/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import tactic.apply import control.fix import order.omega_complete_partial_order /-! # Lawful fixed point operators This module defines the laws required of a `has_fix` instance, using the theory of omega complete partial orders (ωCPO). Proofs of the lawfulness of all `has_fix` instances in `control.fix` are provided. ## Main definition * class `lawful_fix` -/ universes u v open_locale classical variables {α : Type*} {β : α → Type*} open omega_complete_partial_order /-- Intuitively, a fixed point operator `fix` is lawful if it satisfies `fix f = f (fix f)` for all `f`, but this is inconsistent / uninteresting in most cases due to the existence of "exotic" functions `f`, such as the function that is defined iff its argument is not, familiar from the halting problem. Instead, this requirement is limited to only functions that are `continuous` in the sense of `ω`-complete partial orders, which excludes the example because it is not monotone (making the input argument less defined can make `f` more defined). -/ class lawful_fix (α : Type*) [omega_complete_partial_order α] extends has_fix α := (fix_eq : ∀ {f : α →o α}, continuous f → has_fix.fix f = f (has_fix.fix f)) lemma lawful_fix.fix_eq' {α} [omega_complete_partial_order α] [lawful_fix α] {f : α → α} (hf : continuous' f) : has_fix.fix f = f (has_fix.fix f) := lawful_fix.fix_eq (hf.to_bundled _) namespace part open part nat nat.upto namespace fix variables (f : (Π a, part $ β a) →o (Π a, part $ β a)) lemma approx_mono' {i : ℕ} : fix.approx f i ≤ fix.approx f (succ i) := begin induction i, dsimp [approx], apply @bot_le _ _ _ (f ⊥), intro, apply f.monotone, apply i_ih end lemma approx_mono ⦃i j : ℕ⦄ (hij : i ≤ j) : approx f i ≤ approx f j := begin induction j with j ih, { cases hij, exact le_rfl }, cases hij, { exact le_rfl }, exact le_trans (ih ‹_›) (approx_mono' f) end lemma mem_iff (a : α) (b : β a) : b ∈ part.fix f a ↔ ∃ i, b ∈ approx f i a := begin by_cases h₀ : ∃ (i : ℕ), (approx f i a).dom, { simp only [part.fix_def f h₀], split; intro hh, exact ⟨_,hh⟩, have h₁ := nat.find_spec h₀, rw [dom_iff_mem] at h₁, cases h₁ with y h₁, replace h₁ := approx_mono' f _ _ h₁, suffices : y = b, subst this, exact h₁, cases hh with i hh, revert h₁, generalize : (succ (nat.find h₀)) = j, intro, wlog : i ≤ j := le_total i j using [i j b y,j i y b], replace hh := approx_mono f case _ _ hh, apply part.mem_unique h₁ hh }, { simp only [fix_def' ⇑f h₀, not_exists, false_iff, not_mem_none], simp only [dom_iff_mem, not_exists] at h₀, intro, apply h₀ } end lemma approx_le_fix (i : ℕ) : approx f i ≤ part.fix f := assume a b hh, by { rw [mem_iff f], exact ⟨_,hh⟩ } lemma exists_fix_le_approx (x : α) : ∃ i, part.fix f x ≤ approx f i x := begin by_cases hh : ∃ i b, b ∈ approx f i x, { rcases hh with ⟨i,b,hb⟩, existsi i, intros b' h', have hb' := approx_le_fix f i _ _ hb, obtain rfl := part.mem_unique h' hb', exact hb }, { simp only [not_exists] at hh, existsi 0, intros b' h', simp only [mem_iff f] at h', cases h' with i h', cases hh _ _ h' } end include f /-- The series of approximations of `fix f` (see `approx`) as a `chain` -/ def approx_chain : chain (Π a, part $ β a) := ⟨approx f, approx_mono f⟩ lemma le_f_of_mem_approx {x} : x ∈ approx_chain f → x ≤ f x := begin simp only [(∈), forall_exists_index], rintro i rfl, apply approx_mono' end lemma approx_mem_approx_chain {i} : approx f i ∈ approx_chain f := stream.mem_of_nth_eq rfl