/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta, Alena Gusakov -/ import data.fintype.basic import algebra.geom_sum /-! # Colex We define the colex ordering for finite sets, and give a couple of important lemmas and properties relating to it. The colex ordering likes to avoid large values - it can be thought of on `finset ℕ` as the "binary" ordering. That is, order A based on `∑_{i ∈ A} 2^i`. It's defined here in a slightly more general way, requiring only `has_lt α` in the definition of colex on `finset α`. In the context of the Kruskal-Katona theorem, we are interested in particular on how colex behaves for sets of a fixed size. If the size is 3, colex on ℕ starts 123, 124, 134, 234, 125, 135, 235, 145, 245, 345, ... ## Main statements * `colex.hom_lt_iff`: strictly monotone functions preserve colex * Colex order properties - linearity, decidability and so on. * `forall_lt_of_colex_lt_of_forall_lt`: if A < B in colex, and everything in B is < t, then everything in A is < t. This confirms the idea that an enumeration under colex will exhaust all sets using elements < t before allowing t to be included. * `sum_two_pow_le_iff_lt`: colex for α = ℕ is the same as binary (this also proves binary expansions are unique) ## See also Related files are: * `data.list.lex`: Lexicographic order on lists. * `data.pi.lex`: Lexicographic order on `Πₗ i, α i`. * `data.psigma.order`: Lexicographic order on `Σ' i, α i`. * `data.sigma.order`: Lexicographic order on `Σ i, α i`. * `data.prod.lex`: Lexicographic order on `α × β`. ## Tags colex, colexicographic, binary ## References * https://github.com/b-mehta/maths-notes/blob/master/iii/mich/combinatorics.pdf -/ variable {α : Type*} open finset open_locale big_operators /-- We define this type synonym to refer to the colexicographic ordering on finsets rather than the natural subset ordering. -/ @[derive inhabited] def finset.colex (α) := finset α /-- A convenience constructor to turn a `finset α` into a `finset.colex α`, useful in order to use the colex ordering rather than the subset ordering. -/ def finset.to_colex {α} (s : finset α) : finset.colex α := s @[simp] lemma colex.eq_iff (A B : finset α) : A.to_colex = B.to_colex ↔ A = B := iff.rfl /-- `A` is less than `B` in the colex ordering if the largest thing that's not in both sets is in B. In other words, `max (A ∆ B) ∈ B` (if the maximum exists). -/ instance [has_lt α] : has_lt (finset.colex α) := ⟨λ (A B : finset α), ∃ (k : α), (∀ {x}, k < x → (x ∈ A ↔ x ∈ B)) ∧ k ∉ A ∧ k ∈ B⟩ /-- We can define (≤) in the obvious way. -/ instance [has_lt α] : has_le (finset.colex α) := ⟨λ A B, A < B ∨ A = B⟩ lemma colex.lt_def [has_lt α] (A B : finset α) : A.to_colex < B.to_colex ↔ ∃ k, (∀ {x}, k < x → (x ∈ A ↔ x ∈ B)) ∧ k ∉ A ∧ k ∈ B := iff.rfl lemma colex.le_def [has_lt α] (A B : finset α) : A.to_colex ≤ B.to_colex ↔ A.to_colex < B.to_colex ∨ A = B := iff.rfl /-- If everything in `A` is less than `k`, we can bound the sum of powers. -/ lemma nat.sum_two_pow_lt {k : ℕ} {A : finset ℕ} (h₁ : ∀ {x}, x ∈ A → x < k) : A.sum (pow 2) < 2^k := begin apply lt_of_le_of_lt (sum_le_sum_of_subset (λ t, mem_range.2 ∘ h₁)), have z := geom_sum_mul_add 1 k, rw [mul_one, one_add_one_eq_two] at z, rw ← z, apply nat.lt_succ_self, end namespace colex /-- Strictly monotone functions preserve the colex ordering. -/ lemma hom_lt_iff {β : Type*} [linear_order α] [decidable_eq β] [preorder