/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne, Kexing Ying -/ import probability.notation import probability.hitting_time /-! # Martingales A family of functions `f : ι → α → E` is a martingale with respect to a filtration `ℱ` if every `f i` is integrable, `f` is adapted with respect to `ℱ` and for all `i ≤ j`, `μ[f j | ℱ i] =ᵐ[μ] f i`. On the other hand, `f : ι → α → E` is said to be a supermartingale with respect to the filtration `ℱ` if `f i` is integrable, `f` is adapted with resepct to `ℱ` and for all `i ≤ j`, `μ[f j | ℱ i] ≤ᵐ[μ] f i`. Finally, `f : ι → α → E` is said to be a submartingale with respect to the filtration `ℱ` if `f i` is integrable, `f` is adapted with resepct to `ℱ` and for all `i ≤ j`, `f i ≤ᵐ[μ] μ[f j | ℱ i]`. The definitions of filtration and adapted can be found in `probability.stopping`. ### Definitions * `measure_theory.martingale f ℱ μ`: `f` is a martingale with respect to filtration `ℱ` and measure `μ`. * `measure_theory.supermartingale f ℱ μ`: `f` is a supermartingale with respect to filtration `ℱ` and measure `μ`. * `measure_theory.submartingale f ℱ μ`: `f` is a submartingale with respect to filtration `ℱ` and measure `μ`. ### Results * `measure_theory.martingale_condexp f ℱ μ`: the sequence `λ i, μ[f | ℱ i, ℱ.le i])` is a martingale with respect to `ℱ` and `μ`. -/ open topological_space filter open_locale nnreal ennreal measure_theory probability_theory big_operators namespace measure_theory variables {α E ι : Type*} [preorder ι] {m0 : measurable_space α} {μ : measure α} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] {f g : ι → α → E} {ℱ : filtration ι m0} /-- A family of functions `f : ι → α → E` is a martingale with respect to a filtration `ℱ` if `f` is adapted with respect to `ℱ` and for all `i ≤ j`, `μ[f j | ℱ i] =ᵐ[μ] f i`. -/ def martingale (f : ι → α → E) (ℱ : filtration ι m0) (μ : measure α) : Prop := adapted ℱ f ∧ ∀ i j, i ≤ j → μ[f j | ℱ i] =ᵐ[μ] f i /-- A family of integrable functions `f : ι → α → E` is a supermartingale with respect to a filtration `ℱ` if `f` is adapted with respect to `ℱ` and for all `i ≤ j`, `μ[f j | ℱ.le i] ≤ᵐ[μ] f i`. -/ def supermartingale [has_le E] (f : ι → α → E) (ℱ : filtration ι m0) (μ : measure α) : Prop := adapted ℱ f ∧ (∀ i j, i ≤ j → μ[f j | ℱ i] ≤ᵐ[μ] f i) ∧ ∀ i, integrable (f i) μ /-- A family of integrable functions `f : ι → α → E` is a submartingale with respect to a filtration `ℱ` if `f` is adapted with respect to `ℱ` and for all `i ≤ j`, `f i ≤ᵐ[μ] μ[f j | ℱ.le i]`. -/ def submartingale [has_le E] (f : ι → α → E) (ℱ : filtration ι m0) (μ : measure α) : Prop := adapted ℱ f ∧ (∀ i j, i ≤ j → f i ≤ᵐ[μ] μ[f j | ℱ i]) ∧ ∀ i, integrable (f i) μ variables (E) lemma martingale_zero (ℱ : filtration ι m0) (μ : measure α) : martingale (0 : ι → α → E) ℱ μ := ⟨adapted_zero E ℱ, λ i j hij, by { rw [pi.zero_apply, condexp_zero], simp, }⟩ variables {E} namespace martingale @[protected] lemma adapted (hf : martingale f ℱ μ) : adapted ℱ f := hf.1 @[protected] lemma strongly_measurable (hf : martingale f ℱ μ) (i : ι) : strongly_measurable[ℱ i] (f i) := hf.adapted i lemma condexp_ae_eq (hf : martingale f ℱ μ) {i j : ι} (hij : i ≤ j) : μ[f j | ℱ i] =ᵐ[μ] f i := hf.2 i j hij @[protected] lemma integrable (hf : martingale f ℱ μ) (i : ι) : integrable (f i) μ := integrable_condexp.congr (hf.condexp_ae_eq (le_refl i)) lemma set_integral_eq [sigma_finite_filtration μ ℱ] (hf : martingale f ℱ μ) {i j : ι} (hij : i ≤ j) {s : set α} (hs : measurable_set[ℱ i] s) : ∫ x in s, f i x ∂μ = ∫ x in s, f j x ∂μ := begin rw ← @set_integral_condexp _ _ _ _ _ (ℱ i) m0 _ _ _ (ℱ.le i) _ (hf.integrable j) hs, refine set_integral_congr_ae (ℱ.le i s hs) _, filter_upwards [hf.2 i j hij] with _ heq _ using heq.symm, end lemma add (hf : martingale f ℱ μ) (hg : martingale g ℱ μ) : martingale (f + g) ℱ μ := begin refine ⟨hf.adapted.add hg.adapted, λ i j hij, _⟩, exact (condexp_add (hf.integrable j) (hg.integrable j)).trans ((hf.2 i j hij).add (hg.2 i j hij)), end lemma neg (hf : martingale f ℱ μ) : martingale (-f) ℱ μ := ⟨hf.adapted.neg, λ i j hij, (condexp_neg (f j)).trans ((hf.2 i j hij).neg)⟩ lemma sub (hf : martingale f ℱ μ) (hg : martingale g ℱ μ) : martingale (f - g) ℱ μ := by { rw sub_eq_add_neg, exact hf.add hg.neg, } lemma smul (c : ℝ) (hf : martingale f ℱ μ) : martingale (c • f) ℱ μ := begin refine ⟨hf.adapted.smul c, λ i j hij, _⟩, refine (condexp_smul c (f j)).trans ((hf.2 i j hij).mono (λ x hx, _)), rw [pi.smul_apply, hx, pi.smul_apply, pi.smul_apply], end lemma supermartingale [preorder E] (hf : martingale f ℱ μ) : supermartingale f ℱ μ := ⟨hf.1, λ i j hij, (hf.2 i j hij).le, λ i, hf.integrable i⟩ lemma submartingale [preorder E] (hf : martingale f ℱ μ) : submartingale f ℱ μ := ⟨hf.1, λ i j hij, (hf.2 i j hij).symm.le, λ i, hf.integrable i⟩ end martingale lemma martingale_iff [partial_order E] : martingale f ℱ μ ↔ supermartingale f ℱ μ ∧ submartingale f ℱ μ := ⟨λ hf, ⟨hf.supermartingale, hf.submartingale⟩, λ ⟨hf₁, hf₂⟩, ⟨hf₁.1, λ i j hij, (hf₁.2.1 i j hij).antisymm (hf₂.2.1 i j hij)⟩⟩ lemma martingale_condexp (f : α → E) (ℱ : filtration ι m0) (μ : measure α) [sigma_finite_filtration μ ℱ] : martingale (λ i, μ[f | ℱ i]) ℱ μ := ⟨λ i, strongly_measurable_condexp, λ i j hij, condexp_condexp_of_le (ℱ.mono hij) (ℱ.le j)⟩ namespace supermartingale @[protected] lemma adapted [has_le E] (hf : supermartingale f ℱ μ) : adapted ℱ f := hf.1 @[protected] lemma strongly_measurable [has_le E] (hf : supermartingale f ℱ μ) (i : ι) : strongly_measurable[ℱ i] (f i) := hf.adapted i @[protected] lemma integrable [has_le E] (hf : supermartingale f ℱ μ) (i : ι) : integrable (f i) μ := hf.2.2 i lemma condexp_ae_le [has_le E] (hf : supermartingale f ℱ μ) {i j : ι} (hij : i ≤ j) : μ[f j | ℱ i] ≤ᵐ[μ] f i := hf.2.1 i j hij lemma set_integral_le [sigma_finite_filtration μ ℱ] {f : ι → α → ℝ} (hf : supermartingale f ℱ μ) {i j : ι} (hij : i ≤ j) {s : set α} (hs : measurable_set[ℱ i] s) : ∫ x in s, f j x ∂μ ≤ ∫ x in s, f i x ∂μ := begin rw ← set_integral_condexp (ℱ.le i) (hf.integrable j) hs, refine set_integral_mono_ae integrable_condexp.integrable_on (hf.integrable i).integrable_on _, filter_upwards [hf.2.1 i j hij] with _ heq using heq, end lemma add [preorder E] [covariant_class E E (+) (≤)] (hf : supermartingale f ℱ μ) (hg : supermartingale g ℱ μ) : supermartingale (f + g) ℱ μ := begin refine ⟨hf.1.add hg.1, λ i j hij, _, λ i, (hf.2.2 i).add (hg.2.2 i)⟩, refine (condexp_add (hf.integrable j) (hg.integrable j)).le.trans _, filter_upwards [hf.2.1 i j hij, hg.2.1 i j hij], intros, refine add_le_add _ _; assumption, end lemma add_martingale [preorder E] [covariant_class E E (+) (≤)] (hf : supermartingale f ℱ μ) (hg : martingale g ℱ μ) : supermartingale (f + g) ℱ μ := hf.add hg.supermartingale lemma neg [preorder E] [covariant_class E E (+) (≤)] (hf : supermartingale f ℱ μ) : submartingale (-f) ℱ μ := begin refine ⟨hf.1.neg, λ i j hij, _, λ i, (hf.2.2 i).neg⟩, refine eventually_le.trans _ (condexp_neg (f j)).symm.le, filter_upwards [hf.2.1 i j hij] with _ _, simpa, end end supermartingale namespace submartingale @[protected] lemma adapted [has_le E] (hf : submartingale f ℱ μ) : adapted ℱ f := hf.1 @[protected] lemma strongly_measurable [has_le E] (hf : submartingale f ℱ μ) (i : ι) : strongly_measurable[ℱ i] (f i) := hf.adapted i @[protected] lemma integrable [has_le E] (hf : submartingale f ℱ μ) (i : ι) : integrable (f i) μ := hf.2.2 i lemma ae_le_condexp [has_le E] (hf : submartingale f ℱ μ) {i j : ι} (hij : i ≤ j) : f i ≤ᵐ[μ] μ[f j | ℱ i] := hf.2.1 i j hij lemma add [preorder E] [covariant_class E E (+) (≤)] (hf : submartingale f ℱ μ) (hg : submartingale g ℱ μ) : submartingale (f + g) ℱ μ := begin refine ⟨hf.1.add hg.1, λ i j hij, _, λ i, (hf.2.2 i).add (hg.2.2 i)⟩, refine eventually_le.trans _ (condexp_add (hf.integrable j) (hg.integrable j)).symm.le, filter_upwards [hf.2.1 i j hij, hg.2.1 i j hij], intros, refine add_le_add _ _; assumption, end lemma add_martingale [preorder E] [covariant_class E E (+) (≤)] (hf : submartingale f ℱ μ) (hg : martingale g ℱ μ) : submartingale (f + g) ℱ μ := hf.add hg.submartingale lemma neg [preorder E] [covariant_class E E (+) (≤)] (hf : submartingale f ℱ μ) : supermartingale (-f) ℱ μ := begin refine ⟨hf.1.neg, λ i j hij, (condexp_neg (f j)).le.trans _, λ i, (hf.2.2 i).neg⟩, filter_upwards [hf.2.1 i j hij] with _ _, simpa, end /-- The converse of this lemma is `measure_theory.submartingale_of_set_integral_le`. -/ lemma set_integral_le [sigma_finite_filtration μ ℱ] {f : ι → α → ℝ} (hf : submartingale f ℱ μ) {i j : ι} (hij : i ≤ j) {s : set α} (hs : measurable_set[ℱ i] s) : ∫ x in s, f i x ∂μ ≤ ∫ x in s, f j x ∂μ := begin rw [← neg_le_neg_iff, ← integral_neg, ← integral_neg], exact supermartingale.set_integral_le hf.neg hij hs, end lemma sub_supermartingale [preorder E] [covariant_class E E (+) (≤)] (hf : submartingale f ℱ μ) (hg : supermartingale g ℱ μ) : submartingale (f - g) ℱ μ := by { rw sub_eq_add_neg, exact hf.add hg.neg } lemma sub_martingale [preorder E] [covariant_class E E (+) (≤)] (hf : submartingale f ℱ μ) (hg : martingale g ℱ μ) : submartingale (f - g) ℱ μ := hf.sub_supermartingale hg.supermartingale protected lemma sup {f g : ι → α → ℝ} (hf : submartingale f ℱ μ) (hg : submartingale g ℱ μ) : submartingale (f ⊔ g) ℱ μ := begin refine ⟨λ i, @strongly_measurable.sup _ _ _ _ (ℱ i) _ _ _ (hf.adapted i) (hg.adapted i), λ i j hij, _, λ i, integrable.sup (hf.integrable _) (hg.integrable _)⟩, refine eventually_le.sup_le _ _, { exact eventually_le.trans (hf.2.1 i j hij) (condexp_mono (hf.integrable _) (integrable.sup (hf.integrable j) (hg.integrable j)) (eventually_of_forall (λ x, le_max_left _ _))) }, { exact eventually_le.trans (hg.2.1 i j hij) (condexp_mono (hg.integrable _) (integrable.sup (hf.integrable j) (hg.integrable j)) (eventually_of_forall (λ x, le_max_right _ _))) } end protected lemma pos {f : ι → α → ℝ} (hf : submartingale f ℱ μ) : submartingale (f⁺) ℱ μ := hf.sup (martingale_zero _ _ _).submartingale end submartingale section submartingale lemma submartingale_of_set_integral_le [is_finite_measure μ] {f : ι → α → ℝ} (hadp : adapted ℱ f) (hint : ∀ i, integrable (f i) μ) (hf : ∀ i j : ι, i ≤ j → ∀ s : set α, measurable_set[ℱ i] s → ∫ x in s, f i x ∂μ ≤ ∫ x in s, f j x ∂μ) : submartingale f ℱ μ := begin refine ⟨hadp, λ i j hij, _, hint⟩, suffices : f i ≤ᵐ[μ.trim (ℱ.le i)] μ[f j| ℱ i], { exact ae_le_of_ae_le_trim this }, suffices : 0 ≤ᵐ[μ.trim (ℱ.le i)] μ[f j| ℱ i] - f i, { filter_upwards [this] with x hx, rwa ← sub_nonneg }, refine ae_nonneg_of_forall_set_integral_nonneg_of_finite_measure ((integrable_condexp.sub (hint i)).trim _ (strongly_measurable_condexp.sub $ hadp i)) (λ s hs, _), specialize hf i j hij s hs, rwa [← set_integral_trim _ (strongly_measurable_condexp.sub $ hadp i) hs, integral_sub' integrable_condexp.integrable_on (hint i).integrable_on, sub_nonneg, set_integral_condexp (ℱ.le i) (hint j) hs], end lemma submartingale_of_condexp_sub_nonneg [is_finite_measure μ] {f : ι → α → ℝ} (hadp : adapted ℱ f) (hint : ∀ i, integrable (f i) μ) (hf : ∀ i j, i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i | ℱ i]) : submartingale f ℱ μ := begin refine ⟨hadp, λ i j hij, _, hint⟩, rw [← condexp_of_strongly_measurable (ℱ.le _) (hadp _) (hint _), ← eventually_sub_nonneg], exact eventually_le.trans (hf i j hij) (condexp_sub (hint _) (hint _)).le, apply_instance end lemma submartingale.condexp_sub_nonneg [is_finite_measure μ] {f : ι → α → ℝ} (hf : submartingale f ℱ μ) {i j : ι} (hij : i ≤ j) : 0 ≤ᵐ[μ] μ[f j - f i | ℱ i] := begin refine eventually_le.trans _ (condexp_sub (hf.integrable _) (hf.integrable _)).symm.le, rw [eventually_sub_nonneg, condexp_of_strongly_measurable (ℱ.le _) (hf.adapted _) (hf.integrable _)], exact hf.2.1 i j hij, apply_instance end lemma submartingale_iff_condexp_sub_nonneg [is_finite_measure μ] {f : ι → α → ℝ} : submartingale f ℱ μ ↔ adapted ℱ f ∧ (∀ i, integrable (f i) μ) ∧ ∀ i j, i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i | ℱ i] := ⟨λ h, ⟨h.adapted, h.integrable, λ i j, h.condexp_sub_nonneg⟩, λ ⟨hadp, hint, h⟩, submartingale_of_condexp_sub_nonneg hadp hint h⟩ end submartingale namespace supermartingale lemma sub_submartingale [preorder E] [covariant_class E E (+) (≤)] (hf : supermartingale f ℱ μ) (hg : submartingale g ℱ μ) : supermartingale (f - g) ℱ μ := by { rw sub_eq_add_neg, exact hf.add hg.neg } lemma sub_martingale [preorder E] [covariant_class E E (+) (≤)] (hf : supermartingale f ℱ μ) (hg : martingale g ℱ μ) : supermartingale (f - g) ℱ μ := hf.sub_submartingale hg.submartingale section variables {F : Type*} [normed_lattice_add_comm_group F] [normed_space ℝ F] [complete_space F] [ordered_smul ℝ F] lemma smul_nonneg {f : ι → α → F} {c : ℝ} (hc : 0 ≤ c) (hf : supermartingale f ℱ μ) : supermartingale (c • f) ℱ μ := begin refine ⟨hf.1.smul c, λ i j hij, _, λ i, (hf.2.2 i).smul c⟩, refine (condexp_smul c (f j)).le.trans _, filter_upwards [hf.2.1 i j hij] with _ hle, simp, exact smul_le_smul_of_nonneg hle hc, end lemma smul_nonpos {f : ι → α → F} {c : ℝ} (hc : c ≤ 0) (hf : supermartingale f ℱ μ) : submartingale (c • f) ℱ μ := begin rw [← neg_neg c, (by { ext i x, simp } : - -c • f = -(-c • f))], exact (hf.smul_nonneg $ neg_nonneg.2 hc).neg, end end end supermartingale namespace submartingale