/- Copyright (c) 2021 David Wärn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Wärn -/ import topology.stone_cech import topology.algebra.semigroup import data.stream.init /-! # Hindman's theorem on finite sums We prove Hindman's theorem on finite sums, using idempotent ultrafilters. Given an infinite sequence `a₀, a₁, a₂, …` of positive integers, the set `FS(a₀, …)` is the set of positive integers that can be expressed as a finite sum of `aᵢ`'s, without repetition. Hindman's theorem asserts that whenever the positive integers are finitely colored, there exists a sequence `a₀, a₁, a₂, …` such that `FS(a₀, …)` is monochromatic. There is also a stronger version, saying that whenever a set of the form `FS(a₀, …)` is finitely colored, there exists a sequence `b₀, b₁, b₂, …` such that `FS(b₀, …)` is monochromatic and contained in `FS(a₀, …)`. We prove both these versions for a general semigroup `M` instead of `ℕ+` since it is no harder, although this special case implies the general case. The idea of the proof is to extend the addition `(+) : M → M → M` to addition `(+) : βM → βM → βM` on the space `βM` of ultrafilters on `M`. One can prove that if `U` is an _idempotent_ ultrafilter, i.e. `U + U = U`, then any `U`-large subset of `M` contains some set `FS(a₀, …)` (see `exists_FS_of_large`). And with the help of a general topological argument one can show that any set of the form `FS(a₀, …)` is `U`-large according to some idempotent ultrafilter `U` (see `exists_idempotent_ultrafilter_le_FS`). This is enough to prove the theorem since in any finite partition of a `U`-large set, one of the parts is `U`-large. ## Main results - `FS_partition_regular`: the strong form of Hindman's theorem - `exists_FS_of_finite_cover`: the weak form of Hindman's theorem ## Tags Ramsey theory, ultrafilter -/ open filter /-- Multiplication of ultrafilters given by `∀ᶠ m in U*V, p m ↔ ∀ᶠ m in U, ∀ᶠ m' in V, p (m*m')`. -/ @[to_additive "Addition of ultrafilters given by `∀ᶠ m in U+V, p m ↔ ∀ᶠ m in U, ∀ᶠ m' in V, p (m+m')`." ] def ultrafilter.has_mul {M} [has_mul M] : has_mul (ultrafilter M) := { mul := λ U V, (*) <$> U <*> V } local attribute [instance] ultrafilter.has_mul ultrafilter.has_add /- We could have taken this as the definition of `U * V`, but then we would have to prove that it defines an ultrafilter. -/ @[to_additive] lemma ultrafilter.eventually_mul {M} [has_mul M] (U V : ultrafilter M) (p : M → Prop) : (∀ᶠ m in ↑(U * V), p m) ↔ ∀ᶠ m in U, ∀ᶠ m' in V, p (m * m') := iff.rfl /-- Semigroup structure on `ultrafilter M` induced by a semigroup structure on `M`. -/ @[to_additive "Additive semigroup structure on `ultrafilter M` induced by an additive semigroup structure on `M`."] def ultrafilter.semigroup {M} [semigroup M] : semigroup (ultrafilter M) := { mul_assoc := λ U V W, ultrafilter.coe_inj.mp $ filter.ext' $ λ p, by simp only [ultrafilter.eventually_mul, mul_assoc] ..ultrafilter.has_mul } local attribute [instance] ultrafilter.semigroup ultrafilter.add_semigroup /- We don't prove `continuous_mul_right`, because in general it is false! -/ @[to_additive] lemma ultrafilter.continuous_mul_left {M} [semigroup M] (V : ultrafilter M) : continuous (* V) := topological_space.is_topological_basis.continuous ultrafilter_basis_is_basis _ $ set.forall_range_iff.mpr $ λ s, ultrafilter_is_open_basic { m : M | ∀ᶠ m' in V, m * m' ∈ s } namespace hindman /-- `FS a` is the set of finite sums in `a`, i.e. `m ∈ FS a` if `m` is the sum of a nonempty subsequence of `a`. We give a direct inductive definition instead of talking about subsequences. -/ inductive FS {M} [add_semigroup M] : stream M → set M | head (a : stream M) : FS a a.head | tail (a : stream M) (m : M) (h : FS a.tail m) : FS a m | cons (a : stream M) (m : M) (h : FS a.tail m) : FS a (a.head + m) /-- `FP a` is the set of finite products in `a`, i.e. `m ∈ FP a` if `m` is the product of a nonempty subsequence of `a`. We give a direct inductive definition instead of talking about subsequences. -/ @[to_additive FS] inductive FP {M} [semigroup M] : stream M → set M | head (a : stream M) : FP a a.head | tail (a : stream M) (m : M) (h : FP a.tail m) : FP a m | cons (a : stream M) (m : M) (h : FP a.tail m) : FP a (a.head * m) /-- If `m` and `m'` are finite products in `M`, then so is `m * m'`, provided that `m'` is obtained from a subsequence of `M` starting sufficiently late. -/ @[to_additive] lemma FP.mul {M} [semigroup M] {a : stream M} {m : M} (hm : m ∈ FP a) : ∃ n, ∀ m' ∈ FP (a.drop n), m * m' ∈ FP a := begin induction hm with a a m hm ih a m hm ih, { exact ⟨1, λ m hm, FP.cons a m hm⟩, }, { cases ih with n hn, use n+1, intros m' hm', exact FP.tail _ _ (hn _ hm'), }, { cases ih with n hn, use n+1, intros m' hm', rw mul_assoc, exact FP.cons _ _ (hn _ hm'), }, end @[to_additive exists_idempotent_ultrafilter_le_FS] lemma exists_idempotent_ultrafilter_le_FP {M} [semigroup M] (a : stream M) : ∃ U : ultrafilter M, U * U = U ∧ ∀ᶠ m in U, m ∈ FP a := begin let S : set (ultrafilter M) := ⋂ n, { U | ∀ᶠ m in U, m ∈ FP (a.drop n) }, obtain ⟨U, hU, U_idem⟩ := exists_idempotent_in_compact_subsemigroup _ S _ _ _, { refine ⟨U, U_idem, _⟩, convert set.mem_Inter.mp hU 0, }, { exact ultrafilter.continuous_mul_left }, { apply is_compact.nonempty_Inter_of_sequence_nonempty_compact_closed, { intros n U hU, apply eventually.mono hU, rw [add_comm, ←stream.drop_drop, ←stream.tail_eq_drop], exact FP.tail _ }, { intro n, exact ⟨pure _, mem_pure.mpr $ FP.head _⟩, }, { exact (ultrafilter_is_closed_basic _).is_compact, }, { intro n, apply ultrafilter_is_closed_basic, }, }, { exact is_closed.is_compact (is_closed_Inter $ λ i, ultrafilter_is_closed_basic _) }, { intros U hU V hV, rw set.mem_Inter at *, intro n, rw [set.mem_set_of_eq, ultrafilter.eventually_mul], apply eventually.mono (hU n), intros m hm, obtain ⟨n', hn⟩ := FP.mul hm, apply eventually.mono (hV (n' + n)), intros m' hm', apply hn, simpa only [stream.drop_drop] using hm', } end @[to_additive exists_FS_of_large] lemma exists_FP_of_large {M} [semigroup M] (U : ultrafilter M) (U_idem : U * U = U) (s₀ : set M) (sU : s₀ ∈ U) : ∃ a, FP a ⊆ s₀ := begin /- Informally: given a `U`-large set `s₀`, the set `s₀ ∩ { m | ∀ᶠ m' in U, m * m' ∈ s₀ }` is also `U`-large (since `U` is idempotent). Thus in particular there is an `a₀` in this intersection. Now let `s₁` be the intersection `s₀ ∩ { m | a₀ * m ∈ s₀ }`. By choice of `a₀`, this is again `U`-large, so we can repeat the argument starting from `s₁`, obtaining `a₁`, `s₂`, etc. This gives the desired infinite sequence. -/ have exists_elem : ∀ {s : set M} (hs : s ∈ U), (s ∩ { m | ∀ᶠ m' in U, m * m' ∈ s }).nonempty := λ s hs, ultrafilter.nonempty_of_mem (inter_mem hs $ by { rw ←U_idem at hs, exact hs }), let elem : { s // s ∈ U } → M := λ p, (exists_elem p.property).some, let succ : { s // s ∈ U } → { s // s ∈ U } := λ p, ⟨p.val ∩ { m | elem p * m ∈ p.val }, inter_mem p.2 $ show _, from