/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.fintype.basic import data.list.min_max import logic.encodable.basic /-! # Denumerable types This file defines denumerable (countably infinite) types as a typeclass extending `encodable`. This is used to provide explicit encode/decode functions from and to `ℕ`, with the information that those functions are inverses of each other. ## Implementation notes This property already has a name, namely `α ≃ ℕ`, but here we are interested in using it as a typeclass. -/ /-- A denumerable type is (constructively) bijective with `ℕ`. Typeclass equivalent of `α ≃ ℕ`. -/ class denumerable (α : Type*) extends encodable α := (decode_inv : ∀ n, ∃ a ∈ decode n, encode a = n) open nat namespace denumerable section variables {α : Type*} {β : Type*} [denumerable α] [denumerable β] open encodable theorem decode_is_some (α) [denumerable α] (n : ℕ) : (decode α n).is_some := option.is_some_iff_exists.2 $ (decode_inv n).imp $ λ a, Exists.fst /-- Returns the `n`-th element of `α` indexed by the decoding. -/ def of_nat (α) [f : denumerable α] (n : ℕ) : α := option.get (decode_is_some α n) @[simp, priority 900] theorem decode_eq_of_nat (α) [denumerable α] (n : ℕ) : decode α n = some (of_nat α n) := option.eq_some_of_is_some _ @[simp] theorem of_nat_of_decode {n b} (h : decode α n = some b) : of_nat α n = b := option.some.inj $ (decode_eq_of_nat _ _).symm.trans h @[simp] theorem encode_of_nat (n) : encode (of_nat α n) = n := let ⟨a, h, e⟩ := decode_inv n in by rwa [of_nat_of_decode h] @[simp] theorem of_nat_encode (a) : of_nat α (encode a) = a := of_nat_of_decode (encodek _) /-- A denumerable type is equivalent to `ℕ`. -/ def eqv (α) [denumerable α] : α ≃ ℕ := ⟨encode, of_nat α, of_nat_encode, encode_of_nat⟩ @[priority 100] -- See Note [lower instance priority] instance : infinite α := infinite.of_surjective _ (eqv α).surjective /-- A type equivalent to `ℕ` is denumerable. -/ def mk' {α} (e : α ≃ ℕ) : denumerable α := { encode := e, decode := some ∘ e.symm, encodek := λ a, congr_arg some (e.symm_apply_apply _), decode_inv := λ n, ⟨_, rfl, e.apply_symm_apply _⟩ } /-- Denumerability is conserved by equivalences. This is transitivity of equivalence the denumerable way. -/ def of_equiv (α) {β} [denumerable α] (e : β ≃ α) : denumerable β := { decode_inv := λ n, by simp, ..encodable.of_equiv _ e } @[simp] theorem of_equiv_of_nat (α) {β} [denumerable α] (e : β ≃ α) (n) : @of_nat β (of_equiv _ e) n = e.symm (of_nat α n) := by apply of_nat_of_decode; show option.map _ _ = _; simp /-- All denumerable types are equivalent. -/ def equiv₂ (α β) [denumerable α] [denumerable β] : α ≃ β := (eqv α).trans (eqv β).symm instance nat : denumerable ℕ := ⟨λ n, ⟨_, rfl, rfl⟩⟩ @[simp] theorem of_nat_nat (n) : of_nat ℕ n = n := rfl /-- If `α` is denumerable, then so is `option α`. -/ instance option : denumerable (option α) := ⟨λ n, begin cases n, { refine ⟨none, _, encode_none⟩, rw [decode_option_zero, option.mem_def] }, refine ⟨some (of_nat α n), _, _⟩, { rw [decode_option_succ, decode_eq_of_nat, option.map_some', option.mem_def] }, rw [encode_some, encode_of_nat], end⟩ /-- If `α` and `β` are denumerable, then so is their sum. -/ instance sum : denumerable (α ⊕ β) := ⟨λ n, begin suffices : ∃ a ∈ @decode_sum α β _ _ n, encode_sum a = bit (bodd n) (div2 n), {simpa [bit_decomp]}, simp [decode_sum]; cases bodd n; simp [decode_sum, bit, encode_sum] end⟩ section sigma variables {γ : α → Type*} [∀ a, denumerable (γ a)] /-- A denumerable collection of denumerable types is denumerable. -/ instance sigma : denumerable (sigma γ) := ⟨λ n, by simp [decode_sigma]; exact ⟨_, _, ⟨rfl, heq.rfl⟩, by simp⟩⟩ @[simp] theorem sigma_of_nat_val (n : ℕ) : of_nat (sigma γ) n = ⟨of_nat α (unpair n).1, of_nat (γ _) (unpair n).2⟩ := option.some.inj $ by rw [← decode_eq_of_nat, decode_sigma_val]; simp; refl end sigma /-- If `α` and `β` are denumerable, then so is their product. -/ instance prod : denumerable (α × β) := of_equiv _ (equiv.sigma_equiv_prod α β).symm @[simp] theorem prod_of_nat_val (n : ℕ) : of_nat (α × β) n = (of_nat α (unpair n).1, of_nat β (unpair n).2) := by simp; refl @[simp] theorem prod_nat_of_nat : of_nat (ℕ × ℕ) = unpair := by funext; simp instance int : denumerable ℤ := denumerable.mk' equiv.int_equiv_nat instance pnat : denumerable ℕ+ := denumerable.mk' equiv.pnat_equiv_nat /-- The lift of a denumerable type is denumerable. -/ instance ulift : denumerable (ulift α) := of_equiv _ equiv.ulift /-- The lift of a denumerable type is denumerable. -/ instance plift : denumerable (plift α) := of_equiv _ equiv.plift /-- If `α` is denumerable, then `α × α` and `α` are equivalent. -/ def pair : α × α ≃ α := equiv₂ _ _ end end denumerable namespace nat.subtype open function encodable /-! ### Subsets of `ℕ` -/ variables {s : set ℕ} [infinite s] section classical open_locale classical lemma exists_succ (x : s) : ∃ n, ↑x + n + 1 ∈ s := classical.by_contradiction $ λ h, have ∀ (a : ℕ) (ha : a ∈ s), a < succ x, from λ a ha, lt_of_not_ge (λ hax, h ⟨a - (x + 1), by rwa [add_right_comm, add_tsub_cancel_of_le hax]⟩), fintype.false ⟨(((multiset.range (succ x)).filter (∈ s)).pmap (λ (y : ℕ) (hy : y ∈ s), subtype.mk y hy) (by simp [-multiset.range_succ])).to_finset, by simpa [subtype.ext_iff_val, multiset.mem_filter, -multiset.range_succ]⟩ end classical variable [decidable_pred (∈ s)] /-- Returns the next natural in a set, according to the usual ordering of `ℕ`. -/ def succ (x : s) : s := have h : ∃ m, ↑x + m + 1 ∈ s, from exists_succ x, ⟨↑x + nat.find h + 1, nat.find_spec h⟩ lemma succ_le_of_lt {x y : s} (h : y < x) : succ y ≤ x := have hx : ∃ m, ↑y + m + 1 ∈ s, from exists_succ _, let ⟨k, hk⟩ := nat.exists_eq_add_of_lt h in have nat.find hx ≤ k, from nat.find_min' _ (hk ▸ x.2), show (y : ℕ) + nat.find hx + 1 ≤ x, by rw hk; exact add_le_add_right (add_le_add_left this _) _ lemma le_succ_of_forall_lt_le {x y : s} (h : ∀ z < x, z ≤ y) : x ≤ succ y := have hx : ∃ m, ↑y + m + 1 ∈ s, from exists_succ _, show ↑x ≤ ↑y + nat.find hx + 1, from le_of_not_gt $ λ hxy, (h ⟨_, nat.find_spec hx⟩ hxy).not_lt $ calc ↑y ≤ ↑y + nat.find hx : le_add_of_nonneg_right (nat.zero_le _) ... < ↑y + nat.find hx + 1 : nat.lt_succ_self _ lemma lt_succ_self (x : s) : x < succ x := calc (x : ℕ) ≤ x + _ : le_self_add ... < succ x : nat.lt_succ_self (x + _) lemma lt_succ_iff_le {x y : s} : x < succ y ↔ x ≤ y := ⟨λ h, le_of_not_gt (λ h', not_le_of_gt h (succ_le_of_lt h')), λ h, lt_of_le_of_lt h (lt_succ_self _)⟩ /-- Returns the `n`-th element of a set, according to the usual ordering of `ℕ`. -/ def of_nat (s : set ℕ) [decidable_pred (∈ s)] [infinite s] : ℕ → s | 0 := ⊥ | (n+1) := succ (of_nat n) lemma of_nat_surjective_aux : ∀ {x : ℕ} (hx : x ∈ s), ∃ n, of_nat s n = ⟨x, hx⟩ | x := λ hx, let t : list s := ((list.range x).filter (λ y, y ∈ s)).pmap (λ (y : ℕ) (hy : y ∈ s), ⟨y, hy⟩) (by simp) in have hmt : ∀ {y : s}, y ∈ t ↔ y < ⟨x, hx⟩, by simp [list.mem_filter, subtype.ext_iff_val, t]; intros; refl, have wf : ∀ m : s, list.maximum t = m → ↑m < x, from λ m hmax, by simpa [hmt] using list.maximum_mem hmax, begin cases hmax : list.maximum t with m, { exact ⟨0, le_antisymm bot_le (le_of_not_gt (λ h, list.not_mem_nil (⊥ : s) $ by rw [← list.maximum_eq_none.1 hmax, hmt]; exact h))⟩ }, cases of_nat_surjective_aux m.2 with a ha, exact ⟨a + 1, le_antisymm (by rw of_nat; exact succ_le_of_lt (by rw ha; exact wf _ hmax)) $ by rw of_nat; exact le_succ_of_forall_lt_le (λ z hz, by rw ha; cases m; exact list.le_maximum_of_mem (hmt.2 hz) hmax)⟩ end using_well_founded {dec_tac := `[tauto]} lemma of_nat_surjective : surjective (of_nat s) := λ ⟨x, hx⟩, of_nat_surjective_aux hx @[simp] lemma of_nat_range : set.range (of_nat s) = set.univ := of_nat_surjective.range_eq @[simp] lemma coe_comp_of_nat_range : set.range (coe ∘ of_nat s : ℕ → ℕ) = s := by rw [set.range_comp coe, of_nat_range, set.image_univ, subtype.range_coe] private def to_fun_aux (x : s) : ℕ := (list.range x).countp (∈ s) private lemma to_fun_aux_eq (x : s) : to_fun_aux x = ((finset.range x).filter (∈ s)).card := by rw [to_fun_aux, list.countp_eq_length_filter]; refl open finset private lemma right_inverse_aux : ∀ n, to_fun_aux (of_nat s n) = n | 0 := begin rw [to_fun_aux_eq, card_eq_zero, eq_empty_iff_forall_not_mem], rintro n hn, rw [mem_filter, of_nat, mem_range] at hn, exact bot_le.not_lt (show (⟨n, hn.2⟩ : s) < ⊥, from hn.1), end | (n+1) := have ih : to_fun_aux (of_nat s n) = n, from right_inverse_aux n, have h₁ : (of_nat s n : ℕ) ∉ (range (of_nat s n)).filter (∈ s), by simp, have h₂ : (range (succ (of_nat s n))).filter (∈ s) = insert (of_nat s n) ((range (of_nat s n)).filter (∈ s)), begin simp only [finset.ext_iff, mem_insert, mem_range, mem_filter], exact λ m, ⟨λ h, by simp only [h.2, and_true]; exact or.symm (lt_or_eq_of_le ((@lt_succ_iff_le _ _ _ ⟨m, h.2⟩ _).1 h.1)), λ h, h.elim (λ h, h.symm ▸ ⟨lt_succ_self _, (of_nat s n).prop⟩) (λ h, ⟨h.1.trans (lt_succ_self _), h.2⟩)⟩, end, begin simp only [to_fun_aux_eq, of_nat, range_succ] at ⊢ ih, conv {to_rhs, rw [← ih, ← card_insert_of_not_mem h₁, ← h₂] }, end /-- Any infinite set of naturals is denumerable. -/ def denumerable (s : set ℕ) [decidable_pred (∈ s)] [infinite s] : denumerable s := denumerable.of_equiv ℕ { to_fun := to_fun_aux, inv_fun := of_nat s, left_inv := left_inverse_of_surjective_of_right_inverse of_nat_surjective right_inverse_aux, right_inv := right_inverse_aux } end nat.subtype namespace denumerable open encodable /-- An infinite encodable type is denumerable. -/ def of_encodable_of_infinite (α : Type*) [encodable α] [infinite α] : denumerable α := begin letI := @decidable_range_encode α _; letI : infinite (set.range (@encode α _)) := infinite.of_injective _ (equiv.of_injective _ encode_injective).injective, letI := nat.subtype.denumerable (set.range (@encode α _)), exact denumerable.of_equiv (set.range (@encode α _)) (equiv_range_encode α), end end denumerable