β] {f : α → β} (h₁ : strict_mono f) (A B : finset α) : (A.image f).to_colex < (B.image f).to_colex ↔ A.to_colex < B.to_colex := begin simp only [colex.lt_def, not_exists, mem_image, exists_prop, not_and], split, { rintro ⟨k, z, q, k', _, rfl⟩, exact ⟨k', λ x hx, by simpa [h₁.injective.eq_iff] using z (h₁ hx), λ t, q _ t rfl, ‹k' ∈ B›⟩ }, rintro ⟨k, z, ka, _⟩, refine ⟨f k, λ x hx, _, _, k, ‹k ∈ B›, rfl⟩, { split, any_goals { rintro ⟨x', hx', rfl⟩, refine ⟨x', _, rfl⟩, rwa ← z _ <|> rwa z _, rwa strict_mono.lt_iff_lt h₁ at hx } }, { simp only [h₁.injective, function.injective.eq_iff], exact λ x hx, ne_of_mem_of_not_mem hx ka } end /-- A special case of `colex.hom_lt_iff` which is sometimes useful. -/ @[simp] lemma hom_fin_lt_iff {n : ℕ} (A B : finset (fin n)) : (A.image (λ i : fin n, (i : ℕ))).to_colex < (B.image (λ i : fin n, (i : ℕ))).to_colex ↔ A.to_colex < B.to_colex := colex.hom_lt_iff (λ x y k, k) _ _ instance [has_lt α] : is_irrefl (finset.colex α) (<) := ⟨λ A h, exists.elim h (λ _ ⟨_,a,b⟩, a b)⟩ @[trans] lemma lt_trans [linear_order α] {a b c : finset.colex α} : a < b → b < c → a < c := begin rintros ⟨k₁, k₁z, notinA, inB⟩ ⟨k₂, k₂z, notinB, inC⟩, cases lt_or_gt_of_ne (ne_of_mem_of_not_mem inB notinB), { refine ⟨k₂, λ x hx, _, by rwa k₁z h, inC⟩, rw ← k₂z hx, apply k₁z (trans h hx) }, { refine ⟨k₁, λ x hx, _, notinA, by rwa ← k₂z h⟩, rw k₁z hx, apply k₂z (trans h hx) } end @[trans] lemma le_trans [linear_order α] (a b c : finset.colex α) : a ≤ b → b ≤ c → a ≤ c := λ AB BC, AB.elim (λ k, BC.elim (λ t, or.inl (lt_trans k t)) (λ t, t ▸ AB)) (λ k, k.symm ▸ BC) instance [linear_order α] : is_trans (finset.colex α) (<) := ⟨λ _ _ _, colex.lt_trans⟩ lemma lt_trichotomy [linear_order α] (A B : finset.colex α) : A < B ∨ A = B ∨ B < A := begin by_cases h₁ : (A = B), { tauto }, rcases (exists_max_image (A \ B ∪ B \ A) id _) with ⟨k, hk, z⟩, { simp only [mem_union, mem_sdiff] at hk, cases hk, { right, right, refine ⟨k, λ t th, _, hk.2, hk.1⟩, specialize z t, by_contra h₂, simp only [mem_union, mem_sdiff, id.def] at z, rw [not_iff, iff_iff_and_or_not_and_not, not_not, and_comm] at h₂, apply not_le_of_lt th (z h₂) }, { left, refine ⟨k, λ t th, _, hk.2, hk.1⟩, specialize z t, by_contra h₃, simp only [mem_union, mem_sdiff, id.def] at z, rw [not_iff, iff_iff_and_or_not_and_not, not_not, and_comm, or_comm] at h₃, apply not_le_of_lt th (z h₃) }, }, rw nonempty_iff_ne_empty, intro a, simp only [union_eq_empty_iff, sdiff_eq_empty_iff_subset] at a, apply h₁ (subset.antisymm a.1 a.2) end instance [linear_order α] : is_trichotomous (finset.colex α) (<) := ⟨lt_trichotomy⟩ instance decidable_lt [linear_order α] : ∀ {A B : finset.colex α}, decidable (A < B) := show ∀ A B : finset α, decidable (A.to_colex < B.to_colex), from λ A B, decidable_of_iff' (∃ (k ∈ B), (∀ x ∈ A ∪ B, k < x → (x ∈ A ↔ x ∈ B)) ∧ k ∉ A) begin rw colex.lt_def, apply exists_congr, simp only [mem_union, exists_prop, or_imp_distrib, and_comm (_ ∈ B), and_assoc], intro k, refine and_congr_left' (forall_congr _), tauto, end instance [linear_order α] : linear_order (finset.colex α) := { le_refl := λ A, or.inr rfl, le_trans := le_trans, le_antisymm := λ A B AB BA, AB.elim (λ k, BA.elim (λ t, (asymm k t).elim) (λ t, t.symm)) id, le_total := λ A B, (lt_trichotomy A B).elim3 (or.inl ∘ or.inl) (or.inl ∘ or.inr) (or.inr ∘ or.inl), decidable_le := λ A B, by apply_instance, decidable_lt := λ A B, by