section variables {F : Type*} [normed_lattice_add_comm_group F] [normed_space ℝ F] [complete_space F] [ordered_smul ℝ F] lemma smul_nonneg {f : ι → α → F} {c : ℝ} (hc : 0 ≤ c) (hf : submartingale f ℱ μ) : submartingale (c • f) ℱ μ := begin rw [← neg_neg c, (by { ext i x, simp } : - -c • f = -(c • -f))], exact supermartingale.neg (hf.neg.smul_nonneg hc), end lemma smul_nonpos {f : ι → α → F} {c : ℝ} (hc : c ≤ 0) (hf : submartingale f ℱ μ) : supermartingale (c • f) ℱ μ := begin rw [← neg_neg c, (by { ext i x, simp } : - -c • f = -(-c • f))], exact (hf.smul_nonneg $ neg_nonneg.2 hc).neg, end end end submartingale section nat variables {𝒢 : filtration ℕ m0} lemma submartingale_of_set_integral_le_succ [is_finite_measure μ] {f : ℕ → α → ℝ} (hadp : adapted 𝒢 f) (hint : ∀ i, integrable (f i) μ) (hf : ∀ i, ∀ s : set α, measurable_set[𝒢 i] s → ∫ x in s, f i x ∂μ ≤ ∫ x in s, f (i + 1) x ∂μ) : submartingale f 𝒢 μ := begin refine submartingale_of_set_integral_le hadp hint (λ i j hij s hs, _), induction hij with k hk₁ hk₂, { exact le_rfl }, { exact le_trans hk₂ (hf k s (𝒢.mono hk₁ _ hs)) } end lemma submartingale_nat [is_finite_measure μ] {f : ℕ → α → ℝ} (hadp : adapted 𝒢 f) (hint : ∀ i, integrable (f i) μ) (hf : ∀ i, f i ≤ᵐ[μ] μ[f (i + 1) | 𝒢 i]) : submartingale f 𝒢 μ := begin refine submartingale_of_set_integral_le_succ hadp hint (λ i s hs, _), have : ∫ x in s, f (i + 1) x ∂μ = ∫ x in s, μ[f (i + 1)|𝒢 i] x ∂μ := (set_integral_condexp (𝒢.le i) (hint _) hs).symm, rw this, exact set_integral_mono_ae (hint i).integrable_on integrable_condexp.integrable_on (hf i), end lemma submartingale_of_condexp_sub_nonneg_nat [is_finite_measure μ] {f : ℕ → α → ℝ} (hadp : adapted 𝒢 f) (hint : ∀ i, integrable (f i) μ) (hf : ∀ i, 0 ≤ᵐ[μ] μ[f (i + 1) - f i | 𝒢 i]) : submartingale f 𝒢 μ := begin refine submartingale_nat hadp hint (λ i, _), rw [← condexp_of_strongly_measurable (𝒢.le _) (hadp _) (hint _), ← eventually_sub_nonneg], exact eventually_le.trans (hf i) (condexp_sub (hint _) (hint _)).le, apply_instance end namespace submartingale lemma integrable_stopped_value [has_le E] {f : ℕ → α → E} (hf : submartingale f 𝒢 μ) {τ : α → ℕ} (hτ : is_stopping_time 𝒢 τ) {N : ℕ} (hbdd : ∀ x, τ x ≤ N) : integrable (stopped_value f τ) μ := integrable_stopped_value hτ hf.integrable hbdd -- We may generalize the below lemma to functions taking value in a `normed_lattice_add_comm_group`. -- Similarly, generalize `(super/)submartingale.set_integral_le`. /-- Given a submartingale `f` and bounded stopping times `τ` and `π` such that `τ ≤ π`, the expectation of `stopped_value f τ` is less than or equal to the expectation of `stopped_value f π`. This is the forward direction of the optional stopping theorem. -/ lemma expected_stopped_value_mono [sigma_finite_filtration μ 𝒢] {f : ℕ → α → ℝ} (hf : submartingale f 𝒢 μ) {τ π : α → ℕ} (hτ : is_stopping_time 𝒢 τ) (hπ : is_stopping_time 𝒢 π) (hle : τ ≤ π) {N : ℕ} (hbdd : ∀ x, π x ≤ N) : μ[stopped_value f τ] ≤ μ[stopped_value f π] := begin rw [← sub_nonneg, ← integral_sub', stopped_value_sub_eq_sum' hle hbdd], { simp only [finset.sum_apply], have : ∀ i, measurable_set[𝒢 i] {x : α | τ x ≤ i ∧ i < π x}, { intro i, refine (hτ i).inter _, convert (hπ i).compl, ext x, simpa }, rw integral_finset_sum, { refine finset.sum_nonneg (λ i hi, _), rw [integral_indicator (𝒢.le _ _ (this _)), integral_sub', sub_nonneg], { exact hf.set_integral_le (nat.le_succ i) (this _) }, { exact (hf.integrable _).integrable_on }, { exact (hf.integrable _).integrable_on } }, intros i hi, exact integrable.indicator (integrable.sub (hf.integrable _) (hf.integrable _)) (𝒢.le _ _ (this _)) }, { exact hf.integrable_stopped_value hπ hbdd }, { exact hf.integrable_stopped_value hτ (λ x, le_trans (hle x) (hbdd x)) } end end submartingale /-- The converse direction of the optional stopping theorem, i.e. an adapted integrable process `f` is a submartingale if for all bounded stopping times `τ` and `π` such that `τ ≤ π`, the stopped value of `f` at `τ` has expectation smaller than its stopped value at `π`. -/ lemma submartingale_of_expected_stopped_value_mono [is_finite_measure μ] {f : ℕ → α → ℝ} (hadp : adapted 𝒢 f) (hint : ∀ i, integrable (f i) μ) (hf : ∀ τ π : α → ℕ, is_stopping_time 𝒢 τ → is_stopping_time 𝒢 π → τ ≤ π → (∃ N, ∀ x, π x ≤ N) → μ[stopped_value f τ] ≤ μ[stopped_value f π]) : submartingale f 𝒢 μ := begin refine submartingale_of_set_integral_le hadp hint (λ i j hij s hs, _), classical, specialize hf (s.piecewise (λ _, i) (λ _, j)) _ (is_stopping_time_piecewise_const hij hs) (is_stopping_time_const 𝒢 j) (λ x, (ite_le_sup _ _ _).trans (max_eq_right hij).le) ⟨j, λ x, le_rfl⟩, rwa [stopped_value_const, stopped_value_piecewise_const, integral_piecewise (𝒢.le _ _ hs) (hint _).integrable_on (hint _).integrable_on, ← integral_add_compl (𝒢.le _ _ hs) (hint j), add_le_add_iff_right] at hf, end /-- **The optional stopping theorem** (fair game theorem): an adapted integrable process `f` is a submartingale if and only if for all bounded stopping times `τ` and `π` such that `τ ≤ π`, the stopped value of `f` at `τ` has expectation smaller than its stopped value at `π`. -/ lemma submartingale_iff_expected_stopped_value_mono [is_finite_measure μ] {f : ℕ → α → ℝ} (hadp : adapted 𝒢 f) (hint : ∀ i, integrable (f i) μ) : submartingale f 𝒢 μ ↔ ∀ τ π : α → ℕ, is_stopping_time 𝒢 τ → is_stopping_time 𝒢 π → τ ≤ π → (∃ N, ∀ x, π x ≤ N) → μ[stopped_value f τ] ≤ μ[stopped_value f π] := ⟨λ hf _ _ hτ hπ hle ⟨N, hN⟩, hf.expected_stopped_value_mono hτ hπ hle hN, submartingale_of_expected_stopped_value_mono hadp hint⟩ section maximal open finset lemma smul_le_stopped_value_hitting [is_finite_measure μ] {f : ℕ → α → ℝ} (hsub : submartingale f 𝒢 μ) {ε : ℝ≥0} (n : ℕ) : ε • μ {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)} ≤ ennreal.of_real (∫ x in {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)}, stopped_value f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) x ∂μ) := begin have hn : set.Icc 0 n = {k | k ≤ n}, { ext x, simp }, have : ∀ x, ((ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)) → (ε : ℝ) ≤ stopped_value f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) x, { intros x hx, simp_rw [le_sup'_iff, mem_range, nat.lt_succ_iff] at hx, refine stopped_value_hitting_mem _, simp only [set.mem_set_of_eq, exists_prop, hn], exact let ⟨j, hj₁, hj₂⟩ := hx in ⟨j, hj₁, hj₂⟩ }, have h := set_integral_ge_of_const_le (measurable_set_le measurable_const (finset.measurable_range_sup'' (λ n _, (hsub.strongly_measurable n).measurable.le (𝒢.le n)))) (measure_ne_top _ _) this (integrable.integrable_on (integrable_stopped_value (hitting_is_stopping_time