/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import data.stream.init import data.part import data.nat.upto /-! # Fixed point This module defines a generic `fix` operator for defining recursive computations that are not necessarily well-founded or productive. An instance is defined for `part`. ## Main definition * class `has_fix` * `part.fix` -/ universes u v open_locale classical variables {α : Type*} {β : α → Type*} /-- `has_fix α` gives us a way to calculate the fixed point of function of type `α → α`. -/ class has_fix (α : Type*) := (fix : (α → α) → α) namespace part open part nat nat.upto section basic variables (f : (Π a, part $ β a) → (Π a, part $ β a)) /-- A series of successive, finite approximation of the fixed point of `f`, defined by `approx f n = f^[n] ⊥`. The limit of this chain is the fixed point of `f`. -/ def fix.approx : stream $ Π a, part $ β a | 0 := ⊥ | (nat.succ i) := f (fix.approx i) /-- loop body for finding the fixed point of `f` -/ def fix_aux {p : ℕ → Prop} (i : nat.upto p) (g : Π j : nat.upto p, i < j → Π a, part $ β a) : Π a, part $ β a := f $ λ x : α, assert (¬p (i.val)) $ λ h : ¬ p (i.val), g (i.succ h) (nat.lt_succ_self _) x /-- The least fixed point of `f`. If `f` is a continuous function (according to complete partial orders), it satisfies the equations: 1. `fix f = f (fix f)` (is a fixed point) 2. `∀ X, f X ≤ X → fix f ≤ X` (least fixed point) -/ protected def fix (x : α) : part $ β x := part.assert (∃ i, (fix.approx f i x).dom) $ λ h, well_founded.fix.{1} (nat.upto.wf h) (fix_aux f) nat.upto.zero x protected lemma fix_def {x : α} (h' : ∃ i, (fix.approx f i x).dom) : part.fix f x = fix.approx f (nat.succ $ nat.find h') x := begin let p := λ (i : ℕ), (fix.approx f i x).dom, have : p (nat.find h') := nat.find_spec h', generalize hk : nat.find h' = k, replace hk : nat.find h' = k + (@upto.zero p).val := hk, rw hk at this, revert hk, dsimp [part.fix], rw assert_pos h', revert this, generalize : upto.zero = z, intros, suffices : ∀ x', well_founded.fix (fix._proof_1 f x h') (fix_aux f) z x' = fix.approx f (succ k) x', from this _, induction k generalizing z; intro, { rw [fix.approx,well_founded.fix_eq,fix_aux], congr, ext : 1, rw assert_neg, refl, rw nat.zero_add at this, simpa only [not_not, subtype.val_eq_coe] }, { rw [fix.approx,well_founded.fix_eq,fix_aux], congr, ext : 1, have hh : ¬(fix.approx f (z.val) x).dom, { apply nat.find_min h', rw [hk,nat.succ_add,← nat.add_succ], apply nat.lt_of_succ_le, apply nat.le_add_left }, rw succ_add_eq_succ_add at this hk, rw [assert_pos hh, k_ih (upto.succ z hh) this hk] } end lemma fix_def' {x : α} (h' : ¬ ∃ i, (fix.approx f i x).dom) : part.fix f x = none := by dsimp [part.fix]; rw assert_neg h' end basic end part namespace part instance : has_fix (part α) := ⟨λ f, part.fix (λ x u, f (x u)) ()⟩ end part open sigma namespace pi instance part.has_fix {β} : has_fix (α → part β) := ⟨part.fix⟩ end pi