/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import control.monad.basic import data.int.basic import data.stream.defs import control.uliftable import tactic.norm_num import data.bitvec.basic /-! # Rand Monad and Random Class This module provides tools for formulating computations guided by randomness and for defining objects that can be created randomly. ## Main definitions * `rand` monad for computations guided by randomness; * `random` class for objects that can be generated randomly; * `random` to generate one object; * `random_r` to generate one object inside a range; * `random_series` to generate an infinite series of objects; * `random_series_r` to generate an infinite series of objects inside a range; * `io.mk_generator` to create a new random number generator; * `io.run_rand` to run a randomized computation inside the `io` monad; * `tactic.run_rand` to run a randomized computation inside the `tactic` monad ## Local notation * `i .. j` : `Icc i j`, the set of values between `i` and `j` inclusively; ## Tags random monad io ## References * Similar library in Haskell: https://hackage.haskell.org/package/MonadRandom -/ open list io applicative universes u v w /-- A monad to generate random objects using the generator type `g` -/ @[reducible] def rand_g (g : Type) (α : Type u) : Type u := state (ulift.{u} g) α /-- A monad to generate random objects using the generator type `std_gen` -/ @[reducible] def rand := rand_g std_gen instance (g : Type) : uliftable (rand_g.{u} g) (rand_g.{v} g) := @state_t.uliftable' _ _ _ _ _ (equiv.ulift.trans.{u u u u u} equiv.ulift.symm) open ulift (hiding inhabited) /-- Generate one more `ℕ` -/ def rand_g.next {g : Type} [random_gen g] : rand_g g ℕ := ⟨ prod.map id up ∘ random_gen.next ∘ down ⟩ local infix ` .. `:41 := set.Icc open stream /-- `bounded_random α` gives us machinery to generate values of type `α` between certain bounds -/ class bounded_random (α : Type u) [preorder α] := (random_r : Π g [random_gen g] (x y : α), (x ≤ y) → rand_g g (x .. y)) /-- `random α` gives us machinery to generate values of type `α` -/ class random (α : Type u) := (random [] : Π (g : Type) [random_gen g], rand_g g α) /-- shift_31_left = 2^31; multiplying by it shifts the binary representation of a number left by 31 bits, dividing by it shifts it right by 31 bits -/ def shift_31_left : ℕ := by apply_normed 2^31 namespace rand open stream variables (α : Type u) variables (g : Type) [random_gen g] /-- create a new random number generator distinct from the one stored in the state -/ def split : rand_g g g := ⟨ prod.map id up ∘ random_gen.split ∘ down ⟩ variables {g} section random variables [random α] export random (random) /-- Generate a random value of type `α`. -/ def random : rand_g g α := random.random α g /-- generate an infinite series of random values of type `α` -/ def random_series : rand_g g (stream α) := do gen ← uliftable.up (split g), pure $ stream.corec_state (random.random α g) gen end random variables {α} /-- Generate a random value between `x` and `y` inclusive. -/ def random_r [preorder α] [bounded_random α] (x y : α) (h : x ≤ y) : rand_g g (x .. y) := bounded_random.random_r g x y h /-- generate an infinite series of random values of type `α` between `x` and `y` inclusive. -/ def random_series_r [preorder α] [bounded_random α] (x y : α) (h : x ≤ y) : rand_g g (stream (x .. y)) := do gen ← uliftable.up (split g), pure $ corec_state (bounded_random.random_r g x y h) gen end rand namespace io private def accum_char (w : ℕ) (c : char) : ℕ := c.to_nat + 256 * w /-- create and a seed a random number generator -/ def mk_generator : io std_gen := do seed ← io.rand 0 shift_31_left, return $ mk_std_gen seed variables {α : Type} /-- Run `cmd` using a randomly seeded random number generator -/ def run_rand (cmd : _root_.rand α) : io α := do g ← io.mk_generator, return $ (cmd.run ⟨g⟩).1 /-- Run `cmd` using the provided seed. -/ def run_rand_with (seed : ℕ) (cmd : _root_.rand α) : io α := return $ (cmd.run ⟨mk_std_gen seed⟩).1 section random variables [random α] /-- randomly generate a value of type α -/ def random : io α := io.run_rand (rand.random α) /-- randomly generate an infinite series of value of type α -/ def random_series : io (stream α) := io.run_rand (rand.random_series α) end random section bounded_random variables [preorder α] [bounded_random α] /-- randomly generate a value of type α between `x` and `y` -/ def random_r (x y : α) (p : x ≤ y) : io (x .. y) := io.run_rand (bounded_random.random_r _ x y p) /-- randomly generate an infinite series of value of