hsub.adapted measurable_set_Ici) hsub.integrable hitting_le)), rw [ennreal.le_of_real_iff_to_real_le, ennreal.to_real_smul], { exact h }, { exact ennreal.mul_ne_top (by simp) (measure_ne_top _ _) }, { exact le_trans (mul_nonneg ε.coe_nonneg ennreal.to_real_nonneg) h } end /-- **Doob's maximal inequality**: Given a non-negative submartingale `f`, for all `ε : ℝ≥0`, we have `ε • μ {ε ≤ f* n} ≤ ∫ x in {ε ≤ f* n}, f n` where `f* n x = max_{k ≤ n}, f k x`. In some literature, the Doob's maximal inequality refers to what we call Doob's Lp inequality (which is a corollary of this lemma and will be proved in an upcomming PR). -/ lemma maximal_ineq [is_finite_measure μ] {f : ℕ → α → ℝ} (hsub : submartingale f 𝒢 μ) (hnonneg : 0 ≤ f) {ε : ℝ≥0} (n : ℕ) : ε • μ {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)} ≤ ennreal.of_real (∫ x in {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)}, f n x ∂μ) := begin suffices : ε • μ {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)} + ennreal.of_real (∫ x in {x | ((range (n + 1)).sup' nonempty_range_succ (λ k, f k x)) < ε}, f n x ∂μ) ≤ ennreal.of_real (μ[f n]), { have hadd : ennreal.of_real (∫ (x : α), f n x ∂μ) = ennreal.of_real (∫ (x : α) in {x : α | ↑ε ≤ ((range (n + 1)).sup' nonempty_range_succ (λ k, f k x))}, f n x ∂μ) + ennreal.of_real (∫ (x : α) in {x : α | ((range (n + 1)).sup' nonempty_range_succ (λ k, f k x)) < ↑ε}, f n x ∂μ), { rw [← ennreal.of_real_add, ← integral_union], { conv_lhs { rw ← integral_univ }, convert rfl, ext x, change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _, simp only [le_or_lt, true_iff] }, { rintro x ⟨hx₁ : _ ≤ _, hx₂ : _ < _⟩, exact (not_le.2 hx₂) hx₁ }, { exact (measurable_set_lt (finset.measurable_range_sup'' (λ n _, (hsub.strongly_measurable n).measurable.le (𝒢.le n))) measurable_const) }, exacts [(hsub.integrable _).integrable_on, (hsub.integrable _).integrable_on, integral_nonneg (hnonneg _), integral_nonneg (hnonneg _)] }, rwa [hadd, ennreal.add_le_add_iff_right ennreal.of_real_ne_top] at this }, calc ε • μ {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)} + ennreal.of_real (∫ x in {x | ((range (n + 1)).sup' nonempty_range_succ (λ k, f k x)) < ε}, f n x ∂μ) ≤ ennreal.of_real (∫ x in {x | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ (λ k, f k x)}, stopped_value f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) x ∂μ) + ennreal.of_real (∫ x in {x | ((range (n + 1)).sup' nonempty_range_succ (λ k, f k x)) < ε}, stopped_value f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) x ∂μ) : begin refine add_le_add (smul_le_stopped_value_hitting hsub _) (ennreal.of_real_le_of_real (set_integral_mono_on (hsub.integrable n).integrable_on (integrable.integrable_on (integrable_stopped_value (hitting_is_stopping_time hsub.adapted measurable_set_Ici) hsub.integrable hitting_le)) (measurable_set_lt (finset.measurable_range_sup'' (λ n _, (hsub.strongly_measurable n).measurable.le (𝒢.le n))) measurable_const) _)), intros x hx, rw set.mem_set_of_eq at hx, have : hitting f {y : ℝ | ↑ε ≤ y} 0 n x = n, { simp only [hitting, set.mem_set_of_eq, exists_prop, pi.coe_nat, nat.cast_id, ite_eq_right_iff, forall_exists_index, and_imp], intros m hm hεm, exact false.elim ((not_le.2 hx) ((le_sup'_iff _).2 ⟨m, mem_range.2 (nat.lt_succ_of_le hm.2), hεm⟩)) }, simp_rw [stopped_value, this], end ... = ennreal.of_real (∫ x, stopped_value f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) x ∂μ) : begin rw [← ennreal.of_real_add, ← integral_union], { conv_rhs { rw ← integral_univ }, convert rfl, ext x, change _ ↔ (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ), simp only [le_or_lt, iff_true] }, { rintro x ⟨hx₁ : _ ≤ _, hx₂ : _ < _⟩, exact (not_le.2 hx₂) hx₁ }, { exact (measurable_set_lt (finset.measurable_range_sup'' (λ n _, (hsub.strongly_measurable n).measurable.le (𝒢.le n))) measurable_const) }, { exact (integrable.integrable_on (integrable_stopped_value (hitting_is_stopping_time hsub.adapted measurable_set_Ici) hsub.integrable hitting_le)) }, { exact (integrable.integrable_on (integrable_stopped_value (hitting_is_stopping_time hsub.adapted measurable_set_Ici) hsub.integrable hitting_le)) }, exacts [integral_nonneg (λ x, hnonneg _ _), integral_nonneg (λ x, hnonneg _ _)], end ... ≤ ennreal.of_real (μ[f n]) : begin refine ennreal.of_real_le_of_real _, rw ← stopped_value_const f n, exact hsub.expected_stopped_value_mono (hitting_is_stopping_time hsub.adapted measurable_set_Ici) (is_stopping_time_const _ _) (λ x, hitting_le x) (λ x, le_rfl : ∀ x, n ≤ n), end end end maximal lemma submartingale.sum_mul_sub [is_finite_measure μ] {R : ℝ} {ξ f : ℕ → α → ℝ} (hf : submartingale f 𝒢 μ) (hξ : adapted 𝒢 ξ) (hbdd : ∀ n x, ξ n x ≤ R) (hnonneg : ∀ n x, 0 ≤ ξ n x) : submartingale (λ n : ℕ, ∑ k in finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ := begin have hξbdd : ∀ i, ∃ (C : ℝ), ∀ (x : α), |ξ i x| ≤ C := λ i, ⟨R, λ x, (abs_of_nonneg (hnonneg i x)).trans_le (hbdd i x)⟩, have hint : ∀ m, integrable (∑ k in finset.range m, ξ k * (f (k + 1) - f k)) μ := λ m, integrable_finset_sum' _ (λ i hi, integrable.bdd_mul ((hf.integrable _).sub (hf.integrable _)) hξ.strongly_measurable.ae_strongly_measurable (hξbdd _)), have hadp : adapted 𝒢 (λ (n : ℕ), ∑ (k : ℕ) in finset.range n, ξ k * (f (k + 1) - f k)), { intro m, refine finset.strongly_measurable_sum' _ (λ i hi, _), rw finset.mem_range at hi, exact (hξ.strongly_measurable_le hi.le).mul ((hf.adapted.strongly_measurable_le (nat.succ_le_of_lt hi)).sub (hf.adapted.strongly_measurable_le hi.le)) }, refine submartingale_of_condexp_sub_nonneg_nat hadp hint (λ i, _), simp only [← finset.sum_Ico_eq_sub _ (nat.le_succ _), finset.sum_apply, pi.mul_apply, pi.sub_apply, nat.Ico_succ_singleton, finset.sum_singleton], exact eventually_le.trans (eventually_le.mul_nonneg (eventually_of_forall (hnonneg _)) (hf.condexp_sub_nonneg (nat.le_succ _))) (condexp_strongly_measurable_mul (hξ _) (((hf.integrable _).sub (hf.integrable _)).bdd_mul hξ.strongly_measurable.ae_strongly_measurable (hξbdd _)) ((hf.integrable _).sub (hf.integrable _))).symm.le, end /-- Given a discrete submartingale `f` and a predictable process `ξ` (i.e. `ξ (n + 1)` is adapted) the process defined by `λ n, ∑ k in finset.range n, ξ (k + 1) * (f (k + 1) - f k)` is also a submartingale. -/ lemma submartingale.sum_mul_sub' [is_finite_measure μ] {R : ℝ} {ξ f : ℕ → α → ℝ} (hf : submartingale f 𝒢 μ) (hξ : adapted 𝒢 (λ n, ξ (n + 1))) (hbdd : ∀ n x, ξ n x ≤ R) (hnonneg : ∀ n x, 0 ≤ ξ n x) : submartingale (λ n : ℕ, ∑ k in finset.range n, ξ (k + 1) * (f (k + 1) - f k)) 𝒢 μ := hf.sum_mul_sub hξ (λ n, hbdd _) (λ n, hnonneg _) end nat end measure_theory