set.inter_subset_right _ _ (exists_elem p.2).some_mem⟩, use stream.corec elem succ (subtype.mk s₀ sU), suffices : ∀ (a : stream M) (m ∈ FP a), ∀ p, a = stream.corec elem succ p → m ∈ p.val, { intros m hm, exact this _ m hm ⟨s₀, sU⟩ rfl, }, clear sU s₀, intros a m h, induction h with b b n h ih b n h ih, { rintros p rfl, rw [stream.corec_eq, stream.head_cons], exact set.inter_subset_left _ _ (set.nonempty.some_mem _), }, { rintros p rfl, refine set.inter_subset_left _ _ (ih (succ p) _), rw [stream.corec_eq, stream.tail_cons], }, { rintros p rfl, have := set.inter_subset_right _ _ (ih (succ p) _), { simpa only using this }, rw [stream.corec_eq, stream.tail_cons], }, end /-- The strong form of **Hindman's theorem**: in any finite cover of an FP-set, one the parts contains an FP-set. -/ @[to_additive FS_partition_regular] lemma FP_partition_regular {M} [semigroup M] (a : stream M) (s : set (set M)) (sfin : s.finite) (scov : FP a ⊆ ⋃₀ s) : ∃ (c ∈ s) (b : stream M), FP b ⊆ c := let ⟨U, idem, aU⟩ := exists_idempotent_ultrafilter_le_FP a in let ⟨c, cs, hc⟩ := (ultrafilter.finite_sUnion_mem_iff sfin).mp (mem_of_superset aU scov) in ⟨c, cs, exists_FP_of_large U idem c hc⟩ /-- The weak form of **Hindman's theorem**: in any finite cover of a nonempty semigroup, one of the parts contains an FP-set. -/ @[to_additive exists_FS_of_finite_cover] lemma exists_FP_of_finite_cover {M} [semigroup M] [nonempty M] (s : set (set M)) (sfin : s.finite) (scov : ⊤ ⊆ ⋃₀ s) : ∃ (c ∈ s) (a : stream M), FP a ⊆ c := let ⟨U, hU⟩ := exists_idempotent_of_compact_t2_of_continuous_mul_left (@ultrafilter.continuous_mul_left M _) in let ⟨c, c_s, hc⟩ := (ultrafilter.finite_sUnion_mem_iff sfin).mp (mem_of_superset univ_mem scov) in ⟨c, c_s, exists_FP_of_large U hU c hc⟩ @[to_additive FS_iter_tail_sub_FS] lemma FP_drop_subset_FP {M} [semigroup M] (a : stream M) (n : ℕ) : FP (a.drop n) ⊆ FP a := begin induction n with n ih, { refl }, rw [nat.succ_eq_one_add, ←stream.drop_drop], exact trans (FP.tail _) ih, end @[to_additive] lemma FP.singleton {M} [semigroup M] (a : stream M) (i : ℕ) : a.nth i ∈ FP a := by { induction i with i ih generalizing a, { apply FP.head }, { apply FP.tail, apply ih } } @[to_additive] lemma FP.mul_two {M} [semigroup M] (a : stream M) (i j : ℕ) (ij : i < j) : a.nth i * a.nth j ∈ FP a := begin refine FP_drop_subset_FP _ i _, rw ←stream.head_drop, apply FP.cons, rcases le_iff_exists_add.mp (nat.succ_le_of_lt ij) with ⟨d, hd⟩, have := FP.singleton (a.drop i).tail d, rw [stream.tail_eq_drop, stream.nth_drop, stream.nth_drop] at this, convert this, rw [hd, add_comm, nat.succ_add, nat.add_succ], end @[to_additive] lemma FP.finset_prod {M} [comm_monoid M] (a : stream M) (s : finset ℕ) (hs : s.nonempty) : s.prod (λ i, a.nth i) ∈ FP a := begin refine FP_drop_subset_FP _ (s.min' hs) _, induction s using finset.strong_induction with s ih, rw [←finset.mul_prod_erase _ _ (s.min'_mem hs), ←stream.head_drop], cases (s.erase (s.min' hs)).eq_empty_or_nonempty with h h, { rw [h, finset.prod_empty, mul_one], exact FP.head _ }, { apply FP.cons, rw [stream.tail_eq_drop, stream.drop_drop, add_comm], refine set.mem_of_subset_of_mem _ (ih _ (finset.erase_ssubset $ s.min'_mem hs) h), have : s.min' hs + 1 ≤ (s.erase (s.min' hs)).min' h := nat.succ_le_of_lt (finset.min'_lt_of_mem_erase_min' _ _ $ finset.min'_mem _ _), cases le_iff_exists_add.mp this with d hd, rw [hd, add_comm, ←stream.drop_drop], apply FP_drop_subset_FP } end end hindman