apply_instance, decidable_eq := λ A B, by apply_instance, lt_iff_le_not_le := λ A B, begin split, { intro t, refine ⟨or.inl t, _⟩, rintro (i | rfl), { apply asymm_of _ t i }, { apply irrefl _ t } }, rintro ⟨h₁ | rfl, h₂⟩, { apply h₁ }, apply h₂.elim (or.inr rfl), end, ..finset.colex.has_lt, ..finset.colex.has_le } /-- The instances set up let us infer that `colex.lt` is a strict total order. -/ example [linear_order α] : is_strict_total_order (finset.colex α) (<) := infer_instance /-- Strictly monotone functions preserve the colex ordering. -/ lemma hom_le_iff {β : Type*} [linear_order α] [linear_order β] {f : α → β} (h₁ : strict_mono f) (A B : finset α) : (A.image f).to_colex ≤ (B.image f).to_colex ↔ A.to_colex ≤ B.to_colex := by rw [le_iff_le_iff_lt_iff_lt, hom_lt_iff h₁] /-- A special case of `colex_hom` which is sometimes useful. -/ @[simp] lemma hom_fin_le_iff {n : ℕ} (A B : finset (fin n)) : (A.image (λ i : fin n, (i : ℕ))).to_colex ≤ (B.image (λ i : fin n, (i : ℕ))).to_colex ↔ A.to_colex ≤ B.to_colex := colex.hom_le_iff (λ x y k, k) _ _ /-- If `A` is before `B` in colex, and everything in `B` is small, then everything in `A` is small. -/ lemma forall_lt_of_colex_lt_of_forall_lt [linear_order α] {A B : finset α} (t : α) (h₁ : A.to_colex < B.to_colex) (h₂ : ∀ x ∈ B, x < t) : ∀ x ∈ A, x < t := begin rw colex.lt_def at h₁, rcases h₁ with ⟨k, z, _, _⟩, intros x hx, apply lt_of_not_ge, intro a, refine not_lt_of_ge a (h₂ x _), rwa ← z, apply lt_of_lt_of_le (h₂ k ‹_›) a, end /-- `s.to_colex < {r}.to_colex` iff all elements of `s` are less than `r`. -/ lemma lt_singleton_iff_mem_lt [linear_order α] {r : α} {s : finset α} : s.to_colex < ({r} : finset α).to_colex ↔ ∀ x ∈ s, x < r := begin simp only [lt_def, mem_singleton, ←and_assoc, exists_eq_right], split, { intros t x hx, rw ←not_le, intro h, rcases lt_or_eq_of_le h with h₁ | rfl, { exact ne_of_irrefl h₁ ((t.1 h₁).1 hx).symm }, { exact t.2 hx } }, { exact λ h, ⟨λ z hz, ⟨λ i, (asymm hz (h _ i)).elim, λ i, (hz.ne' i).elim⟩, by simpa using h r⟩ } end /-- If {r} is less than or equal to s in the colexicographical sense, then s contains an element greater than or equal to r. -/ lemma mem_le_of_singleton_le [linear_order α] {r : α} {s : finset α}: ({r} : finset α).to_colex ≤ s.to_colex ↔ ∃ x ∈ s, r ≤ x := by { rw ←not_lt, simp [lt_singleton_iff_mem_lt] } /-- Colex is an extension of the base ordering on α. -/ lemma singleton_lt_iff_lt [linear_order α] {r s : α} : ({r} : finset α).to_colex < ({s} : finset α).to_colex ↔ r < s := by simp [lt_singleton_iff_mem_lt] /-- Colex is an extension of the base ordering on α. -/ lemma singleton_le_iff_le [linear_order α] {r s : α} : ({r} : finset α).to_colex ≤ ({s} : finset α).to_colex ↔ r ≤ s := by rw [le_iff_le_iff_lt_iff_lt, singleton_lt_iff_lt] /-- Colex doesn't care if you remove the other set -/ @[simp] lemma sdiff_lt_sdiff_iff_lt [has_lt α] [decidable_eq α] (A B : finset α) : (A \ B).to_colex < (B \ A).to_colex ↔ A.to_colex < B.to_colex := begin rw [colex.lt_def, colex.lt_def], apply exists_congr, intro k, simp only [mem_sdiff, not_and, not_not], split, { rintro ⟨z, kAB, kB, kA⟩, refine ⟨_, kA, kB⟩, { intros x hx, specialize z hx, tauto } }, { rintro ⟨z, kA, kB⟩, refine ⟨_, λ _, kB, kB, kA⟩, intros x hx, rw z hx }, end /-- Colex doesn't care if you remove the other set -/ @[simp] lemma sdiff_le_sdiff_iff_le [linear_order α] (A B : finset α) : (A \ B).to_colex ≤ (B \ A).to_colex ↔ A.to_colex ≤ B.to_colex := by rw [le_iff_le_iff_lt_iff_lt, sdiff_lt_sdiff_iff_lt] lemma empty_to_colex_lt [linear_order α] {A : finset α} (hA : A.nonempty) : (∅ : finset α).to_colex < A.to_colex := begin rw [colex.lt_def], refine ⟨max' _ hA, _, by simp, max'_mem _ _⟩, simp only [false_iff, not_mem_empty], intros x hx t, apply not_le_of_lt hx (le_max' _ _ t), end /-- If `A ⊂ B`, then `A` is less than `B` in the colex order. Note the converse does not hold, as `⊆` is not a linear order. -/ lemma colex_lt_of_ssubset [linear_order α] {A B : finset α} (h : A ⊂ B) : A.to_colex < B.to_colex := begin rw [←sdiff_lt_sdiff_iff_lt, sdiff_eq_empty_iff_subset.2 h.1], exact empty_to_colex_lt (by simpa [finset.nonempty] using exists_of_ssubset h), end @[simp] lemma empty_to_colex_le [linear_order α] {A : finset α} : (∅ : finset α).to_colex ≤ A.to_colex := begin rcases A.eq_empty_or_nonempty with rfl | hA, { simp }, { apply (empty_to_colex_lt hA).le }, end /-- If `A ⊆ B`, then `A ≤ B` in the colex order. Note the converse does not hold, as `⊆` is not a linear order. -/ lemma colex_le_of_subset [linear_order α] {A B : finset α} (h : A ⊆ B) : A.to_colex ≤ B.to_colex := begin rw [←sdiff_le_sdiff_iff_le, sdiff_eq_empty_iff_subset.2 h], apply empty_to_colex_le end /-- The function from finsets to finsets with the colex order is a relation homomorphism. -/ @[simps] def to_colex_rel_hom [linear_order α] : ((⊆) : finset α → finset α → Prop) →r ((≤) : finset.colex α → finset.colex α → Prop) := { to_fun := finset.to_colex, map_rel' := λ A B, colex_le_of_subset } instance [linear_order α] : order_bot (finset.colex α) := { bot := (∅ : finset α).to_colex, bot_le := λ x, empty_to_colex_le } instance [linear_order α] [fintype α] : order_top (finset.colex α) := { top := finset.univ.to_colex, le_top := λ x, colex_le_of_subset (subset_univ _) } instance [linear_order α] : lattice (finset.colex α) := { ..(by apply_instance : semilattice_sup (finset.colex α)), ..(by apply_instance : semilattice_inf (finset.colex α)) } instance [linear_order α] [fintype α] : bounded_order (finset.colex α) := { ..(by apply_instance : order_top (finset.colex α)), ..(by apply_instance : order_bot (finset.colex α)) } /-- For subsets of ℕ, we can show that colex is equivalent to binary. -/ lemma sum_two_pow_lt_iff_lt (A B : finset ℕ) : ∑ i in A, 2^i < ∑ i in B, 2^i ↔ A.to_colex < B.to_colex := begin have z : ∀ (A B : finset ℕ), A.to_colex < B.to_colex → ∑ i in A, 2^i < ∑ i in B, 2^i, { intros A B, rw [← sdiff_lt_sdiff_iff_lt, colex.lt_def], rintro ⟨k, z, kA, kB⟩, rw ← sdiff_union_inter A B, conv_rhs { rw ← sdiff_union_inter B A }, rw [sum_union (disjoint_sdiff_inter _ _), sum_union (disjoint_sdiff_inter _ _), inter_comm, add_lt_add_iff_right], apply lt_of_lt_of_le (@nat.sum_two_pow_lt k (A \ B) _), { apply single_le_sum (λ _ _, nat.zero_le _) kB }, intros x hx, apply lt_of_le_of_ne (le_of_not_lt (λ kx, _)), { apply (ne_of_mem_of_not_mem hx kA) }, have := (z kx).1 hx, rw mem_sdiff at this hx, exact hx.2 this.1 }, refine ⟨λ h, (lt_trichotomy A B).resolve_right (λ h₁, h₁.elim _ (not_lt_of_gt h ∘ z _ _)), z A B⟩, rintro rfl, apply irrefl _ h end /-- For subsets of ℕ, we can show that colex is equivalent to binary. -/ lemma sum_two_pow_le_iff_lt (A B : finset ℕ) : ∑ i in A, 2^i ≤ ∑ i in B, 2^i ↔ A.to_colex ≤ B.to_colex := by rw [le_iff_le_iff_lt_iff_lt, sum_two_pow_lt_iff_lt] end colex