end fix open fix variables {α} variables (f : (Π a, part $ β a) →o (Π a, part $ β a)) open omega_complete_partial_order open part (hiding ωSup) nat open nat.upto omega_complete_partial_order lemma fix_eq_ωSup : part.fix f = ωSup (approx_chain f) := begin apply le_antisymm, { intro x, cases exists_fix_le_approx f x with i hx, transitivity' approx f i.succ x, { transitivity', apply hx, apply approx_mono' f }, apply' le_ωSup_of_le i.succ, dsimp [approx], refl', }, { apply ωSup_le _ _ _, simp only [fix.approx_chain, order_hom.coe_fun_mk], intros y x, apply approx_le_fix f }, end lemma fix_le {X : Π a, part $ β a} (hX : f X ≤ X) : part.fix f ≤ X := begin rw fix_eq_ωSup f, apply ωSup_le _ _ _, simp only [fix.approx_chain, order_hom.coe_fun_mk], intros i, induction i, dsimp [fix.approx], apply' bot_le, transitivity' f X, apply f.monotone i_ih, apply hX end variables {f} (hc : continuous f) include hc lemma fix_eq : part.fix f = f (part.fix f) := begin rw [fix_eq_ωSup f,hc], apply le_antisymm, { apply ωSup_le_ωSup_of_le _, intros i, existsi [i], intro x, -- intros x y hx, apply le_f_of_mem_approx _ ⟨i, rfl⟩, }, { apply ωSup_le_ωSup_of_le _, intros i, existsi i.succ, refl', } end end part namespace part /-- `to_unit` as a monotone function -/ @[simps] def to_unit_mono (f : part α →o part α) : (unit → part α) →o (unit → part α) := { to_fun := λ x u, f (x u), monotone' := λ x y (h : x ≤ y) u, f.monotone $ h u } lemma to_unit_cont (f : part α →o part α) (hc : continuous f) : continuous (to_unit_mono f) | c := begin ext ⟨⟩ : 1, dsimp [omega_complete_partial_order.ωSup], erw [hc, chain.map_comp], refl end instance : lawful_fix (part α) := ⟨λ f hc, show part.fix (to_unit_mono f) () = _, by rw part.fix_eq (to_unit_cont f hc); refl⟩ end part open sigma namespace pi instance {β} : lawful_fix (α → part β) := ⟨λ f, part.fix_eq⟩ variables {γ : Π a : α, β a → Type*} section monotone variables (α β γ) /-- `sigma.curry` as a monotone function. -/ @[simps] def monotone_curry [∀ x y, preorder $ γ x y] : (Π x : Σ a, β a, γ x.1 x.2) →o (Π a (b : β a), γ a b) := { to_fun := curry, monotone' := λ x y h a b, h ⟨a,b⟩ } /-- `sigma.uncurry` as a monotone function. -/ @[simps] def monotone_uncurry [∀ x y, preorder $ γ x y] : (Π a (b : β a), γ a b) →o (Π x : Σ a, β a, γ x.1 x.2) := { to_fun := uncurry, monotone' := λ x y h a, h a.1 a.2 } variables [∀ x y, omega_complete_partial_order $ γ x y] open omega_complete_partial_order.chain lemma continuous_curry : continuous $ monotone_curry α β γ := λ c, by { ext x y, dsimp [curry,ωSup], rw [map_comp,map_comp], refl } lemma continuous_uncurry : continuous $ monotone_uncurry α β γ := λ c, by { ext x y, dsimp [uncurry,ωSup], rw [map_comp,map_comp], refl } end monotone open has_fix instance [has_fix $ Π x : sigma β, γ x.1 x.2] : has_fix (Π x (y : β x), γ x y) := ⟨ λ f, curry (fix $ uncurry ∘ f ∘ curry) ⟩ variables [∀ x y, omega_complete_partial_order $ γ x y] section curry variables {f : (Π x (y : β x), γ x y) →o (Π x (y : β x), γ x y)} variables (hc : continuous f) lemma uncurry_curry_continuous : continuous $ (monotone_uncurry α β γ).comp $ f.comp $ monotone_curry α β γ := continuous_comp _ _ (continuous_comp _ _ (continuous_curry _ _ _) hc) (continuous_uncurry _ _ _) end curry instance pi.lawful_fix' [lawful_fix $ Π x : sigma β, γ x.1 x.2] : lawful_fix (Π x y, γ x y) := { fix_eq := λ f hc, begin dsimp [fix], conv { to_lhs, erw [lawful_fix.fix_eq (uncurry_curry_continuous hc)] }, refl, end, } end pi