type α between `x` and `y` -/ def random_series_r (x y : α) (h : x ≤ y) : io (stream $ x .. y) := io.run_rand (rand.random_series_r x y h) end bounded_random end io namespace tactic /-- create a seeded random number generator in the `tactic` monad -/ meta def mk_generator : tactic std_gen := do tactic.unsafe_run_io @io.mk_generator /-- run `cmd` using the a randomly seeded random number generator in the tactic monad -/ meta def run_rand {α : Type u} (cmd : rand α) : tactic α := do ⟨g⟩ ← tactic.up mk_generator, return (cmd.run ⟨g⟩).1 variables {α : Type u} section bounded_random variables [preorder α] [bounded_random α] /-- Generate a random value between `x` and `y` inclusive. -/ meta def random_r (x y : α) (h : x ≤ y) : tactic (x .. y) := run_rand (rand.random_r x y h) /-- Generate an infinite series of random values of type `α` between `x` and `y` inclusive. -/ meta def random_series_r (x y : α) (h : x ≤ y) : tactic (stream $ x .. y) := run_rand (rand.random_series_r x y h) end bounded_random section random variables [random α] /-- randomly generate a value of type α -/ meta def random : tactic α := run_rand (rand.random α) /-- randomly generate an infinite series of value of type α -/ meta def random_series : tactic (stream α) := run_rand (rand.random_series α) end random end tactic open nat (succ one_add mod_eq_of_lt zero_lt_succ add_one succ_le_succ) variables {g : Type} [random_gen g] open nat namespace fin variables {n : ℕ} [fact (0 < n)] /-- generate a `fin` randomly -/ protected def random : rand_g g (fin n) := ⟨ λ ⟨g⟩, prod.map of_nat' up $ rand_nat g 0 n ⟩ end fin open nat instance nat_bounded_random : bounded_random ℕ := { random_r := λ g inst x y hxy, do z ← @fin.random g inst (succ $ y - x) _, pure ⟨z.val + x, nat.le_add_left _ _, by rw ← le_tsub_iff_right hxy; apply le_of_succ_le_succ z.is_lt⟩ } /-- This `bounded_random` interval generates integers between `x` and `y` by first generating a natural number between `0` and `y - x` and shifting the result appropriately. -/ instance int_bounded_random : bounded_random ℤ := { random_r := λ g inst x y hxy, do ⟨z,h₀,h₁⟩ ← @bounded_random.random_r ℕ _ _ g inst 0 (int.nat_abs $ y - x) dec_trivial, pure ⟨z + x, int.le_add_of_nonneg_left (int.coe_nat_nonneg _), int.add_le_of_le_sub_right $ le_trans (int.coe_nat_le_coe_nat_of_le h₁) (le_of_eq $ int.of_nat_nat_abs_eq_of_nonneg (int.sub_nonneg_of_le hxy)) ⟩ } instance fin_random (n : ℕ) [fact (0 < n)] : random (fin n) := { random := λ g inst, @fin.random g inst _ _ } instance fin_bounded_random (n : ℕ) : bounded_random (fin n) := { random_r := λ g inst (x y : fin n) p, do ⟨r, h, h'⟩ ← @rand.random_r ℕ g inst _ _ x.val y.val p, pure ⟨⟨r,lt_of_le_of_lt h' y.is_lt⟩, h, h'⟩ } /-- A shortcut for creating a `random (fin n)` instance from a proof that `0 < n` rather than on matching on `fin (succ n)` -/ def random_fin_of_pos : ∀ {n : ℕ} (h : 0 < n), random (fin n) | (succ n) _ := fin_random _ | 0 h := false.elim (nat.not_lt_zero _ h) lemma bool_of_nat_mem_Icc_of_mem_Icc_to_nat (x y : bool) (n : ℕ) : n ∈ (x.to_nat .. y.to_nat) → bool.of_nat n ∈ (x .. y) := begin simp only [and_imp, set.mem_Icc], intros h₀ h₁, split; [ have h₂ := bool.of_nat_le_of_nat h₀, have h₂ := bool.of_nat_le_of_nat h₁ ]; rw bool.of_nat_to_nat at h₂; exact h₂, end instance : random bool := { random := λ g inst, (bool.of_nat ∘ subtype.val) <$> @bounded_random.random_r ℕ _ _ g inst 0 1 (nat.zero_le _) } instance : bounded_random bool := { random_r := λ g _inst x y p, subtype.map bool.of_nat (bool_of_nat_mem_Icc_of_mem_Icc_to_nat x y) <$> @bounded_random.random_r ℕ _ _ g _inst x.to_nat y.to_nat (bool.to_nat_le_to_nat p) } open_locale fin_fact /-- generate a random bit vector of length `n` -/ def bitvec.random (n : ℕ) : rand_g g (bitvec n) := bitvec.of_fin <$> rand.random (fin $ 2^n) /-- generate a random bit vector of length `n` -/ def bitvec.random_r {n : ℕ} (x y : bitvec n) (h : x ≤ y) : rand_g g (x .. y) := have h' : ∀ (a : fin (2 ^ n)), a ∈ (x.to_fin .. y.to_fin) → bitvec.of_fin a ∈ (x .. y), begin simp only [and_imp, set.mem_Icc], intros z h₀ h₁, replace h₀ := bitvec.of_fin_le_of_fin_of_le h₀, replace h₁ := bitvec.of_fin_le_of_fin_of_le h₁, rw bitvec.of_fin_to_fin at h₀ h₁, split; assumption, end, subtype.map bitvec.of_fin h' <$> rand.random_r x.to_fin y.to_fin (bitvec.to_fin_le_to_fin_of_le h) open nat instance random_bitvec (n : ℕ) : random (bitvec n) := { random := λ _ inst, @bitvec.random _ inst n } instance bounded_random_bitvec (n : ℕ) : bounded_random (bitvec n) := { random_r := λ _ inst x y p, @bitvec.random_r _ inst _ _ _ p }