), simp [alg_hom.ext_iff] at of_id, exact of_id a, end end free_algebra